000135576 001__ 135576
000135576 005__ 20240605121015.0
000135576 0247_ $$2doi$$a10.1039/d4gc00564c
000135576 0248_ $$2sideral$$a138681
000135576 037__ $$aART-2024-138681
000135576 041__ $$aeng
000135576 100__ $$aTratnik, Blaž
000135576 245__ $$aExploring hybrid hard carbon/Bi2S3-based negative electrodes for Na-ion batteries
000135576 260__ $$c2024
000135576 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135576 5203_ $$aThe study presents a hybrid hard-carbon/nanocrystalline-Bi2S3 material applicable for negative electrodes in sodium-ion batteries. Through a series of comprehensive analyzes, including electrochemical measurements, operando XRD, ex situ solid-state NMR, and high-resolution STEM imaging, the effectiveness of the HC/Bi2S3 hybrid configuration in the negative electrode function is elucidated with a focus on the underlying charge storage mechanism. Electrochemical analysis demonstrates the improved performance of the hybrid materials over the pristine HC negative electrode and highlights the robustness and stability of the HC/Bi2S3 hybrids over prolonged cycling even under high current densities. Here, the final capacities observed after 100 cycles reached a value of 252 mA h g−1, compared to 216 mA h g−1 of pristine HC. Cyclic voltammetry measurements demonstrate a complex charge storage behavior that integrates both surface and diffusion-driven processes at different potentials during reduction and oxidation. A series of phase transformations during cycling observed in operando XRD expose irreversible reactions during the initial cycle between Bi2S3 and sodium ions, such as the breakdown of the Bi2S3 nanocrystal structure. This phenomenon is further confirmed by the detection of Na2S species using ex situ solid-state NMR. High-resolution STEM imaging reveals morphological changes in Bi2S3 nanocrystals and highlights their resistance to pulverization due to their nanoscale dimensions. This work provides comprehensive insights into the electrochemical performance of the HC/Bi2S3 and sheds light on specific mechanisms and reactions occurring during cycling.
000135576 536__ $$9info:eu-repo/grantAgreement/EC/H2020/875629/EU/NA ION MATERIALS AS ESSENTIAL COMPONENTS TO MANUFACTURE ROBUST BATTERY CELLS FOR NON-AUTOMOTIVE APPLICATIONS/NAIMA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 875629-NAIMA
000135576 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000135576 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135576 700__ $$0(orcid)0000-0002-2866-9369$$aAina, Sergio$$uUniversidad de Zaragoza
000135576 700__ $$aTchernychova, Elena
000135576 700__ $$aGabrijelcic, Matej
000135576 700__ $$aMali, Gregor
000135576 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, Maria Pilar$$uUniversidad de Zaragoza
000135576 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, Maria
000135576 700__ $$aMorcrette, Mathieu
000135576 700__ $$aVizintin, Alen
000135576 700__ $$aDominko, Robert
000135576 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000135576 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000135576 773__ $$g26, 10 (2024), 6089-6099$$pGreen chem.$$tGREEN CHEMISTRY$$x1463-9262
000135576 8564_ $$s3398692$$uhttps://zaguan.unizar.es/record/135576/files/texto_completo.pdf$$yVersión publicada
000135576 8564_ $$s2619783$$uhttps://zaguan.unizar.es/record/135576/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135576 909CO $$ooai:zaguan.unizar.es:135576$$particulos$$pdriver
000135576 951__ $$a2024-06-05-10:50:50
000135576 980__ $$aARTICLE