000135592 001__ 135592
000135592 005__ 20240605121015.0
000135592 0247_ $$2doi$$a10.1167/tvst.13.5.11
000135592 0248_ $$2sideral$$a138707
000135592 037__ $$aART-2024-138707
000135592 041__ $$aeng
000135592 100__ $$aFantaci, Benedetta$$uUniversidad de Zaragoza
000135592 245__ $$aEstablishing standardization guidelines for finite-element optomechanical simulations of refractive laser surgeries: An application to photorefractive keratectomy
000135592 260__ $$c2024
000135592 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135592 5203_ $$aPurpose: Computational models can help clinicians plan surgeries by accounting for factors such as mechanical imbalances or testing different surgical techniques beforehand. Different levels of modeling complexity are found in the literature, and it is still not clear what aspects should be included to obtain accurate results in finite-element (FE) corneal models. This work presents a methodology to narrow down minimal requirements of modeling features to report clinical data for a refractive intervention such as PRK. Methods: A pipeline to create FE models of a refractive surgery is presented: It tests different geometries, boundary conditions, loading, and mesh size on the optomechanical simulation output. The mechanical model for the corneal tissue accounts for the collagen fiber distribution in human corneas. Both mechanical and optical outcome are analyzed for the different models. Finally, the methodology is applied to five patient-specific models to ensure accuracy. Results: To simulate the postsurgical corneal optomechanics, our results suggest that the most precise outcome is obtained with patient-specific models with a 100 µm mesh size, sliding boundary condition at the limbus, and intraocular pressure enforced as a distributed load. Conclusions: A methodology for laser surgery simulation has been developed that is able to reproduce the optical target of the laser intervention while also analyzing the mechanical outcome. Translational Relevance: The lack of standardization in modeling refractive interventions leads to different simulation strategies, making difficult to compare them against other publications. This work establishes the standardization guidelines to be followed when performing optomechanical simulations of refractive interventions.
000135592 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000135592 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135592 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135592 700__ $$0(orcid)0000-0001-9713-1813$$aCalvo, Begoña$$uUniversidad de Zaragoza
000135592 700__ $$aBarraquer, Rafael
000135592 700__ $$aPicó, Andrés
000135592 700__ $$0(orcid)0000-0002-6773-6667$$aAriza-Gracia, Miguel Ángel
000135592 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000135592 773__ $$g13, 5 (2024), 11[19 pp.]$$pTransl. vis. sci. technol.$$tTranslational Vision Science and Technology$$x2164-2591
000135592 8564_ $$s5130015$$uhttps://zaguan.unizar.es/record/135592/files/texto_completo.pdf$$yVersión publicada
000135592 8564_ $$s2670655$$uhttps://zaguan.unizar.es/record/135592/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135592 909CO $$ooai:zaguan.unizar.es:135592$$particulos$$pdriver
000135592 951__ $$a2024-06-05-10:51:09
000135592 980__ $$aARTICLE