000135599 001__ 135599
000135599 005__ 20250923084431.0
000135599 0247_ $$2doi$$a10.1039/d4dt00626g
000135599 0248_ $$2sideral$$a138692
000135599 037__ $$aART-2024-138692
000135599 041__ $$aeng
000135599 100__ $$aLi, Zhen
000135599 245__ $$aMagnetic properties and magnetocaloric effect of Ln = Dy, Tb carborane-based metal–organic frameworks
000135599 260__ $$c2024
000135599 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135599 5203_ $$aWe present the synthesis and magneto-thermal properties of carborane-based lanthanide metal–organic frameworks (MOFs) with the formula {[(Ln)3(mCB-L)4(NO3)(DMF)n]·Solv}, where Ln = Dy or Tb, characterized by dc and ac susceptibility, X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and heat capacity measurements. The MOF structure is formed by polymeric 1D chains of Ln ions with three different coordination environments (Ln1, Ln2, Ln3) running along the b-axis, linked by carborane-based linkers thus to provide a 3D structure. Static magnetic measurements reveal that these MOFs behave at low temperature as a system of S* = 1/2 Ising spins, weakly interacting ferromagnetically along the 1D polymeric chain (J*/kB = +0.45 K (+0.5 K) interaction constant estimated for Dy-MOF (Tb-MOF)) and coupled to Ln ions in adjacent chains through dipolar antiferromagnetic interactions. The Dy MOF exhibits slow relaxation of magnetization through a thermally activated process, transitioning to quantum tunneling of the magnetization at low temperatures, while both compounds exhibit field-induced relaxation through a very slow, direct process. The maximum magnetic entropy changes (−ΔSmaxm) for an applied magnetic field change of 2-0 T are 5.71 J kg−1 K−1 and 4.78 J kg−1 K−1, for Dy and Tb MOFs, respectively, while the magnetocaloric effect (MCE) peak for both occurs at T ∼ 1.6 K, approximately double that for the Gd counterpart.
000135599 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-23R-RASMIA$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-136892NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138492NB-I00
000135599 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000135599 590__ $$a3.3$$b2024
000135599 592__ $$a0.653$$b2024
000135599 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b10 / 42 = 0.238$$c2024$$dQ1$$eT1
000135599 593__ $$aInorganic Chemistry$$c2024$$dQ2
000135599 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135599 700__ $$0(orcid)0000-0002-5999-341X$$aArauzo, Ana$$uUniversidad de Zaragoza
000135599 700__ $$aGiner Planas, José
000135599 700__ $$aBartolomé, Elena
000135599 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000135599 773__ $$g53, 21 (2024), 8969-8979$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000135599 8564_ $$s3757973$$uhttps://zaguan.unizar.es/record/135599/files/texto_completo.pdf$$yVersión publicada
000135599 8564_ $$s2771059$$uhttps://zaguan.unizar.es/record/135599/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135599 909CO $$ooai:zaguan.unizar.es:135599$$particulos$$pdriver
000135599 951__ $$a2025-09-22-14:43:29
000135599 980__ $$aARTICLE