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ABSTRACT

Through this thesis, I investigate the use of noninvasive analysis of cardiac,

respiratory, and photoplethysmography (PPG) signals to assess autonomic

nervous system (ANS) activity across clinical and non-clinical settings. The

work is methodically structured into five main parts, each focusing on dif-

ferent aspects of cardiovascular status assessment, with the particularity of

the analysis in long-term monitoring setups. The thesis combines extensive

physiological research with innovative methodologies and practical applica-

tions, utilizing signal processing techniques for comprehensive cardiovascular

health evaluation.

Part I (Chapters 1, 2, and 3) establishes the foundational context of the

thesis, encompassing physiological and methodological aspects necessary for

subsequent investigations. Chapter 1 delves into the physiology and function-

ing of the ANS, cardiac, cardiovascular and respiratory systems, providing

an in-depth look at the biosignals under study and offering insights into

the pathophysiology, diagnosis, and treatment of various health conditions.

Chapter 2 outlines the specific disorders and applications targeted in the

thesis, including weaning readiness from mechanical ventilation in intensive

care units (ICU), obstructive sleep apnea in pediatric populations, and the

potential biomarkers that can be extracted from PPG sensors to be included

into wearables. Chapter 3 introduces the developed methodologies, detailing

Heart Rate Variability (HRV) and respiratory signals analysis, and presents

approaches for cardiopulmonary coupling (CPC) and respiration-guided HRV

analysis, along with methodologies to obtain biomarkers from PPG devices.

Part II (Chapters 4, 5, and 6) centers on the process of weaning patients

from mechanical ventilation in ICUs. Chapter 5 investigates Baroreflex

Sensitivity (BRS) and HRV in predicting successful weaning outcomes, by

monitoring these during the last hour prior to the spontaneous breathing trial

(SBT). A novel finding is that BRS, particularly measured through Bivariate

Phase Rectified Signal Average (BPRSA), shows significant potential with

predictive value, since in 9 successfully weaned patients (S-group) and 6

unsuccessfully weaned (F-group), the capacity to change in BRS, showed clear

distinctions between the groups. Conversely, temporal HRV indices, while

different, did not show statistically significant difference between patients

ready to be weaned and patients that failed SBT. Chapter 6 extends this
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analysis by assessing Cardiopulmonary Coupling (CPC) as new potential

estimates for weaning readiness, too. However, this analysis is performed

not only in the hour prior to the SBT, but expands the monitoring to the

24 hours before the SBT. Notably, traditional variables such as heart rate

and respiratory frequency did not show any significant differences between

patients with successful and failed weaning. However, the study uncovered

significant statistical differences in CPC parameters across the two groups

throughout the entire recording period. Particularly at night, these significant

differences were more pronounced, likely due to increased respiratory episodes

in patients with failed weaning.

Part III (Chapters 7, 8, 9, and 10) starts with Chapter 7, where the

datasets and participant groups for the study of obstructive sleep apnea

(OSA) in pediatric patients are outlined. Chapter 8 provides a novel per-

spective by comparing HRV measures during apnea and normal breathing

episodes, revealing significant differences. This challenges previous interpreta-

tions of HRV metrics during apnea and highlights the need for comprehensive

HRV analysis. Chapter 9 employs CPC, specifically time-frequency coher-

ence (TFC), between respiratory effort and HRV, to assess OSA severity.

Interestingly, the study finds that TFC in the low-frequency band increases

with OSA severity, offering a new method for severity assessment. Chapter

10 investigates the potential causal relationship between OSA and metabolic

syndrome (MetS) in prepubertal children. A notable aspect of this chapter

is the introduction and preliminary validation of a MetS score, designed as

a new tool to assess cardiometabolic health in pediatric patients. This MetS

score, while still in the early stages of validation, represents a promising

step towards a better understanding of cardiovascular risks in childhood

associated with OSA. Additionally, the chapter employs causal mediation

analysis to find the causal role of OSA in influencing cardiovascular health.

These findings contribute to the growing body of research exploring the com-

plex interactions between sleep disorders and metabolic health in pediatric

populations.

Part IV (Chapters 11, 12, 13, and 14) delves into the potential of PPG

in wearable devices. It begins with Chapter 11, detailing databases and

experimental setups for PPG studies in wearable devices. Chapter 12 focuses

on quantifying the coverage of PPG sensors under various conditions, reveal-
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ing how sensor location and stress conditions affect the estimation of vital

metrics like Pulse Rate (PR) and Pulse Arrival Time (PAT). Surprisingly,

coverage rates varied significantly based on the sensor location and the fidu-

cial point chosen for PPG delineation. Chapter 13 assesses the pulse transit

time difference (PTTD) as a marker for acute mental stress, finding that its

standard deviation effectively distinguishes between stress and relaxation

states, and a visible lowered trend of PTTD during stress, that could be

attributed to vasoconstriction, as compared to relax. Chapter 14 investigates

the use of PPG-derived pulse wave velocity (PWV) surrogates, including

Pulse Arrival Time (PAT) and Pulse Transit Time Difference (PTTD), to

assess vascular reactivity under heat stress. The study reveals that while

PAT and Pulse Wave Decomposition Analysis (PDA) show a significant

decrease correlating with heart rate changes under stress, PTTD exhibits an

abrupt change that remains constant while stress is present, suggesting its

superior reliability as an indicator of vasoconstriction and vascular reactivity.

Conclusions: The thesis concludes by synthesizing the extensive findings,

emphasizing the significant role of noninvasive signal analysis in healthcare

advancement. It discusses the potential of these methods in improving clini-

cal decision-making and patient monitoring, with a focus on cardiovascular

and respiratory health. Future research directions, particularly the growing

importance of wearable technologies and their role in personalized healthcare,

are also highlighted. Overall, this thesis presents a detailed study of nonin-

vasive monitoring techniques, bridging theoretical knowledge with practical

applications and contributing significantly to biomedical engineering and

healthcare technology.
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RESUMEN Y CONCLUSIONES

Esta tesis trata sobre el análisis no invasivo de señales card́ıacas, respira-

torias y de fotopletismograf́ıa (PPG) para evaluar la actividad del sistema

nervioso autónomo (SNA) en contextos cĺınicos y no cĺınicos. El trabajo está

estructurado metódicamente en cinco partes principales, cada una enfocada

en diferentes aspectos de la evaluación del estado cardiovascular, con la

particularidad de análisis en configuraciones de monitorización a largo plazo.

La tesis combina una extensa investigación fisiológica con metodoloǵıas

innovadoras y aplicaciones prácticas, utilizando técnicas de procesamiento

de señales para una evaluación integral de la salud cardiovascular.

La Parte I (Caṕıtulos 1, 2 y 3) establece el contexto fundamental de la

tesis, abarcando aspectos fisiológicos y metodológicos necesarios para las

investigaciones subsiguientes. El Caṕıtulo 1 profundiza en la fisioloǵıa y

funcionamiento del SNA, los sistemas cardiaco, cardiovascular y respirato-

rio, proporcionando una visión detallada de las bioseñales bajo estudio y

ofreciendo perspectivas sobre la patofisioloǵıa, diagnóstico y tratamiento

de diversas condiciones de salud. El Caṕıtulo 2 describe los trastornos es-

pećıficos y aplicaciones objetivo de la tesis, incluyendo la preparación para

el destete de la ventilación mecánica (o también llamada extubación), en

unidades de cuidados intensivos (UCI); la apnea obstructiva del sueño en

poblaciones pediátricas; y los biomarcadores potenciales que pueden ex-

traerse de los sensores PPG para ser incluidos en dispositivos portátiles. El

Caṕıtulo 3 introduce las metodoloǵıas desarrolladas, detallando el análisis de

la Variabilidad de la Frecuencia Card́ıaca (HRV) y las señales respiratorias, y

presenta enfoques para el acoplamiento cardiopulmonar (CPC) y el análisis

de HRV guiado por la respiración, junto con metodoloǵıas para obtener

biomarcadores de dispositivos PPG.

La Parte II (Caṕıtulos 4, 5 y 6) se centra en el proceso de destete de

pacientes de la ventilación mecánica en UCI. El Caṕıtulo 5 investiga la Sen-

sibilidad del Barorreflejo (BRS) y la HRV para predecir resultados exitosos

de destete, monitorizando estos durante la última hora antes de la prueba

de respiración espontánea (SBT). Un hallazgo novedoso es que la BRS,

especialmente medida a través del Promedio de Señal Rectificada de Fase

Bivariante (BPRSA), muestra un potencial significativo con valor predictivo,

ya que en 9 pacientes exitosamente destetados (grupo S) y 6 no destetados
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(grupo F), la capacidad de cambio en BRS mostró distinciones claras entre los

grupos. Por el contrario, los ı́ndices temporales de HRV, aunque diferentes,

no mostraron una diferencia estad́ısticamente significativa entre pacientes

listos para ser destetados y pacientes que fallaron en el SBT. El Caṕıtulo

6 ampĺıa este análisis evaluando el Acoplamiento Cardiopulmonar (CPC)

como nuevas estimaciones potenciales para la preparación para el destete.

Sin embargo, este análisis se realiza no solo en la hora previa al SBT, sino

que ampĺıa el monitoreo a las 24 horas antes del SBT. Notablemente, vari-

ables tradicionales como la frecuencia card́ıaca y respiratoria no mostraron

diferencias significativas entre pacientes con destete exitoso y fallido. Sin

embargo, el estudio descubrió diferencias estad́ısticas significativas en los

parámetros de CPC a través de los dos grupos durante todo el peŕıodo

de grabación. Particularmente en la noche, estas diferencias significativas

fueron más pronunciadas, probablemente debido a episodios respiratorios

aumentados en pacientes con destete fallido.

La Parte III (Caṕıtulos 7, 8, 9 y 10) comienza con el Caṕıtulo 7, donde

se describen los conjuntos de datos y los grupos de participantes para el

estudio de la apnea obstructiva del sueño (OSA) en pacientes pediátricos.

El Caṕıtulo 8 ofrece una perspectiva novedosa al comparar las medidas

de HRV durante la apnea y episodios de respiración normal, revelando

diferencias significativas. Esto desaf́ıa las interpretaciones anteriores de las

métricas de HRV durante la apnea y destaca la necesidad de un análisis

completo de HRV. El Caṕıtulo 9 emplea CPC, espećıficamente la coherencia

tiempo-frecuencia (TFC), entre el esfuerzo respiratorio y HRV, para evaluar

la gravedad de la OSA. Curiosamente, el estudio encuentra que la TFC en

la banda de baja frecuencia aumenta con la gravedad de la OSA, ofreciendo

un nuevo método para la evaluación de la gravedad. El Caṕıtulo 10 investiga

la posible relación causal entre OSA y śındrome metabólico (MetS) en

niños prepuberales. Un aspecto notable de este caṕıtulo es la introducción

y validación preliminar de un puntaje de MetS, diseñado como una nueva

herramienta para evaluar la salud cardiometabólica en pacientes pediátricos.

Este puntaje de MetS, aunque aún en las primeras etapas de validación,

representa un paso prometedor hacia una mejor comprensión de los riesgos

cardiovasculares en la infancia asociados con la OSA. Además, el caṕıtulo

emplea análisis de mediación causal para encontrar el papel causal de la
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OSA en la influencia de la salud cardiovascular. Estos hallazgos contribuyen

a la creciente investigación que explora las interacciones complejas entre los

trastornos del sueño y la salud metabólica en poblaciones pediátricas.

La Parte IV (Caṕıtulos 11, 12, 13 y 14) se adentra en el potencial de los

dispositivos PPG en dispositivos portátiles. Comienza con el Caṕıtulo 11,

detallando bases de datos y configuraciones experimentales para estudios

PPG en dispositivos portátiles. El Caṕıtulo 12 se enfoca en cuantificar la

cobertura de los sensores PPG bajo varias condiciones, revelando cómo la

ubicación del sensor y las condiciones de estrés afectan la estimación de

métricas vitales como la Tasa de Pulso (PR) y el Tiempo de Llegada del Pulso

(PAT). Sorprendentemente, las tasas de cobertura variaron significativamente

según la ubicación del sensor y el punto fiducial elegido para la delineación

PPG. El Caṕıtulo 13 evalúa la diferencia de tiempo de tránsito del pulso

(PTTD) como un marcador de estrés mental agudo, encontrando que su

desviación estándar distingue eficazmente entre estados de estrés y relajación,

y una tendencia visiblemente reducida de PTTD durante el estrés, que podŕıa

atribuirse a la vasoconstricción, en comparación con el relax. El Caṕıtulo

14 investiga el uso de surogados de la velocidad de la onda de pulso (PWV)

derivados de PPG, incluyendo el Tiempo de Llegada del Pulso (PAT) y

la Diferencia de Tiempo de Tránsito del Pulso (PTTD), para evaluar la

reactividad vascular bajo estrés térmico. El estudio revela que mientras

PAT y el Análisis de Descomposición de la Onda de Pulso (PDA) muestran

una disminución significativa correlacionada con cambios en la frecuencia

card́ıaca bajo estrés, PTTD exhibe un cambio abrupto que se mantiene

constante mientras el estrés está presente, sugiriendo su superior fiabilidad

como indicador de vasoconstricción y reactividad vascular.

En general, esta tesis explora técnicas de monitoreo no invasivas, uniendo

teoŕıa y práctica en ingenieŕıa biomédica y tecnoloǵıa de atención médica.

La sección final resume los hallazgos, destacando el papel crucial del análisis

de señales no invasivo en mejorar la atención médica, especialmente en salud

cardiovascular y respiratoria. Discute cómo estos métodos potencian la toma

de decisiones cĺınicas y el monitoreo de pacientes, enfocándose en las futuras

direcciones de investigación, incluyendo la relevancia de los wearables en la

atención médica personalizada.
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siquiera empezar a juntar todos mis pensamientos y todo lo que he vivido, y

menos aún de manera clara y ordenada. Este camino hasta terminar mi tesis

doctoral no solo ha sido un desaf́ıo académico, sino también una aventura

de crecimiento personal y profesional, enriquecida y soportada por muchas

personas maravillosas. Me sorprendo a mı́ mismo cuando echo la mirada

atrás, y pienso en toda la gente tan especial que he conocido y querido, y

todo en muy buena parte a la oportunidad que me ha dado el doctorado de

hacer y vivir todo aquello que he querido y como he querido (aunque poder

hacer eso es gracias a mis directores que son lo mejor).

Pues la verdad es que primero de todo me lo quiero agradecer a mı́

mismo por haber llegado y aguantado hasta aqúı. En este momento me
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Gracias de corazón a todos y cada uno de vosotros por ser parte de este

significativo caṕıtulo de mi vida.
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1.1 Introduction to the Thesis

1.1.1 Context and Motivation

Biomedical signals offer a window into the human body’s function and

health status [1]. The analysis of these signals provides valuable and vital

information about underlying biological systems and helps characterize

various pathological conditions [1]. While the information within these signals

isn’t typically discernible visually, biomedical signal processing methods are

crucial for uncovering hidden medical information that is not obvious through

5
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simple observation [2]. Modern signal processing techniques are now paving

the way for automated analyses, holding potential for diagnosis, treatment,

and monitoring a wide range of diseases [2].

By delving into cardiovascular signals and potential biomarkers, my

goal is to uncover and elucidate the mechanisms and patterns within these

signals. This exploration employs modern signal processing techniques to

yield findings that are not only scientifically relevant but also practically

applicable for healthcare professionals.

The fusion of novel data processing techniques, analysis, and acquisition

systems has been transformative across numerous sectors, notably beyond

medicine and health sciences. Signal processing, particularly when applied to

human biological functions, has spurred extensive research and deepened our

understanding of human physiology and pathophysiology, while developing

innovative diagnostic and monitoring systems. Yet, the synergy between

technology and medicine requires more than mere data analytics. New

analytical tools should be grounded in a thorough understanding of human

anatomy and physiology to ensure that findings are both meaningful and

practical for the implementation of new diagnosis techniques.

My thesis focuses on non-invasive biological signal processing, particularly

in assessing Autonomic Nervous System (ANS) activity. This assessment

includes analyzing Heart Rate Variability (HRV), respiratory signals, and

Cardiopulmonary Coupling (CPC) across various clinical and non-clinical

scenarios. The non-invasive evaluation of ANS imbalances is crucial, offering

insights into the physiological mechanisms behind lots of medical conditions.

While HRV analysis forms the core of my research, other biosignals like

the Electrocardiography (ECG), Pulse Photoplethysmography (PPG), and

Blood Pressure (BP) have also been integral to my studies.

Advancements in technology and the adoption of non-invasive method-

ologies have significantly propelled personalized medicine. During my thesis,

I have focused on employing signal processing techniques to address ANS

imbalances in various clinical scenarios. For instance, in Mechanical Ventila-

tion (MV) in the Intensive Care Unit (ICU), these techniques are crucial for

non-invasively assessing a patient’s autonomic stability and respiratory con-

trol, essential for determining weaning readiness, and spontaneous breathing.

In the case of Obstructive Sleep Apnea (OSA), signal processing allows for
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the analysis of sleep patterns and heart and respiratory rhythms, revealing

underlying ANS dysregulation, which is vital for accurate diagnosis and

effective monitoring. This approach not only enhances diagnostic accuracy

and patient comfort but also contributes significantly to our understand-

ing of pathophysiology, aiding in the development of targeted treatment

strategies and marking a substantial stride in predictive medicine. Similarly,

in wearable technology applications, real-time monitoring of ANS-related

parameters like Heart Rate (HR), HRV and respiratory patterns enables

the characterization of autonomic regulation, useful, e.g., for screening of

cardiovascular diseases, and assessment of stress and overall well-being in

daily life.

1.1.2 Structure

To offer clarity on the multifaceted subjects addressed in the next chapters, an

overview of the physiological fundamentals of the human systems, biological

signals, and contexts pertinent to this dissertation are elaborated in the next

sections. In general, the present thesis dissertation has five main parts, and

is structured as follows:

• Part I. Physiology, target disorders, and methodologies: In this

first part of the thesis, the ANS and the most relevant biological signals

used in this thesis are introduced. Moreover, a physiological background

of all the scenarios considered throughout the next chapters, and the

explanation of the methodologies are provided.

• Part II. Cardiovascular signal processing in critical care

medicine. In this Part II, I delve into cardiovascular signal processing

methodologies with a specific focus on enhancing the analysis and

monitoring of patients admitted to ICU. Owing to their compromised

health, they rely on MV to sustain respiratory function. My research

is focused on improving the determination and assessment of wean-

ing readiness. The research described in this chapter generated the

following publications:

– P. Armañac-Julián, D. Hernando, J. Lazaro, C. de Haro, R.

Magrans, L. Sarlabous, J. López-Aguilar, P. Laguna, E. Gil, L.

Blanch, R. Bailón (2020) Baroreflex Sensitivity Evolution before

Weaning from Mechanical Ventilation, Proceedings of the XLVII
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International Conference on Computing in Cardiology. Rimini,

Italy, doi:10.22489/CinC.2020.235.

– JF. Morales-Tellez, J. Moeyersons, P. Armañac-Julián, M.

Orini, L. Faes, S. Overeem, M. Van Gilst, J. Van Dijk, SV. Huffel,

R. Bailon, C. Varon (2021) Model-Based Evaluation of Meth-

ods for Respiratory Sinus Arrhythmia Estimation. IEEE Trans

Biomed Eng. vol. 68, n. 6.

– P. Armañac-Julián, D. Hernando, J. Lazaro, C. de Haro, R. Ma-

grans, J. Morales, J. Moeyersons, L. Sarlabous, J. Lopez-Aguilar,

C. Subira, R. Fernandez, M. Orini, P. Laguna, C. Varon, E. Gil,

R. Bailon, and L. Blanch (2021) Cardiopulmonary Coupling In-

dices to Assess Weaning Readiness from Mechanical Ventilation.

Scientific Reports. 11, 16014.

• Part III. Cardiovascular signal processing in sleep apnea

patients. Here I explore different cardiovascular signal processing

methodologies and data analysis for the stratification, characterization,

and assessment of OSA severity in pediatric patients. The research

described in this chapter generated these publications:

– P. Armañac-Julián, A. Mart́ın-Montero, J. Lázaro, S. Kontaxis,

D. Álvarez, D. Gozal, R. Hornero, P. Laguna, G. Gutiérrez-Tobal,

R. Bailón and E. Gil (2022) Changes in HRV metrics during sleep

apnea episodes in children, European Study Group on Cardiovas-

cular Oscillations (ESGCO), Štrbské Pleso (Slovakia). 2nd best

poster award

– A. Mart́ın-Montero, P. Armañac-Julián, E. Gil, L. Kheirandish-

Gozal, D. Álvarez, J. Lázaro, R. Bailón, D. Gozal, P. Laguna,

R. Hornero, GC. Gutiérrez-Tobal (2023) Pediatric sleep apnea:

Characterization of apneic events and sleep stages using heart

rate variability. Computers in Biology and Medicine, 154, 106549.

– S. Hietakoste,P. Armañac-Julián, T. Karhu, R. Bailón, S. Sil-

lanmäki, J. Töyräs, T. Leppanen, S. Myllymaa, S. Kainulainen

(2023). Acute cardiorespiratory coupling impairment in worsening

sleep apnea-related intermittent hypoxemia. IEEE Transactions

on Biomedical Engineering.

– P. Armañac-Julián, A. Mart́ın-Montero, J. Lázaro, R. Hornero,
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P. Laguna, L. Kheirandish-Gozal, D. Gozal, E Gil, R. Bailón, G.

Gutiérrez-Tobal (2023) Characterization of the Cardiopulmonary

Coupling in pediatric sleep apnea. Computing in Cardiology,

Atlanta (Georgia).

– P. Armañac-Julián, A. Mart́ın-Montero, J. Lázaro, R. Hornero,

P. Laguna, L. Kheirandish-Gozal, D. Gozal, E. Gil, R. Bailón,

G. Gutiérrez-Tobal (2023) Persistent Sleep Disordered Breathing

Independently Contributes to Metabolic Syndrome in Prepubertal

Children. Pediatric Pulmonology.

• Part IV. Cardiovascular signal processing oriented to wearable

devices. This final part of the thesis is focused on identifying and

analyzing different parameters derived from PPG signals. I further delve

into the physiological origins of these biomarkers that can be obtained.

The data for this study was collected in a laboratory environment.

The goal is to lay the groundwork for understanding and interpreting

the parameters that wearable devices, like wristbands, can measure in

real-world settings. This analysis led to the following publications:

– P. Armañac-Julián, S. Kontaxis, A. Rapalis, V. Marozas, P.

Laguna, R. Bailón, E. Gil, J. Lázaro (2022) Reliability of Pulse

Photoplethysmography Sensors: Coverage Using Different Setups

and Body Locations, Front. Electron. 3:906324.

– P. Armañac-Julián, S. Kontaxis, J. Lazaro, P. Laguna, R.

Bailón, E. Gil (2019) Cardiovascular Changes Induced by Acute

Emotional Stress Estimated from the Pulse Transit Time Dif-

ference. Proceedings of the XLVI International Conference on

Computing in Cardiology. Singapore.

– P. Armañac-Julián, S. Kontaxis, A. Rapalis, V. Marozas, P.

Laguna, R. Bailón, E. Gil, J. Lázaro (2023) Vascular Reactiv-

ity Characterized by PPG-derived Pulse Wave Velocity. Under

Review: BSPC.

• Part V. Conclusions and future work: This last part contains the

main conclusions of the research presented in this thesis, as well as a

proposal of future research lines.
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1.2 Cardiovascular System

This section will provide a comprehensive explanation regarding the key

concepts related to the cardiovascular system, heart function, cardiovascular

regulation, and the baroreflex. The fact of understanding all these concepts

is crucial for conducting research in the field of biomedical engineering,

particularly when it pertains to the evaluation of cardiovascular health.

The cardiovascular activity is regulated and coordinated by the function-

ing of the heart and blood vessels. It involves the pumping of blood by the

heart, which plays a central role in cardiovascular activity, the circulation of

blood through the blood vessels, and the regulation of blood pressure.

1.2.1 Heart and Cardiac Activity

The heart, the main organ of the cardiovascular system, is primarily composed

of four chambers: two atria and two ventricles, with one of each on each side

of the heart. The right side receives deoxygenated blood from the body and

pumps it to the lungs for oxygenation while respiration. The oxygenated

blood then returns to the left side of the heart, which pumps it out to the

rest of the body. This continuous circulation of blood is essential for the

metabolism and the delivery of oxygen and nutrients to all body’s cells,

tissues and organs.

The heart consists of specialized cardiac muscle cells, namely cardiomy-

ocytes, which have intrinsic and specific electrical properties. The origin of

the electric cardiac cycle begins with the generation of an electrical impulse

in the Sinoatrial Node (SA) node, located in the upper part of the right

atrium (see Fig 1.1).

The SA node acts as the natural pacemaker of the heart, which spon-

taneously generates rhythmic electrical signals that set the pace for the

heartbeat [2]. From the SA node, the electrical impulse spreads across the

atria, causing them to contract and push blood into the ventricles. The elec-

trical signals then pass through the Atrioventricular Node (AV) node, located

between the atria and the ventricles. The AV node acts as a gatekeeper, and

briefly delays their transmission, allowing the atria to fully contract and fill

the ventricles with blood before ventricular contraction begins (see Fig 1.1).
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(a) (b)

Figure 1.1: Animated GIF showing cardiac activity: (a) Electrical Conduction; (b)
Mechanical Activity.

Once the electrical impulse passes through the AV node, it travels rapidly

along specialized conducting pathways called bundle branches and Purkinje

fibers, which distribute the electrical signal to the ventricular muscle cells

(see Fig 1.1). This coordinated electrical activation leads to the forceful

contraction of the ventricles, pumping blood out of the heart to the lungs

(right ventricle), and the rest of the body (left ventricle).

Electrocardiography

The ECG is the tool used to record and analyze the electrical activity of

the heart non-invasively, providing essential information about the timing,

duration, and morphology of the cardiac cycle [2]. To capture the ECG,

electrodes are placed on the skin in a specific configuration, and connected to

a electronic instrumentation device capable of detecting the small electrical

signals generated by the cardiomyocytes within the heart. These electrodes

record bipolar potential differences between different body locations, ulti-

mately creating a visual representation of the heart’s electrical activity. It’s

crucial to pay attention to the relative positions of these electrodes, as they

lead to variations in the recorded waveform (see Fig. 1.2).
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Figure 1.2: Animated GIF showing limb leads and electrical conduction through
the heart.

The normal ECG waveform comprises several distinctive waves and

intervals, with the overall ECG representation resulting from the cumulative

action potentials of all cardiomyocytes (see Fig. 1.3). The P-wave represents

the electrical depolarization and contraction of the atria, while the QRS

complex corresponds to the depolarization and contraction of the ventricles.

The T-wave represents the repolarization or recovery phase of the ventricles.

The duration and shape of these waves provide valuable and non-invasive

diagnostic information about the integrity and functioning of the cardiac

electrical system, aiding in the detection and management of various cardiac

conditions.

The number and placement of electrodes on the body’s surface for ECG

recording are determined by the specific clinical information required, since

different electrode configurations offer insights into particular spatio-temporal

variations in the cardiac electrical field. The widely used clinical configuration

is the standard 12-lead ECG, which consists of 3 bipolar limb leads (I, II,

III), 3 augmented unipolar limb leads (aVR, aVL, aVF), and 6 unipolar

precordial leads (V1, V2, V3, V4, V5, V6). These electrode placements enable

the characterization of cardiac electrical activity from various angles in the

frontal and horizontal planes (see Fig. 1.4). For example, in the horizontal

plane, leads V1 and V2 primarily capture the right ventricular activity,
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Figure 1.3: Conducting system of the heart. Left: Anatomic depiction of the
human heart with additional focus on areas of the conduction system. Right:
Typical transmembrane action potentials for the SA and AV nodes, other parts of
the conduction system, and the atrial and ventricular muscles are shown along with
the correlation to the ECG. LAF, left anterior fascicle. Adapted from [3].

while the remaining precordial leads depict the left ventricle’s activity. An

alternative lead system that allows examination of electrical activity in the

three perpendicular directions (X, Y, and Z) is the orthogonal or Frank lead

system [2], which facilitates a 3D representation of the electric field through

the heart.

By analyzing the ECG, healthcare professionals can assess the rhythms

and regularity of the heartbeat, in order to detect abnormalities in the

conduction system, identify arrhythmia, and evaluate the overall health

of the heart. Changes in the ECG pattern can be indicative of various

cardiac conditions, such as myocardial infarction, heart rhythm disorders,

and electrolyte imbalances [2].

Note that an extra electrode is essential for measuring the three bipolar

limb leads of the ECG (see Fig. 1.5). The Driven Right Leg circuit is

crucial in setups aquiring biolectrical signals, effectively reducing common-

mode noise [4]. It operates by measuring the common-mode signal, typically

the average of the signals at the positive input electrodes, and feeding a

compensating signal back into the body through the right leg electrode.

This process effectively reduces the potential difference between the patient
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Figure 1.4: Cardiac vector. Left: Einthoven triangle. Perpendiculars dropped from
the midpoints of the sides of the equilateral triangle intersect at the center of
electrical activity. RA, right arm electrode; LA, left arm electrode; LL, left leg
electrode. Right: Calculation of mean QRS vector. In each lead, distances equal
to the height of the R wave minus the height of the largest negative deflection in
the QRS complex are measured off from the midpoint of the side of the triangle
representing that lead. An arrow drawn from the center of electrical activity to the
point of intersection of perpendiculars extended from the distances measured off on
the sides represents the magnitude and direction of the mean QRS vector. Adapted
from [3].

and the recording equipment, diminishing the noise and artifacts that can

obscure the true ECG signal. Notably, wearables like the AppleWatch or

SamsungWatch, which measure lead I of the ECG, require three electrodes

for accurate signal capture (see Fig. 1.6).

Figure 1.5: ECG setup with Driven Right Leg circuit. On the left, electrode
placement for standard ECG recording is illustrated. On the right, the circuitry
shows how common mode noise is reduced, improving the signal quality captured
by the ECG amplifier.
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Figure 1.6: Illustration of a smartwatch equipped with ECG functionality (model,
Samsung Watch 5). The left image highlights the contact points for the right and
left arm electrodes, including the integration of a driven right leg circuit system for
noise reduction. The right image shows the smartwatch in use, providing real-time
ECG monitoring on the wearer’s wrist.

The Electro-Mechanical View of the Heartbeat

The mechanical contraction of cardiomyocytes is the response to the electri-

cal activation explained in the previous section. This process begins with

the release of calcium ions from the sarcoplasmic reticulum within the car-

diomyocyte, triggered by the electrical activation during the action potential.

The influx of calcium ions into the cytoplasm then initiates the interaction

between actin and myosin—the essential contractile machinery— within

cardiac cells to facilitate contraction [5].

This synchronized and sequenced mechanical contraction across all car-

diomyocytes, mediated by the specific electrical wavefront through the

conduction system of the heart, generates an effective contraction of the

ventricles to propel blood out to the body. In these terms, the Wiggers

diagram provides a graphical representation of this coordinated electro-

mechanical cardiac cycle and associated hemodynamic events [5], including

left ventricular pressure, aortic pressure, ECG, and blood flow (see Fig. 1.7).

The electro-mechanical process of the heart’s contraction involves several

distinct phases, starting with ventricular diastole. During this phase, the

ventricles are relaxed, allowing blood to fill the chambers after atrial con-

traction. This ventricular diastole phase is characterized by a decrease in left

ventricular pressure and aortic pressure. The ECG waveform displays the P

wave, indicating atrial depolarization and subsequent ventricular filling.

The next phase is ventricular depolarization, marked by the QRS complex
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Figure 1.7: Wiggers diagram illustrating the coordinated electro-mechanical cardiac
cycle and associated hemodynamic events. The left ventricular pressure waveform
shows the changes in pressure within the left ventricle, reflecting diastole, isovolu-
metric contraction, ejection, and isovolumetric relaxation phases. Aortic pressure
indicates the pressure in the aorta, with a sharp rise during ejection, until reach-
ing Systolic Blood Pressure (SBP), followed by a gradual decline until the next
blood filling of the ventricles, reaching Diastolic Blood Pressure (DBP). The ECG
waveform corresponds to the electrical events in the heart, including atrial and
ventricular depolarization and repolarization. Adapted and reproduced from [5].

on the ECG, leading to ventricular systole after a short refractory period

of electromechanical delay. As the ventricles contract, the left ventricular

pressure increases, initiating the isovolumic contraction or also known as

Pre-Ejection Period (PEP). When this rise in ventricular pressure surpasses

the aortic pressure, the aortic valve opens, allowing blood to be ejected into

the systemic circulation. This phase corresponds to the QRS complex on the

ECG, reflecting ventricular depolarization. The aortic pressure waveform

exhibits a sharp increase followed by a gradual decline.

Following ventricular ejection, there is a brief period of isovolumetric

relaxation, during which both aortic and ventricular pressures decrease. This

relaxation phase is represented by the T wave on the ECG. Finally, the
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ventricles enter the diastolic filling phase again, and the entire cycle repeats.

Pulse Photoplethysmography

PPG is a non-invasive technique for assessing cardiovascular activity [6], [7].

It captures variations in blood volume and blood flow within peripheral blood

vessels following each heartbeat, triggered by the electrical depolarization of

the heart. This is achieved using a light source and a photodetector.

The fundamental principle underlying PPG is the absorption of light

by blood. As blood flows after a heartbeat, the amount of absorbed light

changes (see Fig. 1.8). The PPG sensor emits light into the skin–at many

possible wavelengths including red (670nm), infrared (940nm), and green light

(530nm)–and a photodetector that measures the intensity of the transmitted

or reflected light. By analyzing these changes in light absorption, PPG

provides valuable information about HR, pulse waveform, and peripheral

perfusion across various applications [8].

Figure 1.8: PPG. (a) Modes of PPG, transmission (top) and reflectance (bottom),
and (b) characteristic PPG waveform that arise from light attenuation by tissues.
LED, light-emitting diode; PD, photodetector. Reproduced and modified from [9].

Its applications extend to assessing cardiovascular function, monitoring

HRV, and detecting cardiac abnormalities like arrhythmia, due to its similar-
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ities with ECG. The widespread integration of PPG into wearable devices [6],

such as fitness trackers and smartwatches, enables real-time monitoring of

cardiovascular parameters without the need for expensive or uncomfortable

equipment measuring ECG.

The ECG provides detailed information about the heart’s electrical func-

tioning, including rhythm, heart rate, and the presence of any electrical

abnormalities, and the PPG describes the blood flow dynamics and vascu-

larity related to each heartbeat (see Fig. 1.9).

tyrg

Figure 1.9: Comparative illustration of PPG and ECG signals, highlighting the
synchronization of the heart’s electrical activation with peripheral pulse propagation
and the transit time of the pulse wave following ECG depolarization. The relationship
between the R-wave to R-wave interval (RR) and the Pulse to Pulse interval (PP)
is also shown.

1.2.2 Cardiovascular Control and Regulation

The intrinsic regulation of the heart has been explained and detailed in

the previous section, regarding the mechanisms and processes that occur

within the heart itself to regulate its activity without direct influence from

external factors, such as neural and hormonal mechanisms. Key components

of this self-regulatory system include the SA node, AV node, and Purkinje

fibers in the cardiac conduction system. Auto-regulation allows the heart

to adjust contraction force based on factors like venous return, ensuring

optimal Stroke Volume (SV).
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While intrinsic factors play a crucial role, external factors, such as ANS,

Baroreflex Sensitivity (BRS), and hormonal regulation, modulate and fine-

tune the heart’s activity in response to different conditions [10]. Although

survival is possible without ANS, the ability to adapt to environmental

stressors and other challenges would be severely compromised.

Autonomic Nervous System

The ANS is a division of the peripheral nervous system that regulates the

involuntary functions of the body. It operates without conscious control and

is responsible for maintaining internal balance and responding to changes in

the external environment. Therefore, the ANS plays a crucial role in control-

ling various physiological processes such as HR, blood pressure, digestion,

respiration, body temperature, and glandular secretion.

This system consists of three main branches: the Sympathetic Nervous

System (SNS), the Parasympathetic Nervous System (PNS), and the enteric

nervous system. It must be noted that SNS and PNS divisions typically

work in opposition to each other in order to maintain balance and adapt to

different situations. A schematic of ANS anatomy is depicted in Fig. 1.10.
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Figure 1.10: Autonomic Nervous System: (a) Sympathetic branch. (b) Parasym-
pathetic branch. Figure reproduced from [11].
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The SNS is responsible for the ”fight or flight” response. Activation of

the sympathetic system leads to the release of the neurotransmitter nor

adrenaline, which binds to adrenergic receptors in the heart and blood

vessels. Nor adrenaline promotes increased HR, increased blood pressure,

dilation of the airways, mobilization of energy reserves, and heightened

mental alertness. It prepares the body for action in response to stressful

stimuli or danger. In contrast, the PNS is associated with the ”rest and

digest” state. It releases the neurotransmitter acetylcholine, which binds to

muscarinic receptors, promoting the contrary effect of SNS; decreased HR,

reduced vasoconstriction, increased digestive activity, constriction of the

airways, and stimulation of glandular secretions. All of this induces relaxation,

conserves energy, and allows the body to recover and repair, while facilitating

digestion, nutrient absorption, and overall bodily maintenance.

Overall, the ANS functions as a complex and finely regulated system

that maintains internal balance, i.e., homeostasis, and responds to changes

in the environment. Its intricate control over vital functions ensures the

proper functioning of various organ systems and adaptation to different

physiological and environmental demands.

Heart Rate Variability

Then, the regulation of cardiac activity is strongly influenced by the ANS,

since the SA node has innervation from the PNS, primarily via the vagus

nerve. Whereas the morphology of the ECG provides a comprehensive view

of the heart’s electrical activity, HRV offers insight into the small timing

variations of consecutive heartbeats, and the regulatory mechanisms behind

them. For this reason, HRV has gained significant attention in clinical

research and practice due to its potential as a non-invasive marker of various

health conditions.

The HR is not a perfectly regular rhythm; but there is natural variation

in the time intervals between heartbeats. Rather than simply calculating an

average HR over a period of time, HRV looks at the precise variations in

length between successive heartbeats’ intervals, which can be milliseconds

apart. HRV is a key indicator of the dynamic changes in HR, reflecting the

continuous interplay between the sympathetic and parasympathetic branches

of ANS, that modulate the intrinsic pacemaker of the heart, the SA node.
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Figure 1.11: Consecutive R-R intervals. The standard deviation of the intervals
(SDNN) of the displayed segment is calculated and showed in the textbox, as
one common measure of HRV. The presented ECG signal was obtained using the
orthogonal system, particularly the lead X. The R-wave of each heart beat is
represented with a circle.

The temporal occurrence of heartbeats in sinus rhythm is typically defined

based on the timing of the P waves, as the cardiac muscle depolarization

initiates at the SA node. However, the P wave often has a very low amplitude

and can be entirely absent in some heartbeats. Given the relatively consistent

interval between the P and R waves, R-to-R (RR) intervals are commonly

used to characterize the time between successive heartbeats [2], whose

dynamics are known as HRV.

In the forthcoming Section 3.3, a detailed description is provided re-

garding the biomarkers from HRV, encompassing both time and frequency

domain analyses. Time-domain analysis, such as Standard Deviation of NN

Intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD),

evaluates overall and short-term HRV variations, respectively. Frequency-

domain analysis decomposes the HRV signal into spectral bands, notably

Low Frequency Band (LF) (0.04-0.15 Hz) and High Frequency Band (HF)

(0.15-0.4 Hz). LF band represents mixed sympathetic and parasympathetic

activity, while HF band indicates parasympathetic modulation. The nor-

malized LF frequency (LFn = LF / (LF+HF)) ratio offers insights into

the sympathovagal balance. See Fig. 1.12 to see the change of HRV spec-

tra, for frequency domain analysis. During resting conditions, HF power is

high, whereas during stress stimulation, HF power decreases and LF power

increases, as response to the increase in sympathetic activity.
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Figure 1.12: Frequency-domain analysis of the HRV signal acquired from a normal
subject during (a) resting conditions and (b) a 90º head-up tilt. The head-up tilt
increases sympathetic activity as reflected by the increased peak at 0.1 Hz. Adapted
and reproduced from [2].

Implications and Clinical Relevance of HRV

HRV is recognized as an important indicator of cardiac health, autonomic

function, and overall well-being. Reduced HRV has been associated with

a spectrum of pathological conditions, including cardiac arrhythmia, my-

ocardial infarction, hypertension, diabetic neuropathy, and psychological

disorders like anxiety and depression [12], [13]. On the other hand, higher

HRV reflects a robust, adaptable cardiovascular system and greater physio-

logical flexibility.

HRV also serves as a prognostic tool, with reduced levels indicating

an increased risk of mortality and adverse cardiovascular outcomes across

various patient groups. This makes HRV a valuable asset in risk stratifica-

tion, informing treatment choices, and tracking the progression of disease

states [14], [15].

Beyond its traditional use in cardiovascular monitoring, HRV has found

applications in diverse areas due to the advent of wearable technologies.

Devices such as Holter monitors and sports performance trackers have

sparked interest in leveraging HRV for insights into stress management,

mental health, athletic performance, and general wellness. HRV biofeedback

techniques, in particular, are being used to teach individuals how to regulate

their autonomic functions, which can enhance stress coping mechanisms and
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improve emotional health [16], [17].

1.2.3 Baroreflex System and Blood Pressure Regulation

As explained, the influence of SNS and PNS activity on the heart is regulated

by higher brain centers using the feedback received from various receptors

located in the body [3]. The baroreflex mechanism, a key component of

cardiovascular homeostasis, operates as a negative feedback loop, primarily

involving baroreceptors located in the carotid sinus and aortic arch. These

receptors sense BP changes and send signals to the brain’s medulla oblongata,

the cardiovascular control center.

Figure 1.13: Feedback control of blood pressure. (left) Brainstem excitatory input
to sympathetic nerves to the heart and vasculature increases HR and SV and
reduces vessel diameter. Together these increase blood pressure, which activates
the baroreceptor reflex to reduce the activity in the brainstem. (right) Interactions
between the components that regulate Cardiac Output (CO) and arterial pressure.
Adapted from [3].

Blood pressure is a vital sign, indicative of the force exerted by circulating

blood against vessel walls, and fluctuates due to factors like CO, peripheral

resistance, and systolic blood volume [3]. Baroreceptors respond to BP

elevations by transmitting signals that decrease sympathetic outflow and

increase parasympathetic activity, resulting in a decrease in vasoconstriction,

reduced HR, and decreased cardiac contractility. Conversely, a drop in BP

triggers opposite effects to elevate BP.
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Arterial system mechanics, including wave reflection and arterial stiffness,

also contribute to BP regulation. Changes in arterial state, like vasocon-

striction or vasodilation, and physiological aging impact central pressure

waveform morphology. Peripheral resistance, predominantly at arteriole level,

is a major determinant of wave reflection.

(a) (b) (c) (d)

Figure 1.14: Animated GIFs showing pressure waveforms under various arterial
conditions: (a) normal, (b) vasoconstricted, (c) vasodilated, and (d) stiff aorta.
These animations demonstrate the effect of arterial changes on the incident and
reflected waves. Source: [18]

Sympathetic activation increases BP through vasoconstriction, elevated

venous return and CO, and HR acceleration. These effects are encapsulated

in the formula:

BP = CO ∗ TPR, (1.1)

where the acronyms stand for CO, and Total Peripheral Resistance (TPR).

This equation highlights the interaction between cardiac function and vascular

resistance in determining blood pressure.

1.3 Respiratory Activity and Regulation

Breathing, essential for life, involves inhaling oxygen and exhaling carbon

dioxide. This process, regulated by the respiratory center in the medulla

oblongata, is coordinated through rhythmic signals from inspiratory and

expiratory neurons [19]. Central chemoreceptors in the brain monitor carbon

dioxide levels in cerebrospinal fluid, while peripheral chemoreceptors in the

carotid and aortic bodies respond to changes in Blood Oxygen Saturation

(SpO2), carbon dioxide, and pH levels [20]. These receptors work together

to maintain optimal blood gas composition.
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Respiratory function is crucial for maintaining overall health, with disor-

ders such as Chronic Obstructive Pulmonary Disease [21], infections, cystic

fibrosis, and asthma significantly affecting both respiratory and cardiovas-

cular systems [22], [23]. These conditions can impair oxygen delivery and

immune response.

Spirometry is an important tool for quantifying lung function, measuring

air volume displacement during breathing. Figure 1.15 illustrates typical lung

volumes and capacities. Tidal Volume (TV), the air volume inhaled or exhaled

during normal breathing, usually ranges from 500–750 mL. Assessing these

parameters provides insight into respiratory dynamics, aiding in the diagnosis

and management of lung function. Additionally, Breathing Rate (BR) and its

frequency range (bandwidth) are critical for evaluating respiratory health [24],

[25].
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Figure 1.15: Spirometry showing lung volumes and capacities. The figure depicts
TV during normal breathing. Adapted from [11].

1.4 Cardio-Pulmonary Interactions

The regulation of breathing is intricately interconnected with cardiac and

cardiovascular activity (Fig. 1.16). Whereas exhalation aids in cardiac cham-

ber blood emptying, inhalation, facilitated by diaphragmatic contraction,

creates a negative pressure in the chest, drawing air into the lungs. This

action simultaneously increases thoracic volume, and enhances venous return

to the right atrium, elevating preload, SV, and CO [26], [27].

A well-known CPC mechanism involves this mechanical effect of res-

piration on the ECG and HRV (see Fig. 1.17). The ECG signal exhibits
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Figure 1.16: Schematic representation of pulmonary circulation, illustrating the
relationship between respiratory and cardiac functions. Reproduced from [3].

inspiration-related alterations, such as a slight P-wave amplitude decrease

and an R-wave amplitude increase, portraying amplitude-modulated cardiac

activity signals with respiration as the carrier [28].
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Figure 1.17: Amplitude modulation of respiration in an illustrative ECG signal.

1.4.1 Respiratory Sinus Arrhythmia

Respiratory Sinus Arrhythmia (RSA) represents a physiological phenomenon

where the instantaneous HR synchronizes with the respiratory cycle, a

process modulated by the ANS [29]. This modulation results in sympathetic

activation that increases HR during inspiration, and parasympathetic activity

that decelerates HR during expiration (see Fig. 1.18).

The SNS specifically enhances HR during inspiration to pump more

deoxygenated blood into the lungs, optimizing gas exchange [30], ventilation,
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and perfusion [31]–[34]. Consequently, this synergy plays a pivotal role in

efficient oxygen and carbon dioxide exchange in the lungs.

Figure 1.18: RSA illustration depicting two cycles of respiration in blue, and
the corresponding filling of alveoli. In red, the frequency modulation of the ECG
sinus rhythm mediated by respiration is shown. The observed variation in HR
synchronized with the respiratory cycles, known as RSA, highlights the influence of
the respiratory system on cardiac autonomic modulation.

In relaxed, healthy individuals, this interaction creates a distinct cyclic

pattern, where HR accelerates with inspiration and decelerates with exhala-

tion. This results in the frequency modulation of HR by respiration, which is

observable in the cyclic variations of HR aligned with the breathing pattern

(see Fig. 1.19).

RSA has been extensively studied and is considered a physiological

phenomenon associated with healthy cardiovascular function. RSA is more

prominent during restful conditions and becomes less evident during exercise

or stress, and it is also influenced by factors such as age, gender, and

BR [35]–[38]. However, RSA can be affected by various physiological and

pathological conditions [39]–[41]. For example, reduced RSA is observed in

individuals with cardiovascular diseases, autonomic dysfunction, and certain

psychiatric disorders [42]. Some studies have reported the occurrence of

CPC in various conditions such as periods of rest, controlled breathing, or

anesthesia [34], [43], [44]. For these reasons, CPC is being one of the main

subjects of study in the present thesis. Then, CPC provides insights into

autonomic function, cardiorespiratory health, sleep quality, and the impact
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Figure 1.19: Real illustrative example of RSA, showcasing the frequency modula-
tion of respiration on the ECG signal. The respiratory movement of the chest is
represented by the green trace, indicating chest displacement, while the blue trace
depicts the RR interval derived from the ECG. Note that this ECG signal is the
same as the one used in Fig. 1.17.

of interventions [36]–[38], [43]. These measures can be used to assess the ANS,

identify abnormalities in both cardiovascular and respiratory regulation, and

guide treatment strategies in various health conditions.

The baroreflex plays also a crucial role in mediating respiratory and car-

diovascular interactions [39]–[41]. Changes in intrathoracic pressure during

respiration stimulate baroreceptors and stretch receptors, which respond

by adjusting sympathetic and parasympathetic activities, affecting HR and

vascular tone. During inspiration, the increase in venous return and subse-

quent stretching of the baroreceptors result in an enhanced baroreceptor

firing rate. This leads to increased parasympathetic activity (vagal tone)

and decreased sympathetic activity, resulting in a decrease in HR and va-

sodilation. Conversely, during expiration, the reduced venous return and

decreased baroreceptor firing rate lead to a decrease in parasympathetic

activity and an increase in sympathetic activity, causing an increase in HR

and vasoconstriction.

The changes in intrathoracic pressure and lung inflation during respira-

tion activate the baroreceptors located in the walls of major blood vessels,

particularly in the aortic arch and carotid sinus. The baroreceptors sense

changes in blood pressure and transmit signals to the cardiovascular control

centers in the brain.
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1.4.2 Inclusion of Respiration in HRV Analysis

Several medical conditions can elevate the demand for ventilation. These

include respiratory diseases causing airway obstructions, cardiovascular

diseases affecting oxygenated blood flow, or metabolic acidosis increasing

blood acidity. Abnormal respiratory rates, either elevated or decreased and

deviating from the normal range of 12 to 18 breaths per minute, are crucial

biomarkers for identifying potential clinical risks, particularly in elderly

and critically ill patients. The brainstem’s respiratory center modulates the

strength and rhythmicity of breathing, influenced by chemical, mechanical,

and cortical inputs.

HRV research has gained attention as a non-invasive marker of cardiac

vagal tone, reflecting the PNS’s influence on cardiac regulation [45]–[47].

However, variations in respiratory parameters like breathing rate and tidal

volume can affect the interpretation of RSA and cardiac vagal tone [48],

[49]. To mitigate respiratory influences on RSA, some studies have subjects

breathe at a constant rate [47]. However, this method may remove important

variability linked to neural control of cardiac vagal tone [45]. Therefore,

including BR information in HRV analysis during spontaneous breathing

can enhance ANS assessment [50]. Additionally, mathematical tools are

available to separate respiratory influences from HRV analysis, emphasizing

the importance of considering respiration when evaluating ANS biomarkers

related to HRV [51]. Besides, respiratory parameters, which play a key role

in autonomic regulation, can be indirectly estimated from ECG and PPG

signals, eliminating the need for additional sensors [52], [53].

1.4.3 Effect of Respiration on the PPG

Respiratory modulation extends its influence to PPG signals, too [54], [55].

The modulation affects the amplitude of PPG systolic waves and pulse

rate variability, showcasing the broad impact of respiration on physiological

parameters (Fig. 1.20).
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Figure 1.20: Modulations of the PPG due to respiration (modulation through
two complete respiratory cycles shown). (a) PPG showing unmodulated cardiac
pulse waveforms. (b) Baseline modulation (cardiac pulses riding on top of baseline
shown dashed). (c) Amplitude modulation (cardiac pulses amplitudes varying over
respiratory cycle). (d) RSA (pulse period varying over respiratory cycle). Adapted
and reproduced from [56].
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In this chapter, I offer a comprehensive overview of the various disorders

and applications where I will apply non-invasive biomarkers. Specifically, I

will delve into the topic of weaning of patients from MV in Section 2.1, an

in-depth analysis of OSA and its clinical implications in Section 2.2, and

discuss the key concepts related to the analysis of PPG oriented to wearable

31
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devices in Section 2.3. Concluding each section, I will outline and justify the

specific signal processing methodologies I propose for each target disorder

and application, elucidating how these approaches effectively meet the set

objectives.

2.1 Mechanical Ventilation and Weaning in the

ICU

Mechanical ventilation is a crucial intervention used in ICUs to assist patients

with respiratory failure or compromised lung function in breathing. It involves

the use of a ventilator, a machine that delivers air to the lungs and helps

both remove carbon dioxide and supply oxygen, when critical patients are

struggling to do this vital function. The air gets to the lungs through the

endotracheal tube, which has to be placed with sedation into the trachea.

(a) (b)

Figure 2.1: (a) The context of ICU patients: connected to many different monitoring
systems and assisted with mechanical ventilation. (b) The endotracheal tube, placed
into the trachea, necessary for mechanical ventilation.

2.1.1 Weaning Process and Extubation

Weaning refers to the process of gradually reducing and eventually discon-

tinuing MV once the patient’s condition improves [57], [58]. It is important

to liberate patients from ventilator support as soon as possible to minimize

complications associated with prolonged ventilation, such as infection or lung

injury [59]. Weaning protocols involve assessments of the patient’s readiness

for Spontaneous Breathing Trial (SBT), where they breathe without ventila-
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tor support for a specific duration. Successful SBTs indicate readiness for

extubation.

Therefore, before withdrawing MV, a mechanically ventilated patient

must pass a criteria for weaning readiness, but must perform and pass also

the SBT afterwards. Extubation is the removal of the endotracheal tube

used for MV, after successful SBT. It is typically performed if the patient

demonstrates stable respiratory function, adequate oxygenation, and is able

to protect the airway effectively. Extubation success relies on factors such

as the patient’s underlying condition, strength of respiratory muscles, and

ability to clear secretions. In some cases, extubation may be followed by non-

invasive ventilation to provide additional support as the patient transitions

to spontaneous breathing.

However, weaning failure and reintubation after a premature weaning

is really critical and around 20% of patients that passed SBT have to

be reintubated [60]–[62]. This reintubation leads to a significant increased

risk of severe respiratory complications such as pneumonia, lung injury,

or diaphragmatic dysfunction [59]. Of note, weaning failure increases the

risk of mortality in the range from 25 to 50% [60], [63], [64]. For a more

detailed exploration of weaning predictors, criteria, procedures, and the

assessment of extubation in mechanically ventilated patients, I suggest the

reader consulting the comprehensive review provided in [65], [66].

2.1.2 Spontaneous Breathing Trial

The SBT is essentially a ”test drive” where the patient’s ability to breathe

without the assistance of a ventilator is evaluated. During this trial, the

level of ventilatory support is minimized or completely withdrawn, allowing

clinicians to monitor how the patient copes under such circumstances [59],

[67]–[69]. There are two primary methods of conducting an SBT [67]–[69]:

• Low-level Pressure Support Ventilation: In this technique, the

patient breathes through the MV circuit, but with minimal levels of

Pressure Support Ventilation (PSV). This method allows for a gradual

reduction in support while closely monitoring the patient’s ability to

manage without full ventilatory assistance.

• T-piece Circuit: Alternatively, SBT can be performed by disconnect-

ing the patient from the ventilator and employing a straightforward
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circuit, as depicted in Figure 2.2. A source of O2 is delivered to the

patient at a high flow rate (higher than the patient’s inspiratory flow

rate). This setup ensures efficient oxygen delivery and actively aids in

expelling exhaled CO2, thereby avoiding CO2 rebreathing. Because

this circuit employs a T-shaped adapter, it is popularly known as a

T-piece circuit.

Figure 2.2: T-piece breathing circuit for SBT, after removing the mechanical
ventilation support.

There is no clinically proven advantage with either method of SBT ( [70]–

[72]). Regardless of the method chosen, rapid breathing during SBT can

be detrimental in several ways, including the promotion of hyperinflation,

intrinsic Positive End-Expiratory Pressure (known as PEEP), reduced CO,

increased dead space ventilation, decreased lung compliance, and diaphragm

dysfunction. Rapid breathing also reduces ventilation in diseased lung re-

gions (where time constants for alveolar ventilation are prolonged), and this

promotes alveolar collapse and hypoxemia. Additionally, rapid breathing

elevates whole-body oxygen consumption, placing added burden on systemic

oxygen transport. These considerations underscore the importance of care-

fully managing a patient’s respiratory status during SBT and finely choose

those presumably ready to perform the SBT [73], [74].

2.1.3 Ventilation Modes

In the context of patients under MV, it is crucial to understand the various

modes of ventilation and the types of breaths that can be administered. MV

breaths can be categorized as controlled, assisted, or supported. Additionally,

there are two primary methods of breath delivery: volume-based and pressure-

based.

1. Controlled Ventilation: In this mode, the ventilator completely controls
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the breathing process. Patients under controlled ventilation do not exert

any effort; the ventilator is responsible for all aspects of breathing.

2. Assisted Ventilation: Here, the ventilator responds to the patient’s initial

effort to breathe. When a patient attempts to initiate a breath, the

ventilator detects this effort and delivers a full mechanical breath. The

patient must generate a change in pressure or flow to trigger the ventilator.

3. Supported (Spontaneous) Ventilation: Similar to assisted ventilation, sup-

ported breaths are also initiated by the patient. However, once triggered,

the ventilator provides partial support, unlike the full support offered in

assisted ventilation.

Regarding the methods of breath delivery:

(a) Volume-based Ventilation: The ventilator delivers a predetermined

volume of air into the lungs and then extracts it. This method focuses

on controlling the amount of air the patient receives per breath.

(b) Pressure-based Ventilation: In this approach, the ventilator inflates the

lungs to a specific pressure level and then releases. The ventilator is

programmed to maintain this pressure for each breath.

Combining these types and methods leads to various ventilation modes,

each tailored to specific patient requirements. Common modes include:

• Assist-Control Ventilation (ACV): Provides a set number of breaths per

minute, which can be either controlled by the ventilator or assisted based

on the patient’s breathing effort.

• Pressure Support Ventilation (PSV): Assists the patient’s spontaneous

breaths by providing a preset level of pressure support, enhancing patient-

initiated breaths (see Fig. 2.3).

• Synchronized Intermittent Mandatory Ventilation (SIMV): A hybrid mode

combining controlled and spontaneous breaths, allowing more autonomy

for the patient in the breathing process.

• Volume Controlled Ventilation (Volume Controlled Ventilation (VCV)):

Delivers a consistent and pre-set volume of air to the patient, with each

ventilator-initiated breath, ensuring stable ventilation regardless of changes

in lung compliance or airway resistance (see Fig. 2.4).

The choice of ventilation mode and method depends on various factors,

including the patient’s respiratory condition and the clinical objectives of

the ventilation therapy.
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Figure 2.3: PSV patterns, and example of ineffective efforts (IE), e.g., around
18:02:00, where airway pressure (PAW) did not pass the threshold to activate an
inspiration.

2.1.4 Mortality and Pathophysiology

As the reader may have noticed, MV, while life-saving, presents lots of risks

and complications. Ventilator-associated pneumonia (VAP) is one of the

most common and severe complications, leading to increased morbidity and

mortality [75]–[77]. Other complications include barotrauma (lung injury

due to high pressure), ventilator-induced lung injury (VILI), and ventilator-

associated lung injury (VALI) [78]. These injuries can result from excessive

tidal volumes, high inspiratory pressures, or repetitive alveolar collapse and

expansion [79]. In fact, one new risk parameter has been found by De Haro

et al. [80], where they identify asynchronies between MV and the patient.

This is called double cycling and its occurrence originates VILI and VALI

due to asynchronies that lead to, e.g., doubling the amount of air volume

that the patient needed (Fig. 2.4), or ineffective efforts (Fig. 2.3).
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Figure 2.4: VCV mode and some visible Double Cycling asynchronies.

The pathophysiology underlying ventilator-associated lung injury involves

several mechanisms, including inflammation, oxidative stress, and impaired

gas exchange [81], [82]. High-pressure ventilation can trigger an inflammatory

response, leading to the release of pro-inflammatory cytokines, recruitment

of inflammatory cells, and subsequent lung damage. VALI can also occur

due to overdistention of alveoli or shear stress during cyclic opening and

closing of collapsed lung units [83].

To mitigate these risks, lung-protective ventilation strategies are em-

ployed, including the use of low tidal volumes and limited inspiratory pres-

sures [84]. Additionally, strategies to prevent VAP, such as elevation of the

head of the bed, regular oral care, and appropriate sedation management,

are implemented [85], [86].

2.1.5 Objectives of Part II

As mentioned, MV is a cornerstone in the management of respiratory failure

within ICUs. The custom ventilation modes and adherence to weaning
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protocols are critical for safely guiding patients from mechanical support to

spontaneous breathing. Despite existing protocols and criteria, determining

the optimal timing for weaning remains a complex challenge, with significant

room for improvement in the assessment of readiness for weaning. To address

these challenges, Part II comprises two studies focusing on signal processing

methodologies to enhance the criteria for weaning readiness and to decrease

unsuccessful weaning attempts.

Study One: Baroreflex Sensitivity and Weaning Readiness

The first study, detailed in Chapter 5, involves the estimation of BRS through

the analysis of blood pressure signals and HRV. The goal is to evaluate BRS

during the last hour preceding a SBT and to investigate whether BRS, as an

ANS marker, can contribute additional insights to enhance the prediction

of weaning outcomes. This study is motivated by the observed diminished

baroreflex control in various cardiac and cardiovascular conditions where

ANS is impaired, as documented in the literature.

Detailed in Section 3.6, two distinct non-invasive techniques are employed

to measure BRS. These include the spectral analysis of HRV and SBP to

compute the established α index, and a proposed alternative method, called

Bivariate Phase Rectified Signal Averaging (BPRSA), which constructs an

averaged HRV profile reflecting the cardiac response to SBP fluctuations.

Study Two: Cardiopulmonary Interactions and Weaning

Readiness

The second study, presented in Chapter 6, expands analysis to include a

set of biomarkers derived from respiration, HRV, and CPC for the assess-

ment of weaning readiness. On the contrary to the first study, this analysis

utilizes data from the 24-hour prior to SBT, and not limited to the final

hour. This approach allows for a broader evaluation of patient readiness for

weaning. Moreover, the first study’s scope was more limited regarding the

patient cohort size, constrained by the availability of high-quality invasive

BP recordings.

This second study introduces an innovative exploration of heart-lung

interactions and the evaluation of CPC indices in a prospective design, while

ensuring the analysis remains blind to the SBT outcome. This approach aims
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to improve the assessment of patients’ readiness for weaning from mechanical

ventilation, potentially leading to more accurate and effective clinical decision-

making. Methodologies for estimating respiratory signals and HRV are

explained in Section 3.1 and 3.3.3, respectively, with a subsequent detailed

exploration of the three main methods for CPC quantification in Section 3.4.

The CPC estimation methods include Time-Frequency Coherence (TFC) in

Section 3.4.1, information dynamics (ID) in Section 3.4.2, to estimate the

cross entropy, and Orthogonal Subspace Projections (OSP) in Section 3.4.3,

to decompose the HRV signal into a component related to respiration and

a residual component. Furthermore, this study two examines the timing of

assessment throughout the day before SBT and its potential correlation with

SBT outcomes.

2.2 Obstructive Sleep Apnea

After delving into the main concepts of MV and weaning, we transition to

another vital aspect of respiratory health [87], [88]. Sleep is a fundamental

physiological process, during which the body recovers. While the exact

reasons and purposes for sleep remain unknown, this state, which occupies a

third of our lives, is undeniably vital. However, sleep can be disrupted by

respiratory-related disorders, going from primary snoring, to the most severe

and common: OSA.

Hypnograms provide a visual depiction of sleep architecture, detailing

the transitions between different sleep stages over the course of a night [87],

[88]. The hypnogram displayed in Fig. 2.5 reveals a normal sleep pattern,

that begins with wakefulness, followed by a descent into non-rapid eye

movement (NREM) sleep, progressing from the lightest stage (Stage 1) to

the deepest (Stage 4), and then ascending to the rapid eye movement (REM)

stage, characterized by vivid dreaming and increased brain activity. This

cycle, which recurs roughly every 90 to 110 minutes, typically features more

extended periods of deep sleep during the initial cycles and increasingly

longer REM periods towards the morning.

OSA is characterized by repetitive interruptions in breathing during

sleep, due to upper airway obstruction [89], [90]. These interruptions alter

the normal sleep cycle (Fig. 2.5), the hypnogram of a person with OSA may
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Figure 2.5: Normal Sleep Architecture Hypnogram. This chart traces the typical
progression through wakefulness, NREM stages 1 to 4, and REM sleep over five
sleep cycles. The cyclical nature of sleep stages and the increasing predominance of
REM sleep in successive cycles are evident. OSA can disrupt this pattern, leading
to a hypnogram characterized by increased awakenings and diminished deep sleep.

show a fragmented pattern with more frequent transitions to wakefulness

and reduced or absent deep sleep stages. This prevents individuals with

OSA from achieving deep, restorative sleep, and the resultant poor sleep

quality may lead to daytime fatigue and drowsiness, but end up in serious

health implications, including cardiovascular, metabolic, and neurocognitive

diseases [91].

Figure 2.6: Representation of normal breathing, partial, and complete obstruction.
Adapted and reproduced from [92].

As shown in Fig. 2.6 and 2.7, OSA is originated by a total (apneas) or

partial (hypopneas) occlusion of the upper airways [89], [90], which blocks

the airflow while the respiratory effort persists. If this blockage is sustained,
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i.e., more than 10s in adults, it may lead to oxygen desaturation [93], visible

in the SpO2 signal (see Fig. 2.7). During critical developmental stages in

pediatric population, sleep disruptions can significantly impact children’s

motivation and behavior.

Obstruc ve apnea Hypopnea

Desatura on dura on (s) Desatura on depth (%)

Desatura on area (s%)

Figure 2.7: Example of the duration (s), area (s%), and depth (%) of desaturation
events following obstructive apnea and hypopnea. Adapted and reproduced from [94].

However, while the breathing cessations are obstructive more often, these

can also be central [90] (Fig. 2.8). The main difference between them relies on

the fact that in the case of central apneas, the brain stops sending stimulus

for breathing impulse, leading to cessation of both oronasal airflow and

inspiratory effort movement.

OSA has emerged as a major public health issue. Epidemiological studies

suggest that OSA is now prevalent in approximately 5.7% of the pediatric

demographic [95], [96]. A multicenter study involving 4,191 pediatric partici-

pants revealed that, of children referred to specialized sleep laboratories due

to clinical suspicion of OSA, 43.3% were diagnosed with mild OSA, 12.8%

with moderate, and 16.8% with severe OSA [97]. Data from the Subdirección

General de Información Sanitaria Española as of March 2021 further indi-

cates a 9.56% prevalence rate for pediatric OSA in Spain, distinguishing

10.83% of the affected as boys and 8.20% as girls below 15 years. In the adult

demographic, OSA prevalence can reach up to 49% [98]. Despite this alarm-

ing increase in prevalence, the condition remains largely underdiagnosed, as

emphasized by [99], and other research findings [98].
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Figure 2.8: Patterns of airflow, respiratory efforts (reflected through the esophageal
pressure), and arterial oxygen saturation produced by central, obstructive, and
mixed apneas.

2.2.1 Diagnosis

Polysomnography (PSG) conducted in a sleep laboratory is the standard

method for diagnosing OSA, as it records the essential physiological sig-

nals [95]. Despite PSG being the gold standard, it’s a tedious and expensive

method requiring the measurement of numerous physiological variables and

the expertise of sleep specialists [100], [101]. Given its cost, complexity, and

the limitations in the availability of sleep centers, many OSA cases remain

undetected.

Due to its significance as a cardiovascular morbidity factor and the avail-

ability of effective treatments, there have been efforts to simplify diagnostic

studies to reduce costs and assist more patients [95], [102]. For example,

overnight oximetry, which monitors SpO2 using a pulse-oximeter, is particu-

larly child-friendly [103], and the automated analysis of the SpO2 signal has

proven good diagnostic efficacy for OSA screening [103].

2.2.2 Etiology and Consequences of OSA

The pharyngeal collapse and cessation of airflow occur during inspiration,

resulting from the negative intraluminal pressure generated by diaphragm

contraction. The obstruction is aggravated by sleep-induced flaccidity and

hypotonia of the pharyngeal muscles [105]. During normal inspiration, the
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Figure 2.9: Sensor Configuration for a Standard Clinical Polysomnography.

Figure 2.10: Bradycardia-Tachycardia pattern following an apnea/hypopnea event.
Adapted and reproduced from [104].

contraction of respiratory muscles, especially the diaphragm, creates negative

intrathoracic pressure, inducing airflow to the lungs [105], [106]. Sleep,

especially in its REM phase and deep non-REM phases, favors the loss of
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coordination, due to relaxation, between respiratory and pharyngeal muscles.

As a result, the upper airway tends to collapse, increasing resistance to airflow

and, eventually, resulting in apnea or hypopnea episodes (see Fig. 2.11).

This interruption in respiratory flow during an apnea event leads to

a drop in SpO2 levels and intensified respiratory efforts. If these efforts

are insufficient and hypercapnia levels become dangerous, a subconscious

”arousal” or awakening is triggered. This arousal serves as an instinctive,

protective mechanism, causing the person to adjust their position, often

unconsciously, which reopens the airway and restores normal breathing. Such

episodes can occur hundreds of times in a single night, posing serious health

implications.

In patients with OSA, the heart responds to respiratory events with pro-

gressive bradycardia followed by abrupt tachycardia, although such patterns

can be highly variable depending on the duration and severity of each of

the respiratory events [108]–[111]. These characteristics patterns are the

basis for the study of the treatment effects on HRV trends. For example,

Isaiah et al. [112], and Martin-Montero et al. [113] analyzed changes in

HRV related to pediatric OSA treatment employing the CHAT database

to conduct a Causal Mediation Analysis (CMA). They found that OSA

treatment affects HRV activity in terms of change in severity and disease

resolution, and demonstrated the potential utility of HRV as biomarker of

OSA resolution [113].

Repeated subconscious arousals due to apneas result in sleep fragmen-

tation, preventing deep, restorative sleep. This disrupted sleep structure

causes neuropsychiatric manifestations like excessive daytime sleepiness and

leads to behavioral issues. OSA can also induce significant alterations in

intrapulmonary gas exchange, causing chemical and structural damage at

the cellular level in the central nervous system, leading to dysfunctions

in the brain’s prefrontal cortex regions [107], [108]. These alterations in

gas exchange increase the risk of cardiovascular and cerebrovascular dis-

eases [114], [115]. Similarly, these patients also have a higher incidence of

cardiac arrhythmia and sudden nocturnal death. Morning headaches, also

quite frequent in OSA patients, result from cerebral vasodilation caused by

the hypercapnia accompanying the apneas.
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Figure 2.11: An example of the signals recorded during overnight polysomnography.
Shows an obstructive apnea with cessation of airflow for more than 10 s despite per-
sistent respiratory efforts shown on the chest and abdominal respiratory bands. The
apnea is associated with arterial oxygen desaturation and is terminated by arousal
from sleep. C4-A1=electroencephalogram. LOC=left electro-oculogram. ROC=right
electro-oculogram. CHIN=chin electromyogram. CHEST=respiratory inductance
plethysmography bands placed around the thorax. ABDM=respiratory inductance
plethysmography bands placed around the abdomen. PNasal=airflow monitoring by
nasal air pressure. Therm=airflow monitoring by thermal air sensor. SaO2=arterial
oxygen saturation. EKG=electrocardiogram. Adapted and reproduced from [107]

2.2.3 Definition of Apneic Events in Children

The American Academy of Sleep Medicine (AASM) characterizes apnea in

children as either a complete absence or a reduction of airflow by ≥90%

for at least 2 breaths [90]. Hypopnea is defined as a reduction in airflow

ranging from 30% to 90% for a minimum of 2 breaths, coupled with a ≥3%

SpO2 desaturation or an arousal [90]. It’s important to highlight that these

criteria differ between children and adults, with the AASM stipulating a

minimum duration of 2 respiratory cycles (around 6 seconds) for children
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and 10 seconds for adults [90], [116].

2.2.4 Objectives of Part III

The gold standard for the diagnosis of OSA typically relies on overnight

PSG, despite being time-consuming, expensive and requiring specialized

personnel. Given these challenges, there is a clear need for more accessible

and convenient diagnostic tools to simplify the process. Part III of the thesis

is structured into three main studies. All have in common to explore various

cardiovascular signal processing methodologies and data analysis techniques

to improve the stratification and severity assessment of OSA, as well as the

associated cardiovascular risk (CVR) in pediatric patients.

Study One: Heart Rate Variability During Apneic and Normal

Breathing

Regarding Chapter 8, I examine the differences of HRV values during apnea

episodes and compares it with HRV during normal sleep. In this chapter

I study whether the sympathetic activation observed in OSA patients is

persistent throughout the night or it is just primarily a reaction to apneic

events, being that literature suggests that sympathetic activation during

apneic events is more pronounced in patients with severe OSA.

This study will contrast HRV metrics across apnea episodes, normal

breathing periods, and entire night recordings in a pediatric cohort. The

differentiation of HRV in these contexts seeks to discern if the sympathetic

dominance is episodic or sustained, aiming to better understand the under-

lying ANS response to OSA.

Due to the non-stationary nature of overnight PSG recordings, the

frequency domain parameters are calculated using a Time-Frequency (TF)

distribution belonging to the Cohen’s class [117], that will be extensively

detailed in Sec. 3.3.4.

Study Two: Cardiopulmonary Coupling as a Diagnostic Tool in

Pediatric OSA

In Chapter 9, the research delves into CPC and its utility in the context of

pediatric OSA. By utilizing TFC analysis, the study aims to characterize
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CPC across different sleep stages and groups categorized by OSA severity.

This exploration is grounded in the hypothesis that higher CPC levels may

be indicative of better sleep health, and overall cardiovascular health in

children with OSA.

Considering the role of CPC in reflecting the interplay between cardiac

and respiratory rhythms, and its implications for pulmonary gas exchange

and cardiovascular efficiency, this study aims to extend the understanding of

CPC in the pediatric OSA population, an area where adult research suggests

potential but remains underexplored.

Given the non-stationary nature of overnight PSG recordings, CPC esti-

mation is approached using TFC. The methodology for estimating CPC via

TFC is an essential methodology of this thesis, and is thoroughly explained

in Sec. 3.4.1.

Study Three: MetS as CVR Index in Children

After having obtained and characterized HRV, CPC and respiratory values

from pediatric OSA patients, the next step was to compare those values to

levels of cardiovascular risk (CVR) in this population of pediatric patients.

However, after a intensive review of the literature, the definition of CVR has

never been proposed in children before.

Chapter 10 seeks to establish and validate a measure of CVR among

children with OSA by evaluating the applicability of Metabolic Syndrome

(MetS). The study investigates whether MetS can serve as a reliable indi-

cator of OSA severity and the efficacy of OSA treatment in the pediatric

population—a novel approach not previously explored.

The relationship between OSA and MetS is particularly pertinent given

the documented association between OSA and increased risks of obesity, in-

sulin resistance, and systemic inflammation both in children and adults. This

work will employ a CMA to probe the mediating factors of OSA treatment

outcomes, positioning MetS, obesity, and C-reactive protein levels as poten-

tial biomarkers for CVR. This could potentially lead to the recommendation

of MetS screening in children diagnosed with OSA.

Whereas OSA in children does not affect critically the cardiovascular

function, OSA does result in serious neurocognitive consequences, regarding

behavioral and learning disorders, making timely diagnosis and treatment
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crucial. If OSA persists through childhood, it can firmly establish CVR for

adulthood, thereby underscoring the necessity for prompt diagnosis and

intervention of worsened cardiovascular health.

2.3 Analysis of PPG Oriented to Wearable

Devices

Many users of wearables may not be aware that these devices, including

fitness bands and smartwatches like the Garmin, Samsung Watch, or Apple

Watch, routinely monitor the cardiovascular health by capturing the PPG

signal. This optical measurement of the arterial pulse wave reflects heart

activity and vascular condition. This section aims to summarize the basics

of wearable PPG, and its fundamentals.

Polar OH1
sensor

Withings
Scanwatch

Samsung Galaxy
Watch Active 2

Fossil Gen 5
Smartwatch

Figure 2.12: Examples of wearable devices measuring PPG signals. The top
images show the devices, and the bottom images display the sensor sides. Adapted
from [118].

The increasing popularity of wearables equipped with PPG sensors

has opened new avenues for real-time cardiovascular monitoring [6], [119].

PPG’s implementation in pulse oximeters for SpO2 assessment marks its

significant impact on clinical care. Beyond SpO2, PPG provides insights into

cardiac, vascular, respiratory, and autonomic functions. Advanced signal
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processing techniques are being developed to extract novel information from

PPG signals, transforming the landscape of cardiovascular disease (CVD)

assessment. In fact, as wearables gain popularity [120]–[122], their potential

in democratizing cardiovascular health becomes apparent.

2.3.1 Physical Fundamentals of PPG

PPG is a non-invasive method that measures blood flow changes by detecting

variations in light absorption, linked to the cyclic changes in blood volume

during the cardiac cycle. The principle behind PPG is the differential ab-

sorption of light by tissues, affected by the concentration of oxyhemoglobin

and deoxyhemoglobin.

PPG devices employ a light source, such as an LED, and a photodetector

to detect volumetric changes in blood in microvascular tissue beds at various

sites, like the fingertip, earlobe, or wrist. The resulting PPG waveform is

characterized by pulsatile fluctuations corresponding to the cardiac cycle,

superimposed on a slowly varying baseline that reflects respiratory activity.

Although PPG is tipically captured with specialized devices, Fig. 2.13 illus-

trates that a phone’s camera and flash LED can suffice to detect changes in

light absorption due to pulsating blood vessels, enabling an smartphone app

to monitor PPG.

The choice of light wavelength is crucial, as it affects penetration depth,

signal quality, and applicability to different skin types [124]. Wavelengths in

the red and near-IR band penetrate the skin the most and are commonly

used for measuring oxygen levels. Visible light wavelengths, particularly in

the green spectrum, are used to detect blood flow.

After capturing the PPG signal, various features can be extracted, such

as blood volume dynamics, rise time, systolic amplitude, diastolic ampli-

tude, and pulse area. These parameters provide information about vascular

elasticity, peripheral resistance, and physiological changes. Additionally,

pulse-to-pulse interval is often analyzed as a surrogate for HRV, known as

Pulse Rate Variability (PRV).
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Figure 2.13: Animated GIF demonstrating PPG signal acquisition, using a smart-
phone application developed by [123]. The top-left panel shows the smartphone’s
camera view of the fingertip in place. Below, the app’s interface translates changes
in flash LED light detected from the camera into a reflective PPG waveform. The
right panel offers a synchronized video, illustrating the blood flow’s effect on light
transmission, which is then analyzed by the app to track PPG signals.

2.3.2 PPG Measurement Sites

PPG signal morphology varies depending on the measurement site [7]. The

fingertip, often used in pulse oximeters, provides a standard PPG waveform,

primarily influenced by blood flow in digital arteries, with a high signal-to-

noise ratio. The wrist, popular for wearable devices, may experience more

motion artifacts [118]. Earlobe and forehead sites might offer more stable

signals with reduced motion impact in certain scenarios, even though the

morphology of the PPG signals changes.

The attachment method of wearable PPG sensors influences signal qual-

ity [8]. Consistent skin contact and optimal contact pressure are key for

accurate measurements, with flexible and adhesive sensors showing promise

for improved data quality.
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Figure 2.14: Illustration of ECG and PPG signals synchronously recorded. Three
PPG signals are at Forehead (PPGH), at Earlobe (PPGE) and at Finger (PPGF ),
respectively. Both red PPG (R-PPG, in red) and infrared PPG (IR-PPG, in gray)
lights, are also illustrated. Refer to [125], [126], for more information on the mor-
phology of PPG in different body locations.

2.3.3 PPG in Clinical Practice

PPG’s clinical applications have expanded since its inception in the 1930s.

Its use in pulse oximeters from the 1980s revolutionized continuous SpO2

monitoring [127]. Today, pulse oximeters are essential in various medical

settings, from neonatal care to critical care, aiding in early detection of

clinical deterioration and respiratory diseases. Beyond pulse oximetry, PPG

shows potential for broader clinical applications in cardiovascular monitoring.

2.3.4 Objectives of Part IV

Part IV of the thesis is dedicated to the analysis and interpretation of

parameters derived from PPG signals, with a focus on their physiological

significance for application in wearable devices. This research aims to lay

the groundwork for understanding parameters that could be obtained using

wearables, like wristbands, in real-world scenarios. I explore novel PPG-

derived parameters offering deeper cardiovascular insights than the commonly

measured pulse frequency in wearables.
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Recognizing the high cost associated with traditional data recording,

wearables have value as sources of accessible and easy-to-gather data. Despite

the common challenge of signal quality due to motion artifacts in wearable

PPG technology, this section will also investigate methodologies for artifact

and pulse detection, signal quality assessment, and biomarker extraction in

different scenarios.

Study One: Coverage of PPG

PPG signals are well-known to be very susceptible to motion artifacts,

which can severely compromise signal quality during active periods in daily

life. Chapter 12 explores the concept of ’coverage’ in PPG signals—the

proportion of time physiological parameters can be reliably estimated by the

sensor. Coverage is highly dependent on sensor configuration of the PPG,

including transmission/reflection modes, sensor location, and the stability of

sensor-body contact.

Coverage rates for raw PPG signals have been reported in prior studies;

this research extends this by analyzing the coverage of series dependent on

PPG, such as pulse rate, Pulse Arrival Time (PAT), and Pulse Amplitude

Variability (PAV), across various body locations and under different stress

conditions. The methodologies for estimating these PPG indices are detailed

in Sec. 3.5.4.

Study Two: PPG-Derived PWV to Assess Mental Stress

Presented in Chapter 13, this study investigates the vascular response to

mental stress by examining Pulse Transit Time Difference (PTTD), an alter-

native to pulse wave velocity (PWV) that is independent of PEP variability.

The aim is to determine PTTD’s potential as a stress biomarker, given

its association with cardiovascular data and blood pressure. To accurately

estimate PTTD, two PPG sensors are placed at different body locations,

requiring thorough signal artifact removal and pulse delineation. Investigating

PTTD alterations during acute mental stress will evaluate its potential as

a stress biomarker, considering its theoretical correlation with PWV and

relevance to cardiovascular information and blood pressure estimation. The

study also establishes normal physiological ranges for PTTD and PAT, with
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a comprehensive methodology for PPG signal analysis to obtain PTTD

outlined in Sec. 3.5.4.

Study Three: Vascular Reactivity and PPG-Derived PWV

Due to the limited amount of good quality signals to firmly characterize

PTTD, Chapter 14 broadens the scope to include a complete vascular

reactivity analysis. Fifteen subjects underwent a heat stress test—a passive

stressor suitable for characterizing PPG-derived PWV biomarkers, with no

mental or physical activity required.

Initially focused on PTTD, the study expanded to assess vascular reactiv-

ity using various non-invasive techniques, including PAT, PTTD, and Pulse

Decomposition Analysis (PDA). This investigation assesses the cardiovascu-

lar response to heat stress and the potential of novel PWV surrogates for

evaluating cardiovascular changes induced by such stressors, biomarkers that

cannot be obtained using only ECG sensors and HRV indices. Methodologies

for calculating PAT, PTTD, and PDA are explained in Sec. 3.5.4.



2



3Chapter 3

Contextualized Signal

Processing Methodologies

3.1 Analysis of Respiratory Signals . . . . . . . . . . . . . . 56

3.1.1 Tidal Volume Estimation . . . . . . . . . . . . 57

3.1.2 Breathing Rate Estimation . . . . . . . . . . . 57

3.2 Single-lead ECG Delineation . . . . . . . . . . . . . . . 59

3.3 HRV Estimation . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Integral Pulse Frequency Modulation model . . 60

3.3.2 Correction of Ectopic Beats . . . . . . . . . . . 63

3.3.3 Respiration-Guided HRV Biomarkers . . . . . 64

3.3.4 Time-Frequency Evolution of HRV . . . . . . . 67

3.4 Cardiopulmonary Coupling Estimation . . . . . . . . . 69

3.4.1 Time-Frequency Coherence . . . . . . . . . . . 70

3.4.2 Dynamic Mutual Information . . . . . . . . . . 72

3.4.3 HRV Decomposition . . . . . . . . . . . . . . . 73

3.5 Analysis of Pulsatile Signals . . . . . . . . . . . . . . . 74

3.5.1 Signal Preprocessing . . . . . . . . . . . . . . . 75

3.5.2 Data Cleansing and Artifact Detection . . . . 75

3.5.3 Pulse Delineation . . . . . . . . . . . . . . . . 76

3.5.4 Biomarkers from the PPG . . . . . . . . . . . . 82

3.6 Baroreflex Sensitivity Estimation . . . . . . . . . . . . 86

3.6.1 SBP Estimation . . . . . . . . . . . . . . . . . 87

3.6.2 BPRSA Analysis . . . . . . . . . . . . . . . . . 88

55



3

56 CHAPTER 3. Contextualized Signal Processing Methodologies

In the previous chapters, the needs and basics of HRV and CPC analysis

have been explained, along with the target disorders and applications under

study in the present thesis. In this section, I will delve into the main aspects

of all the different methodologies and algorithms that I needed to implement

to extract the specific features for each of the target disorders I have been

studying.

To summarize, from the respiratory signals, we can use the signal itself,

but also the BR. From the ECG we can detect the heartbeats to afterwards

estimate the HR and HRV. At this moment, the analysis of CPC can be

done, by estimating the changes in HRV associated to respiration, for which

different methods exist that can be applied. Finally, from the PPG signal,

we can obtain similar characteristics as those from the ECG, but also some

measurements related to vasculature that cannot be measured using only

the ECG.

3.1 Analysis of Respiratory Signals

During this research, I’ve worked with various respiratory signals to ex-

tract features from respiration. These signals encompassed respiratory effort

measurements using stretch sensors, placed for the assessment of thoracic

and abdominal effort; impedance pneumography, collected alongside ECG

data, involving a high-frequency impedance signal (e.g., at 120Hz); oronasal

pressure signals obtained to define obstructive events in OSA by measuring

airflow with a thermistor; airflow and esophageal pressure signals, inva-

sively recorded during mechanical ventilation; and ECG-derived respiration

signals [52], [128].

The distinct nature of each signal needs specific pre-processing methods

to derive some possible respiratory features, including the instantaneous BR,

the bandwidth as a measure of the smoothness and regularity of respiration,

and calculating the tidal volume from the airflow signal. In the subsequent

sections, a method to estimate the tidal volume from the airflow signal is

elaborated upon. Additionally, a methodology for estimating and tracking

the BR in long-term recordings is detailed.
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3.1.1 Tidal Volume Estimation

A tidal volume signal, r(t), can be obtained integrating the instantaneous

airflow signal followed by baseline subtraction. The baseline is estimated

by modified Akima piecewise cubic Hermite interpolation at the delineated

onsets of inspiration (see Fig. 3.1 (b)). This interpolation methodology is

chosen since it was designed to reduce the overshoots and undershoots in

regions with rapidly changing gradients. Similar to pchip interpolation, this

results in a smoother curve that still respects the local data structure without

introducing excessive wiggles, ensuring that each tidal volume breath begins

and ends with zero liters, as depicted in Fig. 3.1 (c).
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Figure 3.1: Illustration of tidal volume estimation. (a) Airflow signal showing
the breathing pattern in VCV mode, with units in L/min. (b) Integrated airflow
leading to an uncorrected tidal volume curve; the estimated baseline correction
is indicated by a gray line. (c) Final corrected tidal volume signal in mL, with
each respiratory cycle starting and ending at zero liters, reflecting the baseline and
amplitude adjustments.

3.1.2 Breathing Rate Estimation

BR is calculated from the timing of each breath’s initiation, referred to as

the inspiration onset, denoted as oi. The instantaneous breathing rate f̂r(t)
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is derived by measuring the time interval between successive inspirations:

f̂r(t) =

∫
60

oi − oi−1
δ(t− oi)dt, (3.1)

in units of respiratory cycles per minute ([r.p.m]).

The signals for tidal volume, r(t), and the estimated BR, f̂r(t), are then

uniformly sampled at 4 Hz. This results in two corresponding signals: the

tidal volume, r(n), and the discrete BR, f̂r(n).

However, when the inspiration onset marks are not available, an estimate

f̂r(t) of the BR can be directly obtained using spectral peakedness, a measure

of spectral concentration (see Fig. 3.2). The concept of ”peakedness” was

first introduced by Bailón et al. [129] in the context of robust BR estimation,

and it was later exploited by Lázaro et al. [130], Hernando et al. [50], and

Kontaxis et al. [52] for PPG-based BR estimation, stress assessment, and

ECG-derived respiration, respectively.
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Figure 3.2: BR estimation using the airflow signal, from a patient with OSA. (a) Air-
flow signal of patient with obstructive episodes. (b) Corresponding Time–frequency

spectrum obtained from the airflow signal. The estimated BR, f̂r(t), is displayed
with a red line. Refer to [52] for further information on the method.

Essentially, the peakedness, ℘, represents a measurement of how the

power of a given frequency band is concentrated around a frequency of
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interest, and it can be expressed mathematically as:

℘ =

∫
Ω1

Ŝr(f) df∫
Ω2

Ŝr(f) df
, (3.2)

where Ω1 is a frequency band centered in the frequency of interest for BR

estimation, Ω2 is the whole frequency range considered, and Sr(f) is the

spectrum to be analyzed. According to Eq. 3.2, ℘ will range from 0 to 1,

being 0 when there is no power in Ω1 and 1 when all the power in Ω1 is

also contained in Ω2. At this point, it is clear that the main challenge in the

definition of ℘ is the selection of appropriate frequency bands, which should

be guided by physiology and application. Further details on the methodology

and parameter selection can be found in [52].
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Figure 3.3: Examples of spectral peakedness computed using Eq. 3.2. Spectrum
analysis showing a large percentage of Ŝr(f) power concentrated: (left) outside Ω2,
indicating most power outside the band of interest for BR estimation; (right) within
Ω2(k). Adapted and reproduced from [17].

3.2 Single-lead ECG Delineation

The detection process of heartbeats involves identifying the occurrence,

whereas delineation focuses on establishing the precise instant when each

ECG wave appears within a heartbeat. Once heartbeats are delineated

accurately at the R-waves, one can estimate the HRV signal, representing

the non-invasive assessment of ANS. This is commonly achieved by capturing

the timing of the R-wave and analyzing the variability in intervals between

consecutive R-waves.

In this study, single-lead ECG delineation is done using a wavelet trans-



3

60 CHAPTER 3. Contextualized Signal Processing Methodologies

form based method [131]. This QRS detector decomposes the ECG signal

using basis functions derived from wavelets. This method can be seen as the

derivative of a low-pass filter, with its cutoff frequency varying according to

the wavelet’s specific parameters. It is thus very useful to analyze the slopes

of the ECG waves in the different scales. Notably, the QRS complex, due to

its unique frequency profile, is treated distinctly from P and T waves. The

delineation process starts by identifying the QRS complex’s center of mass,

followed by separate delineation of the Q, R, and S waves.

3.3 HRV Estimation

After delineating the R-wave in each heartbeat, HRV analysis assesses the

influence of the ANS on the SA node’s activity during sinus rhythm. Analyz-

ing the continuous fluctuations in HR allows to non-invasively measure the

ANS’s impact on the SA node, and the relative balance between sympathetic

and parasympathetic activity. The vagus nerve, a key component of the PNS,

shares the role of regulating HRV and respiration.

Converting the RR interval series into indices reflecting this interaction is

a translation challenge extensively addressed in engineering, which has been

recently reviewed in [132]. The simplest HRV approach involves computing

uni-variate statistical measures of the RR interval series, such as average

and standard deviation. However, spectral analysis, introduced early in

HRV history [14], [133], has recently become the preferred approach in

clinical studies, due to its closer interpretation in terms of SNS and PNS.

Given the irregular sampling of RR intervals, equidistant resampling is often

required to allow proper interpretation of the power spectrum, for which

different methods exist with different implications and resulting HRV series

estimated. For a complete and detailed explanation of the HRV estimation

methodologies, refer to [2] and [132].

3.3.1 Integral Pulse Frequency Modulation model

For frequency domain analysis, a HRV signal has to be estimated first, this

representing the functioning of the SA node, modulated by the ANS. The

output of the SA node can be modeled as a series of event times, tk at which
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the node fires off an electrical impulse,

t0, t1, ..., tM . (3.3)

Alternatively, a frequently used heart rhythm representation is the interval

tachogram dIT(k) in which the events, occurring at t0, t1, ..., tM , are trans-

formed into a discrete-time signal consisting of the successive intervals, i.e.,

the RR intervals,

dIT(k) = tk − tk−1, k = 1, 2, . . . ,M (3.4)

(see Fig. 1.11). Hence, the interval tachogram is the heart rhythm represen-

tation upon which the simple time domain measures rest, and it has been

extensively used in the literature on HRV analysis.

A major drawback when using dIT(k) is that both these signals are

indexed by an interval number rather than by a sample number as is com-

monly the case with the discrete-time signal, evenly sampled in time [2],

[132]. Consequently, power spectral analysis of these two signals cannot be

expressed in units of ”cycles per second” (Hertz).

To solve this, the Integral Pulse Frequency Modulation Model (IPFM)

is by far the most popular model for generating an event series, explained

by its simplicity and yet physiological relevance, [132], [134]. The input

signal, consisting in m(t) —assumed to carry ANS modulation of SA—

superimposed to a DC level, is integrated until the threshold, T —which

represents the inverse of mean Heart Rate (mHR)— is reached. Then, a beat

occurs and the integration process is reset. The first integrator output, y(t),

corresponds to charging of the membrane potential of a SA pacemaker cell.

A major limitation of the IPFM model is that a fixed T implies a constant

HR. Since this is unrealistic in long-term applications where the HR changes

over time, e.g., during exercise, stress testing, sleep apnea, and general

overnight ECG recordings, the Time Varying IPFM model (TVIPFM),

needs to be considered [134], meaning that T → T (t).

Then, the relationship between the modulating signal m(t) and the beat

occurrence time series tk , ∀k, is given by,

k =

∫ tk

0

1 +m(t)

T (t)
dt =

∫ tk

0
dHR(t)dt (3.5)
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Figure 3.4: The TVIPFM model, with the input function 1+m(t) that modulates
the variability of inter-event intervals, resulting in the event series t0, t1, . . . , tk.
Adapted and reproduced from [135]. he generation of an event series, i.e., tk, from
a continuous-time modulating signal m(t) when the time-varying threshold T (t) is
reached.

where dHR(t) refers to the instantaneous HR that is composed by rapid

variations, m(t)/T (t), superposed to a slow-changing mean HR, dmHR(t)

= 1/T (t). In physiological terms, m(t) determines the variability in HR as

modulated by autonomic activity on the sinoatrial node.

Thus, m(t) is derived from,

m(t) =
dHR(t)− dmHR(t)

dmHR(t)
(3.6)

where dmHR(t) can be estimated by low-pass filtering dHR(t) at 0.04Hz (see

Fig. 3.5), assuming that T (t) varies slower than m(t). Note that m(t) is

dimensionless [1]. It should be taken into account that the TVIPFM model

accounts for the presence of gaps in the beat occurrence time series, created

by deleting ectopic and wrong detections [136]. Finally, a discrete-time

version of the modulating signal, m(n), is obtained by resampling m(t) at 4

Hz.

Time-domain indices will be computed based on the tachogram, dIT(k),

while frequency-domain indices will be computed from the modulating

signal m(n). For example, the HRV signal displayed in Fig. 3.5 (b), is the

modulating signal, m(t), which was estimated using the TVIPFM model.

The upper plot represents the instantaneous HR, dHR(t), and the gray line

is the mean HR, dmHR(t) signal, representing the slow rhythmic changes of

HR (slower than 0.04Hz), like circadian rhythms.
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Figure 3.5: Estimation of Heart Rate (HR) and HRV using the IPFM model.
The upper panel illustrates the instantaneous HR (in bpm), showing beat-to-beat
fluctuations with the mean HR depicted in gray to highlight slower rhythmic changes
(slower than 0.04Hz). The lower panel shows the modulating signal, m(t), which
can be derived by calculating the difference between the instantaneous HR and the
mean HR over time.

3.3.2 Correction of Ectopic Beats

For HRV analysis, it is crucial to ensure the accuracy of RR intervals used.

Incorrect detections, or missed beats, which can arise from low-amplitude

QRS complexes or signal artifacts, yield invalid RR intervals. Additionally,

the RR interval can exhibit abnormal changes due to impulses generated

outside the SA node [136]. Such beats, whether of supra-ventricular or

ventricular origin, are termed ectopic beats. Since ectopic beats do not

represent ANS influence on the SA node’s depolarization, the RR intervals

associated with ectopic or miss-detected beats aren’t suitable for HRV

evaluation.

The exclusion of non-normal RR intervals, which do not represent the

ANS function, results in the Normal-to-Normal Interval (NN) series [2]. For

the HRV analysis of this thesis, the simplified correction based on the heart

timing signal has been applied. Ectopic beats are identified and rectified

by setting a threshold for maximum allowable deviation linked with sinus

rhythm, as detailed in [132], [136].
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Figure 3.6: The effect of ectopic beats on HRV. (a) Demonstrates a real premature
ventricular contraction, a type of ectopic beat, as seen in the ECG signal. Panels
(b) and (c) depict an example of an original tachogram and its spectra. However,
in panel (d) ectopic beats were artificially introduced into the R-wave to R-wave
interval (RR) series shown in (b). The distortion of the Power Spectral Density (PSD)
in the HRV spectra (e), caused by the increasing number of ectopic beats is evident,
highlighting the impact such beats have on the accuracy of HRV analysis. Adapted
and reproduced from [137].

3.3.3 Respiration-Guided HRV Biomarkers

HRV biomarkers can be broadly categorized into time-domain and frequency-

domain measures. Time-domain measures include metrics directly derived

from NN intervals or their differences. Key time-domain HRV measures are:

• Mean Heart Rate (mHR) for a given period, expressed in beats per

minute (bpm).

• Standard Deviation of NN intervals (SDNN). SDNN reflects overall

HRV over a 24-hour period, and it is considered a gold standard for

cardiac risk stratification [14].

• Root Mean Square of Successive Differences (RMSSD), highlighting

short-term, vagally mediated HRV variations.

Frequency-domain indices are derived from the PSD, Sm(f), of the



3

SECTION 3.3. HRV Estimation 65

modulating signal,m(n), estimated using the IPFM model [134], as explained

in Sec. 3.3.1. This analysis provides insights into the ANS functioning by

analyzing specific frequency bands. From the total power, PTOT, in the

HRV’s spectrum, the power within different frequency bands, mainly Very-

Low Frequency Band (VLF), LF, and HF, reflect different physiological

states:

• LF power, PLF, is the power within the LF band, ΩLF = (0.04, 0.15] Hz.

PLF =P(ΩLF) indicates both parasympathetic and sympathetic influ-

ences.

• HF power, PHF, is the power within the HF band, ΩHF = (0.15, 0.4] Hz.

PHF =P(ΩHF) mainly represents efferent vagal activity, particularly

associated with RSA.

The PSD within the classical HF band (0.15–0.4 Hz) predominantly

reflects vagal activity influenced by respiratory activity. However, using a

fixed HF band becomes problematic in scenarios where respiratory frequencies

vary significantly [132]. In Sec. 1.4.2, the reasons to perform a HRV analysis

guided by respiration have been extensively explained. Then, the HF band

needs to be redefined to be centered at the BR:

Ωr
HF = [f̂r − 0.125, f̂r + 0.125] Hz. (3.7)

From now on, in this thesis, PHF, will always be referred to, as the power

within this band centered on BR, Ωr
HF. For instance, the use of the modified

HF band is specifically encouraged by the increased BR observed in some

mechanically ventilated patients, and also in children, since I observed during

my research that they both usually have BR higher than 24 rpm, i.e., 0.4 Hz.

Therefore, the need to center the HF band to the BR is crucial to perform

a proper and more powerful interpretation of the results in the frequency

domain, in order to avoid an underestimation of the HF power using the

classical HF band, as shown in Fig. 3.7.

Of note, Ωr
HF can also be defined time-varying, Ωr

HF(t), in the case that

there is available an instantaneous estimation of the BR, f̂r(t):

Ωr
HF(t) = [f̂r(t)− 0.125, f̂r(t) + 0.125] Hz. (3.8)

Then, the LF/HF power ratio, PLF/PHF, is often proposed as the non-
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Figure 3.7: Definition of the HF band. For the same spectrum, (a) the classical HF
band, ΩHF, and (b) the HF band centered around the mean BR fr with bandwidth
of 0.125 Hz, Ωr

HF. Adapted and reproduced from [17].

invasive biomarker of sympathovagal balance [14]. However, normalized LF

power (Pn
LF = PLF/(PLF +PHF)) is preferred to mitigate total power impact

on LF components [132] (see Fig. 3.8).

In addition, VLF power, PVLF, is the power within the VLF band,

ΩVLF = (0, 0.04] Hz. PVLF =P(ΩVLF) reflects long-term regulatory mech-

anisms like thermoregulation and circadian rhythm [15]. Note that using

dmHR(t) signal is necessary to correctly estimate PVLF, whereas m(t) was

used to estimate PLF and PHF.

Finally, note that appropriate HRV analysis necessitates a minimum

sampling rate of 500Hz for the ECG signal [14]. In instances where the ECG

signal is sampled at a rate lower than 1000Hz, it is advisable to upsample

the signal to 1000 Hz using cubic spline interpolation. Subsequently, the

detection of QRS-complexes can be carried out employing the wavelet-based

method detailed in Sec. 3.2.

Traditional spectral analysis typically operates under the assumption of

stationary recordings, estimating PSD of HRV using 5-minute length seg-

ments. Techniques such as Welch’s periodogram, and autoregressive models

are employed for estimation of m(n) [2], [132]. Using Welch periodogram,

the PSD of m(n), Ŝm(f), is typically estimated using a Hamming window

of 50 seconds, and 50% overlap [14].
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Figure 3.8: Frequency-domain analysis of HRV in the 5-min segment plotted in
Fig. 3.5. For example, the peak at 0.25 Hz can be attributed to respiration as
controlled by parasympathetic activity.

3.3.4 Time-Frequency Evolution of HRV

However, this dependence on stationarity to obtain a PSD estimation of

HRV limits its applicability in various scenarios, including exercise stress

testing, tilt-table assessments, overnight HRV monitoring in OSA, and ICU

settings. Alternatively, TF techniques can be utilized to account for the

non-stationarity nature of the data and to monitor the evolution of HRV

in long-term recordings. With the increasing adoption of non-stationary

analysis in cardiovascular studies, previous research has already explored the

different TF techniques and their effectiveness for HRV monitoring [117].

Cohen’s Class Wigner Ville Distribution

Specifically, the TF spectrum of HRV, Ŝm(t, f), can be estimated using a

TF distribution from Cohen’s class [117]:

Ŝm(t, f) =

∞x

−∞
Am(ν, τ)Φ(v, τ)e

j2π(tν−fτ)dνdτ (3.9)

where Am(ν, τ), represents the ambiguity function [117]. It is derived from

the analytical signal representation of the modulating signal, m(t). These

analytical representations are typically obtained using the Hilbert transform.

Moreover, Φ(ν, τ) acts as a smoothing function within the ambiguity do-

main, which aids in reducing quadratic terms, and it is a simplified version
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Figure 3.9: Illustration of TF Analysis for a HRV Signal. Using the TVIPFM
model, three key components are derived: instantaneous heart rate (dHR(t)), mean
heart rate (dmHR(t)), and the modulating signal (m(t)). The TF map of dmHR(t)
allows for the estimation of VLF power, PVLF(t). Similarly, the TF map of m(t),
Ŝm(t, f), facilitates the computation of LF, PLF(t), and HF power, PHF(t). On the
right, with yellow color, the normalized LF power (Pn

LF(t)) represents the sympatho-
vagal balance, illustrating the continuous power dynamics derived from the HRV
signal.
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of the multiform-tiltable exponential kernel [117]. In this dissertation, an

elliptic exponential kernel was chosen for this purpose [117]. Their respective

mathematical formulations are:

Am(ν, τ) =

∫ ∞

−∞
xm

(
t+

τ

2

)
x∗m

(
t− τ

2

)
e−j2πνtdt, (3.10)

Φ(ν, τ) = e
−π

[(
ν
ν0

)2
+
(

τ
τ0

)2
]
λ
. (3.11)

This approach offers an excellent temporal resolution, making it par-

ticularly effective for tracking transient variations in HRV. The resolution

of Ŝm(t, f) in both time and frequency can be fine-tuned by adjusting the

shape of the smoothing kernel from Eq. 3.11 via the parameters ν0 and

τ0, respectively. Furthermore, the roll-off factor of this kernel is modifiable

through λ. The parameters of Φ(ν, τ) are set to ν0 = 0.045, τ0 = 0.05, and

λ = 0.3, leading to a time and frequency resolution of 11.25 s and 0.039

Hz, respectively. These values effectively suppress interference terms, as

supported by [117]. Fig. 3.9 shows the evolution of the LF and HF power of

HRV, using this TF technique.

3.4 Cardiopulmonary Coupling Estimation

As mentioned earlier, there is an intrinsic connection between HRV and

respiration, with RSA playing a significant role in the rapid fluctuations of

HR. Consequently, any interpretation of HRV analysis should always consider

its interplay with respiratory activity. However, incorporating respiratory

information into HRV analysis, as presented in Sec. 3.3.3, is not the sole

approach for addressing the impact of respiration on HRV.

Until very recently, there has been a lack of consensus on the opti-

mal method for measuring CPC, with a range of techniques suggested in

existing literature. Techniques range from Granger causality and entropy

measurements, to phase synchronization analysis and nonlinear prediction

methods. Morales et al. [138] conducted an extensive evaluation of these

varied methodologies using both real and simulated HRV and respiration

signals. The findings underscored the superior performance of TFC for CPC

estimation, detailed in Sec. 3.4.1. However, the methods described in Sec-
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tions 3.4.2, and 3.4.3 also exhibited a very accurate estimation of CPC under

different conditions.

3.4.1 Time-Frequency Coherence

The TFC distribution can be expressed based on the spectral coherence:

γ̂(t, f) =

∣∣∣Ŝr,m(t, f)
∣∣∣√

Ŝr(t, f)Ŝm(t, f)
, (3.12)

where Ŝm(t, f) and Ŝr(t, f) denote the TF spectra for the modulating and

respiratory signals, respectively, as described in Eq. 3.9. The TF cross-

spectrum, Ŝm,r(t, f), can be estimated by substituting Ŝm(t, f) → Ŝm,r(t, f)

in Eq. 3.9, considering:

Am,r(ν, τ) =

∫ ∞

−∞
xm

(
t+

τ

2

)
x∗r

(
t− τ

2

)
e−j2πνtdt. (3.13)

From the resulting γ̂(t, f) distribution, various metrics can be derived,

which likely reflect the extent of CPC. For this purpose, a significant co-

herence level between HRV and respiration must be first established by a

threshold, denoted as γTH(t, f ;α). This significant coherence threshold is

determined through surrogate data analysis, with α = 1% risk that two

signals are coupled when real coupling does not exist γTH(t, f ; 0.01) = γ0.

To derive γ0, spectral coherence γ̂(t, f) is computed for two 5-minute

white Gaussian noise signals, which are expected to be uncorrelated by

definition. This process is repeated iteratively 1000 times, and the 99th

percentile of γ̂(t, f) is established as the threshold for significant spectral

coherence, i.e., γ0 = 0.8860.

Note that this threshold for significant spectral coherence, γ0, is very

dependent on the parameters ν0, τ0, and λ, used for calculating the smoothing

function Φ(ν, τ). An illustrative example of the TF spectral coherence, along

with the zones above the significant spectral coherence, γ0, is provided in

Fig. 3.10.

The region Ωr,c
HF(t, f), from which the coherence is estimated, is identi-

fied within the HF band centered at the BR, Ωr
HF(t), with the purpose of
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Figure 3.10: TFC for CPC estimation. From respiratory signal, r(t), and HRV
signal, m(t), TF spectra Sr(t, f) and Sm(t, f) are calculated, respectively. Spectral
coherence γ(t, f) is used to obtain the coherence between respiration and HRV.
Significant spectral coherence, γ̂(t, f) > γ0, is outlined in red.

determining the area in the HF band where the TFC is significant:

Ωr,c
HF(t, f) =

{
(t, f) ∈ (R+ × Ωr

HF(t)) | γ̂(t, f) > γ0
}
. (3.14)

To characterize the temporal evolution of the local coupling between the

spectral components of the signals, the index CHF(t) is introduced, which is

defined as:

CHF(t) =

∫
Ωr,c

HF

γ̂(t, f)df

/∫
Ωr,c

HF

1 df. (3.15)

This index captures the magnitude of local coupling, averaged over the

HF band. Averaging the significant coherence, CHF(t), over a specific time

period results in:

CHF =

∫
CHF(t)dt

/∫
1 dt. (3.16)

Finally, for all the time course, the existence of significant coupling at
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any frequency in the whole band Ωr
HF(t) is identified as:

THF(t) =

{
1, if Ωr,c

HF(t, f) ̸= ∅
0, if Ωr,c

HF(t, f) = ∅
(3.17)

Once the ”mask” THF(t) is defined, the percentage where TFC is signifi-

cant in a period of time, THF, can be defined as:

THF =

∫
THF(t)dt

/∫
1 dt. (3.18)

Within this framework, the index I’m proposing for the assessment

of CPC is derived using Eqs. 3.16 and 3.18. This index, denoted as C T
HF,

incorporates the mean significant coherence averaged over time, CHF, and

the percentage of time where TFC is significant in that period, THF:

C T
HF = CHF · THF. (3.19)

3.4.2 Dynamic Mutual Information

It is known that the RSA defines a causal relationship from respiration

to HRV, since respiration drives acceleration/deceleration in the HR. This

relationship implies that the uncertainty about HRV, can be resolved not

only by knowing itself, but also by taking into account the information

transferred from respiration. This resolution of entropy, or uncertainty, can

be quantified using measures of predictive information [139].

Let’s denote rn and mn as the scalar random values obtained by sampling

the process r(n) and m(n), respectively, at the present time, n. The vectors

r− = [r(n − 1), ..., r(n −M)]T , and m− = [m(n − 1), ...,m(n −M)]T , are

defined to describe the whole past of each process, with M the model order.

If the information carried by the HRV is split into components related to

respiration and others, the predictive information leads to the definition

of the Cross Entropy term, C E r↔m. This term quantifies the amount of

information shared at a certain time, n, between the present value of HRV,

mn, and the past of respiration, r−:

C E r↔m = I
(
mn; r

−) = H (mn)−H
(
mn|r−

)
, (3.20)
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where I(·; ·) quantifies the mutual information, H (mn) expresses the amount

of information carried by the process in terms of the average uncertainty

about mn, the so-called Shannon entropy. H (mn|r−) denotes the conditional
entropy and it quantifies the average uncertainty that remains about mn

when r− is known [139].

The computation of C E r↔m is done using the approach presented in [139],

using the link between information theory and predictability. It is possible

to describe the dynamics of the system using a linear vector autoregressive

model. The model order, M , is defined as the minimum amount of delays

obtained using both the Minimum Description Length principle and the

Akaike Information Criterion. The maximum possible delay is set to 10

seconds in order to avoid over-fitting. The minimum possible delay is set to

the period equivalent to the lowest frequency of the respiration bandwidth

in order to avoid a too-simple model [138].
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Figure 3.11: Cross Entropy decomposition using Information Dynamics. The
two left-side plots are the time evolution of the modulating signal, m(n) and the
respiratory signal, r(n). The right-side is an illustration of the entropy decomposition
using information dynamics. The shaded area corresponds to the information
retrieved by C E r↔m. The C E r↔m term quantifies the amount of information
shared, in a certain sample n, between HRV, mn in red, and the past of respiration,
r−(n) in green. For further information, see [139].

3.4.3 HRV Decomposition

By using subspace projections, the HRV can be decomposed into two different

components [51]. First, the component describing all variations of HRV

linearly related to respiration is derived. After that, the remainder, namely

residual component, describes all dynamics modulated by other mechanisms

different from respiration, such as the sympathetic modulations or other vagal
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modulators unrelated to respiration, plus the possible non-linear influences

of respiration.

Given are the respiratory signal, r(n), and the HRV estimated from the

modulating signal, m(n). The vectors r = [r(0), r(1), ..., r(N −M +1)]T and

m = [m(0),m(1), ...,m(N −M + 1)]T are defined to construct a respiratory

subspace, with N the number of samples in a computational period and M

the number of delays. The model order, M , is the same used for the C E r↔m

computation (see previous section). The OSP projects m onto the subspace

V, which is the subspace defined by all variations in r. The matrix V spans

the subspace V, and it is constructed as a time-delay embedding of r, using

M delays. Once the matrix V is constructed, the HRV can be projected

onto the respiratory subspace V, by means of the projection matrix P:

mr = P m, (3.21)

with the projection matrix, P, obtained from the respiratory subspace as:

P = V
(
VTV

)−1
VT . (3.22)

As a result, all dynamics of HRV linearly related to respiration are

described in mr. The orthogonal component, m⊥, computed as the residual,

m⊥ = m−mr, is explained by all other HR modulators not linearly related to

respiration. An example of the HRV decomposition can be seen in Fig. 3.12.

After decomposing the HRV, the relative power of the respiratory component,

Pmr , is computed as an estimate of the CPC [51]:

Pmr =
mT

r mr

mT m
. (3.23)

3.5 Analysis of Pulsatile Signals

Now, the focus shifts to the analysis of pulsatile signals. The objective is to

apply signal processing algorithms to extract vital cardiovascular features

from both PPG and BP signals.
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Figure 3.12: Illustrative example of the OSP decomposition using the HRV and
Respiratory signals. The three upper plots are the time evolution of the modulating
signal, m(n), the respiratory signal, r(n), and their respective spectra on the upper-
right side, Ŝm(f) for m(n) and Ŝr(f) for r(n). The three plots below represent
the OSP decomposition. The respiratory component of HRV, mr(n), is obtained
projecting m(n) onto the respiratory subspace. The modulators of HRV unrelated
to respiration are represented in the term m⊥(n). Their corresponding spectra are
on the lower-right side. Ŝm⊥(f) corresponds to the spectra of m⊥(n), and Ŝmr

(f)
to the spectra of mr(n). For further information, see [51].

3.5.1 Signal Preprocessing

First, pulsatile signals should be band-pass filtered between 0.3 and 15 Hz

with a 4-th order Chebyshev type II filter, in order to eliminate the baseline

contamination and high frequency noise. The selection of this filtering was

studied and analyzed in [140]. Forward-backward zero-phase filtering is

applied for preserving signal morphology. Then, after filtering, removing

artifacts, and conditioning the signals, pulse detection and delineation can

be done.

3.5.2 Data Cleansing and Artifact Detection

Due to the physical principle used to obtain pulsatile signals, based on

plethysmography, these are susceptible to various artifacts that can distort

their morphology. Among these, motion artifacts are the most common and

are typically caused by the relative movement of individuals and sensors

during signal recording. Other sources of artifacts may include external light
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interference in the case of PPG, and bad sensor placement. It is crucial to

ensure that the recordings are free from these artifacts for a reliable analysis

and interpretation.

Energy-Based Artifact Detection

Then, before delineating, e.g., a PPG signal, xPPG(n), it is crucial to address

motion artifacts. Various artifact detection methods are available in the

literature, but I have developed an energy-based approach to accurately

eliminate significant artifacts characterized by higher energy levels compared

to clean segments of pulsatile signal [141].

The energy-based artifact detection process comprises the following steps

—notation is for PPG signals:

1. Initially, a PPG signal, xPPG(n), is squared to accentuate high-energy

artifacts, x2PPG(n).

2. A moving variance signal, σ2(x2PPG(n)), is calculated using a 5-second

window.

3. The moving median signal, denoted as med(n), of x2PPG(n) is deter-

mined with a 5-minute window.

4. A decision criterion is established, where a PPG sample at index ”n” is

classified as an artifact if σ2(x2PPG(n)) exceeds or is equal to 20 times

med(n). In such cases, this deviation from the PPG median is denoted

as an artifact.

The selection of the two window lengths and the scalar for the decision

criteria are set empirically. Once the segments containing artifacts are de-

tected, they are removed from the original data for further analysis (see

Fig. 3.13).

3.5.3 Pulse Delineation

The delineation of pulsatile signals requires essentially, three main steps:

1. Signal accommodation for pulse detection: The initial phase

involves a linear filtering transformation of the signal, to facilitate

posterior pulse detection.

2. Pulse Detection: The next step involves detecting pulses, each of

which corresponds to a heartbeat within the signal. For this, differ-
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Figure 3.13: Energy-based artifact detection in a PPG signal. Detected segments
containing artifacts are in red at the top. The estimated energy, σ2(x2

PPG(n)), and
the decision criterion, 20 ∗med(n), are plotted at the bottom.

ent dynamic, time-varying thresholds can be calculated. Here, I’m

presenting two different methods.

3. Pulse Delineation: a process to define various Fiducial Point (FP)s,

each representing distinct physiological instants.

Subsequent subsections provide in-depth explanations for each of these steps.

Signal Accommodation for Pulse Detection

The initial step involves a linear filtering transformation, using a Low Pass

Derivative (LPD). The LPD filter is constructed using a least squares linear-

phase FIR technique. It encompasses a transition band ranging from 7.7 Hz

to 8 Hz, chosen to account for the fact that the upslopes of PPG and BP

pulses predominantly occur within these frequency ranges [142]. Fig. 3.14

illustrates the impulse response and transfer function of this filter.
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Figure 3.14: Implemented LPD filter. (a) impulse response of the LPD filter
designed, and (b) transfer function.

This transformation is specifically designed to emphasize the abrupt up-

slopes observed in PPG and BP pulses, as opposed to the relatively smoother

ones found in the dicrotic notch. Fig. 3.15 is an example of PPG signal fil-
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tering using the LPD. As already mentioned, this filtering transformation

clearly facilitates pulse detection.
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Figure 3.15: LPD filter applied over an illustrative PPG signal. (a) original PPG
signal. (b) LPD-filtered PPG signal.

Pulse Detection using Adaptive Thresholding

The first approach for detecting peaks, nDi , in the filtered signal, is based

on a time-varying threshold γ(n) that gradually decreases between detected

peaks (see Fig. 3.16). This threshold maintains the value of the previously

detected peak [142], denoted as γ(n) = y(nDi−1), during a refractory period

equivalent to 300 ms (i.e., Nr = 0.3fs). Following this refractory period,

the threshold starts to decrease linearly. In the event that no new detection

occurs after a specified time period m̂Ai , the threshold would have diminished

to a fraction α < 1 of y(nDi−1). From this moment onward, the threshold

retains its value. For further information on the method, refer to [142].

This detection methodology was initially designed to identify peaks

within the PPG signal in the context of sleep apnea [142]. Significantly,

during episodes of obstructive sleep apnea, the amplitude of PPG signals

decreases, warranting the implementation of a linear threshold decrease

and a refractory period [142]. Comparative assessments of this methodology

have demonstrated the highest accuracy in pulse detection during sinus

rhythm [143], but also a high performance in different use cases [144].
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Figure 3.16: Example of adaptive threshold detector: (a) shows the raw PPG
signal, and (b) shows the LPD-filtered PPG signal, and the resulting time varying
threshold (slashed blue line).

Pulse Detection using Envelope Thresholding

The second approach for detecting peaks in pulsatile signals is based on

envelope thresholding, previously designed and implemented for QRS detec-

tion in the ECG [36], [145]. This envelope-based procedure was employed to

enhance the QRS complexes while flattening the rest of the ECG. This ap-

proach is used in combination with an adapted version of the Pan–Tompkins

algorithm, and combines the simplicity of an envelope-based procedure with

the accuracy of more elaborate methods.

Regarding pulsatile signals, the upper (U) and lower (L) envelopes have

to be firstly computed from the LPD-filtered pulsatile signal using the secant

method. This method selects the segment with the steepest positive and

negative slopes within a defined window length. Once U and L are obtained,

a flattened, positive version of the signal (F ) is derived as F = U − L.

Subtracting L from U eliminates the baseline, leaving only a positive signal,

F .

The pulse locations are identified by detecting the peaks in the flattened

version, F . This complete peak detection procedure is detailed in [145], which

fundamentally find peaks in the flattened version, F , a modified version of

the Pan–Tompkins algorithm is employed to determine the peaks correlating

with the maximum upslope instants of the pulses. A graphical depiction of
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the process can be seen in Fig. 3.17.
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Figure 3.17: Envelope threshold detection. (a) shows an illustrative BP signal;
(b) and (c) shows its LPD filtered version (solid gray line), x′

BP(n). The upper
and lower envelope o the signal are displayed in (b), in blue and red dotted lines,
respectively. The flattened-positive envelope, xF(n), of x

′
BP(n) is represented with

the yellow dotted line, obtained by subtracting the upper and the lower envelope.
From xF(n), the location of the pulses, nDi

, can be identified.

An exploratory analysis was conducted for the detection of pulses in the

invasive BP signal. This envelope-based algorithm seemed better at handling

and detecting also ectopic beats, and BP pulses with lower systolic upslope.

Nevertheless, a future, thorough comparative study is required to evaluate the

two methodologies for PPG peaks detection I’ve introduced. The comparison

should consider their performance on both PPG and BP signals, under

conditions like normal subjects, patients with cardiac conditions causing

ectopic beats, and in noisy environments.
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Pulse Delineation and Fiducial Points

Following pulse detection, where apex of the first derivative PPG signal

are identified (nD), many other FPs can be computed and compared (see

Fig. 3.18), including apex (nA), middle-amplitude (nM ), and basal (nB)

instant of a PPG pulse, and intersection point (nT ) of the tangent to the

PPG waveform between nD and nB [146].
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Figure 3.18: Illustrative example of pulse delineation in (a) a signal of PPG at
fingertip, and (b) a signal of BP. Some FPs delineated on the PPG signals, shown
in the figure, are: nD for the maximum up-slope instant, nA for the apex point and
nB for the basal point.

For example, in the case of PPG signals, nD represents the instant of

maximum velocity of blood flow through the arteries and arterioles; nB

represents the systolic onset; and nA represents the end of the systolic phase

in the pulse. On the other hand, the delineation in BP signals, xBP(n), has

a well known physiological meaning, since the values at the apex, nA , and

at the basal, nB, correspond to the SBP and DBP values, respectively.

Then, once the locations of the pulses, nDi , are identified, the BP sig-

nal, xBP(n), is used to obtain, at the maximum of each pulse, nAi , the

corresponding SBP value, xBP(nAi). An illustration of the procedure is in

Fig. 3.18. Furthermore, for the analysis of SBP, incorrectly detected SBP



3

82 CHAPTER 3. Contextualized Signal Processing Methodologies

values should been manually adjusted. Many different tools exist, but the

R-DECO GUI is recommended for this purpose [145].

3.5.4 Biomarkers from the PPG

PR Estimation

A PPG signal, xPPG(n), offers various biomarkers for cardiovascular assess-

ment. The most commonly extracted feature is the Pulse Rate (PR), a

surrogate of HR suitable for wearable environments:

duPR(n) =
∑
i

[nFPi
− nFPi−1

] · δ(n− nFPi
), FP ∈ {nA, nB, nD}. (3.24)

Additionally, PRV can be derived as a surrogate of HRV, though its accuracy

may be affected by the presence of PEP, since PEP uncorrelates HRV and

PRV.

Beyond this standard and well established parameters, the PPG signal

allows for the extraction of more advanced markers, which are not commonly

used. Pulse Wave Velocity (PWV), an indicator of arterial stiffness and

endothelial dysfunction, reflects the velocity of the blood pressure wave along

the arterial tree and is linked to increased cardiovascular risks [147]–[149].

While PWV assessment traditionally required invasive methods [150], recent

advances have enabled non-invasive approaches using ECG and PPG [151].

PAT Estimation

PAT, the time interval between the ECG R-wave and a peripheral PPG pulse

(see Fig. 3.19), the inverse of the PWV serves as a non-invasive surrogate for

PWV, since it measures the time a BP wave takes to travel from the heart

to peripheral arteries. However, its inclusion of the PEP period limits also

its accuracy for non-invasive BP estimation [152]. PAT can be defined for

various locations, including the finger(F), forehead (H), and earlobe(E) [153]:

duPAT,L(n) =
∑
i

[nBi,L − nRi
] · δ(n− nRi

), L ∈ {F,H,E}. (3.25)

The evenly sampled series, dPAT,L(n) can be obtained by interpolating

duPAT,L(n) with cubic spline interpolation at 4Hz. For illustrative purposes,
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duPAT,L(n) series has been defined using nB as FP, but it can be obtained

using any of the FP available, like nD and nA.

PTTD Estimation

PTTD can be used as non-invasive surrogate of the Pulse Transit Time (PTT)

(see Fig. 3.19), and it offers an alternative to PAT by measuring the time

difference between two PPG pulses at different arterial sites [154], therefore

unaffected by PEP. With signals from the finger, forehead, and earlobe, three

PTTD signals can be computed, potentially offering more precise insights

into vascular reactivity [155], [156].

PTTD calculates the time difference between the arrival of PPG pulses

at different arterial sites. With three PPG signals at finger (F), forehead

(H), and earlobe (E), we can thus calculate three PTTD signals denoted:

duPTTD,EF(n), d
u
PTTD,HF(n) and duPTTD,EH(n), as follows:

duPTTD,EF(n) =
∑
i

[nF
Bi

− nE
Bi
] · δ(n− nF

Bi
)

duPTTD,HF(n) =
∑
i

[nF
Bi

− nH
Bi
] · δ(n− nF

Bi
) (3.26)

duPTTD,EH(n) =
∑
i

[nH
Bi

− nE
Bi
] · δ(n− nH

Bi
)

The evenly sampled series, dPTTD,EF(n), dPTTD,HF(n), and dPTTD,EH(n) can

be obtained by interpolating with cubic spline interpolation at 4Hz.

As for duPAT,L(n), any of the FP available can be used to obtain each

PTTD series. Note that, in order to have mostly positive time interval series,

the time reference for each PTTD series is defined at finger for duPTTD,EF(n)

and duPTTD,HF(n), and at forehead for duPTTD,EH(n).

PAV Estimation

PAV quantifies the amplitude variation in the PPG signal (see Fig. 3.20,

providing insights into arterial compliance and blood volume changes [157]:

duPAV(n) =
∑
i

[xPPG(nAi
)− xPPG(nBi

)] · δ(n− nBi
), (3.27)
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Figure 3.19: Illustration of PAT, PTTD and PDA definition. The ECG, earlobe
(PPGE), forehead (PPGH) and finger (PPGF) PPG signals with the corresponding
definitions of PATE (earlobe), PATH (head), PATF (finger) and PTTDEH (earlobe-
head), PTTDEF (earlobe-finger), PTTDHF (head-finger). Pulse Transit Time (PTT)
refers to the time interval from the end of the Pre-Ejection Period (PEP) following
a heartbeat to the arrival of the pulse wave at a peripheral site. The PEP interval
shown is merely illustrative.

Again, the evenly sampled series, dPAV(n) can be obtained by interpolating

duPAV(n) with cubic spline interpolation at 4Hz.
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Figure 3.20: Pulse Amplitude Variability from a PPG signal and the FP delineated.
In the bottom panel, the evolution of duPAV(n) is shown with the blue line.
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Pulse Decomposition

Finally, PDA is a signal processing technique to derive morphology indices

from the PPG waveform [156]. Finger PPG pulses are decomposed into three

wave components, a main wave and two reflected waves (see Fig. 3.21). From

this analysis, we can derive the pulse waveform characteristics surrogates

(S ) including main wave pulse width (W1) and relative time delay between

the main wave and the first reflected wave (T12), which is used to derive

the stiffness index [158], [159]. These are proposed in the present context as

PWV surrogates, S ∈ {W1, T12}.

duS (n) =
∑
i

Si · δ(n− nF
Bi
), S ∈ {W1, T12}. (3.28)

The evenly sampled series of duW1(n), and duT12(n) are obtained using cubic

spline interpolation at 4Hz.

PPGF

Figure 3.21: Pulse waveform characteristics of a PPG pulse at finger with PDA.
Morphological features derived from width (W1) and time (T12) values of the first
and second inner waves.

Outlier Rejection

Estimated values out-of-physiological range should be excluded from further

analysis. This step must be performed before cubic spline interpolation to

obtain the evenly sampled series (see Fig. 3.22). Then, an empirical range is

first established for valid values of PAT, PTTD and PDA:

• duPAT(n) values out of the [50, 600] ms range.

• duPTTD(n) values out of the [−50, 175] ms range.
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• From PDA, the features of a pulse are rejected if either [156]: (a) the

pulse is decomposed in less than 3 waves; (b) the amplitude of the

main wave is not the largest of the three waves; (c) the second wave

is located at the end of the pulse interval; (d) the third wave occurs

before 35% from pulse onset.

The physiological ranges were determined empirically following an exploratory

analysis. These ranges correspond to values below the 1st percentile and

above the 99th percentile of all PAT and PTTD intervals obtained in the

dataset under study.
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Figure 3.22: Example of duPAT,H(n) on top, duPAT,F(n) in the medium, and
duPTTD,HF(n) at bottom. Continuous lines represent the evenly sampled versions.
Units are [msecs].

Afterwards, a Median Absolute Deviation (MAD) outlier rejection rule

is applied [129], to complement suppression of spurious values from all

the derived PWV surrogate series (see Fig. 3.23). The spurious pulses are

eliminated by means of an outlier detector with the parameters adjusted

empirically [160], Ne = 10 and C = 2.75. Outliers in PAV are also identified

and removed based on MAD, as described.

3.6 Baroreflex Sensitivity Estimation

Various methodologies are more often employed to assess BRS using the BP

signal, xBP(t), focusing on spontaneous, beat-to-beat variations. Traditional

techniques include the sequence method and spectral analysis of SBP and
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Figure 3.23: Outlier detection using the MAD method, from an illustrative PAT
signal. The graphic shows how deviations from the median pulse time are identified,
with outliers marked in contrast to the typical data range.

RR interval series, offering insights into the dynamic interplay between HR

and BP [161].

To adress the nonstationary nature of cardiovascular signals, advanced

methods like wavelet transform and TFC have emerged [117], [162], [163].

These approaches, like the TFC framework by Orini et al. [117], analyze the

coupling strength and direction between HRV and SBP variability. Chen et

al.’s closed-loop model within a point process framework represents another

innovative direction for dynamic BRS assessment [164]. Pinna et al.’s review

highlights the clinical value of spontaneous BRS in prognostic predictions

across various cardiovascular conditions, despite challenges in standardization

and measurability [165]–[167].

In line with recent advancements, this thesis presents two non-invasive

techniques for BRS measurement. The first is spectral analysis of HRV

and SBP to calculate the α index, a well-established metric. The second,

BPRSA, offers an innovative method to construct an averaged HRV profile

that reflects the heart’s response to SBP changes. Notably, diminished control

has been observed in conditions like coronary artery disease and hypertension,

underscoring the importance of BRS evaluation in a clinical context [161],

[165].

3.6.1 SBP Estimation

To delineate the BP signal, xBP(t), the algorithm explained in Sec. 3.5.3 is

used. Once the maximum of each pulse, nAi , and the corresponding SBP
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value, xBP(nAi) are detected, erroneous SBP detections need to be manually

corrected using R-DECO [145].

Now, the SBP signal, duSBP(n), can be estimated as:

duSBP(t) =

∫
xBP

(
nAi

Fs

)
δ

(
t− nAi

Fs

)
dt, (3.29)

where δ(·) denotes the Kronecker delta function,, Fs is the sampling frequency,

and the superscript “u” denotes that the signal is unevenly sampled, since

heartbeats occur unevenly in time. The discrete evenly-sampled version,

dSBP(n), can be obtained with cubic spline interpolation at Fs = 4 Hz.

At this point, the BRS indices based on the α index can be calculated

from the spectral analysis of HRV and SBP:

αB(t) =

√√√√∫
ΩB

Ŝm(t, f) df∫
ΩB

Ŝp(t, f) df
, B ∈ {LF,HF}, (3.30)

where Ŝm(t, f) and Ŝp(t, f) are the time-varying power spectral densities of

m(t), and dSBP(t), respectively, calculated by means of the Cohen’s Class

Wigner Ville Distribution (see sec. 3.3.4)

3.6.2 BPRSA Analysis

An alternative method to analyse BRS function has been proposed based

on BPRSA [168]. Essentially, an averaged HRV profile is obtained of the

overall heart response to SBP increases. For this, anchor points (AP) must be

identified firstly in the dSBP(n) series. Usually, AP’s are defined in samples

where the average of their T prior samples is greater than the average of

their T subsequent samples [168]:

1

T

T−1∑
i=0

dSBP(n+ i) >
1

T

T∑
i=1

dSBP(n− i) (3.31)

However, in this work, AP’s are considered only if they are also local maxima

in the corresponding series of Eq. (3.31). With this approach, only one

AP is defined for each upslope. Now, windows of length 2L are segmented

around each AP over the HRV series. Finally, the BPRSA curve is obtained

by averaging all segmented windows in the HRV. In this study, L is set
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to 10*Fs. T sets an upper frequency limit for the periodicity that can be

detected by BPRSA [168]. For each patient, T is adjusted with their mean

BR, T ≈ Fs/(2.5 · fr). An illustrative example of the methodology is shown

in Fig. 3.24.
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Figure 3.24: Estimation of the BPRSA curve for a patient. In top-left, the SBP
signal, dSBP(n), as driver mechanism, in which AP’s (asterisks) are defined. In
bottom-left, HRV signal,m(n). Around each AP, segments of 2L length are extracted
from the HRV signal. In bottom-right, the BPRSA curve, obtained averaging all
segments of HRV.

The BRS, estimated from the BPRSA curve, is quantified with the

capacity term, C [169]:

C =
1

2s

s∑
i=1

BPRSA(L+ i)− 1

2s

s−1∑
i=0

BPRSA(L− i). (3.32)

The index C is based on the Haar wavelet, but evaluated at a scale s and

location (L+ 1), in the center of the curve. Then, C can be either positive

or negative. The scale, s, selects the oscillations in the BPRSA curve that

most affect C. Of note, if s is taken to be equal to T , we avoids the need of

optimization [169].
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del śındrome de apneas-hipopneas durante el sueño en niños (versión

completa)”,
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4.1 Context

Part II of this thesis is dedicated to leveraging cardiovascular signal process-

ing techniques for enhanced patient monitoring in ICUs, with a particular

emphasis on patients undergoing MV. This part underscores the increas-

ing interest of critical care specialists in employing advanced technological

solutions, such as signal processing, to refine patient care and monitoring.

A key focus is on the accurate assessment of weaning readiness from MV.

The determination of the optimal time to begin weaning is critical, as both

premature and delayed weaning carry significant risks (see previous Sec. 2.1.4).

Thus, a thorough evaluation of respiratory, cardiac, and cardiovascular

function, is essential in guiding these crucial clinical decisions.

After describing the database for weaning readiness assessment in follow-

ing Sec. 4.2, this part of the thesis comprises two main studies. Chapter 5

presents the first one, focusing on the estimation of BRS by analyzing BP sig-
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nals and HRV. This investigation evaluates BRS as a potential ANS marker

for predicting successful weaning outcomes, recognizing its diminished control

in various cardiac conditions with impaired ANS. The second study, outlined

in Chapter 6, expands the scope to include biomarkers from respiration,

HRV, and CPC. This comprehensive analysis, which encompasses data from

the 24-hour period prior to a SBT, aims to offer a more in-depth evaluation

of patient readiness for weaning, employing innovative methods to examine

heart-lung interactions and the utility of CPC indices.

4.2 Dataset for Weaning Readiness Assessment

The whole database registered for the assessment of weaning readiness was

constructed prospectively in the ICU of two different hospitals in Spain [1],

in the Hospital Universitari Parc Tauĺı and the Fundació Althaia, using

the connectivity platform Better Care (Better Care, Barcelona, Spain. US

patent No. 12/538,940).

This database was aimed to establish a new model for the prediction

of successful weaning (ClinicalTrial.gov, NCT03451461). The Institutional

Review Boards of Comitè d’Ètica d’Investigació amb medicaments at the

Corporació Sanitària Parc Tauĺı and the Clinical Research Ethics Committee

of Fundació Unió Catalana d’Hospitals approved the database and the

study protocol [2]. The requirement for informed consent was waived as

part of the study approval, since the current study was an ancillary analysis.

Therefore, all the signals were anonymous and encrypted to ensure privacy.

The guidelines followed in this study were according to the applicable Spanish

regulations (Biomedical Research Law 14/2007).

The original dataset included 60 patients screened at the time of imple-

menting the present studies. Patients with neurological disorder, dementia or

focal brain injury at ICU admission were excluded. Patients with arrhythmia,

such as atrial fibrillation, were also excluded from the analysis, since HRV

cannot be used as an estimate of the ANS function.

4.2.1 Patient Classification and Demographics

After a complete and extensive preliminary analysis, only those patients

ventilated with assist/support ventilation modes were included, i.e., excluding
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patients that were in controlled ventilation modes in the 24 hours previous

to the SBT. This is due to the fact that the RSA mechanism may not be

driven by the ANS during controlled ventilation, e.g. VCV mode, but to

external systems like MV. Then, the study cohort consists of 22 patients out

of the initial 60 available. Patients have heterogeneous clinical pictures, and

data during the 24 hours prior to the SBT were registered for analysis.

To classify a patient’s weaning outcome, this procedure is followed:

when a patient’s health improves sufficiently, they are considered ready for

weaning, based on criteria outlined in the following subsections. However,

these patients must undergo the SBT at this stage. Patients meeting at

least one item of the intolerance criteria for a successful SBT (criteria in

the following subsections) are deemed not ready for discontinuation, and

their weaning is considered a failure. These patients are categorized into the

F-group. Patients who successfully pass the SBT are categorized into the

S-group.

ICU recovery Weaning
Readiness?

N
o

SBT Success? No (7) F-group

Reintubation after
48 hours?

Yes (2)

S-group
No (13)

Ye
s (

15
)

Yes (22)

Weaning Readiness Criteria
(Supplementary Criteria C1)

Sucessful SBT Criteria
(Supplementary Criteria C2)

Weaning and
Recovery in the ICU (13)

(9)

Figure 4.1: General algorithm for the definition of weaning success. Patients are
classified into the S-group or F-group after the Spontaneous Breathing Trial (SBT).
The S-group stands for the group of patients successfully weaned (successful SBT
and no need of reintubation). F-group stands for the group of patients with SBT
failure and patients with SBT success but with the need of reintubation after 48
hours of weaning.

With all these premises, there are 13 patients in the S-group and 9 in

the F-group available. Note that 2 patients that passed the SBT required

orotracheal intubation or reconnection to non-invasive MV within 48 hours

after SBT. These 2 patients were reclassified in the F-group. See Fig. 4.1 for

the patient classification scheme.

The demographics of the 22 patients included for analysis are summarized

in Tab. 4.2. The variables available include: age, gender, Acute Physiology

and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure

Assessment (SOFA), reason for MV, MV duration, ICU length of stay, ICU

mortality and in-hospital mortality.
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Table 4.2: Demographics. Data are presented as median [IQR 25-75] and percent-
ages.

 S-group F-group 
N 13 9 
Age (years) 65 [60-72] 69 [59-72] 
Gender (% female) 15% 33% 
APACHE II at admission 18 [14-23] 16 [10-20] 
SOFA at admission 7 [6-8] 6 [3-10] 
Reason for MV   

Acute Respiratory Failure 30.7% 22.2% 
Sepsis 38.5% 33.3% 
Sepsis + ARDS 7.7% 11.1% 
Neurologic 15.4% 11.1% 
Cardio-Respiratory Arrest - 11.1% 
Acute Pancreatitis 7.7% 11.1% 

MV duration (days) 6 [4-10] 12 [8-16] 
ICU length of stay (days) 8 [6-12] 18 [13-23] 
ICU mortality 7.69% 22.22% 
In-hospital mortality 7.69% 22.22% 
Notes: APACHE: Acute Physiology and Chronic Health Evaluation; SOFA: 
Sequential Organ Failure Assessment; MV: Mechanical Ventilation; ICU: 
Intensive Care Unit. ARDS: Acute Respiratory Distress Syndrome. 

 

  
Specific Criteria for Weaning Readiness

As reference, the following criteria is used in the ICU of Hospital Parc Tauli

in Sabadell, Spain, to determine if a patient is presumably ready to be

weaned, i.e., if a patient is ready to perform the SBT [3]–[5]:

1. Medical Assessment

• Improvement or recovery of the cause for MV

• Adequate cough

• Absence of secretion

• No neuromuscular blocking agents

2. Parametric Measures

• Time in MV > 24 hours

• HR < 140 bpm

• SBP ∈ [90, 160] mmHg

• Haemoglobin (Hb) ≥ 8g/dL

• SpO2 >90%, with FiO2 ≤ 40%
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• Tidal Volume (VT ) > 5 mL·kg
• BR < 35 rpm

• pH ≥ 7.30 (no respiratory acidosis)

• Body Temperature (T) ∈ [35,38] ºC
• PEEP < 8 cmH2O

• Maximal Inspiratory Pressure (MIP) ≤ -25 cmH2O

• Rapid Shallow Breathing Index (RSBI) < 105

• Richmond Agitation-Sedation Scale (RASS): -1/0

• Glasgow Coma Scale (GCS) >8

• Minimal vasopressors or inotropes < 5 µgr/kg/minute (stable

cardiovascular status)

Specific Criteria for successful SBT

As said, once a patient is deemed ready for weaning, they have to perform

the SBT. The SBT is carried out by a low-level inspiratory pressure support

or by a T-tube test. The following criteria listed below show the indicators

used to evaluate the success of the SBT, in order to decide if MV can finally

be withdrawn [3]–[5]:

• Good tolerance to the SBT

• BR < 35 rpm

• HR < 140 bpm

• HR < 20% change from baseline

• SpO2 > 90% or PaO2 > 60 mmHg on FiO2 < 40%

• SBP ∈ [80, 180] mmHg

• SBP< 20% change from baseline

• No signs of increased work of breathing or distress

4.2.2 Data Acquisition and Data Analysis

Physiological signals were continuously recorded using the connectivity

platform Better Care [2]. The Better Care system (Better Care, Barcelona,

Spain. US patent No. 12/538,940), is a proprietary system for data collection

designed to interact with output signals from mechanical ventilators and

bedside monitors rather than directly with patients. It was firstly developed to

interoperate signals from different ventilators and monitors, and subsequently

compute algorithms for diagnosing patient-ventilator asynchronies.



4

120 CHAPTER 4. Context, Motivation and Data for Part II

Better Care standardizes, synchronizes and stores the signals of all the

bedside monitors and ventilators at 200 samples per second, from intubation

in the ICU to liberation from MV. Different biomedical signals were recorded,

including the three bipolar leads of the electrocardiogram (ECG), as well

as the respiratory signals: airflow and airway pressure. In addition, pulse

photoplethysmography, blood pressure via invasive catheter, and SpO2 were

also recorded.

The onset of inspiration for each breath was delineated using the al-

gorithms implemented in the Better Care platform. For each respiratory

cycle, information on the type of ventilation mode, the trigger of respiration

and the appearance or absence of asynchronies, such as ineffective efforts

or double cycling, were also given [1], [2]. It is possible that a patient is in

PSV mode and the machine automatically triggers a breath, e.g. due to low

BR. However, all breathing cycles are delineated by Better Care, considering

the characteristic morphologies of the airway pressure and airflow [2]. Then,

these automated breathing cycles are labelled as ‘controlled’ and they are

omitted for the analysis of the respiratory signal.
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5.1 Introduction

This chapter delves into evaluating BRS in the hour preceding the SBT.

BRS serves as a key indicator of ANS functionality, crucial in regulating

blood pressure. Notably, BRS is often compromised in various cardiac and

cardiovascular conditions, and recent studies revealed high incidence of

autonomic dysfunction in patients admitted to the ICU, resulting in chronic

adrenergic activation and acute respiratory distress syndromes [6]. However,

no previous work investigated the role of the BRS in the context of weaning

from MV. Moreover, none looked for differences just before the SBT, in
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order to improve the predictive value of the weaning indices.

The primary objective is to explore if BRS can enhance the prediction of

weaning outcomes, potentially contributing to improved patient management

in ICU settings. Given the observed diminished baroreflex control in cardiac

conditions, this evaluation is particularly relevant [7], [8]. The study employs

two non-invasive techniques for BRS assessment (see previous Section 3.6):

Spectral Analysis of HRV and SBP: (a) utilizing the α index to analyze the

interplay between HRV and SBP [9], [10]. (b) BPRSA, a novel method for

constructing an averaged HRV profile in response to SBP fluctuations [11],

[12].

5.2 Materials and Methods

5.2.1 Subset of Weaning Data for BRS analysis

The dataset employed in this chapter has been detailed in the previous

section (Sec. 4.2). After SBT, patients were categorized into two groups:

those with successful weaning (S-group) and those without (F-group). Nine

patients from the S-group and six from the F-group were included from

the entire database. The reduced number of patients studied is attributed

to the limited availability of high-quality invasive blood pressure signals.

Specifically, only the last hour preceding the SBT underwent analysis, as

the recordings necessitated manual correction of SBP values estimated using

automatic algorithms (as described in Sec. 5.2.2).

This study utilizes recordings of lead II from the ECG, the BP signal

obtained through an invasive arterial catheter, and the BR signal, denoted

as f̂r(t). The BR, employed for guiding HRV analysis, is derived from the

detected inspiration onsets using BetterCare®.

5.2.2 BRS Methodologies

SAP Estimation

The delineation of the BP signal utilizes the algorithm described in Sec. 3.5.3,

using the envelope-thresholding method for pulse detection. The SAP signal

is estimated and interpolated to form an evenly-sampled series, which serves

as a basis for calculating BRS indices using spectral analysis (Eq. 3.30).



5

SECTION 5.2. Materials and Methods 123

The PSD used in this analysis are obtained via Cohen’s Class Wigner Ville

Distribution, as detailed in Section 3.3.4.

BPRSA Analysis

The BPRSA method, an alternative for analyzing BRS, is based on creating

an averaged HRV profile in response to SAP increases (refer to [11] for

details). Anchor points (APs) in the SAP series are identified using local

maxima detection within a specific framework. Subsequently, HRV signal

segments around each AP are averaged to form the BPRSA curve. The

methodology and its application are illustrated in Fig. 3.24.

The BRS, estimated from the BPRSA curve, is quantified using the

capacity term ’C’ (Eq. 3.32), which analyzes oscillations in the BPRSA curve

relevant to BRS. The selection of the scale parameter ’s’ is based on the

mean BR of each patient, aligning with the guidance in [13].

5.2.3 Statistical Analysis

To assess BRS, the following parameters are included and compared:

• Average heart rate (HR)

• Average systolic arterial pressure (SAP)

• Average breathing rate (BR)

• Standard deviation of NN intervals (SDNN)

• Root mean square of successive differences (RMSSD)

• Averaged alpha indices in low-frequency (αLF) and high-frequency

(αHF) bands

• Normalized low-frequency power (Pn
LF)

• Average capacity term (C)

These parameters are calculated as averages over the entire one-hour

recording period, detailed in Tab. 5.1. Additionally, alpha indices (αLF, αHF),

normalized low-frequency power (Pn
LF), and the capacity term (C) are also

computed as averages over 5-minute intervals. This approach allows for a

more detailed analysis, as illustrated in Fig. 5.2.

For statistical testing, we employ the Mann-Whitney U-test to assess

differences between the S-group (subjects group) and the F-group (control

group). The objective is to determine whether these parameters exhibit
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significant variations between the two groups, considering both the one-hour

averages and the 5-minute interval averages. A p-value of 0.05 is established

to determine statistical significance.

5.3 Results and Discussion

The results for the scalar variables are in Tab. 5.1. The capacity, C, obtained

from the BPRSA curve, is the only parameter significantly different compar-

ing S-group vs F-group. No significant differences can be found for SDNN

and RMSSD of the HRV, but they are notably higher for the S-group. In

fact, other works did found significant differences for these between the two

groups when comparing values half an hour before the SBT, and half an

hour after SBT [6].

Table 5.1: Scalar indices. Inter-subject median (Q1, Q3), computed throughout
the whole hour before SBT.

 
Units S-group F-group p-value 

HR [bpm] 80 (75,89) 84 (81,123) 0.33 
SBP  [mmHg] 132 (110,139) 126 (101,141) 0.78 
BR  [rpm] 19 (18,23) 22 (18,24) 0.61 

SDNN  [ms] 32 (27,53) 22 (15,26) 0.11 
RMSSD  [ms] 11 (6,14) 5 (3,8) 0.18 

αLF  [ms/mmHg] 6.0 (3.5,11.8) 5.1 (2.3,7.1) 0.46 
αHF [ms/mmHg] 7.1 (3.1,8.7) 6.7 (1.6,8.6) 0.78 
𝐏𝐏𝐋𝐋𝐋𝐋𝐧𝐧    0.56 (0.30,0.65) 0.66 (0.41,0.80) 0.39 

Capacity [ms] -1.7 (-2.7,-0.8) 0.9 (0.5,1.4) 0.02* 

 

  In order to investigate if the absence of differences in the indices was

due to the long one hour averaging, which might attenuate short-term

variations, the evolution of αLF, αHF, P
n
LF and C is calculated in 5-minutes

averaged-periods, throughout the hour before SBT (Fig. 5.2). Clear statistical

significant differences in C are visible comparing the S-group vs F-group in

many 5-minutes periods. Again, no significant differences are found in any

period for αLF, αHF or Pn
LF either. In spite of that, the αLF median values

are generally higher for the S-group during the whole hour.

Maybe, no strong differences can be found since these patients present

strong non-linear dynamics because of the disease severity [7]. This fact



5

SECTION 5.3. Results and Discussion 125

0.05

0.50

0.90

5

10

15

0.05

0.50

0.90

5

10

15

20

0.05

0.50

0.90

0.2

0.4

0.6

0.8

0.05

0.50

0.90

00:45 00:30 00:15 SBT

-5

0

5

Figure 5.2: Evolution, throughout the hour before SBT, of the BRS with αLF and
αHF, in [1/mmHg], Pn

LF and C are dimensionless. Green and Red boxplots represent
the average of each 5-minutes period for the S-group and F-group, respectively. The
p-value is represented in the right axis, from 0 to 1, comparing each 5-minutes
period and asterisk represents statistical significance.

reflects complex influences of respiration on HR and SAP variability and

might limit the ability of αLF and αHF for BRS assessment, even though

analysis was guided by respiration.

It is important to remark that C in absolute values, is higher for the

S-group. This could be because of the effect of the strength of SAP changes

in HRV, reflected in the amplitude of the BPRSA curve. Besides, notice that

C is negative for the S-group but positive for the F-group, since sympathetic

activity is associated with higher latency shifts in the response of the HRV for

the spontaneous increases in BP. In fact, related to this, higher adaptability

to changes can be deduced from SDNN and higher parasympathetic activity

from RMSSD, for the S-group. Note that the scale s = T , used for the

computation of C, is not distorting the results, since BR is similar for both

groups (see Tab. 5.1).

The selection of the AP’s for the BPRSA analysis is of relative importance.

Using all the increasing samples as AP’s [7], [11], produces a reduction in
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the amplitude of the average curve, because of the distortion introduced by

the average of few-samples-delayed ensembles. This fact compromises the

BPRSA curve, and some investigation should be done in order to standardize

the selection of AP’s.

5.4 Conclusions

In this study, BRS was evaluated in a cohort of critically ill patients under-

going MV using the BPRSA technique. The analysis revealed a stronger

and negative capacity of the BRS in patients who were actually ready for

weaning. These findings suggest the potential utility of BRS quantification

as a predictive measure for weaning outcomes in the ICU. The inclusion

of BRS analysis could aid clinicians in more accurately assessing weaning

readiness.
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6.1 Introduction

This chapter presents the second study, expanding the scope beyond the

hour before a spontaneous breathing trial (SBT). Utilizing data from the

24-hour period prior to SBT, it offers a more comprehensive assessment of

patient readiness for weaning. The study employs non-invasive biomarkers

derived from respiration, HRV, and CPC to evaluate weaning readiness.

The study analyzes HRV and respiratory signals (detailed in Section 3.3.3),

focusing on three main methods for CPC quantification (Section 3.4): TFC
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(Section 3.4.1) Information Dynamics (ID) for cross entropy estimation (Sec-

tion 3.4.2) Orthogonal Subspace Projection (OSP) for HRV decomposition

(Section 3.4.3)

Given the high incidence ANS dysfunction in ICU patients [14], [15],

this study explores the potential of ANS assessment in predicting weaning

outcomes. HRV and CPC estimators are hypothesized to provide insights

into the multifaceted nature of the weaning process. Previous research has

shown the value of HRV in identifying outcomes related to SBT [6], [16],

and RSA has been linked to improved pulmonary function and cardiac

efficiency [17], [18].

This proof-of-concept study aims to identify novel biomarkers to assist

clinicians in predicting weaning readiness. It explores heart-lung interactions

and evaluates the utility of CPC indices in a prospective and blinded design

relative to the SBT process. The reliability of HRV and CPC estimators

as predictors of weaning outcomes is examined, along with the impact of

assessment timing in relation to SBT.

6.2 Materials and Methods

6.2.1 Subset of Weaning Data for CPC analysis

The data used in this chapter have been described in previous Sec. 4.2.

Then, after SBT, patients were distributed into two groups, those with

successful weaning (S-group, 13) and those without (F-group, 9). For this

set of patients under analysis, the most common MV mode was PSV, but

also some patients spent some time in Continuous Positive Airway Pressure

(CPAP). An example of the respiratory pattern in PSV mode was shown in

Fig. 2.3, and Fig. 6.1.
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Figure 6.1: Example of respiration in PSV mode. The airflow signal is plotted at
(top) and the derived TV signal at (bottom). The onset of inspiration, delineated
by Better Care, is marked with asterisks.
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6.2.2 CPC Methodologies

Three different techniques are used to compute the CPC indices, with the

objective of obtaining an estimate of the RSA. These indices are computed

based on TFC, ID and OSP, explained in previous Section 3.4. However,

although these three CPC estimates rely on different techniques, the under-

lying idea is the same: to measure and characterize the RSA function, i.e.,

respiratory-cardiac interactions, in patients ready for weaning the 24 hours

before the SBT. Table 6.2 summarizes all the terms and indices computed

in this work.

It is important to remark that the algorithms do not extract the informa-

tion in the same way, and the indices have different temporal resolution. For

this reason, the average value in consecutive 30-minutes periods is considered

for each index calculated in this work, in order to be able to compare all the

indices through the 24 hours recordings.

Table 6.2: Summary of terms and indices computed.

Term Description Framework/Notes 
BR Breathing rate 
HR Heart Rate 

HRV Heart Rate Variability 
SDNN Standard Deviation of NN intervals 
RMSSD Root-Mean Square of Successive 

interval Differences 
𝐏𝐏𝐕𝐕𝐋𝐋𝐋𝐋 Power in the Very Low Frequency band 
𝐏𝐏𝐇𝐇𝐋𝐋  Power in the High Frequency band, 

centered to respiration 
𝐏𝐏𝐋𝐋𝐋𝐋𝐧𝐧  Normalized LF Power: PLF/(PLF +PHF) 

CPC Cardio-Pulmonary Coupling 
Spectral coherence between HRV 
and respiration 

Time-Frequency Coherence (TFC) 

Cross entropy between HRV and 
respiration 

Information Dynamics (ID) 

Power of the respiratory 
component in HRV 

Orthogonal Subspace Projections (OSP) 

C THF

C E r↔m

Pmr
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6.2.3 Long-term Assessment and Statistical Analysis

Due to the long-term basis of this work, handling missing data is an important

issue. First, artifacts, bad detections or ectopic beats appear in the ECG

signal. To this end, any NN interval greater than 2.5 seconds is removed from

the series, and the corresponding interpolated segment is also suppressed

from the m(t) signal. Second, regarding the respiratory signal, support MV

modes include a backup frequency, and if the patient falls below, the breath

cycle is triggered by the ventilator similarly to controlled ventilation. In the

cohort study, breathing cycles were labelled as controlled for the 2,11% of

them, and were omitted for the analysis. Then, gaps exist in the estimated

signals for the CPC calculations. However, results are analysed in 30-min

averaged periods for 24 hours, and these gaps or missing data do not affect

the results, since they are omitted for the calculation of the average.

At this point, since SDNN is the state-of-art index for medical stratifica-

tion of cardiac risk in long-term analysis, the SDNN is calculated for the

whole period of 24 hours before the SBT. The Mann-Whitney U-test is also

used to compare the value for the S-group vs. F-group.

After that, the evolution of the common clinical parameters, HRV and

CPC indices, through the 24 hours before SBT are analysed, in order to

determine if circadian rhythms could be affecting the regulatory mechanisms

and the interpretation of the results. However, it must be considered that

the SBT’s are generally performed in the morning, but not at the same exact

time for all patients. For this reason, all the recordings are segmented from

08:00 p.m. to 10:30 a.m. of the SBT day, so that the same time interval is

considered for all patients. This means that it is being considered only some

part of the circadian rhythm.

The average value in consecutive 30-minutes periods is considered, for

the representation of the evolution through the day and for the statistical

analysis. Table 6.2 summarizes all the parameters computed to this end.

Then, each HRV and CPC indices are calculated separately using different

temporal resolutions:

• The parameters BR and HR are unevenly sampled at the

inspiration onset and heart beats occurrence, respectively.

Therefore, the mean value in each half hour is computed.

• For the computation of C E r↔m, Pmr , and the temporal
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HRV parameters –SDNN and RMSSD–, sliding windows of

3-min-length with 75% of overlap are used. For these, there

is a sample each 45 seconds and a total of 1920 samples in

24 hours. So, the mean of 40 overlapped windows in each

30-minutes period is computed, for each parameter and

for each patient.

• The C T
HF and the frequency domain parameters of HRV

–PVLF, PHF and Pn
LF– are calculated using the TF maps.

Therefore, these indices are calculated at the resampling

frequency, Fs = 4 Hz, and thus the average value of 7200

samples, i.e., 30 minutes, is obtained.

Finally, the averaged values for the S-group vs. F-group are compared with

the non-parametric unpaired Mann-Whitney U-test, for all the parameters.

Differences are considered significant for a level of p ≤ 0.05. The effect size

Cohen’s d, for an acceptable level of statistical power, was also reported. For

data where the assumptions of the parametric tests cannot be satisfied, the

non-parametric Cohen’s d is recommended [19]:

d =
Z√

(nS + nF )
, (6.1)

where Z is the standardized U-value, and nS and nF are the number of

patients of the S-group and F-group, respectively. A commonly used inter-

pretation is to refer to effect sizes as small (d = 0.2), medium (d = 0.5) and

large (d = 0.8).

6.3 Results

Table 6.1 shows the median and quartiles 1 and 3 of the SDNN, calculated

in the whole recordings of 24 hours. Higher SDNN is visible for the S-group

patients, and although the difference is not significant, the p-value approaches

0.05. As expected, the SDNN values are higher considering the 24 hours

recordings (see Tab. 6.1), than considering the averaged 3-minutes windows

(see Figure 6.4), for the same group of patients. The evolution of the patients

throughout the day before SBT, from 08:00 p.m. to 10:30 a.m., are illustrated

in the Figs. 6.3, 6.4 and 6.5. The commonly-used clinical variables BR and
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HR –Figure 6.3–, can be compared to the parameters of HRV –Figure 6.4–

and the CPC estimators –Figure 6.5.

Looking at Figure 6.3, both BR and HR rely within the limits of criteria

for weaning readiness (Criteria in Sec. 4.2.1) the whole day. In general, pa-

tients of the F-group have slightly higher HR and BR. The BR is significantly

higher only at 9:00, moment when HR differences are larger between both

groups. However, no big differences throughout the recordings, during night

or day, are appreciable.

Table 6.1: SDNN calculated for the 24 hours recordings. Values shown are the
inter-subject median and quartiles [Q1, Q3].

S-group F-group p

SDNN [ms] 57 [46-108] 38 [30-58] 0.07
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Figure 6.3: Evolution of the common clinical indices for weaning readiness before
SBT. The mean BR and mean HR, are represented. Green and Red boxplots
represent the patients of the S-group and the F-group, respectively. The p-value
comparing each half hour is represented in the right axis, from 0 to 1, and the
dotted line represents the p = 0.05 threshold. Black asterisks indicate statistical
significance with p ≤ 0.05. Blue stars above p-values indicate medium effect size
with Cohen’s d ∈ [0.5, 0.8), and blue crosses indicate small effect size with Cohen’s
d ∈ [0.2, 0.5).

Figure 6.4 shows the evolution of the HRV parameters. The RMSSD is

higher in the S-group during the entire recording since midnight, apparently

the moment when patients fall asleep. In particular, after waking up, at

around 7:00 a.m., significant differences are found. Correspondingly, looking

at the Pn
LF, an increment can be seen for the F-group, starting at 00:00,

compared to the slight decrease for the S-group. This increment for the

F-group can be associated with a sympathetic activation, in view of the

sudden increase of the PHF and PVLF at the very same time.
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Curiously, sudden changes can sometimes be found on the PVLF, especially

for the F-group. However, much variability exists for the PVLF power, and

neither significant differences nor appreciable patterns on the PVLF evolution

can be found.
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Figure 6.4: Evolution of the HRV indices before SBT. The temporal parameters
SDNN and RMSSD, and the frequency parameters, PVLF, PHF and Pn

LF are
represented. Green and Red boxplots represent the patients of the S-group and the
F-group, respectively. The p-value comparing each half hour is represented in the
right axis, from 0 to 1, and the dotted line represents the p = 0.05 threshold. Black
asterisks indicate statistical significance with p ≤ 0.05. Blue stars above p-values
indicate medium effect size with Cohen’s d ∈ [0.5, 0.8), and blue crosses indicate
small effect size with Cohen’s d ∈ [0.2, 0.5).

The evolution of the CPC estimates is illustrated in Figure 6.5. As said,

CPC estimators are computed considering respiration to be the system

driving changes in the HRV. Clear differences exist in the CPC mechanism

comparing the patients that were successfully weaned, S-group, and the

patients reintubated or that still needed time in MV, F-group.

The C T
HF index is higher when HRV and respiration have components

at the same frequencies, taking into account that these components have



6

134 CHAPTER 6. CPC to Assess Weaning Readiness

different physiological origin. Differences are significantly higher, particularly

at night. The C E r↔m is higher during the night than in the morning before

the SBT, especially for the S-group. The Pmr is also higher for the S-group

than for the F-group. Remark that the p-values since 9:00 a.m. approximately,

right before the SBT, increases abruptly for the three CPC indices. This

shows that the differences between the two groups are less substantial at the

time right before performing the SBT. Medium effect size (d = 0.5) is only

present for some comparisons of the CPC parameters (Figure 6.5). For the

other parameters (Figures 6.3, 6.4), small effect sizes (d = 0.2) or no effect

sizes are observed.
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Figure 6.5: Evolution of the CPC estimators before SBT. The CPC parameters
C T
HF,C E r↔m and Pmr , are represented. Green and Red boxplots represent the

patients of the S-group and the F-group, respectively. The p-value comparing each
half hour is represented in the right axis, from 0 to 1, and the dotted line represents
the p = 0.05 threshold. Black asterisks indicate statistical significance with p ≤ 0.05.
Blue stars above p-values indicate medium effect size with Cohen’s d ∈ [0.5, 0.8),
and blue crosses indicate small effect size with Cohen’s d ∈ [0.2, 0.5).

6.4 Discussion

First of all, it should be noted that all patients in the cohort study were

deemed ready for weaning. Then, as the SBT determined, some of them were

ready, some of them were not, and some of them needed reintubation despite

being determined ready by the SBT. Therefore, the prediction of patients

ready to undergo SBT has to be improved, in this work for 9 patients: the 2
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patients who passed SBT and needed reintubation plus the 7 patients who

failed SBT. This suggests that there is some hidden information (e.g., CPC

indices) that is not yet taken into account in assessing weaning readiness

before SBT.

HRV and CPC have been analysed for a total of 22 patients presumably

ready for weaning, in the 24 hours before the SBT. Statistical differences

have been found comparing patients who needed reintubation or required

more time in MV, the so-called F-group, and patients with a successful

weaning process, S-group. These differences are especially appreciable for

the parameters estimating the CPC.

The fact that the CPC changes so much with respect to the S-group

can be related to a more unstable regulatory system. By monitoring this

at night, or continuously, clinicians can obtain additional insight of this

stability that can help in making the decision to wean a patient from MV.

Then, considering the outcome of the SBT, here it is evaluated if the weaning

outcome can be predicted before performing the SBT. Nevertheless, this

proposal does not pretend to eliminate the SBT, since SBT is necessary. CPC

indices are intended to be used in combination with the current weaning

readiness criteria (Criteria in Sec. 4.2.1), to improve the predictive rate of

patients ready to undergo the SBT.

Patients of the S-group have higher values of SDNN, calculated over 24

hours (see Tab. 6.1). A major component of SDNN is due to a higher vari-

ability and day-night difference of the HR. This shows a better adaptability

of the heart to changes, for patients actually ready for weaning, S-group.

Remark that the SBT is not performed at the same time for all patients.

Hence, in order to have all recordings of the patients aligned in time, some

segments had to be omitted at the start and end of the recordings for some

patients. The average BR, was always above 9 rpm, i.e., 0.15 Hz. However,

for some patients, it was above 24 rpm, i.e., 0.4 Hz (see Figure 6.3). The

evolution of the currently-used clinical variables, HR and BR, is very similar

for both groups. It is clear that these parameters are not giving useful

information to predict weaning readiness.

On the contrary, some HRV parameters seem to better discern both

groups. The temporal parameter RMSSD has higher values for the S-group,

in accordance with the fact that this index quantifies parasympathetic
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modulation of NN intervals driven by respiration and vagal modulations [20].

These modulations of the vagal activity are also quantified by PHF. Notice

that the PHF is much higher for some patients of the F-group, around 11

p.m., and around 8:00 a.m. The rest of the time, mainly during sleep at

night, PHF is higher for the S-group, in agreement with the results of [6].

The time when PHF is higher for the F-group, occurs before going to sleep

and waking up. However, the PVLF and Pn
LF are also higher, so strong vagal

modulations are in conflict with strong sympathetic activations.

Nevertheless, Figure 6.4 is striking and summarizes the uncertainty

related to the HRV parameters. From these results, the question arises as

to what is the validity of HRV indices, since depending on the time of

day at which they are measured the results can be totally different. This

fact could be attributed to circadian rhythms, having a strong influence on

HRV measurements. For example, the Pn
LF, commonly used as the standard

measure of the sympathovagal balance, is not convenient as a reliable weaning

readiness predictor. In fact, it has already been proven that Pn
LF is not an

appropriate measure of the vagal and sympathetic modulations [21], [22].

On the contrary, and this is favourable, CPC indices seem more appropriate

since measurements are quite stable throughout the 24-hour record.

The sudden increase in the PHF for the F-group, that could be interpreted

as an increase of the vagal activity, is not present in the CPC parameters.

These patients are under MV, and for them the frequency content in the HF

band may not contain only respiratory information (see Fig. 3.12). These

HF components can be a consequence of the non-linear effects of respiration

transferred to the HR. These non-linear influences could be mediated by the

respiratory pacemaker in the central nervous system [23] through sympathetic

modulations [24], and the CPC estimates used in this work are unable to

detect them. Further investigation is required using techniques able to take

both linear and non-linear effects into account [25], [26].

At this point, results based on the heart-lung interactions, as measured

by CPC indices, were encouraging. First, the TFC exhibited illustrative

results. The C T
HF, is the CPC estimator which exhibits larger differences

between S-group and F-group patients. These results are also in agreement

with those obtained using mutual information, where higher C E r↔m values

were found in the S-group than in the F-group. Finally, there are also visible
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differences looking at the relative power of respiration, Pmr , inserted into

the HRV: patients of the S-group had a relative power around the 25% of

respiration, but those of the F-group had it around 5%. Larger effect sizes

are obtained for these CPC indices, and most comparisons result in, at least,

small effect sizes. These low values of effect size may be associated with the

reduced number of patients. Altogether, this illustrates that those patients

who are actually ready for weaning, have good levels of CPC and that their

ANS is ready to work, in contrast with the patients who did not pass SBT

or needed reintubation. Therefore, these CPC estimators are promising as

additional indexes to improve the weaning readiness criteria.

Moreover, these differences in the CPC parameters are more evident

during sleep than right before the SBT, what could be due to the loop

gain. In other words, patients with failed weaning may be experiencing more

apnoea events at night, which is directly related to a reduced RSA and

higher cardiovascular risk [27], [28]. In fact, the parasympathetic activity is

well known to be predominant during sleep at night and, consequently, it is

in this moment when the CPC mechanism is stronger.

At this moment, clinicians assess whether patients can perform SBT

when they are awake in the morning and conscious. Results suggest that

probably, it would be better to check patients’ status at night. In fact, less

clear differences are found in the morning right before SBT. Maybe, patients

generate high levels of stress and anxiety as SBT approaches, and this may

alter their biomarkers toward more alert-related values, introducing some

physiological bias for interpretation. However, one limitation is that patients

in the ICU may not keep similar sleep patterns.

Other works compare the values of the indices obtained right before

SBT with the values obtained during and right after SBT and all of them

found differences in the respiratory patterns and respiratory variability

parameters [29], [30], or in the HRV parameters [6], [16], [31], [32]. Remark

that the SBT lasts 30 minutes, a really stressing stage for the patient,

when they are proved to spontaneous breathing. This protocol represents

a challenge, and some parameters could show greater statistical differences

in that situation than in ”basal” or ”resting” conditions. That is the very

important difference of the present study with the state-of-the-art; here, the

indices and evolution of the patients are obtained only before the SBT. The
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fact that the prediction of weaning readiness can be improved, could only

have been revealed by long-term analysis.

From previous data in the literature, variability may be more discriminant

when measured during SBT. In fact, it would have been interesting to add

values during SBT, although it is a different approach than the proposed.

However, the main limitation is that CPC indices cannot be calculated

during SBT since patients are disconnected from the ventilator and the

respiratory airflow signal is not available. Instead, a surrogate signal such

as impedance pneumography, diaphragmatic effort or even an ECG-derived

respiratory signal could be used, but this work needs to be developed.

In [33], they stress the importance of the PVLF power in the weaning

scenario. The PVLF power, partially related with the circadian rhythms [20],

could provide useful information of the neurohumoral regulatory mecha-

nism [34]. On the contrary, here it is illustrated that the PVLF power is

not so relevant in the analysis of the 24 hours prior to SBT. Nevertheless,

some patients in this MV and ICU context showed strong characteristic VLF

oscillations, possibly also related with sleep disorders, that must be further

studied. These sudden changes cause non-stationarity, and this is the reason

why 3-minute sliding windows and TF analysis are used to calculate the

indices.

It should be noted that the estimation of CPC is a new technique, and

even less any previous studies have investigated CPC during automated

ventilation. Further studies should be performed including controlled MV

modes, since this would include the whole amount of patients in MV, and it

could be obtained a complete knowledge of the CPC regulation mechanisms.

Perhaps, in controlled MV modes, it is the ventilator the one controlling

respiration –not the ANS–, and the HRV would be the driving system,

since the ventilator would be the one regulating respiration externally. In

this work, the CPC is computed to measure and characterize the RSA

function. However, the mechanisms responsible for RSA are still a matter of

debate, but it is known to be affected by direct parasympathetic modulation,

different reflexes such as baroreflex and chemoreflex, as well as mechanical

effect of respiration. Then, there is a clear connection between blood volume

and RSA and other predictors could also give estimates of the ANS status.

Additionally to investigation the role of BRS, as done in Chapter 5, previous
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works analysed predictors of fluid responsiveness in mechanically ventilated

adults [35], that could also be helpful in this context.

The computational cost for obtaining the CPC indices is low, and it

may be obtained in real time in the same way as the standard clinical

parameters. Therefore, these algorithms can be implemented in the ICU

monitors, and the CPC status could be assessed continuously, together with

the well-known clinical variables. Additionally, other CPC estimators were

also explored in a preliminary analysis of the study. However, the indices

with best performance were the ones also computed here, namely Pmr ,

C E r↔m and C T
HF. Interestingly, the study in [36] analyses the best methods

for CPC estimation in a simulation study, and concludes that the same three

parameters used in this work are the best estimators for CPC assessment.

The clinical utility of this work, and future studies, is that if the CPC

is actually proven to predict weaning failure, it might be incorporated as

screening guidance of patients ready to undergo SBT. Certainly, there is

future work to state how much these CPC indices can improve prediction

of weaning readiness. However, this is a preliminary study, which needs to

be prospectively validated with a larger cohort. In fact, we still need to

report specificity and sensitivity to obtain the thresholds of CPC for which

an improvement in accuracy is defined.

In other words, CPC could be assessed before SBT, in a multimodal index

combined with current parameters to reinforce the prediction of patients

ready to undergo SBT. CPC indices may be of clinical interest since they

could help to reduce weaning failure rates and the very adverse effects

associated with reintubation, to thereby result in better clinical outcomes.

Finally, it must be kept in mind that patients in the ICU are admitted

from very diverse diagnostics. Taking this into account, two patients with

the same characteristics and similar evolution may get different outcomes.

Hence, sometimes, a patient who does not meet the readiness criteria can be

also successfully weaned, and viceversa [37]. This is why clinicians take the

criteria for weaning readiness and SBT performance as one among several

considerations rather than rigid requirements. In fact, the screening criteria

for weaning readiness and SBT are not homogeneous in all sites, and this is

a limitation. Such uncertainty can be reduced by implementing new research

and technologies to daily clinical practice [38], [39], and this study is other
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step forward in the field of predictive precision medicine, that exploits the

capabilities of the CPC estimates.

6.5 Conclusions

This second study focused on a 24-hour analysis prior to SBT, evaluating

CPC indices to enhance the prediction of weaning readiness. The existing

information available to clinicians in the ICU is insufficient for determining

weaning readiness, as evidenced by the 15-20% of patients experiencing

SBT failure or requiring reintubation. Interestingly, none of the current

clinical criteria for weaning readiness showed significant differences between

patients who were ready for weaning and those who were not. However,

higher CPC values, evaluated through variables C T HF, C E r ↔ m, and Pmr,

were observed in successfully weaned patients, particularly during nighttime.

This study builds on the insights gained from the first study, which

identified BRS as a potential predictor for weaning readiness. The findings

of the second study underscore the importance of incorporating a broader

range of physiological biomarkers, like CPC indices, into the assessment

of weaning readiness, and importantly, the use of long-term recordings to

monitor the evolution of the biomarkers. By doing so, the predictive accuracy

for weaning outcomes could be significantly improved. The combined insights

from both studies suggest the need for a multifaceted approach to assess

weaning readiness in the ICU, considering signal processing indices, like

these based on CPC.
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Gonzalo, M. Turon, G. Gomà, E. Chacón, G. M. Albaiceta, R.

Fernández, et al., “Double cycling during mechanical ventilation:

Frequency, mechanisms, and physiologic implications”,

Critical care medicine, vol. 46, no. 9, pp. 1385–1392, 2018.

[2] L. Blanch, B. Sales, J. Montanya, U. Lucangelo, O. Garcia-Esquirol,

A. Villagra, E. Chacon, A. Estruga, M. Borelli, M. J. Burgueño, et al.,

“Validation of the better care® system to detect ineffective efforts

during expiration in mechanically ventilated patients: A pilot study”,

Intensive care medicine, vol. 38, no. 5, pp. 772–780, 2012.
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7.1 Context

Part III of the thesis explores cardiovascular signal processing techniques

for the assessment and stratification of pediatric patients with OSA. As

mentioned in Part I, despite its prevalence affecting around 5.7% of children,

OSA often remains underdiagnosed, impacting a variety of functions ranging

from physiological to cognitive. The condition, characterized by respiratory

pauses, snoring, and daytime somnolence, can lead to severe cardiovascular

and cerebrovascular consequences.

The gold standard for the diagnosis of OSA typically relies on overnight

PSG, despite being time-consuming, expensive and requiring specialized

personnel. Consequently, many pediatric patients are only diagnosed when

their OSA condition has progressed to a severe stage. Given these challenges,

there is a clear need for more accessible and convenient diagnostic tools to

simplify the process, that help to obtain a prompt diagnosis of OSA.

This part of the thesis is structured into three primary studies, each

exploring different methodologies and analytical techniques in cardiovascular

149
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signal processing to improve the understanding, stratification, and severity

assessment of OSA, as well as the associated Cardiovascular Risk (CVR) in

the pediatric population:

• Study One: Chapter 8 investigates HRV during apneic episodes

compared to normal breathing periods in pediatric OSA.

• Study Two: Chapter 9 explores the application of CPC as a diagnostic

and characterization tool in pediatric OSA.

• Study Three: Chapter 10 examines the definition of Metabolic Syn-

drome (MetS) as an index for CVR in children with OSA, and its

causal role in the development of OSA. In order to have a reference

of CVR to compare with the metrics derived from signal processing

analysis, like HRV or CPC, first we need to validate MetS as index of

CVR in pediatric patients with OSA, for what we propose the CMA.

Through these studies, this part aims to contribute significantly to the

field by introducing innovative methods for assessing and managing pediatric

OSA. Utilizing the good quality PSG data from approximately 400 pediatric

patients provided by the Childhood Adenotonsillectomy Trial (CHAT) study.

This comprehensive dataset not only encompasses biosignals but also includes

demographic, clinical, metabolic, and outcome information, providing a basis

to test and validate our hypotheses. Detailed description of the study and

its utilization in my research will be elaborated in the following sections.

7.2 Sleep Data

The CHAT sleep study was a multicentric prospective randomized trial,

designed to evaluate the efficacy of early Adenotonsillectomy (eAT) surgery

versus a strategy of Watchful Waiting with Supportive Care (WWSC) for

pediatric OSA treatment [1]. The rationale, design, and primary outcomes

for the CHAT study have been previously reported [1]. All data are publicly

available at https://sleepdata.org/datasets/chat.

The study recruited prepubertal children between 5 to 10 years of age

with OSA symptoms, who were scheduled for a baseline nocturnal PSG in a

clinical laboratory. After allocation to the corresponding treatment strategy,

eAT or WWSC, children completed a follow-up PSG 7 months later. The

legal caretakers of each patient provided the informed consent, and the

https://sleepdata.org/datasets/chat
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CHAT study was judged ethical and approved by all relevant independent

review boards. For more details on the protocol, inclusion-exclusion criteria

and ethical considerations, see [1].

7 months

eAT

WWSC

BASELINE PSG FOLLOWUP PSG 

OSA treatment

Figure 7.1: CHAT Study Protocol. Pediatric patients with OSA underwent a
baseline PSG, during which clinical and demographic information was gathered for
OSA diagnosis. Participants then received randomized treatment, either eAT or
WWSC. Follow-up PSG was conducted 7 months later to assess the outcomes of
the treatment.

The study investigators relied on the Apnea-Hypopnea Index (AHI) to

establish OSA severity according to the American Academy of Sleep Medicine

rules [1]. Children were assigned to one of four common severity groups for

pediatric OSA, as follows: no OSA (AHI < 1 events per hour of sleep, e/h),

mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10 e/h), and

severe OSA (AHI ≥ 10 e/h). Due to the study design, there was no patient

with no OSA at baseline.

To evaluate the resolution of OSA in pediatric patients, regardless of

the treatment received, two approaches were utilized. Firstly, following the

original CHAT study criteria, OSA resolution was considered for subjects

who, at follow-up, exhibited an obstructive-AHI ≤ 2 e/h and an obstructive-

Apnea Index (AI) ≤ 1 e/h [1]. Under this criterion, 252 subjects were

categorized in the resolution group, while 152 subjects were classified as not

having resolved their OSA. Secondly, recognizing the significance of central

apneas, a more stringent criterion for disease resolution was applied based

on the overall AHI and AI. In this case, children who presented an AHI ≤ 2

e/h and an AI ≤ 1 e/h at follow-up were considered to have resolved OSA.

According to these parameters, 157 subjects were classified in the resolution

group, compared to 247 subjects who did not resolve their OSA.

In each of the following Chapter 8, 9, and 10, patient exclusion was based

on specific criteria to ensure the reliability and validity of the findings. For

the first study, focusing on HRV analysis (Chapter 8), 311 patients were
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included, contingent upon the quality of their ECG signal to derive a reliable

m(t) signal. Exclusion criteria were:

• ECG signals sampled at rates lower than 250Hz.

• ECG signal coverage less than 75% of the overnight PSG recording.

• Percentage of ectopic beats and miss-detections exceeding 10%.

In the second and third studies (Chapters 9 and 10), patients with reliable

HRV and respiratory signals but lacking necessary clinical and demographic

information for defining MetS were excluded. This left 255 patients with

reliable HRV signals at both baseline and follow-up, possessing all requisite

information for defining MetS in both.
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8.1 Introduction

Previous studies using PSG have revealed alterations in the ANS during

sleep in patients with moderate or severe OSA compared to healthy con-

trol subjects [2]. The physiological response to apnea usually includes a

bradycardia-tachycardia pattern (as shown in Fig. 2.10), ending with a sig-

nificant increase in SNS activity [2]. Persistent HR and respiratory variations

due to repeated apneic episodes are linked with a higher risk of cardiovascular

morbidity in both adults and children [1]. However, most studies have focused

153
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on sleep stage differences and overlooked the effects of apnea presence or

absence on HRV values [3], [4], or have even directly excluded those segments

containing apneic episodes for HRV analysis [5]–[7].

In this study, we aim to characterize and compare HRV metrics in

pediatric patients with symptoms of OSA, focusing on HRV average values

during apneic events, normal sleep breathing, and full night recordings. This

approach is designed to discern whether the sympathetic dominance observed

in OSA, as reported in previous studies, is merely an episodic response to

apneic events or a sustained condition throughout the night, what would be

indicative either of an ANS imbalance or cardiovascular disease. Additionally,

we explore differences in three newly defined spectral bands of HRV specific

to pediatric OSA [8], which have been linked to changes in OSA severity

and resolution, providing new insights into the cardiovascular implications

of the disorder.

8.2 Materials and Methods

8.2.1 Sleep Data for HRV analysis

In this study, I used the dataset explained in Sec. 7.2. However, this work only

includes the data from baseline PSG recordings. The PSG data encompasses

the ECG, and thoracic and abdominal respiratory signals [9]. As mentioned

in Sec. 7.2, the dataset for this study comprised 311 patients, out of the

whole database available, who had a sufficient quality of their ECG signal

to derive a reliable m(t) signal. The AHI was employed to determine the

severity of OSA [9], categorizing it into mild (N=133), moderate (N=105),

and severe (N=76), depending on their AHI.

8.2.2 Time-Frequency Analysis of HRV

The frequency domain parameters are calculated using the TF distribution

belonging to the Cohen’s class [10], as previously detailed in Sec. 3.3.4. See

Fig. 8.1 for a representation of the frequency parameters’ evolution derived

from HRV, using TF analysis.

As introduced in previous Sec. 1.4.2, due to the higher BR observed in

children, sometimes exceeding 24 breaths per minute (0.4 Hz), it is essential



8

SECTION 8.2. Materials and Methods 155

-0.2

0

0.2 m(t)

1200 1300 1400 1500 1600 1700 1800

0

20

40

60 P
LF

(t)

P
HF

(t)

P
BWR

(t)

0

50

P
VLF

(t)

P
BW1

(t)

P
BW2

(t)

70

80

90

100

110 d
HR

(t)

Figure 8.1: TF analysis of a HRV signal, and continuous power signals obtained.
Two labeled apnea/hypopnea episodes occur around seconds 1550 and 1700. See
Fig. 3.9 for the methodology to compute the power in each spectral band.

to perform a respiratory-guided HRV analysis. To do this, it is necessary to

first estimate the instantaneous BR, f̂r(n). This is obtained from thoracic

and abdominal respiratory signals using a signal peak-conditioned spectral

averaging method [11], explained in Sec 3.1.2. An illustrative example of this

algorithm is shown in Fig. 3.2.

8.2.3 Effects of Apnea on HRV

To analyze the effect of apneas on HRV, each of the annotated apnea and

hypopnea segments is identified. As mentioned, the frequency power of

each HRV band is continuously obtained at 4 Hz, throughout the overnight

recordings. Therefore, from the continuous power signals (see Fig. 8.1),

a separate analysis can be easily performed for the segments of normal

breathing during sleep and for the apnea episodes. It is worth noting that,

for each apneic event, the 5 seconds prior to the start of the apnea and the

15 seconds after its completion are also included, thus encompassing the

compensatory/recovery pattern of tachycardia following the apnea episode [8],

[12].
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8.2.4 Statistical Analysis

For each patient, the median value of each of the HRV metrics is obtained

from the complete recordings, during the apnea events, and after excluding

them (see Fig. 8.2). Finally, for each patient, a non-parametric rank-sum

test is applied to evaluate the observable differences (p-value ¡0.01) between

the values obtained in the complete recordings, compared to the values

obtained both in the apnea events and in the average nightly recordings

after excluding the apnea events.

Figure 8.2: Flowchart of the data analysis performed for each patient. The apneic
episode are represented in red. Three different HRV analyses were performed: one
including the complete recordings, one excluding the apneic episodes (reflecting the
HRV status during normal breathing periods), and one including only the apneic
episode’s periods (reflecting the response of HRV to apneas).
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8.3 Results and Discussion

In our study, we assessed the effects of sleep apnea events on HRV by

isolating apnea episodes and then separately analyzing normal breathing

during sleep. The average values obtained are displayed in Tab. 8.3. Clear

significant differences (p-value < 0.01) were observed in all metrics except

for RMSSD and PHF. These marked differences, previously unreported,

underscore the importance of analyzing apnea events and normal sleep

breathing separately. Doing so, ensures accurate physiological interpretation,

as the patient experiences acute stress during apnea, while they are relaxed

during normal breathing.

Table 8.3: Average median values for HRV metrics of the 311 patients, calculated
separately for normal breathing, apnea episodes, and complete records. On the far
right, the result of the paired Friedman statistical analysis is shown, with ’**’ mark
in case of significance (p-value ¡ 0.01). Units: 1[b.p.m]; 2[ms]; 3[a.u.].

(N=311)   Normal Breathing 
 

Apnea Episodes 
 

Complete Recording p-value 
  

mild moderate severe 
 

mild moderate severe 
 

mild moderate severe Friedman Test 

% time 
 

99% 98% 95% 
 

1% 2% 5% 
 

100% 100% 100% 
 

mHR1 
 

87 90 92  89 90 92  87 90 92 ** 
SDNN2 

 
104 108 89  102 96 97  105 109 91 ** 

RMSSD2 
 

77 78 58  60 56 60  76 77 58 . 

P(ΩVLF)3 
 

1,81 1,77 1,82  11,92 11,10 11,36  1,89 1,93 2,25 ** 
P(ΩLF)3 

 
7,70 6,86 6,93  33,63 34,30 36,16  7,90 7,27 8,07 ** 

P(ΩHF)3 
 

24,78 23,38 25,34  10,64 10,31 13,02  24,56 22,96 24,47 . 

P(ΩB1)3 
 

0,17 0,17 0,17  1,11 1,02 1,03  0,18 0,18 0,21 ** 
P(ΩB2)3 

 
2,00 1,94 2,00  13,31 12,65 13,25  2,08 2,10 2,45 ** 

P(ΩBR)3   13,49 12,87 13,83  1,32 1,17 1,84  13,17 12,28 12,25 ** 

 

 

 

  

One specific finding was that the ΩB2 band was closely related to the

presence of apnea [8]. The sudden increase of PHF, PVLF, and PLF during

apnea can be attributed to the characteristic bradycardia-tachycardia pattern

during apnea events. On average, differences may not be noticeable when

comparing normal breathing values to complete record values. Yet, a paired

statistical analysis was performed, revealing intrinsic differences within each

patient.

Notably, PHF and its related RMSSD did not show significant differences.

The interpretation of these indices during apneas is debatable. There are both

methodological and physiological concerns, especially since these parameters
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are tied to breathing and parasympathetic activity, which contrasts with

what happens during an apnea event.

Prior research on HRV in pediatric OSA has typically involved whole-

night analyses or the exclusion of apneic events [5]–[7], which may not

fully represent the autonomic dysregulation occurring during different sleep

stages [5], or in response to individual apneic episodes. This study emphasizes

the importance of analyzing HRV metrics separately for apneic and normal

breathing intervals and considering sleep stage segmentation to capture the

episodic nature of SNS activation. This analysis suggests that the increase

in SNS activity in OSA patients is primarily a response to individual apneic

episodes, not a sustained activity throughout the night. As the amount of

apneic episodes rises with OSA severity, so does the overall SNS activity in

overnight recordings. This episodic nature of SNS activation highlights the

necessity of including apneic events in HRV analyses. Previous studies that

excluded these events or averaged HRV over the entire night might miss these

crucial, transient changes. These findings are essential for understanding the

dynamic autonomic changes in OSA and interpreting HRV metrics accurately

in this context.

This study and the work of Martin-Montero et al. in [8] underscore the

importance of segmenting HRV data by apneic events. The approach of

categorizing 10-minute ECG segments in [8] also revealed significant HRV

changes, particularly in Non REM sleep (NREM) stages with increasing

apneic events. These findings, combined with our observation of episodic SNS

activation, highlight the necessity of detailed HRV analysis for understanding

OSA’s impact on autonomic function. This collective research advances the

precise assessment of disease severity and sleep stage classification in pediatric

OSA patients.

8.4 Conclusions

This study analyzing HRV in pediatric patients with OSA reveals significant

differences in HRV metrics across complete analyses, during specific apnea

episodes with increased sympathetic activity, and during normal breathing

in sleep. It appears that power in the HF band and RMSSD may not be

reliable indicators during apnea events due to the fluctuating nature of SNS
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activity. Besides, the SNS response is typically reactive to apnea episodes

rather than consistently elevated.
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9.1 Introduction

In Chapter 9, the research focuses on characterizing CPC in pediatric patients

with OSA. The study examines CPC across different sleep stages and in

groups categorized by OSA severity. The hypothesis driving this research

is that higher CPC levels might indicate better sleep health and overall

cardiovascular health in children with OSA.

Previous studies in adults have highlighted CPC’s potential as a biomarker

161



9

162 CHAPTER 9. Cardiopulmonary Coupling in OSA

for sleep quality [13]–[15], through spectral coherence analysis, and desat-

uration severity in OSA [16], yet research in pediatric OSA is limited. In

adults with OSA, reduced CPC has been observed compared to healthy

individuals, with low-frequency power dominance linked to abnormal sleep-

disordered breathing behaviors [13]. Interestingly, previous research has also

suggested an increased CPC in sleep apnea, possibly linked to the heightened

autonomic stress induced by the disease [13], [15], [17], while high CPC

values in the HF band are generally associated with healthy RSA and deep

sleep stages [13], [18]. Other studies have shown that aging may lead to a

reduced autonomic modulation during wake, S2, and Rapid Eye Movement

sleep (REM) sleep in older adults with OSA, when compared to younger

individuals [19].

This chapter aims to characterize CPC in children with OSA and explore

its diagnostic potential for pediatric OSA. The study hypothesizes that as

OSA severity increases, CPC decreases, suggesting an imbalance in autonomic

regulation. It is anticipated that reductions in CPC in the high-frequency

band will be more pronounced in pediatric OSA patients compared to those

who have recovered. This investigation seeks to establish CPC as a non-

invasive, effective diagnostic and monitoring tool for pediatric OSA, bridging

a gap in current research and offering new insights into this condition.

In this study, CPC is assessed through the analysis of HRV and respiratory

signals, commonly recorded during overnight PSG. The methodology for

estimating CPC using TFC is an integral part of this thesis and is elaborated

in Sec. 3.4.1.

9.2 Materials and Methods

9.2.1 Sleep Data for CPC analysis

This section utilizes the dataset referenced in Section 7.2. The dataset

includes data from the PSG recordings, encompassing ECG, and thoracic

respiratory signals [1]. In addition for the present study, the sleep stage data

is also extracted. These sleep stages were categorized into 30-second epochs

by experienced sleep specialists.

The initial focus of this analysis was to establish potential correlations

between CPC levels and metabolic biomarkers. Therefore, the subset of pa-
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tients chosen for this study were those with comprehensive cardiometabolic

data available. As explained in previous chapter 7.2, a total of 255 partic-

ipants had, at baseline and at followup, reliable HRV data and complete

cardiometabolic profiles, which included demographic information (such as

age, sex, ethnicity), clinical data (including weight, height, body mass index,

systolic and diastolic blood pressure), and metabolic markers (like fasting

glucose, HDL, LDL, triglycerides).

The distribution of patients according to OSA severity is shown in

Tab. 9.1. OSA resolution was considered for those patients with both AHI

≤ 2 e/h and AI ≤ 1 e/h at follow-up [8] (103 patients resolved vs. 152

unresolved). Note that this criterion considers both obstructive and central

apneas, thus defining stringent rules for disease resolution than the criterion

proposed in the original CHAT study [1]. Owing to the study design, all

subjects at baseline were diagnosed as suffering from pediatric OSA (Tab. 9.1),

such that at baseline none of the subjects could be considered with OSA

Resolution (AHI ≤ 2 e/h and AI ≤ 1 e/h) or No OSA (AHI ≤ 1 e/h).

Table 9.1: OSA severity definition and prevalence at baseline and follow-up,
including OSA resolution at follow-up.

From the CHAT database, we included 255 subjects who had all

the necessary information to define MetS, both at baseline and

follow‐up. Among these, 127 subjects were assigned to eAT and 128

were assigned to WWSC. Table 2 shows the demographic and

relevant clinical data at baseline, separated into two groups

considering OSA status at follow‐up.

2.2 | Definition of MetS

MetS consists of a cluster of metabolic disorders that are often

associated with chronic inflammation or with insulin resistance.34

The specific criteria for MetS in adults have been defined by the

National Cholesterol Education Program (NCEP), the Adult

Treatment Panel III, and the World Health Organization.11,12 MetS

in adults is defined if three or more of the following risk factors are

present1: central OB,2 hypertension,3 dyslipidemia, and4 hyper-

glycemia. However, there are different competing definitions of

MetS in children, and each of such proposed criteria has significant

limitations. For example, the definition by Cook et al.23 corre-

sponds to the NCEP criteria, adapted to adolescents, which

restricts its applicability in younger children.

In the IDEFICS study, the investigators applied and compared

three commonly used definitions of the pediatric MetS, along with a

new definition criterion.23–25,27 Based on the most recent age‐ and

sex‐specific percentiles derived from the study, they suggested an

updated definition of pediatric MetS,27 which is shown inTable 3, and

summarily consists of percentiles cutoffs based on statistical criteria

adapted for age and sex. Using the IDEFICS criteria, a considerable

proportion of prepubertal children will be designated as MetS

compared to other definitions.27

Finally, there is also relevance in evaluating the association

between OB, OSA, and MetS.15,19,30,35 Therefore, children with body

mass index (BMI) z‐score values exceeding the 95th percentile were

classified as fulfilling the criteria for OB, following the recommenda-

tions of the Centers for Disease Control and Prevention (https://

www.cdc.gov/obesity/basics/childhood-defining.html).

2.3 | Statistical analysis

The commonly reported total causal effect (TE) of an intervention

evaluates whether a treatment modifies the outcome of interest. In

this work, we implement a CMA, which further identifies the causal

pathways, namely mediators, through which the treatment affects

the outcome. A mediator is an intermediate variable that resides

within the causal pathway between an independent variable (in this

case, OSA treatment), and a dependent variable (outcome of the

study, e.g., MetS). It helps to clarify how and why a treatment

influences a given outcome. In other words, the mediator is

influenced by the independent variable (OSA treatment), which in

turn influences the dependent variable (outcome). For example, with

a CMA, we can evaluate whether variations in MetS are causally

attributable to OSA treatment,28 influenced by AHI as mediator/

pathway of the disease. Then, CMA allows to split the TE of the OSA

treatment into two components (see Figure 1):

1. First, the average causal mediation effect (ACME), represents the

indirect effects. ACME measures the changes in the outcome

particularly attributable to changes in a given mediator, which

changed due to the treatment.

2. Second, the average direct effect (ADE), reflects the direct effects

of the treatment. ADE measures the changes in the outcome

unlinked to the mediator under study.

On the one hand, ACME evaluates the relationships

between the after‐treatment variations occurring in the outcome,

that is, the variations of the clinical indicators such as MetS, z‐

scored BMI (BMIz), systolic blood pressure (SBP), and so on, and

the variations in the indicators representing the disease severity,

that is, the mediators, such as AHI, oxygen desaturation index

(ODI), and so on. The MetS criteria represent an outcome from

the disease. On the other hand, ADE evaluates how treatment

affects the outcome through any other (and possibly unknown)

factor(s) different from the mediator. ACME and ADE jointly form

the TE.

TABLE 1 OSA severity definition and prevalence at baseline and follow‐up, including OSA resolution at follow‐up.

OSA severity (e/h) Baseline (n) Follow‐up (n) OSA resolution % (n)

No OSA AHI < 1 ‐ 63 ‐

Mild OSA 1 < AHI ≤ 5 107 135 48% (52)

Moderate OSA 5 < AHI ≤ 10 90 30 33% (30)

Severe OSA 10 ≤AHI 58 27 36% (21)

(255) (255) [AHI ≤ 2 and AI ≤ 1]
at follow‐upa

Abbreviations: AHI, apnea–hypopnea index; AI, apnea index; OSA, obstructive sleep apnea.
aAll subjects at baseline were diagnosed as suffering from pediatric OSA, such that at baseline, none of the subjects could be considered as OSA resolution
(AHI ≤ 2 e/h and AI ≤ 1 e/h) or No OSA (AHI ≤ 1 e/h).
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9.2.2 Estimation of HRV, CPC and BR

The ECG signal is used to estimate the modulating signal, m(t), with the

TVIPFM (as detailed in 3.3). The signal from the abdominal respiratory

effort band, r(t), is used to obtain the continuous BR signal, f̂r(t), which

is derived using the spectral peakedness method explained in Eq. 3.2, and

shown in Fig. 3.2. The PHF is measured as the power within the BR, f̂r(t),

and time-varying (see Eq. 3.8).
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In this study, the influence of respiration on HRV, i.e., CPC, is estimated

using TFC 3.12. The CPC biomarker, based on the TFC between HRV

and respiration in the HF band, Ωr
HF, is denoted as C T

HF, and explained in

Eq. 3.19, in Sec. 3.4.1. It incorporates both the mean significant coherence

averaged over time, and the percentage of time where TFC is significant in

that period.

For CPC, by definition, C T
HF should be calculated in the Ωr

HF band, but

spectral coherence can be also calculated in different spectral bands like

LF band, with the TFC in the LF reading as C T
LF. Methods for estimating

HRV and CPC through TFC have been extensively described in previous

Sec. 3.4.1.

9.2.3 Statistical Analysis

The CPC biomarkers are derived using 5-min epochs. I conduct a separate

analysis of CPC results during the three sleep stages: wake (W), REM,

and NREM. For an epoch to be considered in the analysis, it must have at

least 90% of its time in the same sleep stage. For each patient, the average

CPC in the epochs at the same sleep stage along the overnight recordings is

calculated.

The TFC features considered do not fit either normality or homoscedastic-

ity tests, therefore a Kruskal-Wallis test is conducted to compare differences

in CPC biomarkers among the four severity groups (no OSA, mild OSA,

moderate OSA, and severe OSA). A p-value < 0.05 for the KW test can be

considered for statistical significance. Afterwards, a paired signed rank test

was employed to compare the differences in TFC values of each patient be-

tween sleep stages. A p-value < 0.01 is considered for statistical significance,

after correction for multiple comparisons.

9.3 Results and Discussion

Fig. 9.1 exhibits the boxplots of the TFC in the LF and HF bands, comparing

the values of the 4 groups of OSA severity for the three sleep stages. The

CPC levels in each sleep stage, as measured by TFC in the Ωr
HF band, are

significantly lower for increasing OSA severity categories during NREM (KW

test, p = 0.02), and REM sleep (KW test, p = 0.03). On the contrary, the
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TFC in the ΩLF band is significantly higher for increasing OSA severity

categories, both during NREM (KW test, p < 0.001), and REM sleep (KW

test, p < 0.001), which is consistent with results found in adults [13].
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Figure 9.1: Boxplots of the TFC in the LF band (up), C T
LF, and in the HF band

(bottom), C T
HF, comparing the values of the 4 groups of OSA severity (no, mild,

moderate and severe OSA), for the three sleep stages (Wake, NREM and REM).
Statistical significant difference between TFC values of the OSA severity groups is
obtained using the Kruskal Wallis (KW) test, for each sleep stage.

Tab. 9.2 shows the p-values of the signed rank test, comparing TFC

values for the three sleep stages in the ΩLF and Ωr
HF bands, of the different

OSA severity levels. The statistical analysis shows that differences exist

in CPC (TFC-HF) in all stages, except for the children with severe OSA,

stating the fact that a separate analysis in sleep stages is necessary for

sleep apnea characterization. No significant differences are found in the LF

band in severe OSA patients comparing TFC values in REM and NREM,

whereas these differences are clear for no and mild OSA patients. Besides, as
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hypothesized, the CPC is also significantly lower during wake compared to

NREM and REM in all OSA categories (Tab. 9.2b). According to previous

research, processes such as sleep apnea and fibromyalgia, which lead to

sleep fragmentation, have been shown to reduce the amount of CPC (TFC-

HF) [13]. In addition, higher TFC-LF values have been associated with a

higher prevalence of hypertension and stroke in adults [20].

Table 9.2: P-values obtained from the paired signed rank test, comparing the
TFC values of each patient between the three sleep stages. The analysis is done in
the ΩLF (a), and Ωr

HF bands (b), for the different OSA severity levels. Statistical
significance is considered for p-values <0.01, to correct for multiple comparisons.

W-NREM W-REM NREM-REM 
a) 

No OSA <0.01 <0.01 <0.01 
Mild OSA 0.03 <0.01 <0.01 
Moderate OSA 0.54 0.09 0.03 
Severe OSA <0.01 0.05 0.02 

b) 
No OSA <0.01 <0.01 <0.01 
Mild OSA <0.01 <0.01 <0.01 
Moderate OSA <0.01 <0.01 <0.01 
Severe OSA <0.01 <0.01 0.04 

C THF

C TLF

In general, the amount of apnea/hypopnea events are comparable between

REM and NREM [8]: approximately 88% of 10-min epochs in REM sleep

had less than 5 events per epoch, and 97% of the epochs in NREM sleep

had less than 5 apnea/hypopnea events per epoch. The observed increased

coupling in the LF band in severe OSA patients could be attributed to

the higher prevalence of periodic breathing during REM sleep, as reported

in [13], as well as to the pronounced cyclic variations in HRV in response to

repeated apnea episodes. However, values of CPC in the Ωr
HF band where

higher in REM sleep compared to NREM, or at least similar for severe OSA

patients, which explains that the significant reduced CPC with increasing

severity of OSA may not be due to effects related to apnea events, but rather

due to other physiological factors like alterations in the sympathetic activity.

Note that it is necessary the use of a significant coherence threshold. Many

existing works studying CPC based on spectral coherence, as biomarker on

sleep quality, do not rely on the fact that two white-noise signals will have a

baseline level of coherence γ0, where zero coherence should be reported by

definition. Our results show that this methodology might provide additional
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phenotypic information to better classify between sleep stages, since wake

and REM sleep are sometimes indistinguishable [13].

This study has a limitation in that respiratory signals other than the

nasal pressure signal were used. Previous studies have also used alternative

respiratory signals [13], [18], such as ECG-Derived respiration. In fact, Varon

et al. reported that errors in CPC were significantly greater during apnea

events than during normal activity when using EDR signals as surrogate [21].

Owing to chest movements captured by EDR, it may not be related to actual

respiration during apnea events, causing an overestimation of CPC. We

demonstrated the usefulness of CPC using recordings of respiratory effort

bands, but future works should consider using the nasal pressure cannula

signal, which would lead to a potential reduction in CPC values in the

presence of obstructive respiratory events.
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Figure 9.3: Two illustrative examples of TFC from the same patient, at two
different moments in the night. (left) High CPC in the HF band, during REM sleep.
(right) High TFC in the LF band, during NREM sleep, where a clear pattern of
periodic breathing can be seen, and the modulation of HR, accordingly.

The conventional computation of CPC in LF, traditionally associated

with an abnormal functioning of the ANS in regulating heart and respiration,

is, in fact, indicative of a pathological phenomenon and not a cardiopulmonary
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coupling effect. Contrary to its presumed role in ANS regulation, it exhibits

a distinctive behavior, where the effect of respiration may significantly

impact HR, HRV, and RSA regulation. This behavior directly influences

cardiac patterns, manifesting as clear cyclic patterns with implications for

cardiovascular health (see Fig. 9.3). Notably, the heart’s regulation is not

modulated by the ANS but rather by the obstruction resulting from apnea

and the recurrent efforts to restore oxygenation in each cyclic inspiratory

effort characteristic of Cheyne-Stokes respiration.

9.4 Conclusions

Overall, we can conclude that the TFC in the LF band could be a useful

biomarker for assessing the severity of OSA, while CPC as measured by TFC

in the HF band could provide additional information about the pathological

mechanisms underlying OSA. However, further studies with larger sample

sizes are needed to confirm these findings and to investigate the use of

respiratory signals in conjunction with HRV analysis.
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10.1 Introduction

OSA, along with other sleep disorders resulting in fragmented sleep, has

emerged as a risk factor for cardiometabolic comorbidities [22], [23]. When

persistent over time, particularly when excessive daytime sleepiness is man-

ifest, OSA promotes the risk of Cardiovascular Disease (CVD), such as

hypertension or hypercholesterolemia [24]–[27]. In the pediatric population,

169
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OSA is also associated with an increased risk of obesity, insulin resistance

and systemic inflammation [28]–[30].

MetS is a cluster of conditions encompassing central obesity, impaired

fasting glucose, dyslipidemia, and hypertension [31]. In adults, the criteria

and definition of MetS are well established [31]–[33]. Furthermore, MetS is

directly associated with CVD risk, insulin resistance, type 2 diabetes mellitus,

and overall mortality [27], [34]. In studies that assessed the association of

MetS in childhood with adult CVD years later [34], [35], children with

MetS were significantly more likely to manifest an increased risk of CVD in

adulthood.

Compared to the abundant body of adult data, very few experimental

studies examining metabolic sequelae of sleep perturbations have been

conducted in children and adolescents [36]–[38]. In general, OSA seems

to be associated with increased risk of metabolic dysfunction in overweight

and obese children [39], [40]. Metabolic dysfunction is more prevalent in

pediatric patients with known insulin resistance and dyslipidemia [41], and

in those with one of the individual components of MetS, either the presence

of elevated systemic blood pressure or higher blood glucose levels [42], [43].

However, the extant studies have yielded inconsistent findings at times, and

the divergence from the findings in adults may be due in part to the several

competing definitions of MetS in children, but also to longer lags between

disease onset and development of MetS-related sequelae [44]–[47]. From

this point of view, an important study (IDEFICS) by Ahrens et al. [48],

classified children according to different definitions of MetS in a population-

based survey of 18,745 healthy European children, aged 2 to 11 years, which

resulted in the proposal of standard specific cut-off values for each of the

MetS components according to percentiles in non-obese children.

The hypothesis is that pediatric OSA interacts with MetS, especially in

severe cases. Thus, screening for MetS components in children with OSA may

be recommended. CMA is a powerful technique that enables determination

of mediators affecting a particular disease [49]. Of relevance to the current

study, CMA allows for assessing whether a treatment has a measurable effect,

while also detecting possible causal pathways through which a treatment

influences changes in an outcome. However, CMA has not been systematically

employed to study the mediators of OSA and their interactions with MetS
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outcomes.

In addition to MetS, Obesity (OB) and C-reactive protein levels (CRP)

are also frequently used as biomarkers for CVR. CRP is a well-established

marker of systemic inflammation and has been found to be a reliable indicator

of cardiovascular morbidity in adults [40], [50]. In addition, OB is also known

to be strongly related to the development of OSA and MetS in adults,

but different studies disagree on their results in children [36], [40], [51].

Consequently, the main novelty of the study focuses on the evaluation of

both the causality of OSA in the development of MetS and the interactions

between OSA, MetS, CRP and OB in prepubertal children from CHAT.

10.2 Materials and Methods

The methodological approaches used herein are divided into three stages.

First, we conducted analysis of MetS in the cohort of CHAT, based on the

IDEFICS cutoff values [48]. Then, we applied CMA to assess the putative

causal pathways between pediatric OSA and the development of MetS [52].

Finally, the prevalence of MetS was studied and related to the prevalence of

OSA.

10.2.1 Sleep Data for MetS Analysis

As explained in previous Chapter 9, we included 255 subjects from CHAT

database, who had all the necessary information to define MetS, both at

baseline and follow-up. Among these, 127 subjects were assigned to eAT and

128 were assigned to WWSC. Tab. 10.1 shows the demographic and relevant

clinical data for these two groups at baseline. The distribution of patients

according to OSA severity and OSA resolution was shown in Tab. 9.1.

10.2.2 Definition of MetS

MetS consists of a cluster of metabolic disorders that are often associated

with chronic inflammation or with insulin resistance [53]. The specific criteria

for MetS in adults have been defined by the National Cholesterol Education

Program (NCEP), the Adult Treatment Panel III, and the World Health

Organization [32], [33]. MetS in adults is defined if three or more of the
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following risk factors are present: (1) central obesity, (2) hypertension, (3)

dyslipidemia and (4) hyperglycemia. However, there are different competing

definitions of MetS in children, and each of such proposed criteria has signif-

icant limitations. For example, the definition by Cook et al. [44] corresponds

to the NCEP criteria, adapted to adolescents, which restricts its applicability

in younger children.

In the IDEFICS study, the investigators applied and compared three

commonly used definitions of the pediatric MetS, along with a new definition

criterion [44]–[46], [48]. Based on the most recent age- and sex-specific

percentiles derived from the study, they suggested an updated definition of

pediatric MetS [48], which is shown in Tab. 10.2, and summarily consists of

percentiles cutoffs based on statistical criteria adapted for age and sex. Using

the IDEFICS criteria, a considerable proportion of prepubertal children will

be designated as MetS compared to other definitions [48].

Finally, there is also relevance in evaluating the association between

OB, OSA and MetS [36], [40], [51], [54]. Therefore, children with body mass

index (BMI) z-score values exceeding the 95th percentile were classified as

fulfilling the criteria for OB, following the recommendations of the Centers for

Disease Control and Prevention (https://www.cdc.gov/obesity/basics/

childhood-defining.html).

10.2.3 Causal Mediation and Statistical Analysis

The commonly reported total causal effect (TE) of an intervention evaluates

whether a treatment modifies the outcome of interest. In this work, we

implement a CMA, which further identifies the causal pathways, namely

mediators, through which the treatment affects the outcome. A mediator

is an intermediate variable that resides within the causal pathway between

an independent variable (in this case, OSA treatment), and a dependent

variable (outcome of the study, e.g., MetS). It helps to clarify how and

why a treatment influences a given outcome. In other words, the mediator

is influenced by the independent variable (OSA treatment), which in turn

influences the dependent variable (outcome). For example, with a CMA we

can evaluate whether variations in MetS are causally attributable to OSA

treatment [49], influenced by AHI as mediator/pathway of the disease. Then,

CMA allows to split the TE of the OSA treatment into two components (see

https://www.cdc.gov/obesity/basics/childhood-defining.html
https://www.cdc.gov/obesity/basics/childhood-defining.html
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Table 10.1: Clinical and demographic characteristics at baseline in CHAT subjects
with complete metabolic information. Subjects are separated into two groups
considering OSA status at follow-up. Data are shown as mean (σ) or % (n), for
each subgroup. Statistically significant differences for the Wilcoxon rank sum test
(p < 0.05) are marked with asterisks (*), comparing values of patients with OSA
resolution against values of patients with persistent OSA at follow.
 

8 

 
Patients who resolved 
OSA (baseline values) 

Patients with persistent 
OSA (baseline values) p-value 

Patients (n) 40% (103) 60% (152) -- 
    
Treatment Arm (eAT) 65% (67) 39% (60) < 0.001* 
Age (years) 6 (1) 7 (1) 0.1908 
Sex (females) 57% (59) 50% (76) 0. 2544 
Race    0.8455 

White 35% (36) 33% (50)  
Black 52% (54) 59% (90)  
Other 13% (13) 8% (12)  
    

BMIz  0.52 (1.34) 1.03 (1.26) 0.0019* 
WC (cm) 60 (12) 64 (13) 0.0045* 
SBP (mmHg) 96 (8) 98 (9) 0.0805 
DBP (mmHg) 62 (7) 64 (8) 0.0167* 
CHOL (mg/dL) 159 (27) 158 (23) 0.6012 
HDL (mg/dL) 50 (12) 52 (12) 0.1044 
LDL (mg/dL) 95 (22) 92 (21) 0.5922 
TRIG (mg/dL) 71 (29) 72 (30) 0.7580 
GLUC (mg/dL) 81 (8) 81 (6) 0.3725 
HOMA 1.58 (1.77) 1.76 (1.66) 0.0637 
CRP (µg/mL) 1.33 (2.21) 2.36 (5.66) 0.0913 
    
AHI (e/h) 6.9 (5.6) 8.0 (5.7) 0.0114* 
AI (e/h) 2.9 (2.5) 3.3 (3.1) 0.2596 
HI (e/h) 4.0 (4.0) 4.7 (4.1) 0.0182* 
ODI (e/h) 6.5 (7.0) 7.2 (6.2) 0.0305* 
TAI (e/h) 8.4 (3.1) 8.2 (3.1) 0.6509 
    
Epworth Sleepiness Scale 6.7 (4.8) 7.1 (4.7) 0.4526 
Obese (n) 28% (29) 42% (64) 0.0235* 
HR (bpm) 85 (8) 84 (9)  0.5000 
Tonsil size, >2+ (n) 78% (80) 70% (107) 0.1986 
    
MetS, ≥ 3 (n) 11% (11) 19% (29) 0.0711 
 [AHI ≤ 2 and AI ≤ 1] 

at follow-up 

  

Abbreviations: eAT, early adenotonsillectomy; WWSC, watchful waiting with supportive care; BMIz: z-
scored Body Mass Index; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic 
Blood Pressure; CHOL, Total Cholesterol level; HDL, High-Density Lipoprotein level; LDL, Low-
Density Lipoprotein level; TRIG, Triglycerides level; GLUC, Serum Glucose level; HOMA, Homeostatic 
Model Assessment; CRP, C-Reactive Protein level; AHI, Apnea-Hypopnea Index; AI, Apnea Index; 
HI, Hypopnea Index; ODI, Oxygen Desaturation Index; TAI, Total Arousal Index; HR, Heart Rate; 
MetS, Metabolic Syndrome. 

OSA resolution, for patients with AHI ≤ 2 e/h and an AI ≤ 1 e/h at follow-up. 

 162 
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Table 10.2: Definition of pediatric MetS [48].

Fig. 10.3):

• First, the average causal mediation effect (ACME), represents the indi-

rect effects. ACME measures the changes in the outcome particularly

attributable to changes in a given mediator, which changed due to the

treatment.

• Second, the average direct effect (ADE), reflects the direct effects of

the treatment. ADE measures the changes in the outcome unlinked to

the mediator under study.

TETreatment
(eAT vs WWSC)

Outcome
(ΔMetS)

ADE

ACME

Treatment
(eAT vs WWSC)

Outcome
(ΔMetS)

Mediator
(ΔAHI)

a) b)

Figure 10.3: (a) Typical estimation of the total causal effect [51] (b) Causal
mediation analysis performed in the present study.

On the one hand, ACME evaluates the relationships between the after-

treatment variations occurring in the outcome, i.e., the variations of the

clinical indicators such as MetS, z-scored BMI (BMIz), SBP, etc., and

the variations in the indicators representing the disease severity, i.e., the

mediators, such as AHI, oxygen desaturation index (ODI) and so on. The

MetS criteria represent an outcome from the disease. On the other hand,
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ADE evaluates how treatment affects the outcome through any other (and

possibly unknown) factor(s) different from the mediator. ACME and ADE

jointly form the TE.

CMA utilizes regression models to estimate the effects and associations

between the variables: one model is constructed examining the mediator-

outcome relationship, other assessing the treatment-mediator relationship,

and a final one exploring the treatment-outcome relationship. One additional

model is calculated to conduct the mediation analysis, which combines the

estimated coefficients from the previous models to calculate the ACME and

the ADE. The software used for the assessment of causal mediation has been

extensively validated in R language [55].

In this study, the intervention is represented by one of the treatment

arms (either eAT or WWSC). Five different mediators are included:

• AHI, AI, and Hypopnea Index (HI), as measures of the possible different

number of apneic events, in e/h.

• ODI: oxygen desaturations with events ≥ 3% desaturation per hour of

sleep, related to OSA and intermittent hypoxemia [1].

• Total Arousal Index (TAI), as the measure reflecting sleep disturbance

and sleep fragmentation associated with OSA [56].

As outcomes for the analysis, we consider MetS, but also each of the

individual variables included in MetS criteria, namely adiposity: waist cir-

cumference (WC); blood pressure: SBP and diastolic blood pressure (DBP);

blood glucose: homeostatic model assessment (HOMA) and glucose levels

(GLUC); blood lipids: triglycerides levels (TRIG) and high-density lipopro-

tein levels (HDL). In addition, for comparative purposes, BMIz and CRP

levels were also included [40], [50].

Finally, to formulate an accurate interpretation of the ACME, all con-

founders must be controlled based on their potential associations with both

the exposure (OSA treatment), and any outcome (MetS, CRP, SBP, etc.).

The baseline values of age, race, sex, BMIz, average overnight heart rate,

tonsil size, and OSA severity group are included in the statistical adjustment

procedures [8], [36], [57]. For example, age, sex, and race -related variations in

the metabolic outcomes are incorporated to ensure that any observed effects

are not solely driven by demographic factors [48]. In particular, the rationale

for including average overnight heart rate is based on previous research
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suggesting that increased overnight heart rate is associated with OSA [58],

and that it may be also influenced by many other factors such as age, sex,

physical condition, etc. [59], ensuring too that any observed effects on causal

mediation are not solely attributable to heart rate variations. We additionally

computed the Fisher combined probability, which primarily addresses the

potential for Type I errors (false positives), in multiple independent testing.

10.3 Results

10.3.1 Baseline Values: Comparing OSA Resolution vs.

Persistent OSA

Tab. 10.1 summarizes the baseline data from children included in the CHAT

study, comparing the baseline values for subjects whose OSA resolved at

follow-up and those with persistent OSA after treatment. Significant differ-

ences were found for treatment arm (eAT vs. WWSC), for BMIz, WC, DBP,

AHI and OB. No significant differences emerged for all other clinical and

demographic parameters, such as age, sex, race, glucose levels, HR, tonsil

size, and MetS.

10.3.2 Causality Results

Regarding CMA, statistical significance results of causal mediation are

reported in Tab. 10.4. Those p-values that preserved statistical significance

after correcting for multiple testing with the combined probability of Fisher

are marked in bold with asterisks (*). Mainly, CMA exhibits no significant

ACME with the single constitutive criteria for MetS. Nonetheless, there

was a significant causal mediation effect on MetS with AHI as mediator.

Furthermore, significant ACME was detected for CRP with AHI and ODI

as mediators, and for BMIz with TAI as mediator. With TAI as mediator,

there was also significant ACME on DPB and WC. Of note, statistically

significant differences were found in the change in BMIz from baseline to

follow-up (∆BMIz = BMIzfollowup – BMIzbaseline), with TAI as a mediator.

However, CMA performed considers BMIz levels at baseline as confounder,

thus revealing a robust causal mediation effect of TAI on changes in BMIz,

after OSA treatment.
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Table 10.4: P values and statistical significance from the CMA, assessing treat-
ment effects on change in clinical variables (follow-up - baseline) through different
mediators.

No differences in analytical outcomes were detected when only obstructive

apnea and hypopnea events were analyzed with respect to when both central

and obstructive events were included. Therefore, the results for AHI, AI and

HI are shown considering both central and obstructive events. The significant

ADE obtained with different mediators and, e.g., HOMA as outcome, means

that OSA treatment significantly affected HOMA through mediators other

than those evaluated in the present study.

The original CHAT study found high OSA resolution rates in both

treatment arms [1]. These findings have led researchers to analyze CHAT

based on OSA resolution rather than relying on treatment arm [8], [57],

[58]. However, for CMA, it is mandatory to conduct an initial preliminary

analysis, to ascertain if there are interactions between the type of treatment

and the outcomes. In general, no significant effects of interactions between

treatment types on the outcomes were detected, and therefore the average

joint effect (ACME) for the two treatment arms is reported [55]. Only ODI-

GLUC results in an interaction effect, and causal mediation effect is provided

for the treatment arm for which there is significant effect. Specific values

obtained for ACME and ADE can be found in Tab. 10.5.
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10.3.3 Prevalence, Odds Ratio, and Risk Ratio of MetS

In order to further explain the relationship between OSA and MetS, Fig. 10.6

presents a proportion plot with the prevalence and evolution of MetS from

baseline to follow-up (data comes from Tab. 10.7 (a)). At first glance, we

can see that the number of patients with MetS increased from baseline to

follow-up (61 subjects at follow-up with at least 3 cardiovascular risk factors

compared to 40 subjects at baseline). However, note that the two categories

(MetS vs. no MetS) are not balanced. Upon closer examination, patients

with MetS at baseline were more likely to recover at follow-up (32%, 13

patients) as compared to those without MetS at baseline developing MetS

at follow-up (16%, 34 patients).

Figure 10.6: Proportion plot showing prevalence and evolution of MetS from
baseline to follow-up. Units are % (N). Prevalence is summarized by having or not
MetS (number of risk factors ≥ 3).

As shown in Tab. 10.7, there is evidence that among the children who

did not recover from MetS after OSA treatment, the number of MetS risk

factors decreased. Only 2 out of the 27 patients worsened in terms of the

number of risk factors at follow-up, while 17 patients improved.

As such, the odds ratio of changing the health state after OSA treatment

from having MetS at baseline to not having MetS at follow-up, with respect

to worsening from no MetS to MetS was 2.56 (confidence interval (CI) 95%:

1.2031 - 5.4606); and the risk ratio, was 2.06 (CI95%: 1.1943 - 3.5364).

Accordingly, despite the increased total number of subjects with MetS after

treatment for OSA (40 vs. 61, respectively), the probability of recovering from

MetS was significantly higher (2.06-fold), than the probability of developing
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Table 10.7: Prevalence and MetS evolution from baseline to follow-up. Units are
% (N). (a) Prevalence summarized by having or not MetS (number of risk factors
≥ 3). (b) Prevalence considering the number of risk factors.

A)              FOLLOWUP 
BASELINE 

METS NO METS TOTAL 
 

MetS 68% (27) 32% (13) 16% (40) 
 

no MetS 16% (34) 84% (181) 84% (215) 
 

Total 24% (61) 76% (194) (255) 
               

                
                FOLLOWUP 
BASELINE 

4 3 2 1 0 Total 

B) MetS 4 25% (3) 33% (4) 42% (5) - - 5% (12)  
3 7% (2) 64% (18) 29% (8) - - 11% (28)  

no MetS 2 - 37% (23) 32% (20) 25% (16) 6% (4) 25% (63)  
1 - 12% (7) 17% (10) 39% (23) 32% (19) 23% (59)  
0 - 4% (4) 11% (10) 28% (26) 57% (53) 36% (93)  

Total 2% (5) 22% (56) 21% (53) 25% (65) 30% (76) (255) 

 

  

MetS. Similarly, the odds of not having MetS after OSA treatment if the

patient had MetS at baseline were also significantly higher (2.56-fold), than

the odds of having MetS after OSA treatment if the patient did not have

MetS at baseline.

10.3.4 MetS and OSA Severity

The prevalence of MetS in our sample is presented in Fig. 10.8 according to

OSA severity groups and baseline or follow-up. As mentioned above, a higher

MetS presence was found after OSA treatment. However, Fig. 10.8 shows

that its prevalence increases with OSA severity: no-OSA (19%), mild-OSA

patients (22%), moderate-OSA (27%), and severe-OSA patients (41%), thus

suggesting persistent OSA as a risk factor for MetS and gradual relationship

with OSA severity.

Further detailed results and analysis, including OSA prevalence, results

by treatment strategy, and the proportion of different combinations of MetS,

can be found in Tabs. 10.9, and 10.10. In particular, Tab. 10.9 shows the

evolution of MetS for children with and without OB at baseline, further

illustrating the known impact of obesity on prevalence of MetS over time.

Tab. 10.10 exhibits the relationships between OSA severity and the evolution

of MetS from baseline to follow-up.
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Figure 10.8: Prevalence of Metabolic Syndrome (MetS) according to OSA severity
categories based on AHI criteria, at baseline and at follow-up.

Table 10.9: Evolution of MetS by OB status at baseline (BMIz ≥ 95th PCT): (a)
patients with no OB at baseline, (b) patients with OB at baseline.

 

 

  

 
           FOLLOW-UP 
BASELINE 

METS NO METS TOTAL 
           Total   

A)  
 NO OB 

AT 
BASELINE 

MetS 100% (4) 0% (0) 2% (4) 
no MetS 8% (12) 92% (146) 98% (158) 

Total 10% (16) 90% (146) 64% (162) 
        

B)  
 OB AT 

BASELINE 

MetS 64% (23) 36% (13) 39% (36) 

no MetS 39% (22) 61% (35) 61% (57) 

Total 48% (45) 52% (48) 36% (93) 
       

Table 10.10: Evolution of MetS by severity groups: (a) for patients with mild OSA
at baseline, (b) for patients with moderate OSA at baseline, (c) for patients with
severe OSA at baseline. In the right column, odds ratio (OR) and risk ratio (RR)
are displayed. 

 
 

           FOLLOW-UP 
BASELINE 

METS NO METS 

  OR AND RR OF 
CHANGING METS IN 

FOLLOW-UP                 

A)  
MILD OSA 

AT BASELINE 

MetS 75% (12) 25% (4) 15% (16) RR = 2.19* 
no MetS 13% (12) 87% (79) 85% (91) OR = 1.90*  

22% (24) 78% (83) 42% (107)                  
B)  

MODERATE 
OSA AT 

BASELINE 

MetS 69% (9) 31% (4) 14% (13) RR = 2.41* 
no MetS 16% (12) 84% (65) 86% (77) OR = 1.97*  

23% (21) 77% (69) 35% (90)  
                

C)  
SEVERE OSA 
AT BASELINE 

MetS 55% (6) 45% (5) 19% (11) RR = 3.08* 
no MetS 21% (10) 79% (37) 81% (47) OR = 2.14*  

28% (16) 72% (42) 23% (58)  
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10.4 Discussion

Using CMA, we assessed and established the putative causal pathways and

the contribution of various OSA mediators to the development of MetS in

prepubertal children. Furthermore, the present study revealed improvements

in MetS as being causally attributable to OSA treatment. In fact, causal

mediation was found only for MetS, but not for any of the constitutive

elements used to define MetS. In particular, an improvement trend in MetS

after OSA treatment can be ascribed to a reduction in the frequency of apnea

events during sleep (AI). In addition, a trend of greater presence of systemic

inflammation, as illustrated by CRP levels, was causally attributable to the

hypopnea index, thereby corroborating previous studies [60]. Furthermore,

our findings support the existence of an interrelationship between MetS,

OSA, and OB in children, although such associations are less robust than

in adults. These novel results may help enhance the putative and unique

value of phenotyping pediatric OSA patients with the designated goals of

improving patient selection and treatment along with their overall short-term

and long-term outcomes.

Fundamentally, CMA revealed that the changes in the number of car-

diovascular risk factors of MetS are causally attributable to the changes

in the frequency of respiratory events after OSA treatment. Indeed, the

causal contribution of OSA to metabolic dysfunction in prepubertal children

persisted even after adjusting for confounders. Thus, the association between

OSA and MetS is consistent, independent, and not influenced by age, sex,

BMIz at baseline, or by other confounders. The mediation results are sig-

nificant for MetS as outcome when AHI (p=0.02*), is examined as OSA

mediator. However, no causal effects emerged for MetS as outcome and ODI

as a mediator. Contrary to what has been reported in adults, intermittent

hypoxia as reflected by the ODI does not appear to be a causal contributor

for MetS in children. This could be due to the relatively minor hypoxic

burden frequency found in pediatric OSA when compared to adults with

OSA. In contrast, causal mediation effects were found for AHI (p=0.02*),

and ODI (p=0.02*) as mediators of CRP levels.

As compared to adults with OSA, prepubertal children with OSA have

less pronounced and less severe desaturation profiles likely related to the
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decreased collapsibility of their upper airway [61]. These differences may

explain why desaturation events do not directly impact on MetS in prepuber-

tal children and may count for children requiring increased OSA treatment

duration before they exhibit cardiovascular risk symptoms.

Redline et al. quantified the association between MetS and sleep disor-

dered breathing (SDB, AHI ≥ 5) in adolescents [36]. They found that MetS

is significantly more prevalent in subjects with SDB (59% in SDB vs. 16% if

no SDB). Our current findings in prepubertal children are closely aligned

with the results reported by Redline and colleagues, suggesting the need for

MetS screening not only in adults and adolescents but also in children [48].

Of note, the criteria for MetS in children should be implemented using

IDEFICS normative reference values to avoid discrepancies across different

ages [48].

In Tab. 10.10, we exhibit how OSA and MetS interactions are less

prominent in children with persistent OSA at follow-up. However, we should

also remark that those children with persistent OSA are more likely to

develop MetS, especially when residual OSA remains moderate to severe

(Fig. 10.8). As such, it seems likely that although treatment of OSA in these

instances did not result in normalization of respiratory parameters, although

the latter were improved relative to the baseline disease severity, and as

such their impact on MetS may have consequently been mitigated leading

to a reduced effect size that nevertheless persists over time and ultimately

promotes the emergence of MetS. Notwithstanding, it is suggested that

children presenting any of the conditions of MetS, OSA, or OB should be

screened and if needed, comprehensively evaluated.

As shown by Redline et al. [36], OB is a strong risk factor for adult OSA,

and is also a major risk factor for snoring or OSA in pediatric populations [54],

[60], [61]. Accordingly, as illustrated in Tab. 10.1, we found significant

differences between the OB prevalence of children with resolved OSA after

treatment and those with persistent disease. However, CMA did not uncover

a causal mediation effect of OSA over the changes in BMIz.

In the extant literature, there is conflicting evidence about the relation-

ship between OB with OSA and MetS in children [36], [40], [51]. In the

current study, OB children were more likely to exhibit MetS at baseline

as well as at follow-up (as depicted in Tab. 10.9), further emphasizing the
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interdependencies between OB and OSA as causal mediators contributing

either additively or synergistically to the risk of MetS. It is also likely that

the conflictive findings may be due to the different definitions of MetS. There-

fore, we strongly endorse the need for general adoption of the percentile

approaches to MetS criteria proposed in the IDEFICS study [48].

As discussed above, one of the important strengths of the current analyses

is the utilization of the IDEFICS criteria to define MetS in children [48]

along with the implementation of CMA. Another important observation

in this study is the fact that isolated components of MetS do not emerge

as being causally mediated by OSA and that only when these elements

are coalesced into MetS criteria, does the causal mediation then become

significant. Thus, MetS appears to be an independent and complementary

biomarker of pediatric OSA, which may provide insights into long-term

cardiometabolic risk in these children. The major limitation of the present

study is that it included sufficient representation of only some ethnic groups,

and that no complementary population cohort was available for confirmatory

purposes. Therefore, prospective studies similar to CHAT in larger cohorts

are needed. In addition, the original study (CHAT) has not been designed

for the hypothesis of this reanalysis, therefore different sources of bias cannot

be excluded.

10.5 Conclusions

We found that treating OSA in prepubertal children causally reduces the

probability of developing MetS and its severity. This effect was independent

of age, sex, body mass index and other confounding factors, and was mediated

by the decrease in the frequency of respiratory events. Causal mediation

effects were not significant for each of the components of MetS and only

became apparent when these elements were combined into the definition

of MetS, using more epidemiologically robust approaches (i.e., IDEFICS-

derived percentiles [48]). Besides, this study is the first one in validating a

cardiovascular risk indicator in a pediatric population for OSA treatment

assessment, based on clinical and demographic data.
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tions of heart rate, ecg, and cardio-respiratory coupling observed in

polysomnography”,

Frontiers in physiology, vol. 7, p. 460, 2016.
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11.1 Signal Processing of PPG

Part IV of this thesis explores the analysis of PPG signals, focusing particu-

larly on their application oriented to wearable technology. As yet mentioned

in Part I, the intention is to expand our understanding of the parame-

ters wearable devices could capture, especially in real-world scenarios. By

moving beyond the typical PR and PRV analysis, we aim to gain deeper

cardiovascular insights through novel PPG-derived parameters.

Wearable technologies are gaining traction due to their accessible and

cost-effective nature compared to traditional data collection methods [1].

They offer a practical alternative to more cumbersome and expensive setups,

such as PSG recordings for diagnosing OSA, or the array of monitoring

equipment used in ICUs for patients under mechanical ventilation. However,

the reliability of data from wearable PPG devices is often challenged by

197
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motion artifacts. In addition, the physiological background for the biomark-

ers that can be extracted from PPG signals are still under research [2].

To address these challenges, we explore several methodologies focused on

artifact detection, pulse analysis, signal quality improvement, and biomarker

extraction under diverse conditions.

Initially, in Section 3.5, I have already provided a comprehensive overview

of the preprocessing and analytical methods used for extracting specific

biomarkers from PPG signals, used in the following chapters of this Part IV.

Subsequent sections are structured around three distinct datasets. The

selection of these distinct datasets is justified in each chapter, chosen based

on the availability of specific signals, unique requirements, and the particular

goals of each individual study.

11.2 Datasets Including PPG signals

Each of the three datasets comprises PPG signals recorded from various body

locations, along with ECG signals. These datasets are distinct, featuring

unique groups of independent subjects.

To gather these datasets, the researchers implemented three different

stress protocols, during which all signals were captured synchronously using

commercial recording devices. The specifics of these stress tests, their design,

and their relevance to the study are elaborately discussed in prior research [3]–

[5]. In the following subsections, we provide a concise overview of each

protocol.

The data collection adhered to the ethical standards outlined in the

Declaration of Helsinki. Detailed inclusion and exclusion criteria for the

study participants are available in the corresponding referenced studies [3]–

[5]. It is important to note that all participants in these datasets were young,

healthy volunteers without any known cardiac or cardiovascular conditions.

11.2.1 Tilt-Table Orthostatic Stress Test Dataset

The first protocol is a Tilt-table stress test (TTT), which consisted of 10

minutes in early resting supine position (R1), followed by 5 minutes tilted

up 80º (T), and 5 minutes back to resting supine position (R2). There are
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19 subjects available. As mentioned, note that the total time spent in this

protocol is around 20 minutes.

During TTT, various biomedical signals were recorded, including ECG

lead II, and PPG at two wavelengths, red (660nm, R-PPG) and infrared

(940nm, IR-PPG), a transmission-based PPG signal at the finger and a

reflection-based PPG signal at the forehead. All these signals were simul-

taneously recorded by Cardioholter 6.2-8E78 (BMII, Lithuania), using a

sampling rate of 500 Hz for the ECG signal and 250 Hz for the PPG signals.

Further details can be obtained in [3].

Early Supine 
(10min)

Head-up Tilt
(5min)

Supine 
(5min)

80º

Figure 11.1: The TTT protocol consisted of three phases: 10 min in the early
supine position, 5 min head-up tilt, and 5 min back to the supine position.

11.2.2 Acute Mental Stress Test Dataset

This dataset comprises ECG, respiratory, and PPG signals recorded from

volunteer students at the Autonomous University of Barcelona (UAB),

University of Zaragoza (UZ), and Polytechnic University of Madrid (UPM).

The ABP 10 module (Medicom 83 system, MTD Ltd, Russia) facilitated the

simultaneous acquisition of PPG signals at the forehead and finger (sampled

at 250Hz) and Y orthogonal lead ECG (Frank Lead System) at a 1kHz

sampling rate. A total of 120 young healthy participants, free from chronic

or psychological diseases, were involved in the stress test. However, forehead

PPG data is available for only 41 subjects due to recording issues.

Participants underwent two sessions: a 35-minute Basal Session (BS)

involving relaxation and, on a separate day, a Stress Session (SS) induced

through a modified Trier Social Stress Test, with an additional arithmetic

task [4]. The stress session included the following stages: 1) BLS, Baseline

Relaxing stage. 2) ST , Story-Telling stage. 3) MT , Memory Test. 4) SA,

Stress Anticipation. 5) V E, Video Exhibition. 6) AT , Arithmetic Task. For

detailed protocol information, see [4]. The last five stages of the ES session
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are the ones considered stressful. The others are considered relaxing. The

protocol stages are illustrated in Figure 11.2.

R-BS

R-SS ST MT SA VE AT

Figure 11.2: Acute Mental Stress Test Protocol. Subjects underwent a basal
session (BS) and a stress session (SS) in two different days. The last five stages of
the ES session are the ones considered stressful. The others are considered relaxing.

11.2.3 Heat Stress Dataset

The original study aimed to determine whether the exposure to total 36-hr

sleep deprivation would suppress the ANS response to whole-body uncom-

pensable passive heat stress in traditional Finnish sauna (air temperature of

80–90°C, relative humidity of 30%). After each sauna session, researchers

could assess the impact of evening sauna-induced hyperthermia on nocturnal

mental activity, cognitive and neuromuscular system efficiency, and morning

stress hormone levels in 15 healthy participants [5].

Each sauna session consists of a heat stress protocol with four repetitive

exposures to uncompensable heat in the sauna [5], [6]. Before and after 15-min

sauna exposure at 80-90ºC, namely stress stages, participants were instructed

to rest in semiFowler’s position in a neutral temperature environment (25°C),
namely rest stages, for around 20-min. The total duration of the heat stress

protocol was approximately 2 h and 20 min. The study stages are detailed

in Figure 11.3.

Ideally, it is expected to have six sauna recordings for each participant,

corresponding to the first and second days of Total Sleep Deprivation [5],

the first and second days of Partial Sleep Deprivation (PSD), and the first

and second days of the control or normal condition. However, only 51 good

quality recordings of biosignals are available from the whole database of 15

different participants.
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Figure 11.3: Heat stress protocol. Rest stages (R0, R1, R2, R3, R4) and sauna
stages (S1, S2, S3, S4) are marked in blue and red, respectively. Refer to [6] for
more details.

The biosignals were synchronously recorded at 1000 Hz using the Nau-

tilus1 system (BMII, Lithuania), including the lead-II of the ECG and three

PPG signals at red wavelength, with transmission PPG from the middle

finger of the right hand (PPGF), reflection PPG from the forehead above the

right eyebrow (PPGH), and transmission PPG from the right earlobe (PPGE).

Thus, all PPG signals were recorded on the same side of the body. The study

was conducted at Lithuanian Sports University, and more information can

be found in [5], [6].
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12.1 Introduction

This study delves into the concept of ’coverage’ in PPG signals, specifically

exploring the proportion of time during which physiological parameters are

reliably estimated by PPG sensors. This concept is crucial, as PPG sensors

are notably prone to motion artifacts, significantly affecting signal quality,

especially during active daily life periods [7].

Coverage is influenced by various aspects of sensor configuration, includ-

ing the mode (transmission/reflection), placement on the body, and the

stability of sensor-to-skin contact [8]–[10]. While coverage rates for raw PPG

signals have been previously studied, this research extends the examination

to PPG-derived parameters like PR, PAT, and PAV across different body

203
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locations under various stress conditions [11]–[14]. All methodologies used

for estimating these PPG indices are detailed in Sec. 3.5.

PPG, a straightforward and cost-effective technique for garnering cardio-

vascular insights, is adaptable for placement on diverse body parts, such as

the wrist, fingertip, earlobe, or forehead [15]–[21]. Its flexibility makes it a

favored technology for wearable devices. However, the signal’s vulnerability

to motion artifacts and the resultant limitations in data quality during

physical activities pose significant challenges [3], [22]–[28].

The prevalence of PPG technology in both clinical settings and wearable

devices prompts a need for comprehensive analysis. In clinical practice,

fingertip and earlobe sensors are commonly used for heart rate and peripheral

oxygen saturation monitoring. Contrastingly, wrist locations are more typical

for PPG acquisition in wearable devices [29], [30]. Despite the considerable

research on the efficacy of PRV as a surrogate for HRV, studies have not

conclusively addressed sensor positioning’s impact on coverage [28].

This chapter focuses on quantifying PPG sensor coverage when positioned

at various body sites. Three distinct datasets are utilized to study the time

percentage during which pulses are detectable across different PPG signals,

under varying stress conditions. Additionally, the feasibility of estimating

well-known PPG-dependent series such as PAT or PAV is also explored.

In summary, this chapter evaluates PPG pulse detection coverage and its

reliability in deriving cardiovascular indices such as PR and PAT. While the

findings are based on scientific equipment rather than commercial wearables,

they provide valuable insights for future wearable-based projects.

12.2 Materials and Methods

In this chapter, all recordings from the three datasets detailed in Sec. 11.2

will be analyzed.

12.2.1 ECG and PPG analysis

As yet extensively explained in Sec. 3.2, R-wave detection employs a wavelet-

based method detailed in [31]. Each R-wave occurrence is denoted as nR.

Successive R-waves define the RR intervals, from which HR in bpm is calcu-



12

SECTION 12.2. Materials and Methods 205

lated. Correction for ectopic beats and misdetections follows the approach

in [32], resulting in the NN interval series for HR derivation.

PPG signals, represented as xPPG(n), undergo a 0.3 to 15 Hz band-

pass filter using a 4-th order Chebyshev type II filter, as per [33]. This

filtering, implemented in a forward-backward zero-phase step, preserves

signal morphology while removing baseline drift and high-frequency noise.

Prior to PPG delineation, motion artifacts are addressed. An energy-

based artifact detection method [34], described in Sec. 3.5.2, is employed

to selectively remove segments with significantly higher energy than clean

periods.

Cubic spline interpolation is applied to the PPG signals to achieve a finer

time resolution (1000 Hz) for FP delineation. The maximum up-slope instants

(nD) of each PPG pulse are delineated, based on a low pass differentiator filter

and a time-varying threshold [35], as detailed in Sec. 3.5.3. The algorithm

also marks the apex (nA) and basal (nB) points of each pulse.

nR
1

nB
1

nA
1

nR
2

nD
1

nB
1

nA
1

nD
1

nB
1

nA
1

nD
1

Figure 12.1: ECG and PPG synchronous recording illustration. The three PPG
signals are at Forehead (xPPG,H(n)), at Earlobe (xPPG,E(n)) and at Finger
(xPPG,F(n)), respectively. The FPs delineated are: nR for the ECG R-wave instant,
nD for the PPG maximum up-slope instant, nA for the PPG apex point and nB for
the PPG basal point. Both red PPG (R-PPG, in red) and infrared PPG (IR-PPG,
in gray) lights, are also illustrated. Refer to [10], [36], for more information on the
morphology of PPG in different body locations.
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12.2.2 Coverage Measures

Coverage measures are approach in determining the reliability of PPG-based

devices compared to ECG, the gold standard for HR monitoring. We assess

PR against HR in 10-second non-overlapping segments for each FP in PPG

signals. Each segment is classified as either good or bad quality based on

pulse detection accuracy. The choice of a 10-second window aligns with

findings that this duration suffices for accurate HR estimation [37]. A PPG

segment is deemed bad if pulse detections deviate by more than 10% from

ECG detections in the same timeframe. An illustrative 70-second example is

shown in Table 12.2, highlighting that perfect HR estimation over an average

period does not guarantee 100% coverage.

Beyond HR estimation, PPG is valuable for computing cardiovascular

indices like PAT and PAV. Accordingly, this study also reports coverage

measures based on these parameters. For PAT coverage, the concordance

of heartbeat counts in 10-second segments with the number of PAT values

is evaluated. Similarly, PAV coverage assesses the segment’s validity inde-

pendently of the ECG. Table 12.2 provides an example for understanding

coverage definition in these contexts.

For the calculation of coverage, the reference instants for HR, PR (Eq.

(3.24)), PAT (Eq. (3.25)), and PAV (Eq. (3.27)) differ, potentially leading

to mismatches in 10-second segments. To mitigate this, the average PAT in

the 10-seconds segment is subtracted from the PPG signal before coverage

computation. This adjustment is depicted in Fig. 12.3.

As mentioned, three datasets with distinct characteristics are analyzed,

each employing different PPG acquisition modes (transmission or reflection),

light wavelengths (IR-PPG or R-PPG), and sensor placements (finger, fore-

head, or earlobe). The results include total average coverage for each dataset

for PR, PAT, and PAV, considering ECG as the reference. Additionally, the

extent of artifact removal in PPG signals is also quantified.

12.3 Results

Results are shown in three tables for the three different datasets (Tabs. 12.5, 12.6

and 12.7). Each table contains all the coverage information summarized for
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Figure 12.2: Illustrative example for the coverage definition. For the PR, good
coverage is considered, in a 10-seconds segment, if the estimation error of PPG
pulses is lower than 10%, compared to ECG. For PAT-coverage measurement
purposes, a 10-seconds segment is considered valid if the number of PAT values
differs less than 10% to the number of ECG beats. Note that PAT measures may
be omitted either because of being considered out of physiological limits or because
the associated PPG pulse is considered spurious. Similarly to PAT, this is done for
the PAV-coverage measurement.

TABLE 1 Illustrative example for the coverage definition. For the PR, good coverage is considered in a 10-s segment if the estimation error of PPG
pulses is lower than 10% compared to ECG. For PAT-coverage measurement purposes, a 10-s segment is considered valid if the number of PAT
values differs by less than 10% from the number of ECG beats. Note that PAT measures may be omitted either because of being considered out of
physiological limits or because the associated PPG pulse is considered spurious. Similar to PAT, this is done for the PAV-coverage measurement.

Time [secs] 0 10 20 30 40 50 60

Segment "i" 1 2 3 4 5 6 7

# ECG beats 9 10 9 10 11 12 11

HR [bpm] 54 60 54 60 66 72 66 62

# PPG pulses 8 9 9 10 11 14 11

PR [bpm] 48 54 54 60 66 84 66 62

Coverage, C (10%)
# beats - # PPG pulses1

X OK OK OK OK X OK C = 71%

# PAT pulses 8 9 9 9 11 12 11

# valid PAT pulses 7 9 8 8 10 11 10

Coverage, C (10%)
# beats - # PAT pulses2

X OK X X OK OK OK C = 57%

# PAV Pulses 8 11 9 9 11 12 13

# valid PAV pulses 8 10 9 9 9 11 11

Coverage, C (10%)
# beats - # PAV pulses3

X OK OK OK X OK OK C = 71%

1IF (#PPG-pulses(i) ≥ #ECG-beats(i)*0,9 AND #PPG-pulses(i) ≤ #ECG-beats(i)*1,1 ), C(i)=“OK”; else, C(i)=“X”.
2IF (#valid PAT-pulses(i) ≥ #ECG-beats(i) *0,9 ), C(i)=“OK”; else, C(i)=“X”.
3IF (#valid PAV-pulses(i) ≥ #ECG-beats(i) *0,9 AND #valid PAV-pulses(i) ≤ #ECG-beats(i) *1,1 ), C(i)=“OK”; else, C(i)=“X”.

With “i” being the index for each 10-s segment.

FIGURE 3
Correction of the mismatch in the PPG signal for the calculation of PR and PAV coverage. Before calculating the coverage of the series
referenced in the PPG pulses, such as PR or PAV, the average PAT must first be subtracted to align the occurrence of the pulses (n FPi) with the
occurrence of the heartbeats (nRi). If this is not done, there is the possibility of mismatch, which will make the coverage to be less than the real.

Frontiers in Electronics frontiersin.org06
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all the PPG signals: body locations, characteristic protocol stages, PPG

light emission wavelength and FP’s delineated.

First, the percentage of artifacts detected from each PPG signals is

displayed in Table 12.4. Note that an artifact is considered only in segments

with clearly higher energy than the clean segments. A small percentage of

artifacts are suppressed, from 1% to 6% in signals of 20 min and 2h20m, in

the Tilt-Table Test and in the Heat Stress Test, respectively. However, the

PPG at the Forehead in the Acute Mental Stress Test was low quality and

almost 20% of the PPG were artifacts.

12.3.1 Tilt-Table Orthostatic Test Dataset

Coverage results for the TTT are shown in Table 12.5. There is good PPG

coverage for estimating PR. Around 80% to 90% of HR can be estimated via

PPG with 10% error or less, regardless the FP used. The coverage is similar

whether using PPG at finger or at forehead, and for IR-PPG or R-PPG
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Figure 12.3: Correction of mismatch in the PPG signal for PR and PAV coverage
calculation. Prior to assessing coverage for PR or PAV, the average PAT is subtracted
to align pulse occurrences (nFPi) with heartbeat events (nRi). Failure to do so may
result in mismatches, underestimating actual coverage.

Table 12.4: Percentage of artifacts detected for each PPG signal at the three
datasets.
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lights as well, although slightly better for IR-PPG.

However, it is remarkable that the coverage deteriorates when we try to

estimate the PAT. There is an approximate maximum of 75% PAT pulses

that can be properly defined, compared to the number of R-waves delineated.

Remember that while an R-wave exists, the corresponding PAT can be

omitted, either because of a bad definition in time of the FP, or an outlier, or

even a PAT defined out of the physiological range. Even more, whereas the

nA appears to be a good FP to estimate the PR, now it presents the worst

results of coverage in terms of PAT, with an average coverage of 53-56%.

The other FPs report a higher coverage, around 70%.
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Table 12.5: Coverage results (in %) for the TTT dataset.
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12.3.2 Acute Mental Stress Dataset

Results for the mental stress test are shown in Table 12.6. Again, the coverage

of PPG to estimate the PR is notably higher than to estimate the PAT. In

addition, it can be seen a sudden decrease in the coverage for the PPG at

forehead, compared to the coverage at finger. In fact, looking at the PPG at

forehead, the quality of the signal in this dataset is particularly bad. As a

result, an average coverage of 30% is found for estimating PR or PAT.

Table 12.6: Coverage results (in %) for the acute mental stress test dataset.
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12.3.3 Heat Stress Dataset

Third, results for the heat stress test are shown in Table 12.7. For this dataset,

there are available 6 PPG signals for 2h-20min of recordings, including PPG

at finger, forehead and at earlobe, both for IR-PPG and R-PPG lights. In

general, except for some particular cases, all PPGs have good signal quality.

Coverage for PR estimation is around 70 to 80%. In fact, no big dif-

ferences are found for the coverage either using IR-PPG or R-PPG lights.

Moreover, coverage of PR estimation and of PAT estimation are quite similar.

The highest coverage rates are for the PPG at earlobe, using the R-PPG

wavelength. Nevertheless, for the PAT estimation using nA, we can see again

the smaller coverage rates.
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Table 12.7: Coverage results (in %) for the heat stress test dataset.
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12.4 Discussion

Coverage for mean PR, PAT, and PAV have been analyzed when using

different PPG FPs with signals recorded at different parts of the body

and light wavelengths. As mentioned before, the coverage definition differs

depending on the physiological parameters to estimate, i.e., PR, PAT or

PAV. On the one hand, regarding PR coverage, a segment is considered valid

for PR estimation if PPG can estimate this parameter with an error lower

than 10% with respect to the HR estimated from the ECG, which is taken

as ground truth. On the other hand, a physiological range restriction and

an outlier rejection rule are applied to PAT estimation, and only the outlier

rejection rule is applied to PAV. A ground truth is not available for these

two estimates, since PAT is estimated inside its physiological limits and PAV

is a relative measure with arbitrary units. Then, a segment is considered

valid if the difference in the number of PAT or PAV estimates determinable

in the segment is lower than 10% with respect to the number of heartbeats

detected from the ECG. In general, the best results in terms of coverage are

obtained for the transmission-PPG at finger, especially using nD or nB as

FP. Except for some particular cases, coverage of PPG when estimating the

PR, compared to coverage of ECG, is equivalent.

Regarding the placement of the PPG, the obtained coverage for finger

and earlobe are higher, whilst the coverage at forehead is usually lower. This

is due to the fact that PPG acquisition is very sensitive to artifacts due to

either poor contact or minimal motion artifacts, and PPG at forehead is

predisposed to these (because of facial expression and setup configuration).

Moreover, the device to record PPG at forehead must be dedicated and signal

quality must be ensured before recording as well. We show no fundamental

differences and no advantage between using IR-PPG or R-PPG light for PPG
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recordings. Note that the devices used for the recordings did not include

green light, which is the most common wavelength for PPG measurement

with wearable devices. An influence of the selected FP in the coverage was

observed, specially for PAT and PAV. The end of systole of the PPG pulses

are typically smooth, making nA very vulnerable to additive noise, in line

with the observations of [38]. Furthermore, the morphology of the apex of

PPG at earlobe or at forehead is also usually smoother.

The FP nA might be used for mean PR estimation with a similar per-

formance to that obtained by the other methods. However, results of PAT

coverage suggest that the performance weakens for this FP nA. On the

contrary, FPs nD and nB, are less prone to this heterogeneity in morphology.

In fact, the FP analysis performed in [3] in the TTT dataset, for time domain

PRV estimation, reported that nB and nD had the minimum relative errors

compared to the HRV estimators based on the ECG, with nD representing

the instant of maximum flow velocity for each heartbeat and nB representing

the time onset of systole.

In fact, looking at Tabs. 12.5, 12.6 and 12.7, the coverage for estimating

PAT, using nA as FP, is lower than using nD or nB. The coverage for PR

estimation using nA is also slightly lower than using nD or nB. However,

the coverage for estimating PAV is high. Based on that, we can say that the

estimation of the maximum point of a PPG pulse, i.e., xPPG(nA), can be

done well. Then, for measurements derived from the amplitude, such as PAV,

the coverage is good, but if measurements are based on the time instant of

detection, i.e., nA, coverage may worsen both for estimating PR and PAT,

the latter getting much worse due to the very small dynamic range intrinsic

to PAT. Therefore, the delineation of the FP in time is critical depending on

the application of use. In general terms, in order to better suit the smoother

shapes of the reflection-based PPG signals, and for a greater robustness

under non-stationary conditions such as wearable scenarios, we suggest using

nD or nB as FP, to get the best possible coverage rates.

Although many previous works analyzed the feasibility of PRV as a

surrogate of HRV, to the best of our knowledge, there are no previous works

studying the coverage when deriving other cardiovascular indices such as PR,

PAT or PAV estimation. Different coverage is obtained, using the same PPG

signal, depending on the PPG pulse fiducial point chosen for delineation.
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Additionally, for PRV analysis, the sensor results regarding the position are

not conclusive [28]. In this work, some advice and results regarding PPG

recording places, delineation or stress protocols are reported. For further

studies, each setup should be first analyzed and validated taking the results

and guidelines presented in this work into account, to study the feasibility

of their recording devices with respect to each specific application.

Finally, some limitations should be noted. Forehead-PPG signal was

not of main interest for the purposes of the study for which the Acute

Mental Stress Test dataset was recorded. Thus, the choice of the sensor was

not optimal. As a consequence, PPG at forehead is very noisy, and very

low coverage has been obtained for this dataset. In addition, none of the

three datasets analyzed included daily life data from wearables, as in [39],

where a greater impact of artifacts is expected. Consequently, the obtained

coverage cannot be extrapolated to daily life in absolute terms. However,

these datasets allow us to extract interesting conclusions in relative terms

between FP and sensor positions.

12.5 Conclusions

Finger- and earlobe-PPG signals obtained the higher coverage rates, with

coverage ranging from 70% to 90% for estimating the PR, 50% to 90%

for estimating the PAT, and 75% to 90% for estimating the PAV. Lower

coverage has been obtained for forehead-PPG signals, probably due to the

smoother shapes of the PPG at this location. The results should be read

keeping in mind that coverage has been reported using protocolized datasets

in controlled environments, and further studies should be performed using

data from daily life, for measures of PR, PAT and PAV.

Different coverage is obtained, using the same PPG signal, depending

on the PPG pulse FP chosen for delineation. The PPG pulse FP optimal

to derive clinically useful measures as PR, PAT or PAV, maximizing the

coverage rates are the nD, or alternatively, nB, especially in case of PAT

measures.
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13.1 Introduction

This chapter 13 delves into the exploration of vascular responses to mental

stress, focusing on the PTTD as a viable biomarker. PTTD, an alternative

metric to PWV, holds promise due to its independence from PEP variability.

This study aims to validate PTTD’s efficacy in reflecting stress-induced

cardiovascular dynamics, correlating closely with PWV.

PTTD estimation needs precise placement of dual PPG sensors at distinct

body locations, artifact removal and appropriate pulse delineation techniques.

The theoretical framework for PTTD and its potential as a stress biomarker,

213
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anchored in its association with cardiovascular metrics, has been thoroughly

detailed in Sec. 3.5.4.

Stress triggers a complex physiological response regulated by the ANS,

which manages the balance between rest-and-digest and fight-or-flight states

through vascular changes. To quantify stress-related vascular changes, PTT—the

time taken for a pressure wave to travel between arterial sites—is a critical

metric [40]. While PAT has been a common surrogate for PTT in non-invasive

blood pressure estimation [41], its accuracy is limited due to the inclusion of

PEP [42]. PTTD, independent of PEP, theoretically could provide a more

reliable assessment of PTT. It is measured as the interval between pulse

occurrences in two separate PPG sensors [43], [44]. This chapter focuses

on exploring the changes in PTTD under acute mental stress, assessing its

effectiveness as a biomarker for stress analysis.

13.2 Materials and Methods

13.2.1 Database

This analysis utilizes data from the acute mental stress test, as detailed in

Section 11.2.2. However, due to the inferior quality of forehead PPG signals,

only 14 participants’ data were deemed suitable for inclusion.

13.2.2 ECG and PPG Analysis

Both ECG and PPG signals underwent a similar processing pipeline as

described in earlier chapters. Key steps included band-pass filtering (0.3

to 15 Hz) using a 4th order Chebyshev type II filter and application of an

energy-based artifact detector (Sec. 3.5.2).

PAT to the finger (duPAT,F(n)) and forehead (duPAT,H(n)) was calculated

using respective PPG signals and ECG data (Eq. 3.25). PTTD was estimated

as the difference in pulse instants between finger and forehead PPG signals,

duPTTD,HF(n) (Eq. 3.26). Specific considerations for duPTTD,HF(n) estimation

included physiological range limitations, reference instants, and potential

negative values, all detailed in Sec. 3.5.4 of Part I.

Outlier detection was applied to duPAT,F(n), d
u
PAT,H(n), and dPTTD,HF

estimates using empirically adjusted parameters [45], explained in Sec. 3.5.4.
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Evenly-sampled versions of dPAT,F(n), dPAT,H(n), and dPTTD,HF(n) are ob-

tained through cubic spline interpolation at 4 Hz (see Fig. 3.22), facilitating

further analysis (Sec. 3.5.4).

13.2.3 Spectral Estimation of PAT and PTTD

A 300-order-FIR band-pass filter was applied to dPAT,F(n), dPAT,H(n) and

dPTTD,HF(n), to obtain its HF power and LF power [46], [47]. The signals

were analyzed in a 30-seconds-length running window with a 50%-overlap

for spectral analysis.

13.2.4 Statistical Analysis

The features used are the median and standard deviation, σ, calculated with

a 1-minute-length sliding window, for each pulse “i” of the dPTTD,HF(n),

dPAT,F(n), and dPAT,H(n) series. The stages are characterized by the median

of the values obtained in each windowed signal.

The Wilcoxon signed-rank test (subject-paired) was performed to study

the differences between relax and stress stages. An statistical analysis was

applied for finding differences in PTTD-based features between the stress

(ST , V E, SA) and relax (BLS) stages of the protocol. In addition, the same

features were calculated for the duPAT,H(n) and duPAT,F(n) signals in order

to evaluate their discriminative power differentiating stress and relaxation

stages.

The last five stages of the stress session are considered stressful and the

psychometric evaluation at the end of the session revealed that subjects

responded to the stress stimuli [4]. However, MT and AT phases were

excluded from the analysis because subjects were requested to speak during

those phases; as PTT has a strong relationship with respiration, changes with

respect to basal can be reflecting speaking-induced changes in respiration.

13.3 Results

The subset used was extracted from a larger database, where only 14 volun-

teers had both PPG signals with sufficient quality to be able to calculate the

corresponding PTTD with a detection percentage greater than 70% with
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respect to the total number of heartbeats. Surprisingly, there were volunteers

who had a negative basal PTTD, which means that the pulse wave was

reaching the finger before the forehead in relaxation.

Table 13.1 shows the median and interquartile range (IQR) obtained by

comparing the median and σ of the duPAT,H(n), d
u
PAT,F(n) and duPTTD,HF(n)

for all the subjects among basal stage and the different stress stages of

the protocol. Spectral analysis was also performed in order to compute the

frequency indices. Although it could not be done for the whole subset since

the duration of the evenly-sampled signals without time gaps were too short

to be done, one example is presented in Figure 13.2.

Table 13.1: Median (IQR25% - IQR75%) for the moving median and σ with a 1
minute-length window for dPTTD,HF(n), dPAT,H(n), dPAT,F(n) in relax and stressful
stages. Statistical significance between a stressful stage and BLS is marked with an
asterisk.

Parameters [msecs] BLS ST SA VE 

median (𝑑PTTD,HF
u (n)) 26 (16-36) 18 (4-34) 24 (12-40) 21 (0-40) 

median (𝑑PAT,H
u (n)) 211 (200-245) 192 (162-223)* 208 (185-245) 203 (175-233)* 

median (𝑑PAT,F
u (n)) 248.5 (235-262) 222 (211.5-227)* 247 (229-261) 235 (221-253)* 

σ (𝑑PTTD,HF
u (n)) 9.84 (6.7-14) 12 (10.5-17.70)* 14 (7.5-15) 11 (9.6-11.6) 

σ (𝑑PAT,H
u (n)) 11 (9-20) 11 (8-15) 13 (9-18) 10 (9-19) 

σ (𝑑PAT,F
u (n)) 6.3 (5.6-7.6) 6.2 (4-7.1) 6.6 (6.3-8) 5.5 (5-6.7) 
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13.4 Discussion

The possibility of quantifying changes in the sympathovagal balance caused

by acute mental stress was studied, using non-invasive sensors based on

PPG and also without the need of either the ECG or cuff/intra-arterial BP

sensors in the case of the PTTD index. As shown in Table 13.1, statistically

significant differences for the variance of PTTD were found in the ST when

compared to BLS, suggesting that it might be useful to detect states of acute

mental stress.

Although there were no statistically significant differences in the median

-that could be due to the small number of subjects-, a descending trend

may be observed in the stressful stage ST compared to the relax stage BLS

suggesting that the dPTTD,HF decreases with stress. Furthermore, statistically

significant reduction in the median of both PATs was seen in ST and V E

with respect to BLS. According to the results in [4], ST and V E were also

more differentiable than SA because of the specific stressors. With this

mechanism, the pulse wave velocity to the limbs is greatly increased with

respect to the one to the forehead despite the fact that the volume of blood

that reaches to the brain is much greater than to the hands.

Spectral analysis shown in Fig. 13.2 reveals that the dPAT,F(n) (blue)

has less power than the dPAT,H(n) (green) during stressful stimuli (ST )

and, therefore, the power of dPTTD,HF (orange) is very similar to that of

the dPAT,H(n). On the contrary, PAT spectral power in relaxation (BLS)

is similar for both dPAT,F(n) and dPAT,H(n), resulting in a lower power of

dPTTD,HF(n). Moreover, in the basal stage, it is clearly seen that there is

a component around the BR in both PAT series and dPTTD,HF, related to

RSA. However, in the stress stage, the dPAT,F(n) has two components, one

below 0.15 Hz and another around the BR; while almost all the spectral

power of dPAT,H(n) is centered around 0.1 Hz, apparently associated with the

Mayer wave which is a resonant effect of vasoconstriction with a period of 10

seconds caused by acute sympathetic activation [46]. This Mayer wave, being

very powerful at forehead but not at finger, are reflected in the dPTTD,HF as

a consequence. A similar finding was obtained in [44] for 14 volunteers that

performed a tilt-table test. During tilt stage, the power in the LF band at

forehead was substantially increased with respect to the one at finger, thus
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in the LF power of the dPTTD,HF.

One possible hypothesis to explain that increase of the Mayer wave power

in stress stages only in dPAT,H(n), hence in dPTTD,HF, is the following: During

a stressful situation, sympathetic activation causes vasoconstriction in the

blood vessels, whose effect is expected to be much greater in the extremities

than in the vessels that carry blood to the brain. Then, probably, the

rigidity of the peripheral arteries of the extremities under acute sympathetic

activation is much greater, thus a lower dynamic range of dPAT,F(n) relative

to that of dPAT,H(n) might be expected during stress. On the contrary, during

relax there is an absence of such strong vasoconstriction and the variations

in the PAT that can be observed in the finger and in the forehead are quite

similar.

Nevertheless, it’s necessary to verify if the existence of all these compo-

nents is consistent and general in all population. A study involving more

subjects is required as the PPG signals registered at forehead in this database

were of low quality. Then, only few of them had a reliable spectral estimation

from a PTTD signal without time gaps due to the large amount of bad or

miss-detections.

This methodology could be embedded in ad-hoc devices for the dPTTD,HF

measurement. It may lead to clinical applications that include not only

stress assessment and identification but also non-invasive, continuous and

ambulatory monitoring of the arterial tree condition with the need of only

two PPG sensors. However, the noise sensitivity of the PPG is a significant

aspect to take into account.

13.5 Conclusions

It can be concluded that dPTTD,HF is able to distinguish between relax

and induced mental stress. Local vasoconstriction caused by Mayer waves

could explain the significant strong fluctuations in dPTTD,HF. In addition, a

descending trend is also observed in the dPTTD,HF in the case of a sympathetic

activation.
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14.1 Introduction

The present chapter 14 builds upon the evaluation of PTTD in the acute

mental stress trial, by extending the investigation to include a comprehensive

analysis of vascular reactivity using PPG-derived PWV biomarkers. This

study involves fifteen subjects undergoing a passive heat stress test, a perfect

condition to evaluating vascular responses without requiring active mental or

physical exercise. The heat stress test used simulates a passive stressor, caus-

ing physiological responses including peripheral vasodilation and increased

HR, which are expected to influence arterial PWV [48], [49].

Initially focusing on analyzing PTTD, this chapter evolved to include a

comprehensive analysis of non-invasive vascular measures such as PAT and

PDA. This extended scope is employed to investigate cardiovascular adap-

tations to heat stress and the effectiveness of PWV surrogates in detecting

these changes. Employing the methodologies detailed in Sec. 3.5.1, I analyze

PPG signals from healthy participants during the heat stress test to calcu-

late PWV and vascular reactivity surrogates. The study not only compares

PWV obtained from PAT-based measurements with those from PTTD and

PDA but also aims to provide novel insights into cardiovascular function.

This could potentially identify new biomarkers for cardiovascular health

assessment that offer an expanded perspective beyond what traditional ECG

sensors and HRV indices provide.

14.2 Materials and Methods

14.2.1 Database

The data used in this study comes from one recording for each of the 15 young

(26 ± 2 years), healthy male volunteers, as part of a study investigating the

impact of sleep deprivation on ANS responses to passive heat stress [5]. The

fifteen sauna sessions included in this study comes from the control session,

i.e., when the fifteen volunteers had had normal sleep (8h of sleep), before

sauna session. All the sauna sessions were collected between 7:00 and 11:00

p.m. The biosignals, including lead-II ECG and PPG signals at different

body locations, were captured using the established setup.
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14.2.2 Biomarkers from ECG and PPG

From the ECG and PPG signals, all biomarkers described in Sec. 3.5.4 are

calculated, including HR, PAT, PTTD and PDA parameters. Outliers are

detected and suppressed using a mean absolute deviation method [50], as

detailed in Sec. 3.5.4.

14.2.3 Statistical Analysis

In our study, we employed a two-minute moving window strategy with a

50% overlap to compute mean and standard deviation series for each stage

of the heat stress protocol. To mitigate transient responses, we excluded the

first and last three minutes from all stages. For each stage, we conducted a

linear regression analysis on the average values of the two-minute window to

track the evolution of the parameters, referred to as slope (see Fig. 14.1).

Key features extracted for each parameter and stage included the initial

value, the end-of-stage value, and the slope from the regression analysis.

To synthesize the data across all subjects, we averaged these three features

for the PAT, PTTD, and PDA measurements from the 15 participants. To

compare the average relaxation stages values with the stress ones, we applied

a Wilcoxon signed-rank test. This paired statistical test was specifically

chosen for its ability to assess differences within the same patient, comparing

their average relax values with the corresponding average values observed

during stress (as illustrated in Fig 14.2).

Finally, we explored the correlation between the various PWV biomarkers

with HR across the different stages. To this end, we first calculated the average

HR and PWV values for each patient for the relax stages (1, 3, 5, 7, 9) and

stress stages (2, 4, 6, 8) separately. This step was crucial to ensure that

the subsequent bootstrap analysis would be based on representative mean

values rather than individual stage measurements, which could be subject

to transitory fluctuations.

We then employed a bootstrap resampling technique, with 1000 iterations

for each PWV biomarker, to estimate the 95% confidence intervals for the

mean correlation coefficients of PWV with HR. In each bootstrap iteration,

participants’ correlation values were resampled with replacement, and the

correlation between the averaged HR and PWV values was calculated for
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both relax and stress conditions. The bootstrap process thus generated a

distribution of mean correlation coefficients, from which we extracted the

2.5th, 50th (median), and 97.5th percentiles, thereby constructing the 95%

confidence intervals for the average correlations in both relax and stress

states (see Fig. 14.3).

14.3 Results

14.3.1 PWV analysis

Fig. 14.1 presents the evolution of HR, PAT, PTTD and PDA, the latter

measured using PPGF, for one representative volunteer during the heat stress

protocol. We can observe that during heat stress, PAT exhibits a highly

pronounced linear decrease, parallel to the linear increase trend observed in

HR. In contrast, during the relax/recovery stages, the PAT values remain

relatively stable, with flat slope. The standard deviation of PAT in each

2-minute window does not show a generalized apparent variability.

Regarding PDA evolution, the patterns observed in the first inner wave

width (W1) and the time interval between the first and second inner waves of

PPGF (T12) have trends similar to PAT. During heat stress, vasoconstriction

leads to shorter arrival times, hence higher velocities, resulting in reduced

W1 and T12, as expected by physiology.

The distribution for all participants of inter-stage slope, the initial value,

and the end-of-stage values averaged by typology of stress, i.e., at relax vs.

stress stages, have been calculated and displayed in boxplots in Fig. 14.2.

The arrival times of the pulse wave differ among the PPG measurement sites,

with the fingertip PAT presenting the longest absolute values, followed by

the forehead and, finally, the earlobe; with median values for all volunteers

around 205ms, 155ms and 135ms, respectively, in relax compared to 174ms,

136ms and 123ms during heat stress (absolute reduction around 15% under

stress, see Fig. 14.2(b)). On average, PTTD values are also longer during

the relax stages compared to the stress stages, as expected. The end-of-stage

median values for PTTD in relax compared to stress (Fig. 14.2(b)) are:

47ms vs. 36ms, respectively, for PTTDHF; 65ms vs. 48ms for PTTDEF;

and 20ms vs. 13ms for PTTDEH (an absolute reduction around 30% under

stress). As shown in Fig. 14.2(a), the PTTD values did not change during
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Figure 14.1: HR, PAT, PTTD and PDA evolution for one illustrative volunteer. The
black dotted lines represent the first order regression obtained for each metric and
stage. Data collected during heat stress exposure within the sauna are represented
in red, whereas measurements taken during the basal and recovery phases at normal
ambient temperature outside the sauna are indicated in blue. Units: HR: [bpm];
others: [ms].

the corresponding stages, having changes close to 0ms/min, whereas PAT

presents a linear decrease ≈ 2.5 ms/min, while stress remains.

A notable observation in Fig. 14.1 is that as the protocol progresses,

the end-of-stage PWV values in the stress stages gradually become slightly

lower, indicating a memory effect. This has been seen for this representative

participant in Fig. 14.1, but an exploratory analysis revealed a similar

evolution in all subjects included.
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Figure 14.2: Distribution of HR and PWV biomarkers for the 15 subjects, averaged
by typology of stress: relax [blue] vs heat stress [red]. (a) represents the average
of the first value in the stage, (b) the average end-of-stage PWV values, and (c)
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14.3.2 Heart rate correlation with PWV surrogates

Fig. 14.3 displays the 95% confidence intervals for the average correlation

coefficient (ρ) between the evolution of HR and PWV biomarkers averaged

across the two types of stages: relaxation and stress. A notable correlation

is observed between HR and the PWV estimates from PATF , PATH , PATE ,

W1, and T12 during stress stages, with coefficients significantly deviating from

zero and approaching -1, indicating a strong inverse relationship under stress.

Conversely, PWV estimates from PTTD exhibit no significant correlation

with HR during either relaxation or stress stages, suggesting a lack of

association in these measures.
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Stages.

14.4 Discussion

The study involved 15 healthy volunteers, and the analysis focused on

assessing PWV from PPG at different anatomical locations using PAT,

PTTD, and PDA. These surrogate measures offer valuable insights into the

relative changes in vasoconstriction, i.e., vascular reactivity. However, it

is important to consider the methodological and physiological differences

among these metrics, as they can affect the interpretation and usability in

various scenarios.

14.4.1 PWV for vascular reactivity assessment

PWV is a crucial indicator of arterial stiffness and overall vascular health.

Our study findings, as highlighted in the boxplots of Fig. 14.2, demonstrate

that all three PPG-based methods—PAT, PTTD, and PDA—effectively

detect changes in PWV and vascular reactivity during heat stress. These

methods reveal significant differences in PWV values between relax and

stress stages, underscoring their efficacy in capturing vascular dynamics.

Specifically, we observed that the intra-stage slope for PAT and PDA,
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as a measure of vascular reactivity, is highly negative during heat stress, as

evidenced in Fig. 14.2. This pattern suggests a progressive increase in PWV

under these conditions. However, PTTD presents a different response: even as

HR undergoes abrupt changes during heat stress stages, the slope of PTTD

estimates remains much smaller, especially in PTTDEH, while the average

level of PTTD does change. This finding implies that PTTD is sensitive to

vasoconstriction changes but less so to the progressively increasing changes,

which could be partially attributed to PEP.

The distinct behavior of PTTD is further illustrated in Fig. 14.1, which

depicts the evolution of these parameters in one representative volunteer. The

three PTTDs show a significant and immediate change at the onset of stress

exposure, followed by a period of stable values. This immediate response and

subsequent stability contrast markedly with the delayed adaptations seen in

other biomarkers like HR, PAT, and PDA, which only become evident after

a prolonged duration of stress.

This PTTD’s unique response highlights its sensitivity and consistency in

reflecting swift physiological changes triggered by stress. The key difference

lies in the initial PTTD values at the start of stress exposure, which are sig-

nificant. However, unlike the changes observed in PAT and PDA biomarkers,

the alteration in PTTD values during the stress stage itself is not statistically

significant, indicating its potential as a stable and sensitive marker of rapid

vascular changes.

As found by [51], PEP is a cardiovascular parameter linearly correlated

with HR, but the relationship is weaker or stronger under differing circum-

stances (rest: ρ2=0.06, physical stress: ρ2=0.65). This remarks that during

stress, PAT provides information about vasoconstriction, but PAT will also

exhibit a high component of PEP, since the definition of PAT includes this

period. Regarding the correlation obtained in this study of each PWV metric

with HR (Fig. 14.3), results suggest that the influence of HR is consistently

and highly affecting PAT and PDA specially during heat stress. ρ values

of all PAT and PDA estimates are very close to (-1), exhibiting the strong

inverse proportionality between HR and these PWV estimates under stress.

On the contrary, PTTD has no significant correlation with HR, supporting

the hypothesis that the progressive increasing changes observed in PAT and

PDA are mainly due to HR variations, mediated through PEP, the ejected
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systolic volume, also known as stroke volume, and the other cardiac output

(CO) modulators.

PTTD exhibits a similar behavior to HR and PAT during the relax stages.

However, during the heat stress stages, unlike PAT, we did not observe the

same pronounced trend following the one for HR, which is a novel and

interesting finding. Of note, the standard deviation of PTTD is larger than

for PAT, as a result of lower precision and/or lower dynamic range.

Therefore, based on these results, PTTD seems to have a superior per-

formance for the evaluation of vasoconstriction reactivity, since PAT and

PDA surrogates include additional SNS modulation variables other than

vasoconstriction. However, it is important to mention that the standard

deviation of PTTD is greater than the one of PAT or PDA measures, which

may be indicating a lower signal-to-noise ratio, likely due to the resolution

(dependent on the sampling frequency of PPG), and lower dynamic range of

PTTD. Besides, PTTD measurements from the fingertip to head (HF) or

earlobe (EF) show greater variability than earlobe to head (EH), indicative

of the pulse wave’s longer travel time. Shorter PTTD travel distances, such

as in EH, result in a narrower dynamic range, suggesting that PTTD mea-

surements over longer distances (HF or EF) are more effective for evaluating

vascular dynamics and reactivity.

We also performed a complete analysis encompassing frequency domain

indices of PAT, PTTD, and PDA, although the details are beyond the

scope of the present study. However, it should be highlighted that the

significant number of periods where PTTD could not be determined results

in a substantial amount of temporal gaps. This limitation arises from the

small dynamic range, and the requirements for high sampling rates and

high quality of the original PPG signals, which makes frequency analysis

of PTTD not feasible. Consequently, future research into PTTD should

prioritize studying the evolution of average PTTD absolute values over

specific time intervals, such as 2-minute periods, instead of frequency domain

analysis.

Our findings are consistent with previous studies that have used PWV

measures to assess changes in vascular reactivity during various stressors. For

example, several studies have demonstrated that PWV is a sensitive indicator

of changes in cardiovascular function under stress [52], [53]. Considering the
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methodological differences, PAT values obtained in this work are equivalent

to values previously reported [54]. Our study extends these findings by

characterizing PWV estimates for monitoring changes in vascular reactivity

during heat stress, taking into account the effect of PEP.

14.4.2 Physiological implications and applications

The ability to monitor changes in vascular reactivity, particularly under heat

stress, has crucial physiological implications. SNS activity influences BP and

HR, essential for thermoregulation during heat exposure [55]. During heat

stress, SNS-mediated modulation of the sinus node results in elevated HR

and CO.

Arterioles, with their high smooth muscle concentration [56], are central

in PWV regulation, differing from larger vessels in their impact on vascular

resistance and compliance. While veins primarily support venous return,

especially from lower extremities, arterioles are key in modulating vascular

dynamics.

SNS activity induces arteriole vasoconstriction that leads to increased

preload, as the constriction of the veins enhances venous return, and in-

creased afterload, as the constriction of the arteries and arterioles raises

the total peripheral resistance. Concurrently, it enhances myocardial con-

tractility, impacting stroke volume and further elevating BP [57]. Sauna

bathing showcases these physiological dynamics. It increases skin blood flow,

significantly contributing to CO, while internal organ blood flow decreases

[58]. Contrary to assumptions, BP and HR increase during sauna sessions,

leading to heightened myocardial oxygen consumption [5], [55]. PWV is

influenced by these mechanisms, altering PAT, PTTD, and PDA estimates

in different ways. For example, myocardial contractility and vasoconstriction

decrease W1 and T12, while an increase on HR will exhibit a strong linear

correlation to an increase on PWV, as in [51].

Vasoconstriction, in response to SNS activation, is a rapid physiological

process. Upon exposure to a stimulus, the SNS triggers the release of nore-

pinephrine, initiating vasoconstriction. This response can start within 1-2

seconds, with significant constriction typically occurring within 5-10 seconds

[59], [60]. Vasoconstriction responses are immediate, while BP increases re-

quire more time due to complex systemic activation to augment CO. PTTD
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values change more gradually during stress stages, reflecting SNS modulation,

while PAT and PDA estimates rise in tandem with HR during heat stress.

These novel findings may be suggesting that PTTD’s sensitivity to vasocon-

striction has an immediate and consistent response upon stress exposure, a

pattern not observed in HR, PAT, and PDA measurements. Based on the

physiology, we propose that PTTD may predominantly reflect changes in

arterial stiffness and BP linked to vasoconstriction, thus differentiating these

specific effects from other physiological influences.

Then, our findings suggest PTTD’s unique response to vasoconstriction,

with immediate and consistent values during stress stages, unlike HR, PAT,

and PDA. PTTD primarily reflects changes in arterial stiffness and BP

associated with vasoconstriction, differentiating it from other physiological

influences. Unaffected by CO and PEP changes, PTTD correlates well with

carotid-femoral PWV, requiring only two PPG sensors [61], [62].

14.4.3 Limitations and future work

This study has two main limitations. The first limitation is the lack of

PEP measurements, to compare our PWV estimates with the actual PEP.

Although previous studies analyzed the interrelationship between HR and

PEP, the absence of this data in these recordings limits the interpretation

and capability to draw definitive conclusions. Future studies could benefit

from including it to further validate the relationship between PEP and PWV,

with respect to variations in HR, too. Furthermore, the incorporation of

CO measurements could yield valuable information. One possible approach

to address the influence of HR on PEP, PAT, and PDA measures is to

compute HR-corrected PWV estimates, as demonstrated in [63]. Therefore,

considering the influence of HR on PWV estimation could provide a more

accurate reflection of vascular reactivity, unaffected by PEP.

Secondly, it is important to acknowledge that due to the study design,

the available data is limited to male participants. Therefore, there is a need

to extend the recordings to include data from the female population. This

would provide valuable insights into potential gender differences and enhance

the generalization of the findings.

In this study, it is essential to clarify that the term ’PWV’ refers to

measurements derived from transit times rather than directly measured
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velocities. Traditional PWV calculations typically require the distance the

pulse wave travels, necessitating measurements of vessel length or, by ap-

proximation, arm length or participant height. However, for within-subject

comparisons where vessel length is constant, transit times can serve as a

surrogate for velocity changes, as demonstrated in our results. In contrast,

population-based analyses should include normalization against height or

arm length to account for inter-individual variability and prevent potential

confounding.

14.5 Conclusions

This study underscores the importance of PWV and its surrogate measures,

including PAT, PTTD, and PDA, for assessing cardiovascular function under

heat stress conditions. The observed patterns and their relationships with

HR contribute significantly to our understanding of how the vascular system

reacts to different physiological states. Although PAT is a recognized surro-

gate of PWV and has been extensively used to assess arterial stiffness and

blood pressure, less attention has been given to PTTD and PDA. Our study

shows that PTTD provides valuable information about vasoconstriction, but

its practical use is limited by the need for two synchronized PPG sensors,

which is a challenge for wearable technology.

Moreover, it’s important to note the lower coverage of PTTD compared

to PAT and PDA, mainly due to the challenge of obtaining two high-quality

PPG signals at the same time. This difficulty is especially significant for

the spectral analysis of PAT and particularly PTTD, as it’s hard to achieve

enough coverage for a reliable spectrum analysis, an issue that was highlighted

in the previous chapter on mental stress analysis (13).
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[12] L. M. Eerikäinen, A. G. Bonomi, F. Schipper, L. R. Dekker, R.

Vullings, H. M. de Morree, and R. M. Aarts, “Comparison be-

tween electrocardiogram-and photoplethysmogram-derived features

for atrial fibrillation detection in free-living conditions”,

Physiological measurement, vol. 39, no. 8, p. 084 001, 2018.

[13] A. Tarniceriu, J. Harju, Z. R. Yousefi, A. Vehkaoja, J. Parak, A.

Yli-Hankala, and I. Korhonen,

“The accuracy of atrial fibrillation detection from wrist photoplethys-

mography. a study on post-operative patients”,



BIBLIOGRAPHY OF PART IV 233

In 2018 40th Annual International Conference of the IEEE Engineer-

ing in Medicine and Biology Society (EMBC),

IEEE,

2018,

Pp. 1–4.

[14] A. G. Bonomi, F. Schipper, L. M. Eerikäinen, J. Margarito, R. van
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15.1 Summary and Final Discussion

The primary aim of this thesis was to enhance cardiovascular health evalu-

ation through noninvasive assessment of ANS activity. This was achieved

by analyzing cardiac, respiratory, and PPG signals in both clinical and

non-clinical settings, with the use of long-term monitoring. The research

targeted several key areas: improving the assessment of weaning readiness

from mechanical ventilation, characterizing obstructive sleep apnea in pedi-

atric populations, and identifying potential biomarkers from PPG sensors

for integration into wearable technologies. Following an introductory part

covering the physiological fundamentals, the targeted disorders, and the
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methodologies employed (Part I), the thesis was organized into three princi-

pal parts, each addressing specific aspects and applications of noninvasive

signal analysis for the improvement of cardiovascular health monitoring.

15.1.1 Weaning Readiness

The first study, in Part II of the thesis, evaluated BRS in critically ill patients

undergoing MV, using the BPRSA technique. It revealed a notable negative

BRS capacity in patients ready for weaning, suggesting BRS quantification

as a potential predictor for weaning outcomes in the ICU.

The second study extended this research by analyzing CPC indices,

evaluated using three different techniques, over 24 hours before the SBT.

Results exhibited that traditional clinical criteria were insufficient to deter-

mine weaning readiness, with 15-20% of patients failing SBT or needing

reintubation. However, higher CPC values were observed in successfully

weaned patients, especially at night. These studies together highlight the

importance of integrating multifaceted physiological biomarkers, such as

BRS and CPC indices, for a more accurate assessment of weaning readiness

in ICU settings, emphasizing the role of long-term recordings and signal

processing techniques.

15.1.2 Obstructive Sleep Apnea

In Part III of the thesis, we explored various aspects of OSA in pediatric

patients. The initial study revealed significant differences in HRV metrics dur-

ing apnea episodes compared to normal breathing, indicating that traditional

HRV analysis may not be fully applicable during apnea. The subsequent study

highlighted the potential of low-frequency band TFC as a novel biomarker

for assessing OSA severity, suggesting a need for future research integrating

respiratory signals with HRV.

The third study demonstrated that treating OSA in prepubertal children

causally reduces the risk and severity of MetS. This finding was mediated

by a decrease in respiratory event frequency, underlining the importance of

treating OSA in early childhood to mitigate future cardiometabolic risks. In

this study, it is the first time that a cardiovascular risk indicator has been

validated for OSA treatment assessment, based on clinical and demographic
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data. Collectively, these studies emphasize the complex relationship between

OSA and cardiovascular health in children, advocating for more nuanced

and comprehensive approaches in pediatric sleep disorder assessments.

15.1.3 PPG Data Analysis

Part IV of the thesis explored the multifaceted potential of PPG in wear-

able devices. Chapter 12 revealed that coverage rates of PPG sensors vary

significantly with sensor location, particularly achieving higher accuracy in

finger and earlobe signals for vital metrics estimation. This underlines the

importance of sensor placement in wearable design for reliable monitoring.

Chapter 13 established the PTTD as a novel biomarker for differentiating

stress and relaxation states, highlighting its effectiveness in capturing sympa-

thetic activation and vasoconstriction. Chapter 14 further delves into the use

of PPG-derived measures like PAT, PTTD, and PDA for assessing vascular

reactivity under heat stress. It demonstrates that while PAT and PDA-based

biomarkers offer valuable insights, PTTD provides a more detailed descrip-

tion of vasoconstriction, crucial for understanding cardiovascular responses

under stress.

While the PTTD emerged as a superior biomarker of vascular reactivity

for assessing stress, its application in wearables is constrained by the necessity

of two perfectly synchronized PPG sensors. This requirement complicates its

widespread adoption in wearable technology. Conversely, PAT requires both

PPG and ECG sensors, adding to its complexity in wearable integration. In

contrast, PDA-based biomarkers, needing only a single PPG sensor, offer a

more feasible and straightforward approach for wearables.

These findings collectively underscore the versatility and significance

of PPG in wearable technology for continuous, non-invasive cardiovascular

monitoring, particularly in stress assessment and vascular reactivity analysis.

15.2 Main Conclusion

The integration of cardiovascular health assessment through noninvasive

signal processing of cardiac, respiratory, and PPG signals, may serve to

enhance clinical decision-making, particularly in weaning ICU patients from

mechanical ventilation and in the early detection and management of pe-
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diatric obstructive sleep apnea. The findings underscore the importance of

CPC as a potential analytical tool for innovative, non-invasive biomarkers

that aid clinical decision making.

Additionally, the application of PPG in wearable devices for monitoring

cardiovascular reactivity reveals promising avenues for continuous health

assessment in real life. This work not only contributes substantially to

biomedical engineering but also sets a foundation for future research in

personalized healthcare, emphasizing the growing role of long-term signal

processing and wearable technologies in health monitoring, and disease

prevention and screening.

15.3 Future Work

This thesis has opened several avenues for further research, building upon

the findings and methodologies developed herein. The following are potential

research directions that could extend and enhance the work presented:

1) Expanding CPC Analysis Across Ventilation Modes: A promising

line of investigation involves extending the analysis of CPC to include other

modes of ventilation such as assist and controlled ventilation. A particular

focus could be on VCV modes. The hypothesis is that including VCV in

the CPC analysis might necessitate a distinct analytical approach, given the

expected higher CPC in VCV due to the increased ventilatory assistance.

This study could explore if variations in CPC levels, particularly sudden

changes in the HF and LF bands, can provide insights into cardiovascular

health and the occurrence of cardiorespiratory events.

2) Comprehensive Classification and Survival Analysis: After incor-

porating all mechanical ventilation modes into the analysis, conducting a

classification study coupled with survival analysis would be valuable. This

research could elucidate the role of CPC in predicting actual SBT success

and patient outcomes.

3) Evaluating Sleep Health Prior to Weaning: Assessing sleep health

before making decisions on weaning readiness and conducting SBTs presents

an innovative approach. This would involve applying the techniques and

methodologies detailed in this thesis for HRV and CPC analysis to eval-

uate sleep quality in mechanically ventilated patients and providing this
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information to clinicians.

4) Real-World Application of PPG Biomarkers: Implementing and

assessing the practicality of PPG biomarkers in wearable devices and real-

life settings, with a focus on coverage and quality, is crucial. The aim is

to transition the biomarkers developed for stress assessment in Part IV

to clinical applications, such as facilitating OSA diagnosis using wearable

technologies.

5) Integrating HRV and CPC with Cardiovascular Risk in OSA:

Investigating the relationship between HRV, CPC, and cardiovascular risk,

as measured by MetS, in OSA patients, including adult standard metrics

of cardiovascular risk and the pediatric MetS validated in this thesis, could

provide new insights into the disease’s impact on cardiovascular health.

6) Developing PPG-Based OSA Diagnosis and Stratification Tools:

The creation of devices utilizing PPG-derived biomarkers for OSA diagnosis

and stratification is an exciting possibility. We are already developing a

research-based platform using a MAXIM PPG measuring device, which offers

a potential pathway for easy and efficient OSA monitoring and diagnosis

solutions. However, this system may not be suitable for ICU environments,

where comprehensive and continuous monitoring is essential. The adoption

of such technologies in clinical settings requires further exploration and

validation.

Figure 15.1: Wrist-Based PPG, SpO2, and Accelerometry Health Sensor Platform.

These proposed research directions aim to build upon the current thesis’s

findings, exploring new methodologies and applications in the fields of

mechanical ventilation, sleep health, and wearable sensor technology. The
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goal is to further enhance patient care and monitoring in both clinical and

non-clinical settings.
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Breathing Trial (SBT). The S-group stands for the group of

patients successfully weaned (successful SBT and no need of
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