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estrés.
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Summary

In the literature, numerous results exist for the analysis of discrete event dynamic systems
(DEDS) using the formalism of Petri nets (PN). These nets find applications in various fields
such as manufacturing systems, supply chains, traffic systems, and healthcare systems, to
mention a few. However, the computational complexity in analyzing these systems can easily
grow due to different factors, such as a large size of the net (structure), a large marking
(population), or a high interconnection between network nodes. Such situations lead to the
well-known state explosion problem, where the set of reachable markings grows exponentially.
This has led to the proposal of an alternative approach: the analysis of discrete event systems
using continuous models, known as fluidification.

This thesis focuses on the study of timed continuous Petri nets (TCPNs) under infinite server
semantics (ISS), considered a potential approximation of stochastic Petri nets with a Markovian
interpretation. The main advantage of this approach, in contrast with traditional methods
that involve enumerating states, is that it provides more efficient means to analyze the system
behavior while maintaining a good level of accuracy with respect to the behavior of the discrete
model. This formalism allows representing DEDS as a family of hybrid systems, specifically
belonging to piecewise affine systems (PWA) with polyhedral regions and constrained inputs.
A TCPN can be seen as a PWA system where the number of linear modes composing it depends
on the number of join transitions of the net.

Particularly, we are interested in the study of controllability and the controller synthesis
for TCPN systems under ISS. Controllability is one of the most important properties of any
dynamic system since it indicates whether the state of the system can be driven in a desired
way. The latter refers to the design and implementation of controllers to impose a specific
behavior on a given system.

The analysis of controllability of TCPNs, however, is not trivial. It is well-known that
checking certain controllability properties, even for very simple PWA systems are undecidable
problems. To deal with that, the study of the controllability for the particular case of TCPNs
under ISS has been largely addressed in the literature. These results, however, usually require
analyzing each one of the polyhedral regions of the system (whose number grows exponentially
in the size of the PN), are only centered in the analysis for subclasses of nets, and/or consider
restrictive conditions, such as that all the transitions (events in the system) can be controlled.
Similar issues arise in the existing literature on control synthesis for TCPNs, which has been
largely addressed without tackling the controllability analysis and considering mainly particular
cases in which this property trivially holds (for instance the case when all the transitions are
controllable).

In this thesis, we deal with TCPN systems with the presence of uncontrollable transitions.
In the literature, the commonly adopted goal for this case is to study controllability over the
set of equilibrium markings of the system, which represent the stationary operating points of
the modeled plant. This is a particularly challenging problem that has been addressed in the
literature by using a local approach: by characterizing controllability over the set of equilibrium
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markings in each polyhedral region, where the system behaves linearly, by using controllability
matrices. Unfortunately, since the number of regions grows exponentially, the complexity of
the controllability analysis, from this perspective, also grows exponentially.

Therefore, the main objective of this thesis is to provide tools for the analysis of controllabil-
ity and control design while avoiding the exponential complexity associated with such analyses
through the utilization of the current techniques. Particularly, we establish a structural ap-
proach (in terms of the Petri net structure) to deal with these problems. The main contributions
of this thesis can be encompassed in the following 3 main categories:

Structural analysis of controllability: We deal with the analysis of controllability by
proposing a novel structural approach (depending only on the information of the net structure).
We propose a new property named the net rank-controllability (NRC), a structural property
of the TCPN. Then, the relation between NRC and controllability is studied. It is shown
that under the assumption of liveness, NRC is a sufficient condition for controllability over the
equilibrium markings of multiple regions of the system.

More importantly, it is shown that this property can be characterized in terms of global
structural objects of the net, thus, avoiding the analysis by regions. In this sense, some new
structural conditions for NRC are derived for general TCPNs.

Finally, polynomial-time algorithms for the verification of NRC are provided.

Analysis of equilibria in TCPNs: In this part of the thesis, a study of the connectivity
of the sets of equilibrium markings, within the different polyhedral regions of a given system,
is presented and its importance for the analysis of controllability is addressed. By defining the
connectivity graph of a given system, which represents the connections between the different
equilibrium markings in its different polyhedral regions, we provide tools for its computation
achieving a better performance than the brute force methods used in the literature. As it will
be shown, this tool provides useful information for the analysis of controllability and synthesis
of controllers in general TCPN systems.

To further particularize these results and by adopting a structural approach, a qualitative
analysis of the equilibrium sets in Choice-Free (CF) TCPN systems is presented. It is based
on the analysis of the slowest conservative subsystems of the system. This allows us to define
a structural component named the Maximal Limiting Subnet (MLS). Then, some properties of
the equilibrium sets in CF-TCPN systems are stated in terms of its MLS. Next, the connectivity
of the equilibrium sets is studied for this subclass. It is shown that CF-TCPN systems always
exhibit this property. Finally, the previous results are extended to Topologically Equal Conflict
TCPN systems.

Control synthesis and applications to real-life systems: The implementation of the
main results for the analysis of controllability and equilibria from the previous sections is pre-
sented. We implement several algorithms for this purpose in SimHPN, an available MATLAB
toolbox for the analysis of hybrid Petri nets. This serves to facilitate their application in real-life
systems.

Additionally, we propose a control scheme to optimize the behavior of TCPN systems with
the presence of uncontrollable transitions. The scheme is based on an On-Off type control
over the firing speed at the controllable transitions that reduce the marking error, i.e., the
difference between the desired and actual state of the system. The proposed control law can
be computed easily online, despite the complexity of a given system. The effectiveness of the



proposed control scheme is studied using simulation results and its use in different case studies.

Finally, we present some case studies by modeling two systems to showcase the capabilities
of the studied formalisms: an industrial transport platform manufacturing process and the
modeling of healthcare systems based on clinical pathways. For the former, we present a
Generalized Stochastic Petri net to model and analyze the manufacturing process for transport
platforms at the Alimak Group facility in La Muela, Spain. For the latter, we propose a TCPN
model that allows for an efficient continuous-time analysis of the patient flow and resource
utilization dynamics of a hip fracture clinical pathway at the Lozano Blesa University Clinical
Hospital, in Zaragoza, Spain. For this second model, we also deal with the controllability
analysis and control synthesis by using the previously presented results. We demonstrate the
feasibility and effectiveness of the methodology presented in this thesis through this case study
and some other examples.



Resumen

En la literatura, existen numerosos resultados para el análisis de sistemas dinámicos de eventos
discretos (DEDS) utilizando el formalismo de las redes de Petri (PN). Estas redes encuentran
aplicaciones en diversos campos como sistemas de manufactura, cadenas de suministro, sistemas
de tráfico y sistemas de atención médica, por mencionar algunos. Sin embargo, la complejidad
computacional en el análisis de estos sistemas puede aumentar fácilmente debido a diferentes
factores, como el tamaño grande de la red (estructura), un marcado grande (población) o una
alta interconexión entre nodos de la red. Tales situaciones conducen al conocido problema de
explosión de estados, donde el conjunto de marcados alcanzables crece de manera exponencial.
Esto ha llevado a la propuesta de un enfoque alternativo: el análisis de sistemas de eventos
discretos utilizando modelos continuos, conocido como fluidificación.

Esta tesis se centra en el estudio de las redes de Petri continuas temporizadas (TCPNs) bajo
la semántica de infinitos servidores (ISS), considerada como una aproximación potencial de las
redes de Petri estocásticas con una interpretación de Markov. La principal ventaja de este
enfoque, en contraste con los métodos tradicionales que implican la enumeración de estados,
es que proporciona medios más eficientes para analizar el comportamiento del sistema, mante-
niendo un buen nivel de precisión con respecto al comportamiento del modelo discreto. Este
formalismo permite representar DEDS como una familia de sistemas h́ıbridos, espećıficamente
pertenecientes a los sistemas afines a trozos (PWA) con regiones poliédricas y entradas aco-
tadas. Un TCPN puede considerarse como un sistema PWA donde el número de modos lineales
que lo componen depende del número de transiciones de sincronización de la red.

Particularmente, nos interesa el estudio de la controlabilidad y la śıntesis de controladores
para sistemas TCPN bajo ISS. La controlabilidad es una de las propiedades más importantes de
cualquier sistema dinámico, ya que indica si el estado del sistema puede controlarse de la manera
deseada. La śıntesis de controladores se refiere al diseño e implementación de controladores para
imponer un comportamiento espećıfico en un sistema dado.

Sin embargo, el análisis de la controlabilidad de TCPNs no es trivial. Se sabe que verificar
ciertas propiedades de controlabilidad, incluso para sistemas PWA muy simples, son problemas
indecidibles. Para abordar esto, el estudio de la controlabilidad para el caso particular de
TCPNs bajo ISS ha sido ampliamente abordado en la literatura. Sin embargo, estos resultados
generalmente requieren analizar cada una de las regiones poliédricas del sistema (cuyo número
crece exponencialmente con el tamaño de la PN), se centran solo en el análisis de subclases de
redes, y/o consideran condiciones restrictivas, como que todas las transiciones (eventos en el
sistema) puedan ser controladas. Problemas similares surgen en la literatura existente sobre
śıntesis de control para TCPNs, que se ha abordado en gran medida sin abordar el análisis de
la controlabilidad y considerando principalmente casos particulares en los que esta propiedad
se cumple trivialmente (por ejemplo, el caso en que todas las transiciones son controlables).

En esta tesis, estudiamos sistemas TCPN con la presencia de transiciones no controlables.
En la literatura, el objetivo comúnmente adoptado para este caso es estudiar la controlabilidad
sobre el conjunto de marcados de equilibrio del sistema, que representan los puntos de operación
estacionarios de la planta modelada. Este es un problema particularmente desafiante que se ha
abordado en la literatura mediante un enfoque local: caracterizando la controlabilidad sobre
el conjunto de marcados de equilibrio en cada región poliédrica, donde el sistema se comporta
linealmente, utilizando matrices de controlabilidad. Desafortunadamente, dado que el número
de regiones crece exponencialmente, la complejidad del análisis de controlabilidad, desde esta



perspectiva, también crece exponencialmente.

Por lo tanto, el objetivo principal de esta tesis es proporcionar herramientas para el análisis
de controlabilidad y el diseño de control evitando la complejidad exponencial asociada con tales
análisis a través de la utilización de técnicas actuales. En particular, establecemos un enfoque
estructural (en términos de la estructura de la red de Petri) para abordar estos problemas.
Las principales contribuciones de esta tesis pueden englobarse en las siguientes 3 categoŕıas
principales:

Análisis estructural de la controlabilidad: Abordamos el análisis de la controlabilidad
proponiendo un enfoque estructural novedoso (dependiendo solo de la información de la estruc-
tura de la red). Proponemos una nueva propiedad llamada net rank-controllability (NRC), una
propiedad estructural de la TCPN. Luego, se estudia la relación entre NRC y la controlabili-
dad. Se muestra que bajo la suposición de vivacidad, NRC es una condición suficiente para la
controlabilidad sobre marcados de equilibrio de múltiples regiones del sistema.

Más importante aún, se muestra que esta propiedad puede caracterizarse en términos de
objetos estructurales globales de la red, evitando aśı el análisis por regiones. En este sentido,
se derivan nuevas condiciones estructurales para NRC para TCPNs generales.

Finalmente, se proporcionan algoritmos de tiempo polinómico para la verificación de NRC.

Análisis de marcados de equilibrio en TCPNs: En esta parte de la tesis, se presenta un
estudio de la conectividad de los conjuntos de marcados de equilibrio dentro de las diferentes
regiones poliédricas de un sistema dado, y se aborda su importancia para el análisis de la
controlabilidad. Al definir el grafo de conectividad de un sistema dado, que representa las
conexiones entre los diferentes marcados de equilibrio en sus diferentes regiones poliédricas,
proporcionamos herramientas para su cálculo logrando un mejor rendimiento que los métodos
de fuerza bruta utilizados en la literatura. Como se mostrará, esta herramienta proporciona
información útil para el análisis de la controlabilidad y la śıntesis de controladores en sistemas
TCPN generales.

Para particularizar aún más estos resultados y adoptar un enfoque estructural, se presenta
un análisis cualitativo de los conjuntos de equilibrio en sistemas TCPN Choice-Free (CF). Se
basa en el análisis de los subsistemas conservativos más lentos del sistema. Esto nos permite
definir un componente estructural llamado la Maximal Limiting Subnet (MLS). Luego, se es-
tablecen algunas propiedades de los conjuntos de equilibrio en sistemas CF-TCPN en términos
de su MLS. A continuación, se estudia la conectividad de los conjuntos de equilibrio para esta
subclase. Se muestra que los sistemas CF-TCPN siempre exhiben esta propiedad. Finalmente,
los resultados anteriores se extienden a sistemas TCPN con Conflictos Topológicamente Iguales.

Śıntesis de controladores y aplicaciones a sistemas del mundo real: Se presenta
la implementación de los principales resultados para el análisis de la controlabilidad y los
equilibrios de las secciones anteriores. Implementamos varios algoritmos con este propósito en
SimHPN, una toolbox de MATLAB disponible para el análisis de redes de Petri h́ıbridas. Esto
sirve para facilitar su aplicación en sistemas del mundo real.

Además, proponemos un esquema de control para optimizar el comportamiento de sistemas
TCPN con la presencia de transiciones no controlables. El esquema se basa en un control tipo
On-Off sobre la velocidad de disparo en las transiciones controlables que reduce el error en el
marcado, es decir, la diferencia entre el estado deseado y real del sistema. La ley de control
propuesta puede calcularse fácilmente en ĺınea, a pesar de la complejidad de un sistema dado.



La efectividad del esquema de control propuesto se estudia mediante resultados de simulación
y su aplicación en diferentes casos de estudios.

Finalmente, presentamos algunos casos de estudios modelando dos sistemas para mostrar las
capacidades de los formalismos estudiados: un proceso de fabricación de plataformas de trans-
porte industrial y la modelización de sistemas de atención médica basados en v́ıas cĺınicas. Para
el primero, presentamos una Red de Petri Estocástica Generalizada para modelar y analizar el
proceso de fabricación de plataformas de transporte en las instalaciones de Alimak Group en
La Muela, España. Para el segundo, proponemos un modelo TCPN que permite un análisis efi-
ciente en tiempo continuo del flujo de pacientes y la dinámica de utilización de recursos de una
v́ıa cĺınica de fractura de cadera en el Hospital Cĺınico Universitario Lozano Blesa, en Zaragoza,
España. Para este segundo modelo, también abordamos el análisis de la controlabilidad y la
śıntesis de control utilizando los resultados presentados anteriormente. Demostramos la viabil-
idad y eficacia de la metodoloǵıa presentada en esta tesis a través de este caso de estudio y
algunos otros ejemplos.
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Chapter 1
Introduction

1.1—Motivation

Discrete Event Dynamical Systems (DEDS) refer to systems whose evolution is governed by

occurrences of events, producing discrete changes in the state of the system, often with non-

deterministic behavior [Cassandras and Lafortune, 2008]. This formalism encompasses a wide

variety of systems such as manufacturing systems, traffic systems, healthcare systems, and

communication systems, among many others.

The application of DEDS theory has proven to be successful in practical scenarios where

it has played an important role in the analysis and design of diverse systems, demonstrating its

usefulness in identifying and mitigating potential challenges. For instance, in manufacturing

systems, DEDS theory has successfully aided in preemptively discovering bottlenecks, optimiz-

ing production workflows, and enhancing overall efficiency [Campos et al., 2018]. Additionally,

its application in traffic systems has facilitated the modeling of complex traffic patterns, leading

to improved traffic flow management strategies [Coogan et al., 2017]. Furthermore, modeling

the dynamic interactions of healthcare systems has proven instrumental in the assessment of re-

sources for optimal performance by the identification of bottlenecks, streamlining patient flow,

and optimizing resource allocation [Jacobson et al., 2013].

DEDS theory is a branch of mathematics and engineering that emerges as a fundamental

response to the need to comprehend and explain the intricate behaviors of numerous man-made

systems. Different formalisms have been introduced over the years to describe and analyze those

behaviors. Notable among these are Process Algebras [Baeten and Weijland, 1991], Automata

[Ramadge andWonham, 1989], and Petri nets [Murata, 1989], each offering a unique perspective

to capture the essential attributes of a system.

In particular, Petri nets (PNs) are a widely accepted paradigm within the scientific com-

munity due to their efficacy in modeling, analyzing, and controlling DEDSs. They provide

a powerful mathematical background, as well as a visually intuitive graphical representation,

offering an appropriate framework for collaboration between researchers and practitioners. An

1
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important feature of Petri nets is that they capture the main characteristics of DEDSs such as

concurrency, parallelism, synchronization, and mutual exclusion, among others [Silva, 1985].

However, as systems become more complex, managing a large number of parts, compo-

nents, and information, the analysis using these formalisms becomes challenging. Particularly

in heavily populated and complex systems, DEDS formalisms suffer from the so-called state

explosion problem. In the context of Petri nets, this problem has been tackled in the litera-

ture by following a classical relaxation: the fluidification of the system [David and Alla, 2010,

Silva et al., 2011], leading to the concept of Continuous PNs (CPNs). Fluidization proposes

to relax the integrality constraints of the discrete model system, and deals with a continuous

approximation; this allows to make some computational problems decidable or more tractable

in practice.

This thesis focuses on the study of the formalism of timed continuous Petri nets (TCPNs).

TCPNs are continuous-state systems, originally introduced as a fluid relaxation of discrete PNs

[David and Alla, 2010, Silva et al., 2011] to cope with the state explosion problem, present

in the analysis of highly populated discrete event systems. This is achieved by fluidizing the

state space, which allows the application of analysis techniques rooted in linear algebra, linear

dynamic systems analysis, and control theory, among others. This approach contrasts with

traditional methods that involve enumerating states, providing more efficient means to analyze

the system’s behavior while maintaining a good level of accuracy with respect to the behavior of

the discrete model. Furthermore, it offers the benefit of leveraging the analysis and design tech-

niques that have been developed specifically for TCPNs, that have been extensively addressed

in the literature (steady-state throughput analysis [Mahulea et al., 2008b, Navarro-Gutiérrez

et al., 2022a], fault diagnosis [Casas Carrillo et al., 2021, Mahulea et al., 2012], controllability

[Vázquez et al., 2014], observability [Mahulea et al., 2010], among many others).

In this thesis, the main focus is to study TCPNs under infinite server semantics (ISS),

whose evolution is described by piecewise affine systems (PWA) [Kloetzer et al., 2010, Xu and

Xie, 2014] with polyhedral regions and constrained inputs. TCPNs under ISS provide a good

approximation of the performance of timed interpretations of PNs, such asMarkovian Petri nets
1 [Mahulea et al., 2009, Molloy, 1982], and they have been successfully used to model systems,

such as epidemiological [Beccuti et al., 2013], health management [Dotoli et al., 2009a], or traffic

[Júlvez and Boel, 2010], among others.

In particular, we are interested in the study of controllability and the controller synthesis

for TCPN systems under ISS. The former is a valuable property that indicates whether a system

can be driven to a required state by reducing the firing speed at the controllable transitions. The

latter refers to the design and implementation of controllers to impose a specific behavior on the

system. By following a control theory approach, the frequently established control objective

consists of driving the TCPN system toward a desired target state, rather than the control

1Introduced as stochastic Petri nets in Molloy [1982], using exponentially distributed transition rates.
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problems commonly addressed in DEDS (like disabling the occurrence of certain controllable

events to avoid forbidden states). Moreover, these kinds of controllers can be designed for the

fluid system and then applied to its discrete counterpart (see for instance, Vázquez and Silva

[2009] for the stock-level control of a stochastically timed automotive assembly line model).

In the literature, the controller synthesis for TCPNs has been largely addressed without

tackling the controllability analysis (e.g., Mahulea et al. [2008a], Kara et al. [2009], Ross-León

et al. [2010], Taleb et al. [2014]), considering particular cases in which this property trivially

holds (for instance the case where all the transitions are controllable [Vázquez et al., 2014]).

Nevertheless, to establish methods for the controller synthesis of more general systems, a first

step is to improve the analysis techniques for controllability.

Since TCPNs correspond to PWA systems, a first natural step will be to use the available

results for controllability for this type of systems. However it is well known that the control-

lability analysis for general PWA systems is not trivial [Xu and Xie, 2014]. A wide variety of

works dealing with this subject can be found in the literature, e.g., Bemporad et al. [2000],

Xu and Xie [2005] and Habets et al. [2006]. In particular, the approach from Bemporad et al.

[2000] requires the solution of a Mixed-Integer Linear Programming problem (MILP) to deter-

mine the controllability of a PWA system; in Xu and Xie [2005], the controllability of planar

bimodal piecewise linear systems is studied; Habets et al. [2006] provided sufficient conditions

for reachability in PWA systems based on the reachability inside the different polyhedral re-

gions of a system, which can be extended to controllability. These results, however, can only

be applied to TCPNs with a small number of state variables since the solution of MILPs is a

computationally complex problem and the number of polyhedral regions composing a TCPN

grows exponentially in the size of the PN [Silva et al., 2011]. Hence, these results do not provide

useful information in general TCPNs.

The study of controllability for TCPNs under ISS has also been addressed in the literature

[Jiménez et al., 2005, Mahulea et al., 2008b, Vázquez and Ramı́rez-Treviño, 2012, Vázquez

et al., 2014]. These works take advantage of the continuous control theory and the structural

analysis of PNs to derive more adequate results for the problem under consideration. In Jiménez

et al. [2005], the controllability property in Join-Free TCPNs, fully described by a single linear

system, was studied. In Mahulea et al. [2008b] it was stated that TCPN systems are frequently

not controllable in the sense of continuous-state systems (where a continuous system is named

controllable if all states in the state space can be reached from any other state in the state

space), due to the existence of state invariants, related to marking conservation laws imposed

by P-flows. In Vázquez et al. [2014], the analysis of controllability was divided into two cases:

when all the transitions are controllable and when there exist uncontrollable transitions. In the

first case, the consistency of the net is sufficient and necessary to guarantee controllability. In

the second case, it was demonstrated that controllability over all of the reachable markings could

not be achieved. Nevertheless, this property was defined as the possibility of transferring the
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system between its potential steady states (equilibrium markings). This approach is of great

interest since these states usually represent the potential stationary operating points of the

modeled plants. That work derives necessary and sufficient conditions for controllability over

the set of equilibrium markings in a given polyhedral region, where the system behaves linearly,

by using controllability matrices. Unfortunately, as stated before, the number of regions grows

exponentially in the size of the TCPN, hence the complexity of the controllability analysis,

from this perspective, also grows exponentially.

Moreover, since the controllability is defined over the sets of equilibrium markings of the

system, the analysis of these sets requires some attention too. In Vázquez et al. [2014] it is

stated that if the system is controllable over the equilibrium sets in each region, a sufficient

condition for controllability over the set of all equilibrium markings of the system is that such

set is connected. In other words, issues appear if it is not connected since, even if the system is

locally controllable in each region, it is not necessarily globally controllable.

Then, a deeper analysis of the equilibrium sets on TCPN systems is necessary to establish

stronger controllability results. However, the study of equilibria in general piecewise-smooth

dynamical systems is far from trivial [Bernardo et al., 2008]. Nevertheless, since TCPNs are

continuous on the state and its derivative, we can exclude cases like pseudoequilibria or sliding

manifolds and restrict our study to phenomena that have been observed in the context of

TCPNs such as isolated equilibrium markings, sets of infinitely many equilibria, equilibria at

the border of regions [Meyer, 2012, Vázquez et al., 2014] and oscillatory behaviors in steady-

state [Mahulea et al., 2008b], for instance. The literature on the study of equilibria in TCPNs,

however, is very limited. Usually, it is carried out by analyzing the dynamic matrix of each

linear mode of the system (corresponding to its different regions). Nonetheless, the existence of

a potentially exponential number of regions in general nets makes this a challenging problem.

Unlike the case of controllability and the study of equilibrium sets, the analysis of other

properties such as diagnosability (Casas Carrillo et al. [2021]), steady state throughput anal-

ysis (Navarro-Gutiérrez et al. [2020] and Navarro-Gutiérrez et al. [2022b]), and observability

(Mahulea et al. [2010], Aguayo-Lara et al. [2011] and Aguayo-Lara et al. [2014]) has greatly

benefited from adopting a structural approach, which has emerged as a powerful methodology.

In other words, this structural approach harnesses the information embedded within the Petri

net structure itself to characterize specific properties without the exhaustive analysis of all

linear modes within a given system. This technique, not new for TCPNs, parallels its classical

application in the structural theory of discrete Petri nets, where it has been employed to study

properties such as boundedness, liveness, deadlock-freeness, and many others [Silva et al., 1998].

As will be explained in the following, the main objective of this thesis is to establish a

structural approach to deal with the controllability analysis in TCPN systems.
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1.2—Contributions

The main contributions of this thesis can be encompassed in the following 3 main categories:

• Structural analysis of controllability: This thesis deals with the analysis of con-

trollability by using a structural approach. We propose a new property named the net rank-

controllability (NRC), a structural property of the TCPN that indicates that the controllability

matrices of all the linear modes of the system have the largest possible rank. Then, the relation

between NRC and controllability is studied. Under the assumption of liveness, it is shown that

NRC is a sufficient condition for controllability; nevertheless, if liveness is not fulfilled, then

controllability is not guaranteed by NRC.

More importantly, we show that this new property can be characterized in terms of global

structural objects of the net, thus avoiding the analysis by configurations. In this sense, some

new structural conditions, one necessary and one sufficient for NRC are introduced for general

TCPNs. Finally, polynomial-time algorithms for the verification of NRC are provided.

• Analysis of equilibria in TCPNs: In this part of the thesis, a study of the connectiv-

ity of the sets of equilibrium markings, within the different polyhedral regions of a given system,

is presented and its importance for the analysis of controllability is addressed. By defining the

connectivity graph of a given system, which represents the connections between the different

equilibrium markings in its different polyhedral regions, we provide tools for its computation

achieving a better performance than the brute force methods used in the literature. As it will

be shown, this tool provides useful information for the analysis of controllability and synthesis

of controllers in general TCPN systems.

In order to further particularize these results and by adopting a structural approach, a

qualitative analysis of the equilibrium sets in Choice-Free (CF) TCPN systems is presented.

It is based on the analysis of the slowest conservative subsystems of the system. This allows

us to define a structural component named the Maximal Limiting Subnet (MLS). Then, some

properties of the equilibrium sets in CF-TCPN systems are stated in terms of its MLS. Next,

connectivity of the equilibrium sets is studied for this subclass. It is shown that CF-TCPN

systems always exhibit this property. Finally, the previous results are extended to Topologically

Equal Conflict TCPN systems. However, it is also shown that connectivity is not necessarily

fulfilled in general systems.

• Control synthesis and applications to real-life systems: The implementation of

the main results for the analysis of controllability and equilibria from the previous sections is

presented. We implement several algorithms for this purpose in SimHPN [Júlvez et al., 2012],

an available MATLAB toolbox for the analysis of hybrid Petri nets. This serves to facilitate

their application in real-life systems.
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Additionally, we propose a control scheme to optimize the behavior of TCPN systems

with the presence of uncontrollable transitions. The scheme is based on an On-Off type control

over the firing speed at the controllable transitions that reduce the marking error, i.e., the

difference between the desired and actual state of the system. The proposed control law can

be computed easily online, despite the complexity of a given system. The effectiveness of the

proposed control scheme is studied using simulation results and its use in different case studies.

Finally, we present some case studies by modeling two systems to showcase the capabilities

of the studied formalisms: an industrial transport platform manufacturing process and the

modeling of healthcare systems based on clinical pathways. For the former, we present a

Generalized Stochastic Petri net to model and analyze the manufacturing process for transport

platforms at the Alimak Group facility in La Muela, Spain. For the latter, we propose a TCPN

model that allows for an efficient continuous-time analysis of the patient flow and resource

utilization dynamics of a hip fracture clinical pathway at the Lozano Blesa University Clinical

Hospital, in Zaragoza, Spain. For this second model, we also deal with the controllability

analysis and control synthesis by using the previously presented results. We demonstrate the

feasibility and effectiveness of the methodology presented in this thesis through this case study

and some other examples.

The structure of this thesis is the following: Chapter 2 gives an introduction to the basic

concepts of Petri nets, continuous Petri nets, and timed continuous Petri nets used in this thesis.

Moreover, it introduces the state of the art in the study of controllability in TCPNs, establishing

the main goals of this thesis. Chapter 3 introduces the property of net rank-controllability and

shows its relation to the study of controllability. Chapter 4 deals with the characterization of

NRC from a structural point of view. It introduces structural conditions and algorithms to

study this property in polynomial time. Chapter 5 deals with developing tools for the analysis

of equilibria in TCPNs. Chapter 6 introduces some case studies to showcase the applicability of

the results presented in previous chapters. Moreover, it includes the proposal of a control law

for the optimization of the presented systems. Finally, Chapter 7 establishes the conclusions

and proposes possible future works.



Chapter 2
Concepts and notations

This chapter is devoted to providing a comprehensive introduction to the fundamental concepts

and definitions of discrete, continuous, and timed continuous Petri nets, as well as some concepts

of linear time-invariant (LTI) systems and controllability. These topics form the basis of the

proposed results and are crucial for understanding the subsequent chapters. For a more detailed

introduction to these topics, we recommend consulting the following key references: Silva [1985],

Murata [1989], David and Alla [2010], Silva et al. [2011], Vázquez et al. [2014] and Chen [1998].

In the sequel, the following notation is adopted: vectors and matrices are notated with

bold lowercase and uppercase letters, respectively. Given a matrix A of dimension n×m and

sets of ordered indexes J = {j1, ..., js} andK = {k1, ..., kr} with s ≤ n and r ≤ m the restriction

of matrix A to the elements in the rows indicated by J and the columns indicated by K is

denoted as A[J,K]. Similarly, given a vector a, a[J ] represents the vector built with the entries

of a indicated in J . To denote a particular entry of a vector or a matrix: the j-th entry of

vector a is denoted as [a]j, or simply as aj if it does not cause confusion; [A]j,k, or Aj,k, denotes

the j, k-th entry of matrix A. [A]j,• and [A]•,k stand for the j-th row and the k-th column of

matrix A, respectively. Vector and matrix comparisons are bit-wise, i.e., a > b means that

∀j, [a]j > [b]j. The image of a matrix A (i.e., the set of all possible linear combinations of its

columns) is denoted as Img(A).

2.1—Petri net systems

This section presents some basic concepts on discrete Petri nets.

Definition 2.1. A Petri net (PN) structure is a directed bipartite graph defined as N =

⟨P, T,Pre,Post⟩ where: P = {p1, · · · , pn} and T = {t1, · · · , tm} are finite non-empty dis-

joint sets of nodes named places and transitions, respectively; Pre and Post are n × m ma-

trices, where [Pre]j,k, [Post]j,k ∈ N≥0 represent the weight of the arc, (pj, tk), connecting pj to

transition tk, and the arc, (tk, pj), connecting tk to pj, respectively.

Each node, place, transition and arc, have a graphical representation. Places are repre-

7
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sented as circles, transitions are represented as boxes and arcs are represented by arrows from

the source node to the ending node.

p1 p2

p3

t1

t2

t3

t4

2

2

Figure 2.1. Petri net structure example.

Example 2.1. In Figure 2.1 a PN structure is presented. The set of places is P = {p1, p2, p3}
and the set of transitions is T = {t1, t2, t3, t4}. Matrices Pre and Post are:

Pre =

0 1 0 0

0 0 0 1

1 0 2 0

 Post =

1 0 0 0

0 0 1 0

0 2 0 1


A subnet of N is a Petri net structure N ′ = ⟨P ′, T ′,Pre′,Post′⟩ where P ′ ⊆ P and

T ′ ⊆ T are subsets of places and transitions of N , respectively; Pre′ = Pre[P ′, T ′] and Post′ =

Post[P ′, T ′] are the Pre and Post matrices restricted to the entries related to the nodes in P ′

and T ′. For pre- and postsets of places and transitions we use the conventional dot notation:

•pj = {tk ∈ T |[Post]j,k ̸= 0}, pj
• = {tk ∈ T |[Pre]j,k ̸= 0}

•tj = {pk ∈ P |[Pre]j,k ̸= 0}, tj
• = {pk ∈ T |[Post]j,k ̸= 0}

For example, in the PN of Fig 2.1, t3
• = {p2} and •p3 = {t2, t4}. The pre- and postsets of

subsets of nodes are defined analogously. The nodes of N can be classified based on their input

and output nodes:

� tj ∈ T is a join if |•tj| > 1.

� tf ∈ T is a fork if |tf •| > 1.

� pa ∈ P is an attribution if |•pc| > 1.

� pc ∈ P is a choice if |pc•| > 1.

� Two transitions tj and tk are said to be in conflict if •tj ∩ •tk ̸= ∅.



2.1. PETRI NET SYSTEMS 9

� Two transitions tj and tk are in topologically equal conflict if ∃γ > 0 s.t.

Pre[P, tj] = γPre[P, tk]

In discrete Petri net systems, the marking, or state, is a vector M ∈ N |P |
≥0 that assigns to

each place of N a non-negative natural number.

Definition 2.2. A discrete Petri net system is a PN structure together with an initial marking

M0, denoted as ⟨N ,M0⟩.

The marking (state) of the system evolves according to the following rules: a transition

tk ∈ T is enabled at a marking M if ∀pj ∈ •tk, [M]j ≥ [Pre]j,k. The enabling degree of a

transition, tk, indicates the maximum amount it can be fired at a specific marking M and is

given by:

enab(tk,M) = min
pj∈•tk

⌊
[M]j

[Pre]j,k

⌋
If a transition tk is enabled, it can be fired in any amount a ∈ N such that 0 < a ≤

enab(tk,M), leading to a new marking M′, computed as M′ = M + a · C[P, tk], where C =

Post−Pre is the token-flow matrix of the PN. Then, it is said that M′ is reachable from M,

denoted by M
atk−−→M′.

p1 p2

p3

t1

t2

t3

t4

2

2

Figure 2.2. A Petri net system with marking M0 = [1 0 2]T .

Example 2.2. Regarding the PN in Figure 2.2, t4 is the only transition that is not enabled at

marking M0. Since t3 is enabled, the marking M1, such that, M0
t3−→M1 can be computed as:

M1 =

10
2

+

 1 −1 0 0

0 0 1 −1
−1 2 −2 1



0

0

1

0

 =

11
0


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2.1.1. Structural concepts in Petri nets

Particular sets of nodes (components) in the structure of the Petri net can show interesting

results about the behavior of the system. This approach is known as structural analysis [Silva

et al., 1998], in which such components can be equivalently analyzed from the incidence matrix.

Let us first introduce P - and T - flows, structures that will be useful in this document.

If x ̸= 0 (resp. y ̸= 0) is a solution of Cx = 0 (resp. yTC = 0) then it is named

T-flow (resp. P-flow). Matrices Bx and By denote bases for the T-flows and the P-flows of N ,

respectively. Thus, rank(C) = |T |−rank(Bx) = |P |−rank(By). Non-negative T-flows, x ≥ 0

(resp. P-flows, y ≥ 0), are called T-semiflows (resp. P-semiflows). N is consistent, denoted

as Ct (resp. conservative, denoted as Cv) if there exists a T-semiflow x > 0 (resp. P-semiflow

y > 0). The support of a |T |-sized vector x (resp. |P |-sized vector y), denoted by ||x|| (resp.
||y||), is defined as the set ||x|| = {tk ∈ T | [x]k ̸= 0} (resp. ||y|| = {pj ∈ P | [y]j ̸= 0}). A

semiflow is said to be minimal when its support is not a proper superset of the support of any

other, and the greatest common divisor of its elements is one.

Example 2.3. Consider the PN in Figure 2.3 where the token-flow matrix is:

C =


−2 −1 1 2

1 0 −1 0

0 1 0 −1
0 0 1 −1


y =

[
1 2 1 1

]T
is a P-semiflow of the net. Then, yTM = yTM0 + yTCσ = yTM0,

where σ =
[
a1 ... a|T |

]T
is a vector containing the amount of firing of each transition. Then,

the existence of the P-semiflow implies that the sum yTM = [M]1+2[M]2+[M]3+[M]4 remains

constant during the evolution of the system. Also, x =
[
1 1 1 1

]T
is a T-semiflow. Then,

M = M0 +Cx = M0 meaning that by firing all the transitions one time, the marking reached

is equal to the initial one, M0
t2−→ M1

t4−→ M2
t1−→ M3

t2−→ M0. Furthermore, since x > 0 and

y > 0, the system is Ct and Cv.

Definition 2.3. Let yk be a P-semiflow of N . The Conservative component (Cv-component)

induced by yk is defined as Nk = ⟨Pk, Tk,Prek,Postk⟩ where Pk = ||yk||, Tk = Pk
•, Prek =

Pre[Pk, Tk] and Postk = Post[Pk, Tk].

Subclasses of nets defined according to their structure are:

1. N is Choice-Free (CF) if ∀p ∈ P : |p•| ≤ 1.

2. N is Join-Free (JF) if ∀t ∈ T : |•t| ≤ 1.
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p1

p2

t1 t2

t3 t4

p3

p4

2

2

Figure 2.3. A conservative and consistent Petri net system.

3. N is Fork-Attribution (FA) if it is CF and JF.

4. N is Topologically Equal Conflict (TEC) if all the conflicts are topologically equal.

5. N is Mono-T-Semiflow (MTS) if it is Cv and has a unique minimal T-semiflow x, s.t.

||x|| = T .

One of the advantages of the study of subclasses of nets is that, usually, the results

obtained to analyze behavioral properties in general systems can be improved for the subclasses

under consideration. For instance, while for general nets only structural necessary or sufficient

conditions for liveness (an important property in PN systems) exist, for TEC systems, structural

necessary and sufficient conditions can be stated [Silva et al., 2011](which can be verified in

polynomial time).

JF systems are a generalization of the well-known subclass of State Machines. CF nets

represent systems without structural conflicts; in particular, they comprise the subclass of

Marked Graphs. JF and CF nets belong to the class of continuous TEC nets. These nets are

able to capture the cooperative and decision processes occurring in a manufacturing system.

Cooperative processes represent resource allocation to jobs and assembly operations; decision

processes represent alternative processing routes followed by parts. It leads that TECs are able

to represent a broad subclass of flexible manufacturing systems (FMS) that includes the Flow

Shop and Job Shops, among other FMS subclasses, where the decision on which route a part

may take, is not subordinated to the availability of idle resources.

2.2—Continuous Petri nets

In this section, continuous Petri nets are presented. A continuous Petri net is a relaxation of

the discrete PN model, implemented with the purpose of avoiding the state explosion problem
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appearing in heavily populated discrete Petri nets [David and Alla, 2010]. In continuous Petri

nets, a transition can be fired in any real amount between zero and its enabling degree. As a

consequence, the number of tokens in each place can be a positive real number. This model is

formally defined below.

Definition 2.4. A continuous Petri net (CPN) system, ⟨N ,m0⟩, is a PN structure provided

with an initial marking, m0 ∈ Rn
≥0. The evolution of the marking is governed by the follow-

ing rules: The enabling degree of the system at marking mr, denoted by the |T |-sized vector

enab(mr), is defined s.t. its k-th component is:

[enab(mr)]k = min
pj∈•tk

{
[mr]j
[Pre]j,k

}
representing how much tk can be fired at mr; tk is enabled at mr if [enab(mr)]k > 0. An

enabled transition tk can be fired in any real amount αk:

0 < αk ≤ [enab(mr)]k (2.1)

leading to a new marking mr+1 = mr + [C]•,kαk. The firing count vector σr = [α1 ... αm]
T

indicates the amount of firing of each transition at mr and it is fireable if each αk fulfills (2.1).

A firing sequence, σ = σ0 +σ1 + ...+σr is defined s.t. σj is the j-th firing count vector of the

sequence. A marking m is reachable1 from m0 if there is a (finite or infinite) firing sequence,

σ, satisfying the fundamental CPN equation:

m = m0 +Cσ (2.2)

Given ⟨N ,m0⟩, the set of all reachable markings from m0 is convex and it is denoted as

RS(N ,m0) [Silva et al., 2011].

Example 2.4. Regarding the CPN in Figure 2.4, transitions t1, t3 and t2 are enabled and its

enabling degrees are [enab(m0)]1 = 2, [enab(m0)]2 = 1 and [enab(m0)]1 = 1, respectively. If

transition t2 is fired 0.5 times and t3 0.3 times, simultaneously, the reached marking m′ can be

computed using Eq. (2.2):

m′ =

10
2

+

 1 −1 0 0

0 0 1 −1
−1 2 −2 1




0

0.5

0.3

0

 =

0.50.3

2.4



A CPN system is bounded if ∀m ∈ RS(N ,m0) there exists a constant b s.t., ∀pi ∈ P ,

mi ≤ b. It is live if ∀tj ∈ T and ∀m ∈ RS(N ,m0) there exists a successor m′ ∈ RS(N ,m) s.t.

1This corresponds to the concept of lim-reachability, studied in Júlvez et al. [2003], in which markings reached
by infinite firing sequences are considered reachable.
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Figure 2.4. Evolution of a continuous Petri net.

[enab(m′)]j > 0. A reachable marking mD is a deadlock if enab(mD) = 0. In this thesis, we

focus on live and bounded systems, which are frequently desired properties in practical systems.

In order for a system to be live and bounded, it is necessary that N be Ct and Cv [Silva et al.,

2011]. Hence, in this work, it will be assumed that the nets fulfill these properties.

Notice that, for every P-flow y of N , every reachable marking m satisfies: yTm = yTm0.

In other words, linear dependencies appear between the markings, called token conservation

laws.

Definition 2.5. Given a Cv net, N , every reachable marking of the system ⟨N ,m0⟩ must

belong to the invariant defined by:

Class(m0) = {m ∈ R|P |
≥0 | BT

ym = BT
ym0}

In particular, if N is Ct and Cv, the set RS(N ,m0) is equal to Class(m0) [Silva et al.,

2011].

2.3—Unforced timed continuous Petri nets

The notion of time may be included in CPN systems by timing the firing of their transitions.

In that case, the marking and the firing sequence in (2.2) will be explicitly dependent on time

τ :

m(τ) = m0 +Cσ(τ) (2.3)

where σ(τ) is assumed to be a smooth function.

Definition 2.6. A timed continuous Petri net (TCPN) system is a time-driven continuous-

state system described by the tuple ⟨N ,λ,m0⟩, where ⟨N ,m0⟩ is a CPN system and the vector

λ ∈ R|T |
>0 is the firing rate vector or timing of the net, which assigns to each transition a positive

real number representing its firing rate. The state equation of the timed system is obtained by
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taking the time derivative of (2.3):

ṁ(τ) = Cf(τ) (2.4)

where f(τ) = σ̇(τ) is the firing flow vector of the TCPN.

There are different ways of defining the flow through the transitions, the two most impor-

tant being infinite server or variable speed [Mahulea et al., 2009], and finite server or constant

speed [David and Alla, 2010]. In this work, the flow vector is defined using infinite server

semantics (ISS), which, for a broad class of net systems provides a better approximation of the

performance of the system’s discrete counterpart [Mahulea et al., 2009].

Definition 2.7. Under ISS the flow of the k-th transition is defined as the product of its firing

rate, λk = [λ]k, and its instantaneous enabling degree, [enab(m(τ))]k:

[f(τ)]k = λk[enab(m(τ))]k = λk min
pj∈•tk

{
[m(τ)]j
[Pre]j,k

}
(2.5)

The min operator in Eq. (2.5) allows describing the state evolution of a TCPN system

as a piecewise affine system [Kloetzer et al., 2010]. The next concepts illustrate this:

Definition 2.8.

(1) A configuration of the TCPN, C = {(pα1 , t1), · · · , (pαm , tm)}, is a set of arcs, one per

transition s.t. pαk
∈ •tk. The number of configurations is

∏
tk∈T |

•tk| (it grows exponentially in

the presence of join transitions [Silva et al., 2011]).

(2) The |T | × |P | configuration matrix Πi, associated to the i-th configuration, Ci, is defined

as:

[Πi]k,j =

 1
[Pre]j,k

if (pj, tk) ∈ Ci
0 otherwise

(2.6)

(3) A configuration Ci is said to be active at m(τ) if Πim(τ) = enab(m(τ)). If Ci is active

and (pj, tk) ∈ Ci, it is said that pj constrains the flow of tk at Ci.
(4) A region Ri is the convex subset of the reachable markings for which Ci is active: Ri =

{m ∈ Class(m0)|Πim = enab(m)} [Silva et al., 2011]. According to (2.5), within region Ri,

the flow vector is given by:

f(τ) = Λ · enab(m(τ)) = ΛΠim(τ) (2.7)

where Λ is the diagonal matrix containing the entries of λ in its main diagonal2.

(5) A linear mode of a TCPN system, Σi, is the LTI system, ṁ(τ) = Cf(τ) = CΛΠim(τ),

that describes the evolution of the marking inside Ri.

2By definition, ∀m ∈ Ri ∩ Rj , it holds that Πim = Πjm = enab(m). Thus, it implies that f(τ) (and
therefore, (2.4)) is continuous over Class(m0), including the border between regions. This eliminates the
possibility of Zeno behavior.
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Definition 2.9. The T-coverture of a configuration Ci is the set of places T Ci = {p ∈
P |(p, tj) ∈ Ci, tj ∈ T}.

Regions constitute a partition, except on its borders, of the set of RS(N ,m0) [Silva

et al., 2011]. The previous concepts are exemplified in the system of Fig. 2.5. It has only two

configurations and, at m0, C2 is active (the arcs in C2 are depicted in gray). The evolution of

the unforced system (i.e., fully uncontrolled) is shown as a dashed line in Fig. 2.6, together

with its phase plane and Class(m0).

Definition 2.10. Let ⟨N ,λ,m0⟩ be a TCPN system. A marking mss ∈ Class(m0) that fulfills

that mss = limτ→∞m(τ), mss ∈ Rs and ṁ = CΛΠsmss = 0 is named the steady state of the

system.

Notice that TCPNs are deterministic systems, thus, given a particular m0, its steady

state marking is unique.

Definition 2.11. [Silva et al., 2011] Let ⟨N ,λ,m0⟩ be a TCPN system whose marking evo-

lution converges to the steady state mss. Let fss = ΛΠsmss be the steady state flow (with

mss ∈ Rs). Then:

• ⟨N ,λ,m0⟩ is timed-live if fss > 0.

• ⟨N ,λ,m0⟩ deadlocks if fss = 0.

See, for instance, the system in Fig. 2.5 and its evolution from m0, depicted in Fig. 2.6

(dashed line). The steady state of the system is limτ→∞ m(τ) = md1 = [0 0 3]T , which is a

deadlock (fss = ΛΠ1md1 = 0), hence, it is not timed-live. It is worth noticing that if a CPN is

live, then it is live for any timing [Silva et al., 2011]. Thus, since we work under the assumption

that the systems are live and bounded as untimed, as timed they will also be.

2.4—Controlled Timed Continuous Petri nets

Control actions can be applied to TCPN systems to enforce a desired behavior. They consist

of local reductions of the unforced flow through the transitions (a transition cannot work faster

than its nominal speed).

Definition 2.12. Transitions in which control actions can be applied are named controllable.

The set of all controllable transitions is denoted by Tc and the set of uncontrollable transitions

is Tnc = T \ Tc.

The selector of controllable transitions is a |T |× |Tc| matrix, Sc, s.t., if tk ∈ Tc, the elementary

vector ek is a column of Sc (ek is a |T |-sized vector of zeros with [ek]k = 1). The indices of its

columns, ek, are in ascending order, guaranteeing its uniqueness.
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Figure 2.5. A non-live TCPN system. As untimed, it has two reachable dealocks,

md1 = [0 0 3]T and md2 = [0 3 0]T .

Definition 2.13. The control vector u(τ) ∈ R|Tc|
≥0 is defined s.t. [u(τ)]j represents the control

action on the j-th element of Tc (assuming that its elements are sorted so that their indices

are in ascending order). A control vector is called suitably bounded (SB) if it fulfills that:

0 ≤ Scu(τ) ≤ f(τ). Only, SB control inputs can be applied.

The effective flow of the controlled system is given by

w(τ) = f(τ)− Scu(τ) (2.8)

Then, the behavior of a forced (or controlled) TCPN system, whenm(τ) ∈ Ri, is described

by:

ṁ(τ) = Cw(τ) = CΛΠim(τ)−CScu(τ),

subject to 0 ≤ Scu(τ) ≤ ΛΠim(τ)
(2.9)

In this work, it will be useful to consider the evolution of the effective flow, w(τ), as a

state equation. By taking the time derivative of (2.8), we obtain ẇ(τ) = ḟ(τ)− Scu̇(τ), where

ḟ(τ) can be computed by taking the derivative of (2.7) and substituting ṁ(τ) by (2.9). Thus,

the effective flow system (EFS) in Ri is described as:

ẇ(τ) = ḟ(τ)− Scu̇(τ) = ΛΠiCw(τ)− Scu̇(τ),

w(0) = ΛΠim0 − Scu(0)
(2.10)
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Figure 2.6. Phase portrait of the unforced system in Fig. 2.5, with timing λ = [1 2 1]T .

For any initial condition in Class(m0) \ {md2}, it always reaches the deadlock md1.

As forced, each arrow ui represent the direction in which the phase portrait may be

reoriented by controlling ti.

2.4.1. Equilibrium markings in TCPNs

From an algebraic point of view, the equilibrium markings of a given TCPN system are the

solutions of ṁ = CΛΠim−CScu = 0 with m ∈ Ri and a SB u.

Definition 2.14. A marking mq for which ∃uq, SB, such that C(ΛΠ(mq)mq − Scuq) = 0 is

called an equilibrium marking. The set of all equilibrium markings is denoted as E. The set of

equilibrium markings in Ri is Ei = {m |m ∈ E ∩Ri}.

An interesting subset of Ei is the set of equilibrium markings where all the controllable

transitions have a positive effective flow:

Definition 2.15. [Vázquez et al., 2014] The set E∗
i = {mq ∈ Ei | ∀tk in Tc, 0 < [Scuq]k <

[ΛΠimq]k} is defined as the set of equilibrium markings at which the direction of all the inputs

can be arbitrarily controlled (i.e., all the entries in u(τ) can be increased o decreased w.r.t. their

value at uq). The union of the sets E∗
i , in all the regions, is denoted as E∗.

It is worth noting that, in general, every m ∈ Ei \ E∗
i contains blocked activities or lies

in the border of Ei (i.e., either u
q
i = λienab(ti,m

q) or uq
i = 0 for some ti ∈ Tc). Therefore, E

∗
i

contains most of the interesting equilibrium markings in Ri.
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The following example illustrates different types of equilibrium markings that can be

found in TCPN systems.

2

p1
30/7 20/7

 15/7 5/7p2

p3

p4

t1 t2 t3

2

2

2

Figure 2.7. A Mono-T-Semiflow System.

Example 2.5. Consider the TCPN system of Figure 2.7. Let us compute some of its equi-

librium markings. For simplicity, let us consider the unforced case, i.e., s.t. u = 0. The

existence of P-semiflows y1 = [1 1 0 0]T and y2 = [0 0 1 1]T lead to the marking invariants

[m]1+[m]2 = 5 and [m]3+[m]4 = 5. Thus, the state space can be represented in two dimensions

(Fig. 2.8). Given a configuration Ci, mq is an equilibrium marking of the i-th mode if it is a

solution of: [
CΛΠi

BT
y

]
mq =

[
0

BT
ym0

]
(2.11)

and, it is contained in the corresponding region, mq ∈ Ri. In other words, not all the solutions of

(2.11) are equilibrium markings and, therefore, not all the regions contain equilibria. Solutions

can be:

• Admissible: As in Ca = {(p1, t1), (p2, t2), (p4, t3)}, where mq1 = [30/7 5/7 20/7 15/7]T is the

solution of (2.11) and is contained in Ra (represented as a red square in Fig. 2.8). In other

words, mq1 is an equilibrium marking of the system.

• Virtual: As in Cc = {(p1, t1), (p3, t2), (p4, t3)}, where mv3 = [6 − 1 2 3]T is the solution of

(2.11), however, is not contained in Rc (it is not even reachable). Then, Ec = ∅. Notice that

mv3 influence the dynamics of that region even though it lies outside of it (the phase portrait

in region c is oriented towards mv3).

• Boundary: As in Cd = {(p1, t1), (p3, t2), (p3, t3)} where mq4 = [0 5 0 5]T is the solution of

(2.11), and it lies in the boundary between Rc and Re, i.e., it is a solution in both regions.

For the forced case, the analysis of equilibria is carried out in a similar manner. Never-

theless, in this case, more equilibria can be induced by means of an adequate control input.

A way of characterizing the sets of equilibrium markings was introduced in the literature, by

using a generator of equilibrium markings, defined as follows:

Definition 2.16. [Vázquez et al., 2014] A full column rank matrix Gi is called Generator of

Ei ̸= ∅ if it fulfills the following:

� ∀m1,m2 ∈ Ei, the vector (m2 −m1) is in the range of Gi (it is a linear combination of

the columns of Gi).
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Figure 2.8. Phase portrait of the system with λ = [1 3 1]. The equilibrium markings

of the unforced system, mq1 and mq2 are depicted as red squares. The equilibrium

markings of the forced system with Tc = {t1} are depicted as a dashed blue lines.

Clearly, E∗ is not connected.

� Gi is minimal (if one of its columns is removed, then the previous statement is false)

A generator Gi is a kind of basis of Ei ̸= ∅ (formally speaking, it is not a basis because

Ei is not a vector space). By definition, the columns of Gi are linear combinations of those of

C, the incidence matrix, since the span of Gi is a subspace of the span of C. Algorithm 1 in

Vázquez et al. [2014] can be used to compute Gi, given a region.

Example 2.6. Consider again the TCPN system of Figure 2.7, focusing on the forced case.

We can compute the equilibrium markings for this case by using the previous concept. For

configuration Ca a generator for the equilibrium markings in Ra, Ea, can be computed as Ga =

[−1 1 − 3 3]T (see Alg. 1 in Vázquez et al. [2014]). In other words, for any pair m1,m2 ∈ Ea,

(m2 − m1) ∈ Img(Ga), i.e., all the equilibrium markings lie on one line in the state space

(represented by a blue dashed line in Figure 2.8).

A similar analysis can be done for the b-th region, in which the blue dashed line represents

the equilibrium set of the region.

Remark 2.1. In the literature, it was conjectured that the connectivity of E∗ was always ful-

filled [Vázquez et al., 2014]. Unfortunately, as can be seen in the previous counterexample,

connectivity of E∗ is not always fulfilled.
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2.5—Controllability in linear-time invariant systems

As shown in the previous section, each configuration of the TCPN describes a linear system.

Thus, some basic concepts that will be useful through this work will be briefly recalled. More

detailed information on the subject can be found in Chen [1998].

A linear time invariant system (LTI) Σ(A,B,C) is represented by

ẋ(τ) = Ax(τ) +Bu(τ)

y(τ) = Cx(τ)
(2.12)

where x ∈ Rn is the state vector, u ∈ Rp is the control input, y ∈ Rq the output signal,

and, A, B and C are constant matrices of appropriate dimensions.

Definition 2.17. A state equation is fully controllable if there exists an input such that for

any two states x1 and x2 of the state space, it is possible to transfer the state from x1 to x2 in

finite time.

Controllability in LTI systems can be decided in a simple way:

Theorem 2.1. Chen [1998] Given an n-dimensional LTI system (2.12), it is controllable iff

any of the following equivalent conditions is satisfied.

1. all rows of eAτB are linearly independent on [0,∞) over C, the field of complex numbers.

2. all rows of (sI−A)−1B are linearly independent over C.

3. the controllability matrix Cont(A,B) = [B,AB, · · · ,An−1B] has rank n.

4. for every eigenvalue s of A, the complex matrix [sI −A,B] has rank n.

From the linear algebra theory, it is known that a subspace is a vector space that is a

subset of some other higher dimension vector space. Furthermore, the dimension of a vector

space is equal to the number of linearly independent vectors needed to generate it (i.e., the

number of vectors in its basis).

A subspace V is named A-invariant iffAV ⊆ V . A particular case of subspaces are those of

dimension one, generated by the eigenvectors. An eigenvector is a non-zero vector v satisfying

Av = βv (2.13)
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i.e., the eigenvector generates an A-invariant subspace of dimension one. The vector v is

said to be an eigenvector of A associated to the eigenvalue β. Particularly, if ∀v ∈ V it holds

that Av = 0, then V is known as the kernel (or null space) of A, ker(A). In this case, all

vectors v ∈ V are eigenvectors associated with the eigenvalue 0.

The next theorem characterizes controllability of a LTI system by means of the eigenvec-

tors of the dynamical matrix.

Theorem 2.2. [Chen, 1998] Popov-Belevitch-Huatus-(PBH) eigenvector test

A pair {A,B} will be non-controllable iff there exist a vector q ̸= 0 such that

qTA = λqT , qTB = 0.

In other words, {A,B} will be controllable iff there is no left eigenvector of A that is orthogonal

to B.

This theorem will be important during the structural characterization of controllability

in further chapters.

2.6— State of the art: Controllability in TCPN systems

Controllability is one of the most important properties of any dynamical system since, in order

to impose a particular behavior on the system by means of a control action, we must ensure

that it is controllable.

The analysis of controllability of TCPNs, however, it is not trivial. It is well-known that

checking certain controllability properties, even for very simple piecewise linear systems (the

general class of hybrid systems to which TCPNs belong) are undecidable problems [Blondel and

Tsitsiklis, 1999, Xu and Xie, 2005]. Despite these pessimistic results, the controllability analysis

for these types of systems has received considerable attention. For the particular case of PWA

systems, a wide variety of works dealing with this subject can be found in the literature, e.g.,

Bemporad et al. [2000] and Habets et al. [2006]. The approach from Bemporad et al. [2000]

requires the solution of a Mixed-Integer Linear Programming problem (MILP) to determine

the controllability of a PWA system; Habets et al. [2006] provided sufficient conditions for

reachability in PWA systems based on the reachability inside the different polyhedral regions

of a system, which can be extended to controllability. These results, however, can only be

applied to TCPNs with a small number of state variables since the solution of MILPs is a

computationally complex problem and the number of polyhedral regions composing a TCPN

grows exponentially in the size of the PN [Silva et al., 2011]. Hence, these results do not provide

useful information in general TCPNs.
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To deal with that, the study of the controllability for the particular case of TCPNs under

ISS has been largely addressed in the literature: Jiménez et al. [2005] where the controllability

was studied for Join-Free systems (fully described by a single linear system); Mahulea et al.

[2008b] where it was stated that TCPN systems are frequently not controllable in the sense

of continuous-state systems due to the existence of state invariants, related to marking con-

servation laws imposed by P-flows; Vázquez et al. [2014] where controllability was studied for

general systems; among others. These works take advantage of the continuous control theory

in conjunction with the Petri net theory, thus, obtaining more adequate results for the problem

under consideration.

For the particular case of TCPNs, since the state evolution is restricted to Class(m0)

and the input must be bounded, the classical LTI systems controllability definition cannot be

applied. Particularly, the controllability for TCPN systems under ISS has been defined as:

Definition 2.18. [Vázquez et al., 2014] A TCPN system is bounded input controllable (BIC)

over a set of markings S ⊆ Class(m0) if, for any m1, m2 ∈ S, there exists a SB u(τ) that

transfers the system from m1 to m2 in finite or infinite time, and maintains this marking.

As in any dynamic system, this property is dependent on its parameters, particularly,

on the set of controllable transitions Tc. Therefore, different cases may arise. In the following

sections, we discuss the most recent advances in this subject.

2.6.1. Controllability when all the transitions are controllable

In the case where all the transitions are controllable, the controllability is easily characterized

by the following theorem.

Theorem 2.3. [Vázquez et al., 2014] Let ⟨N ,λ,m0⟩ be a TCPN system in which all the

transitions are controllable. The system is BIC over Class(m0) iff the net is consistent and

there are no unmarked siphons at any marking in Class(m0)

For this case, BIC is independent of the timing and can be verified in polynomial time

(Algorithm 2 in Vázquez et al. [2014]). Notice also that in this case the controllability can

be seen as “global” since there exists an input that transfers the system between any pair

m1,m2 ∈ Class(m0).

Nevertheless, it is worth noticing that this result is restrictive in the sense that it considers

that all the transitions are controllable (i.e., that the speed with which all events occur can

be reduced). In practice, it is often found that there are events that cannot be controlled.

Therefore, we are interested in the general case, where there exist uncontrollable transitions.
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2.6.2. Controllability with the presence of uncontrollable transitions

The controllability analysis for this case is generally much more complex. It is well known

that controllability over the entire Class(m0) cannot be achieved [Vázquez et al., 2014]. The

commonly adopted goal for this case is to study controllability over the set of equilibrium

markings of the system, which represent the stationary operating points of the modeled plant.

This set will be referred to as the controllability set of the system.

In other words, when Tc ⊂ T , we are interested in controlling the system over the markings

that can be reached and maintained indefinitely by an appropriate input, rather than over the

markings that can only be reached in a transitory way. From a practical point of view, this

approach is interesting since controllers are frequently designed to drive a system towards a

desired operating point, maintaining it indefinitely.

As it will become apparent in the following, this controllability set is composed of the

equilibrium markings of the system and corresponds to the set E∗. It depends heavily on the

set of controllable transitions. Ideally, it would be possible to control the system over all of the

equilibrium markings in E∗. However, since TCPN systems are, in general, nonlinear systems

with a potentially exponential number of linear modes, the computation of E∗ is not trivial.

Hence, dealing with the characterization of controllability directly over S = E∗ is challenging.

In the following, we present different approaches to deal with this problem.

Controllability within a single region (Local Controllability)

One way to deal with this problem is by using the approach used in Vázquez et al. [2014],

i.e., by characterizing the controllability over the equilibrium markings at each given region

(S = E∗
i ), where the system behaves linearly, in terms of the controllability matrices of the

different linear modes.

Definition 2.19. Given the TCPN, ⟨N ,λ⟩, and a set Tc, the controllability matrix at config-

uration Ci is:
Ci = [CSc CΛΠiCSc ... (CΛΠi)

|P |−1CSc] (2.14)

Theorem 2.4. [Vázquez et al., 2014] Let ⟨N ,λ,m0⟩ be a TCPN system. Consider a region

Ri s.t. E
∗
i ̸= ∅ and let Gi be a generator of E∗

i . The system is BIC over E∗
i iff the columns of

Gi are in the image3of Ci.

The previous theorem characterizes the controllability of the system within a single region.

Definition 2.20. (Local Controllability) Given a TCPN system, ⟨N ,λ,m0⟩, it is said to be

locally controllable at configuration Ci if it is BIC over E∗
i

3The image of a matrix A, Img(A) is the set of all possible linear combinations of its columns.
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The main drawback with this approach is that we lose the “global” view of controllability,

in which we want to transfer the system between operations points belonging to different regions.

Clearly, local controllability in each region is necessary if we want to extend it to con-

trollability between multiple regions. However, it is not a sufficient condition. As an example,

consider the system in Fig. 2.7, from example 2.6. In that system, the only regions where

E∗
i ̸= ∅ are Ra and Rb, corresponding to the configurations Ca = {(p1, t1), (p2, t2), (p4, t3)} and
Cb = {(p1, t1), (p2, t2), (p3, t3)} (the other equilibrium markings, such as mq4, are deadlocks and

therefore not included in E∗). The corresponding sets, E∗
a and E∗

b , are depicted in Fig. 2.8 by

dashed lines. By analyzing the linear modes corresponding to those regions, it can be easily

verified that the system fulfills the conditions of Theorem 2.4 and, therefore, is locally control-

lable in both regions (i.e., it is locally controllable in all the regions that contain equilibria).

However, the system is not globally controllable since there does not exist a SB input that

drives the system from any mq
a ∈ E∗

a to any mq
b ∈ E∗

b . This can be observed from Fig. 2.8. The

arrow u1, illustrates the direction in which the phase portrait may be reoriented by means of a

SB control input in t1. Then, it can be seen that any trajectory starting in Ra stays within the

region (cannot be steered), meaning that controllability between both regions is not possible.

Controllability between multiple regions

Fortunately, if the equilibrium sets of multiple regions are connected, it is possible to extend

the concept of local controllability to controllability between multiple regions :

Proposition 2.1. [Vázquez et al., 2014] Let ⟨N ,λ,m0⟩ be a TCPN system. Consider some

equilibrium sets E∗
1 , E

∗
2 ,..., E

∗
j , related to different regions R1, R2,..., Rj. If the system is BIC

over each one and their union is connected, then, the system is BIC over the union.

Consider the same system of Fig. 2.7 but with Tc = {t2}. For this case, Fig. 2.9 depicts

in blue dashed lines the different equilibrium sets (controllability set) of the system. In this

case, there are equilibrium sets with positive flow in almost all of the regions. Clearly, E∗ can

be divided in two connected subsets: c1 = E∗
a ∪ E∗

c ∪ E∗
f and c2 = E∗

b ∪ E∗
d . It can be easily

verified that the system is locally controllable in each region. Then, by proposition 2.1, the

system will be controllable over c1 and c2, respectively. Let us formalize this:

Definition 2.21. Let ⟨N ,λ,m0⟩ be a TCPN system where E∗ is its controllability set. Let ε

be the number of maximal connected subsets4 of E∗, c1 ∪ ...∪ cε = E∗. The union of regions of

the system, Ri∪· · ·∪Rk, that collectively contain the β-th connected subset, cβ, will be denoted

as the β-th Macro-Region (MRβ) of the system.

To illustrate the previous definition, let’s focus on the example of Fig. 2.9. The system

in that case has two macro-regionsMR1 = Ra ∪Rc ∪Rf andMR2 = Rb ∪Rd. The previous

4They correspond to the subsets of E∗ that cannot be divided into two disjoint non-empty open subsets.
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Figure 2.9. Phase plane of the system in Fig. 2.7. The equilibrium sets for the case

where Tc = {t2} are depicted as blue dashed lines. Moreover, a particular trajectory of

the forced system is depicted as a yellow dashed line. The system is globally controllable.

information can be represented as a graph ⟨V,E⟩, where there is a vertex for each configuration

whose corresponding region contains equilibria and there is an edge between two vertices if its

corresponding sets of equilibrium markings are connected. Let us formally define this.

Definition 2.22. Let ⟨N ,λ,µ⟩ be a TCPN system. Its connectivity graph is defined as a

graph (V,E) where:

• There is a vertex in V , labeled as Ri, if E
∗
i ̸= 0.

• There is an edge between vertices Ri and Rj if E∗
i ∩ E∗

j ̸= ∅.

Clearly, the strongly connected components of a given connectivity graph represent the

macro-regions of the system.

Regarding the controllability of the system and given a macro-region,MRi, if the system

is locally controllable in each region of MRi, then it is also BIC over the equilibria of the

macro-region [Vázquez et al., 2014] (For the given example, with Tc = {t2}, the system is BIC

over the equilibria in each macro-region).

It is important to note, however, that connectivity is only a sufficient condition for con-

trollability between different regions. For instance, in the system of Fig. 2.7, Proposition 2.1

only ensures that the system will be BIC overMR1 and overMR2, but not the union. How-

ever, in this particular case, the system is also BIC over the union since it is possible to transfer

the system from an equilibrium marking in Rf to another in Rd (two regions that do not belong
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    f

Figure 2.10. Connectivity graph: The partition induced by the connected components

of the controllability set of the system in Fig. 2.7.

to the same macro-region). Nevertheless, this is only possible since the dynamics of the system

are s.t. its unforced trajectories5 allow to reach Rd from an initial condition within Rf (in

Fig. 2.9, this corresponds to the system going from the point 4, to the point 5). In general

systems, this is usually not possible for any arbitrary pair of regions (for instance, in the case

depicted in Fig. 2.8, where it is not possible to transfer the system from any marking in Ra to

any marking in Rb).

4 5

Figure 2.11. The marking trajectory of the system in Fig. 2.7, depicted in the phase

plane of Fig. 2.9.

Therefore, although connectivity of E∗ is not necessary for controllability between all the

regions with equilibria, it is a desirable property. This is due to the fact that characterizing

controllability without considering connectivity of the equilibrium sets is difficult to generalize

to general systems. Moreover, it will require a complex analysis of the trajectories of the system,

5In the sense of dynamical systems, where a trajectory is the set of points in the phase portrait that correspond
to the evolution of the system, resulting from a given initial state.
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Figure 2.12. The control input, in t2, applied to the system in Fig. 2.7 to obtain the

marking trajectory depicted in the phase plane of Fig. 2.9. Notice that right before

the time unit 40, the control input is exactly 0 (unforced) meaning that the trajectory

is that of the unforced system.

considering the evolution within multiple regions, whose number can grow exponentially (it can

only be performed efficiently in simple examples, with few regions and state variables such as

the one in Fig. 2.9). Therefore, we will be working under the following assumption.

Assumption 2.1. When dealing with the characterization of BIC within multiple regions, the

connectivity of the equilibrium sets in the considered regions will be assumed, i.e., controllability

will be studied only over the equilibria of each macro-Region in the system (considering all

marking trajectories in the macro-Region).

2.7—Main objectives

As it has been seen in the previous sections, the current techniques found in the literature for

the analysis of the controllability in TCPNs require the study of each of the linear modes of the

system, whose number grow exponentially with respect to the number of join of transitions in the

net (See Def. 2.8). Due to the potentially exponential number of configurations, the complexity

of the controllability analysis, from this perspective, also grows exponentially. Therefore, the

following topics should be addressed:

• First, a different approach to characterize the controllability in each of the regions should

be proposed. In particular, a structural approach to deal with this problem is interesting since

the connection between the controllability property and the net structure is not completely

understood for systems with uncontrollable transitions. This would help to avoid the analysis

by configurations.

• Secondly, in the literature, it was conjectured that the connectivity of the sets of equi-

librium markings, within the different regions of the system, was fulfilled for the general case.
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However, we have previously demonstrated, by means of a counterexample, that it is not the

case. Then, since this is an important property for the controllability analysis over the union

of different regions, efficient techniques for the analysis of the connectivity of the controllability

sets within multiple regions is required.

• Finally, the control synthesis for systems with uncontrollable transitions should be

addressed since the number of works addressing this problem is quite limited.

Taking this into consideration, we propose to address the problem of controllability by

using the following approaches:

1. First, it is necessary guarantee that local controllability is fulfilled in all the regions:

In order to do this, in the following chapter, we propose a new property named the

net rank-controllability (NRC), a structural property of the TCPN that indicates that the

controllability matrices of all the linear modes of the system have the largest possible rank.

Then, the relation between NRC and controllability will be studied. More importantly,

we will show that this new property can be characterized in terms of global structural

objects of the net, thus avoiding the analysis by configurations. We will derive conditions

for NRC (and, therefore, for BIC) in terms of the structure of the PN.

2. Secondly, it is necessary to provide tools for the computation of the connectivity graph

of a given system: we will provide different tools for the analysis and computation of the

connectivity graph of a given system, achieving a better performance than the brute force

methods used in the literature. This will provide useful information for the analysis of

controllability and synthesis of controllers in general TCPN systems with uncontrollable

transitions. For instance, to obtain the different regions under which it is possible to

operate the system (macro-regions).

3. Finally, we propose a control scheme to optimize the behavior of TCPN systems with the

presence of uncontrollable transitions. The scheme is based on an On-Off type control

over the firing speed at the controllable transitions that reduce the marking error, i.e., the

difference between the desired and actual state of the system. The proposed control law

can be computed easily online, despite the complexity of a given system. The effectiveness

of the proposed control scheme is studied using simulation results and its use in different

case studies.

The first point will be developed in chapters 3 and 4, while the second objective will be

developed in chapter 5. Finally, chapter 6 includes the proposal of a control law for the case of

systems with uncontrollable transitions. Moreover, we will introduce different case studies to

showcase the applicability of the results presented in previous chapters.



Chapter 3
Net Rank-Controllability: A structural

approach

3.1— Introduction

The main contribution of this chapter is presenting a novel property called net-rank controlla-

bility, which can be related to the study of controllability in TCPNs. We look for its relation

with the controllability considering the case of controllability between multiple regions and the

effects of liveness of the TCPN in the study of NRC. In particular, it is shown that NRC is a

sufficient condition for controllability in live TCPN systems.

Moreover, we introduce some preliminary results on how this property is closely related

and can be studied from the structure of the Petri net. This chapter, in a way, helps to build

the intuition for the structural approach herein developed.

3.2—Net rank-controllability and its relation to control-

lability

This section explores the property of net rank-controllability, to be used in the structural

characterization of controllability. First, let us formally introduce it.

Definition 3.1. A TCPN is rank-controllable (RC) at configuration Ci if, given Tc, rank(Ci) =

|P | − rank(By). Moreover, it is net rank-controllable (NRC) if it is RC in every configuration.

According to (2.14), rank(Ci) ≤ rank(C) = |P | − rank(BT
y ). Therefore, NRC is a net

level property that indicates that the controllability matrices of all the configurations have the

largest possible rank. If a net is NRC, the image of any Ci is equal to the image of C, thus,

Img(Ci) includes the difference of any pair of reachable markings.

Considering the previous, the next proposition states that under some assumptions, rank-

29
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Figure 3.1. Live and bounded TCPN system (thus N is Cv and Ct) that is BIC over

its equilibrium markings but is not NRC.

controllability implies BIC in a single region.

Proposition 3.1. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider any region Ri s.t. E
∗
i ̸= ∅. If

⟨N ,λ⟩ is RC at Ci, then, ⟨N ,λ,m0⟩ is BIC over E∗
i .

Proof. Under these assumptions, Theorem 5.6 in Vázquez et al. [2014] states that a TCPN

is controllable over E∗
i if, for any pair of equilibrium markings m1,m2 ∈ E∗

i , it is true that

m2 −m1 ∈ Img(Ci). Now, consider any m0,m1 ∈ E∗
i . From (2.2), any reachable marking

m1 − m0 ∈ Img(C). Assuming that the TCPN is rank-controllable at Ci, then Img(Ci) =

Img(C), therefore m1 −m0 ∈ Img(Ci), then controllability follows.

On the contrary, given a Ci, it is not necessary that Ci has its maximum possible rank for

the system to be BIC. Thus, RC is not a necessary condition for BIC. The following example

illustrates this.

Example 3.1. Consider the system in Fig. 3.1 with Tc = {t4} and λ = [1 1 1 2]T . The net

has four configurations. Let us focus on C1 = {(p1, t1), (p2, t2), (p4, t3), (p6, t4)}. In this case,

the timed net is not NRC at C1. Moreover, a basis for the equilibrium markings in R1, E
∗
1 , can

be computed as G1 = [0 0 0 0 1 −1]T (see Alg. 1 in Vázquez et al. [2014]). In other words, for

any pair mq
1,m

q
2 ∈ E∗

1 , (m
q
2−mq

1) ∈ Img(G1), i.e., all the equilibrium markings lie on one line

in the state space. Thus, even if C1 does not cover all the directions (rank(C1) < rank(C)), it

does include G1 and thus the system is BIC over E∗
1 (but not over R1).

It is important to note that NRC presents some limitations that must be considered for

its use in the study of controllability. Let us explain this by looking at the parallelism with LTI

systems. It is well known that a LTI system is controllable (i.e., the system can be driven to any

location in the state space) iff its controllability matrix has full rank (see, for example, Chen

[1998]). Nevertheless, the fact that a TCPN system is RC at Ci does not imply the reachability

of all the markings in Ri through a SB u(τ) (See Example 5.11 in Vázquez et al. [2014]). This

is due to the fact that NRC does not considers that, at a given state, the input cannot be

chosen arbitrarily (it must be non-negative and upper bounded). Therefore, it is not always

possible to guarantee controllability by means of NRC. In particular, in non-live systems, NRC

is not a necessary nor sufficient condition for BIC.
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Figure 3.2. Phase portrait of the unforced system in Fig. 2.5, with timing λ = [1 2 1]T .

For any initial condition in Class(m0) \ {md2}, it always reaches the deadlock md1.

As forced, each arrow ui represent the direction in which the phase portrait may be

reoriented by controlling ti.

Example 3.2. Consider the Cv and Ct TCPN system in Fig. 2.5 with λ = [1 2 1]T and

Tc = {t1}. The existence of the P-semiflow y = [1 1 1]T leads to the marking invariant

[m(τ)]1 + [m(τ)]2 + [m(τ)]3 = 3, thus, its Class(m0) can be represented in two dimensions

(Fig. 3.2).

The phase portrait of the unforced system (u = 0) is also shown in the Fig. 3.2. In this case,

E = {md1,md2} and it is not timed-live since it always reaches md1 for any initial condition

different from md2.

Consider the system as forced. For Tc = {t1}, it is NRC. However, due to the constraints on

u(τ) (it has a maximum possible magnitude at each state and it must be non-negative), it is not

possible to prevent the system from reaching md1 by controlling t1 (See Fig. 3.2). Moreover,

once the system reaches md1, it is not possible to transfer it to any other state through a SB

u(τ). In conclusion, since liveness does not hold, NRC cannot guarantee BIC.

Nevertheless, for the most interesting case in which the TCPN is live as untimed (timed-

live for any λ), the controllability can be approached using this property as follows:

Theorem 3.1. Let ⟨N ,m0⟩ be a live and bounded CPN system. Let λ be s.t. the timed unforced

system reaches the steady state mss. Given Tc, if ⟨N ,λ⟩ is NRC, then, ⟨N ,λ,m0⟩ is BIC over

E∗
ss, where E∗

ss is the largest connected subset of E∗ that contains mss.

Proof. Assume that mss ∈ Ri. Since ⟨N ,m0⟩ is live, mss is a live equilibrium marking, i.e.,
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mss ∈ E∗
i . Moreover, since ⟨N ,λ⟩ is NRC, the system is BIC over E∗

i (Prop. 3.1). Additionally,

if the set E∗
i reaches the border of some other region Rj, the system is also BIC over the union

E∗
i ∪E∗

j (Prop. 6.1 in Vázquez et al. [2014]). The same reasoning can be applied until the sets

of equilibrium markings reach the border of Class(m0) or no new region is reached. Thus, BIC

holds over the set of all the equilibrium markings that are connected to mss.

It is worth noticing that theorem 3.1 does not guarantee BIC over the entire controllability

set, E∗, as connectivity of E∗ in general systems is not always fulfilled. Consequently, the

characterization of the equilibrium markings is also required for a complete characterization of

BIC in TCPN systems. This will be formally addressed in chapter 5.

Up to this point, the analysis by configurations of BIC has not been avoided. However, in

the following we will show that it is possible to verify NRC without enumerating configurations,

i.e., conditions for BIC can be analyzed without studying all the configurations. Particularly,

in the next section, we will introduce the first necessary structural condition for NRC, known

as the influence of controllable transitions. This property helps to build intuition regarding the

connection between the structure of the Petri net and the properties of NRC and controllability.

3.3— Influence of the controllable transitions

This section is devoted to the analysis of the influence of the controllable transitions, a purely

structural property of a PN that is closely related to the concept of net rank controllability.

In simpler terms, a node is said to be influenced by the controllable transitions if, re-

gardless of the active configuration, its marking or flow can be affected by the variations in the

effective flow of the controllable transitions. In order to build some intuition, consider the place

transition sequence (Fig. 3.3) with Tc = {t1}. Then, the TCPN represented by this sequence

becomes rank-controllable. In detail, for λ = [λ1, ..., λn]
T , its dynamic equation is described

by:

ṁ =


−λ1 0 ... 0

λ1 −λ2 ... 0
...

...
...

0 0 λn−1 −λn

m+


−1
1
...

0

u (3.1)

and it can be easily verified that the rank of its controllability matrix is equal to the rank of

the token-flow matrix.

This observation suggests that if a transition is controllable, then its control action influ-

ences over the marking of the places downstream in a sequence. However, the presence of join

transitions or other structural objects may stop the influence propagation in some configura-

tions. See, for instance, the net depicted in Fig. 3.4.a). In this system, if Tc = {t1}, then the



3.3. INFLUENCE OF THE CONTROLLABLE TRANSITIONS 33

p1 t1 p2 t2 pn tn

Figure 3.3. Place transition sequence.
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Figure 3.4. Influence of the controllable transitions: a) Influence of t1 is stopped at the

join transition t4 and the self-loop place p8. b) In this case, influence of {t1, t4, t8} is

total.

markings in p1, p2, p3 and p4 can be influenced. For instance, the marking at p2 is described

by ṁ2 = w1 − λ2m2, where w1 is the effective (controlled) flow of transition t1. Thus m2 can

be controlled by means of w1. Moreover, the flow at t2 is given by f2 = λ2m2, thus f2 can be

controlled by means of controlling m2. The same occurs for p1, p3 and p4. Now, the flow at

transition t4 and the marking in place p5 cannot be influenced if p7 constrains the flow of t4

since, in such case, the flow at t4 is given by f4 = λ4m7. A similar reasoning is applied to every

join transition. Moreover, the marking in place p8 cannot be influenced since its marking is

described by ṁ8 = f11− (λ7+λ8)m8+(w1−w1) = f11− (λ7+λ8)m8, i.e., any control action in

t1 will not affect its marking evolution since it’s only connected through a balanced self-loop.

In other words, a place (transition) is said to be influenced by the control actions if it is

always possible to state its marking evolution (its flow) in terms of some control action, in any

of the configurations.

3.3.1. Influence definition

Let us formally define this property. First, we present some useful definitions.

Definition 3.2. Given a net, N , and a configuration, Ci, a Ci-path, ω = (pa, ta, ..., ps, ts, ps+1),

is defined as a directed path of N s.t. for any pair of consecutive nodes pj, tj in ω, (pj, tj) ∈ Ci.
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Consider again the net in Fig. 3.1 at configuration C1 = {(p1, t1), (p2, t2), (p4, t3), (p6, t4)}.
Then, ωa = (p1, t1, p2, t2, p4) and ωb = (p6, t4, p5, t3, p3) are paths of N but only ωa is a C1-path
since in ωb, the arc (p5, t3) /∈ C1.

Influence is a basic structural property of a CPN that is related to NRC. Intuitively, a

place (resp. a transition) is influenced by Tc if the control may modify its marking (resp. its

flow) in any configuration. It depends on the structure of the net, as the following definition

indicates.

Definition 3.3. Let N be a CPN. Given Tc, a place pα is influenced by Tc, in any configuration,

if it is contained in one of the following sets:

� A = {pα|∃tβ ∈ (•pα ∪ pα
•), tβ ∈ Tc ∧ [C]α,β ̸= 0}

� B = {pα|∀tβ ∈ (•pα ∪ pα
•), tβ ∈ Tc ∧ [C]α,β = 0} (balanced self-loops)

� C = {pα|∀Ci, there is a Ci-path ωi from a pc ∈ A to pα, s.t. for any pair of consecutive

nodes in ωi, tj and pk, [C]k,j ̸= 0}.

A transition t is influenced if t ∈ Tc or ∀p ∈ •t, p is being influenced. The set of places

(transitions) influenced by Tc is denoted as PI (TI). Influence is total if PI = P .

Example 3.3. Fig. 3.4 illustrate these notions. First, consider the net in Figure 3.4.a) where

Tc = {t1}. In that case, A = {p1, p2} and C = {p3, p4} (since the Ci-path ω = (p2, t2, p3, t3, p4)

exists in all the configurations). Consider any Ci s.t. p7 constrains t4 ( i.e. (p4, t4) /∈ Ci).
Then, it is not possible to find a Ci-path from any place in A to p5 in those configurations.

Therefore, p5 is not influenced. Similarly for p6, p7. Place p8 is a self-loop with t1, thus its

marking does not change when the control variations are applied to t1, stopping the propagation

of influence at p8, i.e. it is not transmitted to the rest of the nodes. Then, the only nodes that

are influenced in all the configurations are PI = {p1, p2, p3, p4} and TI = {t1, t2, t3}. Clearly,

influence depends on Tc. For instance, in the net of Fig. 3.4.b), if Tc = {t1, t4, t8}, then

PI = A ∪ C = {p1, p2, p4, p5, p6, p7, p8, p10} ∪ {p3, p9, p11} and TI = T . Therefore, influence is

total.

Remark 3.1. Places in sets A and C are influenced by Tc in the sense that the flow variations

due to the control are captured as marking variations in these places. Places in set B are added

because, although their marking cannot be modified by control variations (they correspond to

P-semiflows), they do not stop the propagation of influence since controllable transitions are

connected to them.

3.3.2. Influence verification

The sets of influenced nodes, PI and TI , can be computed in polynomial time by using Algorithm

1 . Starting from the nodes that are “directly influenced” by the input, TI := Tc and PI := A∪B,
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Alg. 1 iteratively constructs PI and TI . At each step, a new place pj (resp. transition tk) is

added to PI (resp. TI) if there is a tk ∈ TI such that [C]j,k ̸= 0 (resp. if all the input places to tk

are already in PI). The above procedure is equivalent to verifying the existence of Ci-paths to
all nodes in the resulting PI and TI , regardless of the configuration. The algorithm ends when

no new nodes are discovered (a fixed point is found). The following proposition formalizes this.

Proposition 3.2. Let N be a CPN and Tc the set of controllable transitions. Then, Algorithm

1 computes, in polynomial time, the sets of influenced nodes, PI and TI , in all the configurations.

Proof. Notice that the loop of Alg. 1 ends, at most, after |P | − 1 iterations. Moreover, the

operations from the loop are performed in polynomial time. Then, the previous algorithm

computes PI and TI in polynomial time.

Algorithm 1 Sets of influenced nodes by Tc, ∀Ci.
Inputs: Pre, Post and the set Tc,
Outputs: The sets of influenced nodes, PI and TI .

1: Initialize: TI := Tc.
2: compute PI := A ∪B.
3: repeat
4: TA := TI ;PA := PI ;
5: TI := TA ∪ {t ∈ PA

• | t /∈ TA ∧ •t ⊆ PA}
6: PI := PA ∪ •(TI \ TA) ∪ (TI \ TA)

•

7: until PI = PA.
8: return PI and TI .

3.3.3. Influence as a necessary condition for NRC

As a consequence of its definition, if influence is not total, then there exists at least one place

p and one configuration Ci in which the control actions of Tc cannot modify the marking of p.

Then, the timed net cannot be NRC. This is formalized in the following proposition.

Proposition 3.3. Let ⟨N ,λ⟩ be a TCPN. Given Tc, if ⟨N ,λ⟩ is NRC, then, influence is total.

The converse of Prop. 3.3 does not hold. It is because total influence only guarantees

that marking variations can be produced by the control inputs in all the places, but it does not

ensure that these variations are linearly independent from each other. Next example shows a

TCPN where influence is total but NRC is not fulfilled.

Example 3.4. Consider the TCPN of Fig. 3.4.b). If Tc = {t1, t4, t8}, influence is total.

However, this does not imply NRC. For example, with λ = [1, ..., 1]T , ⟨N ,λ⟩ is not RC at some

configurations. For instance, at Ca = {(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5), (p6, t6), (p8, t7),
(p8, t8), (p9, t9), (p10, t10), (p11, t11)}, where rank(Ca) = |P | − rank(BT

y )− 1 < rank(C), i.e., ∃v



36 CHAPTER 3. NET RANK-CONTROLLABILITY: A STRUCTURAL APPROACH
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Figure 3.5. Join Free TCPN system with Tc = {t1}. Influence of t1 is total, however,

the influence over p2 and p3 is not independent since it influence its marking evolution

in the exact same amount.

s.t. vTCa = 0 that is not a P-semiflow. For this particular case, v = [0 0 0 0 −1 1 0 0 0 0 0]T .

In other words, [m(τ)]5 = [m(τ)]6 is an uncontrollable marking invariant (that only appear in

the system as timed); thus, the timed net is not RC at Ca.

Let us consider a simpler example to visualize the effects of a non-independent influence

over the marking evolution of the system.

Example 3.5. Consider the Join Free TCPN of Fig. 3.5 (only one configuration, C1). The only
P-semiflow of the system leads to the token conservation law [m(τ)]1 + [m(τ)]2 + [m(τ)]3 = 6,

therefore, the marking of the system, as untimed, can only evolve in two dimensions. If Tc =

{t1}, influence is total. However, considering the timing λ = [2, 1, 1]T , ⟨N ,λ⟩ it is not NRC.

By verifying its unique controllability matrix, we can see that ∃v s.t. vTC1 = 0 that is not

a P-semiflow. For this particular case, v = [0 − 1 1]T . In other words, [m(τ)]2 = [m(τ)]3

is an uncontrollable marking invariant. This can be visualized in Fig. 3.6. The flow of t1

is being controlled in an arbitrary way (figure on the right). However, the marking evolution

of places p2 and p3 (depicted in the figure on the left) is being influenced by the control of t1

in the exact same way, i.e., the influence over those places is not independent. In fact, the

loss of controllability becomes apparent as the evolution of the system’s state is restricted to the

invariant [m(τ)]2 = [m(τ)]3.

Nevertheless, Alg. 1 can still be used as a quick preliminary step in the NRC analysis.

Since the contrapositive of Prop. 3.3 indicates that if influence is not total, then the net is not

NRC. Alg. 1 may easily discard a large number of non NRC TCPNs. In the following, we will

assume that the next condition is fulfilled:

Assumption 3.1. Structural Condition 1 (SC1): Given N , the influence of Tc is total.

The linear dependence between marking variations in different places can be explained by

the existence of circuits and some other structural objects that may introduce uncontrollable

marking invariants. The next chapter focuses on characterizing their existence polynomially.
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Figure 3.6. In the left, the marking evolution of the forced TCPN in Fig. 3.5 is shown.

On the right, the effective (controlled) flow of t1, w1(τ) = f1(t)− u(t) is shown. Notice

that, regarding of the control input variations, the influence over m2 and m3 is exaclty

the same, i.e., is not independent.

Finally, the next proposition adds an additional result related to influence of the control-

lable transitions. It states that if influence is total, then all of the conservative components of

the system must contain at least one controllable transition.

Proposition 3.4. Let N be a conservative CPN . Let PI be the set of places influenced by Tc

and y be any P-semiflow of N . If PI = P , then, the P-subnet N ′, generated by the set ||y||,
contains at least one controllable transition.

Proof. Assume that there exists a P-subnet N ′ without controllable transitions, generated by a

minimal P-semiflow y of N . Consider any configuration Ci s.t. ∀t′ ∈ N ′, t′ is being constrained

by a place in N ′. Since no transition in N ′ is controllable, any direct path from an influenced

place to a particular place p′ ∈ N ′ contains an arc (p, t) where t ∈ N ′ and p /∈ N ′, hence,

(p, t) /∈ Ci. This means that p′ is not influenced by Tc (see definition 3.3). Therefore, PI is a

proper subset of P , i.e., PI ̸= P , a contradiction.

The converse of proposition 3.4 does not hold in general nets. See, for instance, the TCPN

depicted in Fig. 3.7. It is conservative and it includes a unique minimal P-semiflow, whose

associated P-subnet includes a controllable transition, Tc = {t4}. However, as seen previously,

in such case PI = {p4, p5}.

3.4—Concluding remarks

In this chapter, it has been stated that Bounded Input Controllability (BIC) analysis in TCPN

systems, under infinite server semantics, can be studied through the structural property of net
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Figure 3.7. Conservative and consistent TCPN with Tc = {t4}

rank-controllability (NRC), a global structural property.

A relation between NRC and BIC was introduced: if the system is live as untimed, then,

NRC is a sufficient condition for BIC over multiple regions (Thm. 3.1). Moreover, it has been

pointed out that in non-live systems NRC is not sufficient nor necessary for BIC.

Then, a first necessary structural condition for full rank-controllability, was derived: the

control actions must influence the marking at all the nodes of the net. This can be verified

from the net structure for all the configurations in polynomial time.

However, it was established that influence is not a sufficient condition since, even if influ-

ence is fulfilled, there might exist a linear dependence between marking variations in different

places. This, as will be shown in the next chapter, can be explained by the existence of circuits

and some other structural objects that may introduce uncontrollable marking invariants. The

next chapter focuses on characterizing their existence polynomially.



Chapter 4
Structural characterization of NRC

4.1— Introduction

This chapter presents a structural-based approach for analyzing net rank-controllability. The

goal is to obtain structural conditions, depending only on the information given by the structure

of the net, that guarantee that this property is fulfilled.

In the previous chapter, preliminary results of structural controllability had already been

presented, using the concept of influence. However, it has been noted that this property is only

a necessary condition for rank-controllability. As explained previously by means of an example,

if the TCPN is a place-transition chain and the control has influence over all the nodes, then,

it is rank-controllable. However, if circuits and other structural objects are found, marking

and flow invariants may be introduced. This may affect the controllability. In such case, the

influence is not independent on each place, thus it does not imply rank-controllability.

Example 4.1. Consider the net of Fig. 4.1. In this case, PI = P and TI = T . However, this

does not imply net rank-controllability. For example, with λ = [1, ..., 1]T , ⟨N ,λ⟩ is not rank-

controllable at some configurations. For instance, Ca = {(p11, t1), (p2, t2), (p13, t3), (p4, t4), (p13, t5),
(p7, t6), (p11, t7), (p9, t8), (p5, t9)}, where rank(Ca) = |P |− rank(BT

y )−1, i.e., ∃v s.t. vTCa = 0

and v /∈ Img(By).

For this particular case:

v =
[
−2 0 0 0 −1 1 0 −1 0 0 1 0 0

]T
(4.1)

In other words, there exists a loss of rank-controllability, and it is related to the marking of the

places in ||v|| = {p1, p5, p6, p8, p11}.

From classical control theory, we know that the loss rank-controllability is due to the

existence of uncontrollable marking invariants (they correspond to the uncontrollable invariant

subspaces of the system (2.9) [Wonham, 1985]). However, the existence of these invariants

cannot be easily associated with any structural object of the net such as P-semiflows, T-

39
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Figure 4.1. Influenced nodes when Tc = {t3, t7}: PI = P and TI = T .

semiflows, traps, etcetera (as the one in example 4.1, that is not NRC and the uncontrollable

marking invariant, involving the marking of places {p1, p5, p6, p8, p11}, cannot be associated to

any particular structural object of the Petri net).

Nevertheless, as it will be shown in this chapter, the loss of NRC can be explained by the

existence of uncontrollable invariants subspaces in the effective flow system (EFS) (2.10). This

concept is considered in this chapter by analyzing the controllability of the EFS by means of

its controllability matrix:

Wi = [Sc (ΛΠiC)Sc ... (ΛΠiC)|T |−1Sc] (4.2)

Definition 4.1. Given a TCPN, the corresponding EFS (2.10) is flow controllable (FC) at Ci
if rank(Wi) = |T | and net flow-controllable (NFC), if it is FC ∀Ci.

In the forthcoming sections, the existence of uncontrollable invariants subspaces of the

EFS will be associated with net structural objects such as P-flows or choice places, among

others, thus facilitating the characterization of NFC. Finally, as it will be shown in Theorem

4.2, NFC is a sufficient condition for the NRC (the relation lies in the similarity of the structure

of the respective controllability matrices, (2.14) and (4.2)).



4.2. UNCONTROLLABLE INVARIANT SUBPSACES 41

4.2—Uncontrollable invariant subpsaces

Definition 4.2. Let ⟨N ,λ⟩ be a TCPN. Consider the EFS at Ci represented by Eq. (2.10).

Given Tc, an uncontrollable flow invariant (UFI), appearing at Ci, is a left eigenvector of the

dynamic matrix ΛΠiC that is orthogonal to Sc. UFIs corresponds to α, β and δ in one of the

three following disjoint cases:

(1) αTΛΠi = 0 ∧αTSc = 0

(2) βTΛΠi ̸= 0 ∧ βTΛΠiC = 0 ∧ βTSc = 0

(3) δTΛΠiC = γδT , where γ ̸= 0 ∧δTSc = 0

Here, the Popov-Belevitch-Hautus controllability test (PBH test) is used for the charac-

terization of NFC.

Proposition 4.1. [Chen, 1998] A LTI system ẋ(τ) = Ax(τ) +Bu(τ) is controllable iff there

is no left eigenvector of A that is orthogonal to B.

By definition, any UFI appearing at Ci is a left eigenvector of the dynamic matrix, ΛΠiC,

that is orthogonal to Sc, (cases (1) and (2) are the ones associated to the eigenvalues 0, and

case (3) are the ones associated to the non-zero eigenvalues). Thus, in accordance with the

PBH test, its existence leads to a loss of FC. For example, consider a system evolving in region

Ri, in which it exhibits an UFI of case (1), α. By premultiplying the effective flow by α we

obtain αTw(τ) = αTΛΠim(τ)−αTScu(τ) = 0, which can be interpreted as that the weighted

sum of the effective flow in some transitions remain constant while the system evolves in Ri,

regardless of the control actions. Thus the flow of these transitions cannot be independently

controlled.

UFIs can be classified into two different categories, depending on the conditions for their

existence:

• Since Λ is a diagonal matrix (thus, it has full rank), the existence of the UFIs of cases

(1) and (2) depends only on Tc and on the kernels of matrices Πi and ΠiC, respectively,

i.e. purely structural conditions. Therefore, the UFIs corresponding to these cases are named

uncontrollable structural flow invariants (USFIs).

• In case (3) the existence of the invariant depends also on the value Λ, i.e., they depend on

the timing of the net. Then, UFIs corresponding to case (3) are named uncontrollable timed

flow invariants (UTFIs).

In the following, conditions that will guarantee the non-existence of UFIs in any configuration

are stated in terms of some structural objects of the net.
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4.3— Structural characterization of UFIs

In this section we stablish structural conditions (in terms of the Petri net structure) for the

non-existence of UFIs of the EFS. First, for the case of structural UFIs and then for the case

of timed UFIs.

4.3.1. Uncontrollable structural flow invariants

First, let us show that the existence of choice places may generate USFIs of case (1). An USFI

of case (1), α, is said to be generated by the choice place, pc, if ||α|| ⊆ pc
•.

Example 4.2. In the TCPN of Fig. 4.1, with Tc = {t3, t7}, it can be seen that, in any

configuration s.t. (p12, t2), (p12, t6) ∈ Ci, ∃α s.t. αTΛΠi = 0 and αTSc = 0, i.e., an UFI

of case (1) : α = [0 1/λ2 0 0 0 − 1/λ6 0 0 0]T . This is due to the fact that, in any of

those configurations, p12 constrains the uncontrollable transitions t2 and t6, thus, [w(τ)]2 =

λ2[m(τ)]12 and [w(τ)]6 = λ6[m(τ)]12 → [w(τ)]2/λ2 − [w(τ)]6/λ6 = 0, i.e., the weighted sum of

the effective flow in t2 and t6 remains constant as long as the system evolves in Ri, regardless

of the control actions. Next proposition formalizes this.

Proposition 4.2. Let ⟨N ,λ⟩ be a TCPN. Let Ci be the active configuration and pc be a choice

place. There exists at least one USFI of case (1) at Ci, generated by pc, iff pc constrains the

flow of more than one of its uncontrollable output transitions at Ci.

Proof. (←) Rename transitions and places in such a way that {t1, . . . , tk} are the output tran-
sitions of pc, that are being constrained by the choice place at Ci, and that pc is the first place

appearing in the token-flow matrix. Hence:

Πi =


1/[Pre]1,1

...

1/[Pre]1,k

0 . . . 0
...

. . .
...

0 . . . 0

0 Π′

 (4.3)

Then, the vectors a1 = [[Pre]1,1 − [Pre]1,2 0 ... 0]
T , ..., ak−1 = [[Pre]1,1 0... 0 − [[Pre]1,k 0 ... 0]

T

are left annulers of Πi. Since Λ is a full rank matrix, the system αT
j Λ = aT

j , j ∈ {1, ..., k− 1},
has solution. Then αT

j ΛΠi = 0. Without loss of generality, consider that t1 and t2 are two

of the uncontrollable output transitions of pc (by hypothesis, there are at least two). Then,

αT
1ΛΠi = 0 and, by definition of Sc, α

T
1 Sc = 0. Thus, it follows that there exists at least one

USFIs of case (1).

(→) Assume that there is an USFI of case (1) at Ci, α, generated by pc. By definition,

αTΛΠi = 0 and αTSc = 0. Thus, ||α|| ⊆ Tnc and, since it is generated by pc, then ||α|| ⊆ pc
•.
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Since Λ is a full rank matrix, then the left null space of Πi is not empty. Moreover, by

construction (See Eq. (2.6)), the only way that Πi is not a full row rank matrix is that there

exists a place constraining more than one of its output transitions at Ci. Then, ||α|| contains, at
least two elements, i.e., pc constrains more than one of its uncontrollable transitions at Ci.

Now, it is shown that USFIs of case (2) are generated when all the places in the support

of a P-flow are constraining one of their uncontrollable output transitions.

Example 4.3. Consider the TCPN in Fig. 4.1.a), where Tc = {t3, t7}. Clearly, ||y|| =
{p2, p9, p11} is the support of a P-semiflow ( i.e., [m(τ)]2 + [m(τ)]9 + [m(τ)]11 = constant holds

∀m ∈ Class(m0)). Consider any configuration s.t. (p11, t1), (p2, t2), (p9, t8) ∈ Ci. Thus all the

places in ||y|| constrain one of their uncontrollable output transition. It can be seen that, in any

of those configurations, ∃β s.t. βTΛΠiC = 0, βTΛΠi ̸= 0 and βTSc = 0, i.e., an UFI of case

(2): β = [1/λ1 1/λ2 0 0 0 0 0 1/λ8 0]T . This is due to the fact that, in those configurations,

[w(τ)]1 = λ1[m(τ)]11, [w(τ)]2 = λ2[m(τ)]2 and [w(τ)]8 = λ8[m(τ)]9. Thus, the marking

invariant can be written as the flow invariant [w(τ)]1/λ1+[w(τ)]2/λ2+[w(τ)]8/λ8 = constant.

The following proposition formalizes this.

Proposition 4.3. Let ⟨N ,λ⟩ be a TCPN. Let Ci be the active configuration and y be a P-flow

of N . There exists at least one USFI of case (2) at Ci, generated by y, iff ∀p ∈ ||y||, p constrains

at least one uncontrollable transition.

Proof. (←) Assume that a P-flow yj =
[
y1 · · · yn

]T
is s.t. ||yj|| ⊆ T Ci. If yk ̸= 0 then the place

pk is constraining the flow of at least one transition in Ci. Without loss of generality name these

transitions as ta, tb, ..., tl ∈ Tnc. Thus πa,k, πb,k, ...πl,k ̸= 0 (the entries of matrix Πi). Moreover,

at Ci, each transition is constrained by only one place, thus rows of Πi have only one non-null

entry. Hence, there exists scalars b1, ..., bm such that

[b1 ... bm]Πi = yj
T (4.4)

Since yj
TC = 0, then bj = [b1 ... bm] is a left annuler of ΠiC. Moreover, matrix Λ has full

rank, then

βT
j = bT

j Λ
−1 (4.5)

is a left annuler of the matrix ΛΠiC generated by the P-flow yj. Moreover, by definition of

Sc, β
T
j is s.t. βT

j Sc = 0. Thus, there exists at least one USFI of case (2) generated by yj.

(→) By definition, an USFI of case (2) is a vector βTΛΠiC = 0 s.t. ||β|| ⊆ Tnc and βTΛΠi ̸= 0,

i.e., βTΛΠi = yT > 0, where y is a P-flow of N . Moreover, ∀pj ∈ ||y||, [y]j ̸= 0, which is true

iff βTΛ[Πi]•,j ̸= 0. More specifically, it is true if ∃tk ∈ Tnc ∩ pj• s.t. [β]k[Λ]k,k[Πi]k,j ̸= 0. Since

[Λ]k,k ̸= 0, then [Πi]k,j ̸= 0, which means that pj constrains tk ∈ Tnc at Ci. Since this is true

∀pj ∈ ||y||, the results follows.
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Assumption 4.1. • Structural Condition 2 (SC2): Given N , for all choice place, pc ∈
{p ∈ P ||p•| > 1}, p•c ⊆ Tc.

According to Prop. 4.2, SC2 guarantees the non-existence of USFIs of case (1) in any Ci.
Moreover, the following proposition states that, if SC1 also holds, the system will not exhibit

USFIs of case (2).

Proposition 4.4. Let ⟨N ,λ⟩ be a TCPN. Given Tc, if SC1 and SC2 are fulfilled, then, ⟨N ,λ⟩
will not exhibit USFIs of case (2) in any configuration.

Proof. Assume that there is an USFI of case (2) at some Ci. Then, ∃y of N , s.t. ∀p ∈ ||y||,
p constrains one of its uncontrollable output transitions at Ci. Let Py = ||y||. Py contains no

choice place, otherwise SC2 is not true, a contradiction. Thus, ∀p ∈ Py, p constrains its only

uncontrollable output transition at Ci. Then, any Ci-path from an influenced place to a place

p ∈ Py contains an arc (p′, t) where p′ /∈ Py and t ∈ Py
•. Therefore, ∀p ∈ Py, p is not influenced

by Tc in all the configurations (see Def. 3.3), which is a contradiction (SC1).

4.3.2. Uncontrollable timed flow invariants

This section deals with invariants that depend on the net’s structure and timing. Let us first

introduce an example of this type of invariants.

Example 4.4. Consider the Join-Free net of Fig. 4.2 with λ = [1 1 1 2 3]T , where Tc = {t1}.
It can be easily verified that SC1 and SC2 hold. However, by analyzing the dynamic matrix of

the EFS, ΛΠaC, it can be seen that ∃δ s.t. δTΛΠaC = −δT and δTSc = 0, i.e., an UTFI

(case (3)): δ = [0 − 1 1 0 0]T , meaning that the control input affects the effective flow in t2

and t3 in the same proportion, regardless of the initial conditions.

t1
p1

2

t2

t3

t4

t5

p2

p3 p5

p4

Figure 4.2. A Join-Free TCPN with Tc = {t1}. Its only configuration is Ca =

{(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5).

The existence of this type of invariant is difficult to characterize. This section introduces

some conditions for the non existence of these flow invariants. First, a necessary condition for

the existence of these flow invariants is introduced.
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Proposition 4.5. Let ⟨N ,λ⟩ be a TCPN . If there exist a configuration Ci in which an UTFI

appears, then, CSc has left annulers v s.t. vTC ̸= 0.

Proof. Assume that there exist a configuration Ci in which an UTFI appear. Then, ∃δ s.t.

δTΛΠiC = γδT , with γ ̸= 0, and δTSc = 0. Thus, δ = CT (ΠT
i Λδ)(1/γ), i.e. δ ∈ Img(CT ).

Hence, ∃v s.t. CTv = δ, and Sc
TCTv = 0. Thus vTCSc = 0, i.e., v is a left annuler.

According to Prop. 4.5, a necessary condition for the existence of UTFIs is that there exist

a left annuler, v, of matrix CSc, s.t., v
TC ̸= 0. In other words, the nonexistence of UTFIs can

be guaranteed if ker(CT ) = ker(ST
c C

T ), i.e., rank(C) = rank(CSc). Structurally speaking,

this condition is equivalent to stating that there is, at most, one uncontrollable transition

in each of the minimal T-semiflows of the system. For instance, in MTS-systems, it will be

equivalent to state that there is only one uncontrollable transition. This condition, however,

might be restrictive in the general case. Therefore, it is necessary to further investigate these

invariants from a structural point of view.

In order to do this, under the assumptions SC1 and SC2, a structural sufficient condition

that guarantees the non-existence of UTFIs can be stated. Lets consider again the system

in example 4.4. In that case, UTFIs appear because there are different branches that are

affected/influenced by the control in a particular proportion (branches are the different directed

paths starting in a particular node, as in Fig. 4.3). Then, depending on λ, UTFIs may

appear. This can also be observed from matrix Wi since the influence of Tc in a particular

Ci (i.e., the influence over the Ci-paths of the configuration) is captured in its columns. For

instance, in the previous example, t1 influences the branches ω1 = (p1, t1, p2, t2, p4, t4) and

ω2 = (p1, t1, p3, t3, p5, t5) and this is captured in the columns generated by the expansion of the

control in t1:

Wa =
[
Sc AaSc A2

aSc A3
aSc · · ·

]

=


1 −λ1 λ2

1 ∗
0 λ2 −λ2(λ1 + λ2) λ2(λ

2
1 + λ1λ2 + λ2

2)

0 λ3 −λ3(λ1 + λ3) λ3(λ
2
1 + λ1λ3 + λ3

2) · · ·
0 0 λ2λ4 −λ2λ4(λ1 + λ2 + λ4)

0 0 λ3λ5 −λ3λ5(λ1 + λ3 + λ5)

 (4.6)

where Aa = ΛΠaC and ∗ represents a non-zero entry.

In the first column, the only non-zero entry is in the 1-st position, meaning that t1 is the

first affected transition, by Tc, in ω1 or ω2. At the next expansion, entries 2 and 3 are non-zero

since t2 and t3 are the next affected/influenced transitions in ω1 and ω2. The same reasoning

applies to the next expansion, where entries 4 and 5 are non-zero. However, even if all of the

nodes are influenced, it can be seen that in the controllability matrix (Eq. (4.6)), rows 2 and 3
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Figure 4.3. The 3 main structures that cause multiple branches to be influenced by Tc

in the same proportion.

are linearly dependent (in fact, equal) if λ2 = λ3. This means that the control actions will affect

the dynamic of the effective flow in t2 and t3 in the same proportion, generating the UTFI, δ.

In general, when Wi is being computed, if a column generates new non-zero entries w.r.t.

the previous columns (i.e., if it contains an innovation), then it is sure that the rank of Wi is

increased by one. Let us formalize this.

Definition 4.3. Given a matrix X, it is said that a vector v includes innovation in the infor-

mation w.r.t X if ∃j s.t. [v]j ̸= 0 and [X]j,• = 0. The degree of innovation of v w.r.t. X,

dI(X,v), is a function that returns the number of non-zero entries in v that are zero rows in

X.

For instance, in Eq. (4.6), dI(Sc,AaSc) = 2 and dI([Sc AaSc],A
2
aSc) = 2. Then, it is

clear that rank([Sc, AaSc, A
2
aSc]) = 3. However, since dI([Sc AaSc A2

aSc], A
3
aSc) = 0, it is

not clear if the rank of Wa increases by adding the column A3
aSc since it could be a linear

combination of the previous ones.

Structurally speaking, branches affected in the same proportion appear when:

a) Tc influences a fork transition tf s.t. |{tf •}• ∩ Tnc| ≥ 2.

b) Tc influences an input transition to a choice place with two or more output uncontrol-

lable transitions.

c) There is a controllable output transition, tc, of a choice place that has at least one

uncontrollable output transition and |{tc•}• ∩ Tnc| ≥ 1.

These basic cases are shown in Fig. 4.3. To avoid these structures, an easily verifiable

condition that ensures that case a) cannot occur is stated below.

Assumption 4.2. • Structural Condition 3 (SC3): Given N , let TF = {t ∈ T ||t•| > 1}
be the set of fork transitions. For all tf ∈ TF , we assume that |{t•f}• ∩ Tnc| ≤ 1.

Cases b) and c) are avoided when SC1 and SC2 are fulfilled. Next Lemma states an

intermediate result useful to conclude on the rank of matrix Wi, in any Ci.



4.3. STRUCTURAL CHARACTERIZATION OF UFIS 47

Lemma 4.1. Let ⟨N ,λ⟩ be a TCPN and let Ci be any configuration. Let Tc be s.t. SC1, SC2

and SC3 are fulfilled. Given a matrix X, composed by columns of Wi, if there is a column

[Wi]•,k s.t. dI(X, [Wi]•,k) > 0, then there is a column [Wi]•,j s.t. dI(X, [Wi]•,j) = 1.

Proof. Given a configuration Ci, the lemma is proven by showing that it is possible to recursively

construct a matrix X by choosing columns of Wi s.t. the degree of innovation of each new

column, w.r.t. the previous ones, is greater than zero; that is, increase the rank of X by 1.

This procedure is carried out by using Alg. 2 and is used in the proof of Thm. 4.1.

Algorithm 2 Compute a subset of columns of Wi with innovation w.r.t. each other
Inputs: Sc, ΛΠiC
Outputs: A matrix, X, containing columns of Wi with innovation w.r.t. each other.

1: Initialize: A |Tc| × |T | array, Q, whose j, k-th entry is [Q]j,k = (ΛΠiC)k−1sj, where
sj = [Sc]•,j.

2: X := Sc

3: while ∃j, k s.t. dI(X, [Q]j,k) > 0 do
4: v = min

j,k
(dI(X, [Q]j,k) > 0)

5: Update X := [X v]
6: end while

Assume that in the first k ≥ 0 cycles of the while loop in Alg. 2, entries in Q with

innovation equal to 1 were found. Next, assume that for cycle k+1, any entry ofQ with positive

innovation is s.t. dI(X, [Q]h,j) ≥ 2. This can only happen if the control expansion reaches two

or more branches in the net, i.e., due to the presence of fork transitions or choice places.

Without loss of generality, let us consider the case of 2 branches, i.e., two new uncontrollable

transitions, ta and tb, are discovered in the expansion (the argument is easily extended to the

case of n branches). Some cases arise (See Fig. 4.3): (a) ta and tb are immediate successors of

a fork transition. By SC3, this is a contradiction. (b) ta and tb are immediate successors of a

choice place. By SC2, this is a contradiction. (c) ta is the uncontrollable output transition of

a choice place pc and tb is an immediate successor of one of the controllable output transitions

of pc. By SC2, this is a contradiction.

Finally, the following theorem generalizes the previous ideas to state a sufficient structural

condition for the non-existence of UTFIs in any configuration.

Theorem 4.1. Let ⟨N ,λ⟩ be a TCPN. Given Tc, if SC1, SC2 and SC3 are fulfilled, then

⟨N ,λ⟩ will not exhibit UTFIs in any configuration.

Proof. Let us show that, under these assumptions, ∀Ci, Wi is a full row rank matrix, i.e.,

s.t. ⟨N ,λ⟩ will not exhibit UTFIs in any Ci. Consider any Ci and the matrix X := Sc.

If Tc = T , rank(X) = |T | → rank(Wi) = |T | = m and the result follows. Otherwise,
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rank(X) = |Tc| < |T | and X contains m − |Tc| zero rows. By Lemma 4.1, if there is a

column [Wi]•,k having innovation w.r.t. X, then there is at least one column wj = [Wi]•,j s.t.

dI(X,wj) = 1. Then, X := [X wj] and rank(X) = |Tc|+1. This can be done recursively until

no new column can be added to X. Therefore, we only need to prove that if rank(X) < m,

there is a column in Wi that has innovation w.r.t. X. Assume that is not true. Then, there

is a set of transitions that cannot be discovered by adding more columns of Wi, i.e. there are

no Ci-paths from an influenced place to any transition in that set and TI ⊂ T , a contradiction.

Thus, it is possible to form a matrix X s.t. rank(X) = |T |, and the result follows.

Example 4.5. Consider the net of example 4.4 (Fig. 4.2), but with Tc = {t1, t2}. Thus,

SC1,...,SC3 are fulfilled. Then, by Thm. 4.1, it does not exhibit any UFI at its unique config-

uration, i.e., it is NFC. This is because the given Tc ensures that Wa has full row rank: we can

obtain a square matrix, X, composed by columns of Wa, s.t. each column has innovation equal

to 1 w.r.t. the previous one:

X =
[
Sc Aasc1 Aasc2 A2

asc1

]

=


1 0 −λ1 0 λ2

1

0 1 λ2 −λ2 −λ2(λ1 + λ2)

0 0 λ3 0 −λ3(λ1 + λ3)

0 0 0 λ4 λ2λ4

0 0 0 0 λ3λ5

 (4.7)

where scj = [Sc]•,j. Clearly, rank(X) = |T | = 5→ rank(Wa) = |T |, thus, the timed net cannot

exhibit UFIs.

The converse of Thm. 4.1 does not hold. This can be seen from Example 4.4 (Fig. 4.2) in

which Tc = {t1} is s.t. SC3 is not fulfilled. However, ∀λ s.t. λ2 ̸= λ3 and λ4 ̸= λ5, the TCPN

does not exhibit UTFIs.

Nevertheless, the advantage of this new approach is that the proposed conditions guar-

antee the non-existence of UFIs, regardless of the timing, without analyzing any configuration.

4.4— Structural conditions for net rank-controllability

This subsection relates the structural conditions established in the previous sections with NRC.

Up until this point, we have been studying the controllability of the effective flow system (net

flow-controllability) by analyzing the existence of its uncontrollable invariant subspaces (UFIs).

As will be shown, the controllability of the EFS can be related to the controllability of the TCPN

system, establishing in this way a structural approach to characterize the property of NRC. In

order to obtain the main result of the section, let us first introduce some intermediate results.
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First, the following Lemma establishes the relation between NFC and the previously established

structural conditions.

Lemma 4.2. Let ⟨N ,λ⟩ be a TCPN . Given Tc, if SC1, SC2 and SC3 are fulfilled, then ⟨N ,λ⟩
is NFC.

Proof. Consider any Ci of ⟨N ,λ⟩. Since SC1, SC2, and SC3 are fulfilled, by Prop. 4.4 and

Thm. 4.1, there are no UFIs at Ci. Now, let us demonstrate that if there are no UFIs in Ci
then, it is FC at the configuration, i.e., rank(Wi) = |T |. Proceeding by contradiction, suppose

that there are no UFIs but rank(Wi) < |T |, then there exists v s.t. vTSc = 0 and vTWi = 0.

This last equality means that the flow state equation (2.10) is uncontrollable. Thus, by the

PBH test (Proposition 4.1) it follows that v is a left eigenvector of ΛΠiC. Moreover, vTSc = 0

means that v is orthogonal to the selector of controllable transitions, which implies ||v|| ⊂ Tnc,

then v is an UFI, which is a contradiction. Since this is valid for any configuration, the results

follows

Next, the following proposition states a relation between the rank of the controllability

matrix of the TCPN system and the controllability matrix of the effective flow system.

Proposition 4.6. Let ⟨N ,λ⟩ be a TCPN . Given a configuration Ci, let

Ci = CΨi = C[Sc ΛΠiCSc · · · (ΛΠiC)|P |−1Sc]

and

Wi = [Sc (ΛΠiC)Sc ... (ΛΠiC)|T |−1Sc]

be the corresponding controllability matrices of the TCPN system and the effective flow system,

respectively. Then rank(Ψi) = rank(Wi)

Proof. Let us show that rank(Ψi) = rank(W), despite the difference in the length of the ex-

pansions. First, if |P | > |T | then Ψi has more columns than W, but, by the Caley-Hamilton

theorem, the columns of Ψi associated to the terms with exponents k > |T | are linearly de-

pendent of those columns of W, thus both matrices have the same rank. On the other hand, if

|T | > |P |, W has more columns than Ψi, however, by construction rank(ΛΠiC) ≤ |P |, then
the columns of W associated to the terms with exponents k > |P | are linearly dependent of

those columns in Ψi, thus both matrices have the same rank.

Finally, the following theorem relates the derived structural conditions with the NRC of

the TCPN.

Theorem 4.2. Let ⟨N ,λ⟩ be a TCPN . Given Tc, if SC1, SC2 and SC3 are fulfilled, then

⟨N ,λ⟩ is NRC.
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t1

t2 t4

t3

p1

p3

p2

Figure 4.4. Join-Free TCPN with Tc = {t3}. It exhibits an USFI of case (1) and it is

NRC.

Proof. Consider any Ci. Since SC1,...,SC3 are fulfilled, by Lemma. 4.2, rank(Wi) = |T | ∀Ci.
Thus, by Prop. 4.6, rank(Ψi) = |T |. Therefore, since Ci = CΨi and Ψi has full row rank,

then rank(Ci) = rank(C), i.e., the TCPN is RC in Ci. Since this holds ∀Ci, then the TCPN is

NRC.

It is worth noticing that the converse of Thm. 4.2 is not true. We can prove this by

means of the following example:

Example 4.6. Consider the timed net in Fig. 4.4 with λ = [1 · · · 1]T and Tc = {t3}. It can be

verified that it is NRC. However, SC2 does not hold and there is an USFI of case (1) generated

by p1: α1 = [1 − 1 0 0]T .

4.5—Net rank-controllability verification

In order to guarantee NRC, conditions of Thm. 4.2 must be tested. Algorithm 3 verifies these

in polynomial time.

Proposition 4.7. Let ⟨N ,λ⟩ be a TCPN. Given Tc, algorithm 3 verifies if the TCPN is NRC

in polynomial time.

Proof. Line 5 verifies SC1 by means of Alg. 1 in at most |P | − 1 steps (Prop. 3.2). Line 6

checks SC2 by analyzing each choice place in PC , i.e., in at most |PC | steps. Line 7 verifies

SC3 by checking each fork transition in TF , i.e., in at most |TF | steps. Then, the conditions

are verified in, at most, |P | − 1 + |PC |+ |TF | steps. Since the Algorithm fixes Flag := 1 when

all the conditions of Thm. 4.2 are verified, then it correctly determines when the TCPN is

NRC.

If algorithm 3 gives Flag = 0 as a result, then, it is not possible to conclude if the TCPN

is NCR since it tests only sufficient conditions.
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Algorithm 3 Test for NRC.

1: Input: Pre, Post and Tc.
2: Output: Variable Flag = 1 if the timed net is NRC.
3: Initialize: Flag := 0, C := Post−Pre.
4: Compute the set of fork transitions, TF ; the set of Choice places, PC .
5: If given Tc, PI = P (Alg. 1) then (SC1)
6: If ∀pc ∈ PC , pc

• ⊆ Tc then (SC2)
7: If ∀tf ∈ TF , |{tf •}• \ Tc| ≤ 1 then (SC3)
8: Flag := 1
9: end of algorithm

4.6— Illustrative example: A Flexible Manufacturing Sys-

tem

To illustrate the relevance of 4.2 on practical systems, we provide an example of a flexible

manufacturing system consisting of two workflows that are attended by a pool of three machines

(see Fig. 4.5) [Silva et al., 2014]. A TCPN that models the system is presented in Fig. 4.6.

Figure 4.5. Production process of a manufacturing system.

It has 216 configurations and 11 transitions, each one representing one of the following

events:

1. Loading of material to the machines (t1, t3, t5, t7, t9).

2. Unloading of the processed material to be stored in a buffer (t2, t4, t6, t8, t10).

3. Removing parts from the system output (t11).

Assuming that the machines are always working at their nominal speed (they are re-

leased/unloaded as soon as the material is processed), then, Tnc = {t2, t4, t6, t8, t10}. The rest
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In_A(p1)

In_B(p7)

M1_Iddle(p5) M2_Iddle(p6)
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M2_A(p4)
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t9 t10 t11

t2t1 t4

t5 t6 t7 t8

Figure 4.6. TCPN that models the flexible system in Fig. 4.5. The controllable events

transitions are depicted in black.

of the events can be controlled since, during the process, it is possible to decide the number of

parts to introduce on an available machine and the output buffer can always be emptied, i.e.,

Tc = {t1, t3, t5, t7, t9, t11}.

It is easy to see that Tc fulfills SC1, SC2, and SC3, then, by Thm. 4.2, it ensures the

NRC of the TCPN.

Notice that the previous results are derived only from information given by the structure

of the net, even if the number of configurations grows exponentially.

Moreover, even though the sets of equilibrium markings of a TCPN system depend on the

initial marking,m0 is not considered here. Nevertheless, by using the presented approach we can

conclude that ∀m0 that marks the support of all the P-semiflows, the system is controllable

∀Ci, over the corresponding sets E∗
i (Thm. 3.1). In contrast, the study of this property by

enumerating configurations means that, for each different m0, a new analysis must be carried

out by studying each configuration of the system, which, in general, TCPNs, may become

intractable.

4.7—Concluding remarks

Bounded Input Controllability (BIC) analysis in TCPN systems under infinite server semantics

with the presence of uncontrollable transitions is a relevant topic from a practical point of view.

The current analysis techniques for this property require the study of all the configurations of

the system, whose number grows exponentially. To cope with this, the problem is addressed by

studying net rank-controllability (NRC), a global structural property.

It was demonstrated that if total influence holds and there are no UFIs, NRC is guaranteed
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Structural conditions Structural 

controllability Controllability

(Prop. 4.2, 4.4 & Thm. 4.1)

Thm. 4.2 Thm. 3.1

Exmp. 4.6 Exmp 3.1

Tc s.t. SC1, SC2

and SC3 are

fulfilled (Alg. 3)

Figure 4.7. Relationships between BIC and the structural controllability concepts in

live and bounded TCPN systems.

(Thm. 4.2). Moreover, polynomial-time algorithms for the verification of NRC, and therefore,

for the verification of BIC, are provided. These results are summarized in Fig. 4.7.
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Chapter 5
Characterization of the controllability

sets

As discussed in Chapter 3, the two main problems when addressing controllability in TCPNs

are related to the analysis of the rank condition of the controllability matrix of each linear

mode and the analysis of the equilibrium markings in the corresponding regions. The former

can be addressed by following the structural theory developed in Chapters 4 and 5. On the

other hand, this chapter introduces some relevant results to to address the latter.

While analyzing the equilibrium markings of a given system may not always be a pre-

requisite in the analysis of controllability (according to Thm. 3.1, NRC implies controllability

over the different connected sets of equilibrium markings, regardless of the knowledge of these

sets) it remains a valuable aspect to explore. Understanding the properties of these equilibrium

sets can help in developing control strategies and gaining insights into the particular regions

where the system might be controllable. Additionally, ensuring that these equilibrium sets

are connected is vital for achieving global controllability (controllability over all of the sets of

equilibrium markings).

In order to do this, in this chapter we first deal with the characterization of equilibrium

sets and the verification of connectivity for general net systems. In general, a structural ap-

proach is difficult to establish since the equilibrium sets depend explicitly on the initial marking

distribution (not only on the information of the structure, since, for a particular structure and

timing, having a different token load on the system, will generate a different equilibrium set).

Nevertheless, we have found that the number of regions to analyze in order to characterize

connectivity can be reduced, in general. We show the proposed method in this chapter and we

showcase its effectiveness by analyzing different benchmark nets found in the literature.

Moreover, in the second section of the chapter, we particularize some results for subclasses

of nets, in which a structural approach can be proposed. We show that in the particular

subclasses of nets, connectivity is always fulfilled.

In the sequel we will distinguish between results for a given initial condition ⟨N ,λ,m0⟩,
and results for any initial condition contained in a particular Class(m0), denoted as ⟨N ,λ,µ⟩,

55
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holding for any µ ∈ Class(m0). In other words, µ represents any marking that preserves the

same load in the P-semiflows as m0 (not necessarily the same initial marking of each place).

The former represents a single trajectory of the system while the latter considers all the possible

trajectories of the system. Let us first introduce the following useful definition.

Definition 5.1. Given a system ⟨N ,λ,m0⟩, µ ∈ Class(m0) represents any initial marking

that preserves the same token load in the P-semiflows as m0. Therefore, in non-trivial cases,

⟨N ,λ,µ⟩ represents an infinite set of systems.

5.1—Characterization of the controllability set

The main focus of this section will be to provide tools for the computation of the connectivity

graph of a given TCPN system. This will provide useful information for the analysis of control-

lability and synthesis of controllers in general TCPN systems with uncontrollable transitions.

For instance, to obtain the different regions under which it is possible to operate the system

(macro-regions). Moreover, the connectivity information of the equilibrium sets will be useful

for efficiently designing control strategies.

5.1.1. Reducing the number of regions to analyze

The connectivity graph of a given system can be computed by following the naive approach of

analyzing all the configurations of the TCPN (brute force). The biggest challenge, however, is

that the number of regions may grow exponentially as a function of the number of synchroniza-

tions of the net. The first contribution of this section is a set of tools and strategies that allow

reducing the computational cost of verifying the connectivity of the equilibrium markings in

TCPNs.

Let us denote the set of all the configurations of a TCPN as K, and the cardinality of this

set by K = |K|. Following the naive approach of analyzing all the configurations to compute

the connectivity graph, it is necessary to perform a pairwise analysis of all the elements of K.

Therefore, it is necessary to analyze
(K − 1)K

2

pairs.

However, in our experience, we have found that, given an arbitrary TCPN system, the

number of regions with equilibria is commonly much smaller than the total number of regions,

even in complex systems. Moreover, as will be shown in the rest of the chapter, there is

theoretical evidence that indicates that this is very common in subclasses of systems such as

TEC-TCPNs. Then, if the number of configurations composing the TCPN under study is
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reduced, the complexity of the connectivity analysis can be reduced. Here, by focusing only

on a reduced set of configurations associated with the regions with equilibria of the system, we

will show that it is possible to reduce the number of pairs to analyze during the verification of

connectivity.

Removing implicit arcs

The number of configurations to be analyzed can be reduced by removing the implicit arcs of

the net. The existence of this kind of object has been studied in the literature (e.g. Recalde

et al. [2006]). Let us formally define this object.

Definition 5.2. Given a CPN system, ⟨N ,m0⟩, an arc (pj, tk) of N is named implicit if for

any m ∈ Class(m0):
[m]j

[Pre]j,k
≥ [m]l

[Pre]l,k
, ∀pl ∈ •tk \ {pj}

From the previous definition and the definition of the configurations in TCPNs, if the

arc (pj, tk) is implicit, then, for any reachable marking, the place pj will never be the only

place constraining tk. Let J ⊆ K be the set of configurations of the TCPN system that do not

contain any implicit arc. Clearly, only the configurations in J should be considered to compute

the connectivity graph since:

1) Any reachable marking that activates a configuration Ci containing (pj, tk) lies on the bor-

der of region Ri with another region Rj whose corresponding configuration does not contain

(pj, tk). In other words, it is enough to analyze Cj and Ci can be eliminated.

2) Or, no reachable marking activates any configuration containing (pj, tk)

Fortunately, it is possible to compute all of the implicit arcs of a given a TCPN system in

polynomial time. Algorithm 4 (taken from Recalde et al. [2006]) can be used to compute the

implicit arcs of a TCPN.

Algorithm 4 [Recalde et al., 2006] Given a CPN ⟨N ,m0⟩, LPP to test if an arc
(p, t) ∈ N is implicit.

Input: ⟨N ,m0⟩ and a particular arc (pi, tj) ∈ N :
Define: P ′ = P \ {pi}.
Solve the following LPP:
z = min yT [m0]P ′ s.t.

yT [C]P ′,T ≤ [C]{pi},T
yT [Pre]P ′,{tj} ≥ [Pre]i,j
yT ≥ 0

If [m0]i ≥ z −→ (pi, tj) is implicit.

Notice that, by definition, if there is at least one implicit arc in the net, the number of

configurations in J is considerably reduced w.r.t. the ones in K. For instance, consider a system
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that contains 16 join transitions, each one with only two input places. Thus, it has 216 = 65536

configurations. Then, if at least one of the input arcs to the join transitions is implicit, the

number of configurations in J will be 215 = 32768. In other words, the number of configurations

to analyze reduces exponentially.

This reduction does not generate a problem while computing the connectivity graph since

1) the regions associated with the eliminated configurations cannot contain equilibria or, 2)

said equilibria lie on the border with another region whose corresponding configuration has not

been eliminated. Finally, it is important to note that this analysis is performed on the untimed

net, i.e., it holds for TCPNs under any timing.

Classification of regions with equilibria

Now, let us make a classification between the configurations that contain equilibria and those

that do not. This can be computed by means of Algorithm 5. It includes solving a linear pro-

gramming problem. If the LPP has a valid solution, then, the configuration contains equilibria.

Algorithm 5 Computing the subset of configurations that contain equilibria.

1: Input: A TCPN system, ⟨N ,λ,m0⟩.
2: Output: A set, J′, containing only the configurations with equilibria.
3: Initialize: J′ := ∅.
4: Compute a positive basis for the P-semiflows of the net, By, and the set of all configura-

tions J with no implicit arc (if there are none, J = K).
5: for each Ci ∈ J do solve the following LPP
6: max ε s.t.
7: BT

y (mq −m0) = 0
8: CΛΠimq = Cuq

9: Rimq ≤ 0
10: ΛΠimq − uq ≥ ε1
11: uq[j] ≥ ε, ∀tj ∈ Tc

12: uq[j] = 0, ∀tj ∈ Tnc

13: mq, uq, ε ≥ 0
14: If there is a ε > 0 then J′ := J′ ∪ {Ci}
15: end for

As notation: Ri is the matricial representation of all of the inequalities that define the

region Ri. That is, given a join transition of the net, tj, and the place that constrains tj at Ci,
(pk, tj) ∈ Ci, there are |•t| − 1 inequalities that must be fulfilled for any marking in the region:

[m]k/[Pre]k,j − [m]l/[Pre]l,j ≤ 0, ∀pl ∈ •tj \ {pk}

Each one of the inequalities is expressed in a row of Ri. Clearly, the size of Ri is r×|P |, where
r =

∑
∀t s.t. |•t|>1

(|•t| − 1).
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After using Algorithm 5, we obtain a reduced set J′ of the configurations that contain

equilibria (J′ ⊆ J). The cardinality of J′ is potentially smaller than J .

5.1.2. Connectivity verification of the controllability sets

Once the set of configurations with equilibria, J′, has been obtained, we can compute the

connectivity of the equilibrium sets over this reduced set. Given a particular configuration

Ci ∈ J′, it is easy to verify if connectivity is fulfilled with the equilibrium set of a neighboring

region, Cj ∈ J′, by analyzing if there is an equilibrium point lying in the border of both regions:

Algorithm 6 [Vázquez et al., 2014] Connectivity test between regions Ri and Rj.

1: Solve the following LPP
2: max ε s.t.
3: BT

y (mq −m0) = 0
4: CΛΠimq = Cuq

5: Πimq = Πjmq

6: Rimq ≤ 0
7: ΛΠimq − uq ≥ ε1
8: uq[k] ≥ ε, ∀tk ∈ Tc

9: uq[k] = 0, ∀tk ∈ Tnc

10: mq, uq, ε ≥ 0
11: If there is a ε > 0 then E∗

i ∩ E∗
j ̸= ∅

Based on this, we can establish a procedure to analyze the connectivity of the set of

equilibrium markings of the system, E∗. This can be done by representing the information of

the connectivity as a graph ⟨V,E⟩, where there is a vertex for each configuration in J′ and there

is an edge between two vertices if its corresponding sets of equilibrium markings are connected

(definition 3.5).

Then, the resulting graph can be analyzed to obtain two possible conclusions:

� If ⟨V,E⟩ is strongly connected, then, the set of all of the equilibrium markings is con-

nected.

� If ⟨V,E⟩ is not strongly connected, the strongly connected components can be obtained.

In this case, even though global controllability (over E∗) is not guaranteed, the system

may be controllable between multiple regions. This information is encoded in the strongly

connected components of ⟨V,E⟩.

The previous analysis can be performed by means of the Algorithm 7. The complexity

of the analysis of connectivity is polynomial on the cardinality of J′ (only (|J ′| − 1)|J ′|/2 pairs

are analyzed).
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Algorithm 7 Graph of connectivity.

1: Input: A TCPN system, ⟨N ,λ,m0⟩ and the set J′.
2: Output: The graph, ⟨V,E⟩, of equilibrium connectivity.
3: Initialize: E := ∅ and V as a set of nodes, ci, one per each Ci ∈ J′ (with the same label as

the corresponding configuration).
4: repeat
5: Take first configuration Ci ∈ J′
6: Remove Ci from J′
7: for all Cj ∈ J′ do
8: If E∗

i ∩ E∗
j ̸= ∅ (Alg. 6) then

9: Add the edge (ci, cj) to E
10: end for
11: until J′ = ∅

5.1.3. Results and Discussion

To assess the efficacy of our method in reducing the number of configurations to be analyzed

during the verification of connectivity, we conducted tests on various TCPN systems represent-

ing real-world applications. Tests were carried out with different benchmark systems from the

literature 1 (Figures 5.1 and 5.2), The results are summarized in Table 5.1.

Table 5.1
System K J J ′ Size of LPP (K − 1)K/2 (J ′ − 1)J ′/2 E∗ connected?
Σ1 (L&B MTS) 216 55 57 ×30 23220 1485 ✓
Σ2 (L&B CF) 96 40 58 × 32 4560 780 ✓
Σ3 (̸L&B MTS) 128 8 43 × 23 8128 28 ✓
Σ4 (̸L&B MTS) 1536 18 61 × 32 1178880 153 ✓
Σ5 (̸L&B GS3PR) 256 16 3 52 × 27 32640 3 ✓
Σ6 (̸L&B S3PR) 64 16 4 38 × 20 2016 6 ✓
Σ7 (̸L&B MTS) 8 4 1 20 × 11 28 0 ✓
Σ8 (̸L&B SimpleN) 16 4 50 × 29 120 6 ✓
Σ9 (L&B SimpleN) 32 16 12 55 × 31 496 66 ✓
Σ10 (L&B DSSP) 256 128 34 71 × 40 32640 561 ✓
Σ11 (̸L&B DSSP2) 64 32 20 39 × 21 2016 190 ✓
Σ12 (̸L&B MTS) 6 5 15 × 8 15 10 ×

The 2nd column denotes the number of configurations of the system. The 3rd and the

4th columns represent the number of configurations to be analyzed after removing implicit arcs

and the classification of regions with equilibria, respectively. The 6th column represents the

number of pairs to analyze to verify connectivity by means of brute force. The 7th column

represents the number of pairs to analyze to verify connectivity by using the proposed method.

1Σ1 from Silva et al. [2014], Σ2 from Teruel et al. [1997], Σ3, Flexible Manufacturing System from Fig. 4.1,
Σ4 from Navarro-Gutiérrez et al. [2020], Σ5 from Liu and Barkaoui [2016], Σ6 from Abdul-Hussin [2015], Σ8

and Σ9 from Rodŕıguez et al. [2020], Σ10 from Recalde et al. [1998], Σ11 from Souissi and Beldiceanu [1988],
and Σ12 is the net from Fig. 2.7.
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It can be noted that, in general, the reduction is significant, achieving a reduction of at least

80% of the pairs to analyze, in most cases.

Clearly, the complexity of the method is still heavily influenced by the initial number of

configurations of the TCPN system. Nevertheless, the substantial reduction in the number of

pairs to analyze when using the proposed method is a promising development. This reduction

not only accelerates the analysis process but also enhances its efficiency by minimizing the

computational resources required. It demonstrates the practicality and effectiveness of the

proposed approach in tackling complex real-life benchmarks.

5.2— Structural characterization of connectivity in sub-

classes

As was stated in the previous section, developing a structural approach for computing the

equilibrium sets in general systems is not an easy task due to its dependence on the initial

token distribution of a system: Given a simple TCPN structure and timing, depending on the

token distribution, the equilibrium sets can be completely different.

Nevertheless, in this section, we explore the relation between the structure of the net and

its equilibrium sets for different subclasses of nets. We analyze and derive some properties,

related to the structure and the configurations

In particular, in this section, qualitative properties of the equilibrium sets in some sub-

classes of nets are studied by using a structural approach, i.e., by taking advantage of the

information provided by the Petri net weighted graph to avoid the enumeration of all the linear

modes. Moreover, the connectivity of the equilibrium sets will be proven for this subclass of

systems.

5.2.1. Equilibrium markings and structural components in CF-TCPN

systems

Usually, in TCPN systems, not all the regions contain equilibrium markings. Since we are

interested in the ones that do contain equilibria, the aim of this section is to derive some

properties that are fulfilled in the configurations corresponding to those regions. In particular,

we will show that ∀Ci s.t. Ei ̸= ∅, the places contained in the “slowest parts” of the system are

always included, in some sense, in the corresponding T-coverture. This allows us to define a

structural object that will be useful to state some qualitative properties of the equilibrium sets

in CF-TCPNs. Later the results will be extended to TEC-TCPNs.

Definition 5.3. Let Σ = ⟨N ,λ,µ⟩ represent a Cv and Ct CF-TCPN system and yk be a min-
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imal P-semiflow of N . The Cv-subsystem, Σk, induced by yk, is defined as Σk = ⟨Nk,λk,µk⟩,
where Nk is the corresponding Cv-component, λk = λ[Tk] and µk = µ[Pk].

Throughout this work, the concept of speed of a Cv-subsystem will be used. Since any

Σk induced by a minimal P-semiflow of N is a Cv and Ct FA-TCPN [Teruel et al., 1997],

then Σk has a unique equilibrium marking µq
k (Corollary 24 in Mahulea et al. [2008b]), and

φq
k = αkx[Tk] is its corresponding equilibrium flow, where x is the unique minimal T-semiflow

of N (Teruel et al. [1997]).

Definition 5.4. Let Σk be a Cv-subsystem of ⟨N ,λ,µ⟩ and let φq
k = αkx[Tk] be its correspond-

ing equilibrium flow. The constant αk is named the speed of Σk.

The Cv-subsystems of a CF system can be classified according to their speed α. In this

work we are interested in the slowest ones (those with the smaller value of α).

Definition 5.5. Let Σ = ⟨N ,λ,µ⟩ represent a Cv and Ct CF-TCPN system. The set of

minimal P-semiflows associated with the slowest Cv-subsystems of Σ is:

Ys = {yk of N|αk ≤ αj ∀Σj associated to a minimal P-semiflow yj of N}

Example 5.1. Consider the system of Fig. 5.3 with the depicted initial marking and λ =[
1 1 1 1

]T
. The support of the minimal P-semiflows of N are ||y1|| = {p1, p2}, ||y2|| =

{p3, p4} and ||y3|| = {p5, p6}. Clearly, the equilibrium marking and the speed for the Cv-

subsystems Σ1 and Σ3 are µq
1 = µq

3 = [2.5 2.5]T and α1 = α3 = 2.5, respectively. Moreover, the

equilibrium marking and speed of Σ2 are µq
2 = [5 5]T and α2 = 5. Then, Ys = {y1,y3}.

The previous classification may be carried out using the naive approach of enumerating

all the minimal P-semiflows of N (this number may be an exponential) and computing the

corresponding speeds. Instead of that, this work characterizes some properties of CF-TCPNs

allowing to derive an efficient algorithm to compute the slowest part of the system. The fol-

lowing proposition states that the T-covertures corresponding to regions that include equilibria

must always contain the support of the P-semiflows in Ys.

Proposition 5.1. Let Σ = ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN. Let mq

be an equilibrium marking and Ys be the set of minimal P-semiflows associated to the slowest

Cv-subsystems of Σ. If mq ∈ E1 ∩ ... ∩ Er, then, ∀T Ci, i ∈ [1, ..., r], ∃ys ∈ Ys, such that

||ys|| ⊆ T Ci.

Proof. Since the system is a Cv and Ct CF-TCPN, the equilibrium throughput at ∀mq ∈ Ei

is f q = αlx, for some constant value αl (Theorem 21 in Mahulea et al. [2008b]). Also, consider

the flow fs = αsx, where αs is the speed of the slowest Cv-subsystems of Σ.
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Figure 5.3. TCPN system.

Suppose that ∃T Ci, i ∈ [1, ..., r] s.t. ∀ys ∈ Ys, ||ys|| ̸⊂ T Ci, and that mq ∈ Ri. Since

every T-coverture of a Cv and Ct CF net contains the support of a P-semiflow [Teruel et al.,

1997], then, ∃yl /∈ Ys s.t. ||yl|| ⊆ T Ci. Consider any ys ∈ Ys. Then, ∃pk ∈ ||ys||, s.t.

pk /∈ T Ci. Let t be the output transition of pk. Then, ∃p′ /∈ ||ys|| that is constraining t. Thus,

mq[p′]/Pre[p′, t] ≤ mq[pk]/Pre[pk, t]. Then, p
′ imposes an equilibrium flow at t and two cases

arise:

(a) If αlx[t] ≤ αsx[t], hence ∀tw, f q[tw] = αlx[w] ≤ αsx[w], i.e. the Cv-subsystem induced by

yl is equally or slower than Cv-subsystems induced by the P-semiflows in Ys, a contradiction.

(b) If αlx[t] > αsx[t], then αl > αs, and mq[pk]/Pre[pk, t] ≥ mq[p′]/Pre[p′, t] = αlx[t]/λ[t] >

αsx[t]/λ[t] = ms[pk]/Pre[pk, t], i.e., pk has more tokens at mq than in ms. Then, ∃p′′ ∈
||ys||\{pk} that have less tokens at mq than in ms (in order to fulfill conservativity). Thus, the

flow at its output transitions cannot be bigger at mq than at ms. Said differently, if t′′ ∈ p′′•,

then f q[t′′] < fs[t
′′], i.e. αs > αl, a contradiction.

Since both cases lead to a contradiction, the T-covertures corresponding to the regions

that include an equilibrium marking mq must contain the support of a ys ∈ Ys.

The following corollary states that, at every equilibrium state of the system, the cor-

responding equilibrium flow is the same, and it is limited by the speed of the slowest Cv-

subsystems. Moreover, the token distribution in the places of any slow Cv-subsystem is unique

for any equilibrium marking and is equal to its corresponding µq
k, even if they are not con-

straining its output transition.

Corollary 5.1. Let ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN system. Then,

∀mq ∈ E, f q = αsx, where αs is the speed of the slowest Cv-subsystems. Moreover, ∀Nk

induced by some yk ∈ Ys, m
q[Pk] = µq

k.

Proof. From proof of Prop. 5.1 it follows that the equilibrium flow ∀mq ∈ Ei is f
q = αsx.

Moreover, since the equilibrium flow of the system is f q = αsx, the flow in the output

transitions of any slowest Cv-subsystem Σk must be f q = αsx[Tk], even if the corresponding

yk /∈ T Ci. However, since αk = αs, the only marking distribution in the places of Pk that

guarantees such throughput is the equilibrium marking of Σk, then, µ
q
k = mq[Pk]. Finally,
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since the previous is valid ∀Ri s.t. Ei ̸= ∅, it must be valid ∀mq ∈ E.

Remark 5.1. The converse of proposition 5.1 is not true. See for instance the TCPN sys-

tem depicted in Fig. 5.4. Consider the case where λ7 = 1. The depicted m corresponds

to the unique equilibrium marking in Class(m) and the active configuration at m is C1 =

{(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5), (p6, t6), (p7, t7)}.
It holds that the only minimal P-semiflow whose support is contained in T C1 is the slowest one,

||y1|| = {p1, p2} (Prop 5.1). Nevertheless, consider C2 in which the only difference with respect

to C1 is that p8 constraints t3. Notice that T C2 also contains the support of the slowest minimal

P-semiflows, nonetheless, E2 = ∅.

Definition 5.6. Let Σ = ⟨m,λ,µ⟩ represent a Cv and Ct CF-TCPN system where Nk is the

Cv-component induced by a yk ∈ Ys. The Maximal Limiting Subnet (MLS) of Σ is NM =

⟨PM , TM ,PreM ,PostM⟩ =
⋃

yk∈Ys

Nk.

Example 5.2. Let us consider the system of Fig. 5.3 with the depicted initial marking for two

different timings. First, if λ = [1 1 1 1]T , as in example 5.1, Ys = {y1,y3}. Then, NM is the

subnet induced by PM = {p1, p2, p5, p6}. Notice that NM does not contain places p3 and p4,

thus, is not s.c.. Finally, if λ =
[
1 1 1 2

]T
, it can be verified that Ys = {y1} and NM is

the s.c. subnet induced by PM = {p1, p2}.

Remark 5.2. Notice that the MLS depends not only on N , but also on the initial marking dis-

tribution m0 and the timing of the system. However, for a given set of systems Σ = ⟨N ,λ,µ⟩,
µ ∈ Class(m0), the MLS for all the systems in Σ is unique and can be seen as a structural

object.

Finally, algorithm 8 takes advantage of the presented results to compute the MLS of a

system, in polynomial time. It first computes the speed of the slowest Cv-subsystems, αk, of the

system (as proposed in Recalde and Silva [2001]). Based on this, it computes a set of minimal

P-semiflows that contains information of all the slowest Cv-subsystems of the system. Finally,

based on the obtained information, the MLS can be easily computed.

Proposition 5.2. Let Σ = ⟨N ,λ,µ⟩ represent a Cv and Ct CF-TCPN system. Then, the

MLS of Σ is computed by algorithm 8 in polynomial time.

Proof. According to Recalde and Silva [2001], given a minimal P-semiflow y, the speed of its

corresponding Cv-subsystem can be obtained with the following expression:

αk = (yTm0)/(y
TPreΛ−1x) (5.1)

Then, steps 2-6 of the algorithm are used to compute the exact speed of the slowest Cv-

subsystems in polynomial (LPP1 in Recalde and Silva [2001]). Next, since αk is known and
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Figure 5.4. CF-TCPN with λ = [1 1 1 1 1 1 λ7]
T . If λ7 = 1, the depicted marking,

m, corresponds to the unique equilibrium marking of the system in Class(m).

Algorithm 8 Computation of the MLS of a CF-TCPN

Inputs: Matrices Pre, Post, Λ, and the initial marking m0.
Outputs: The MLS, NM , of the system.

1: Compute the minimal T-semiflow, x.
2: z = max yTPreΛ−1x subject to
3: y ≥ 0
4: yTC = 0
5: yTm0 = 1
6: αk := 1/z // Speed of the slowest Cv-subsystems.
7: Y := y
8: For all pi ∈ P
9: If Y [pi] = 0
10: min yT1 subject to
11: yT ≥ 0
12: yTC = 0 // y is a P-semiflow.
13: yT (m0 − αkPreΛ−1x) = 0 // Eq. (5.1).
14: y[pi] = 1 // pi ∈ ||y||.
15: Y := Y + y and Y ′

s := Y ′
s ∪ {y}

16: end If
17: end For
18: return the MLS, NM , of the system (i.e., the Cv-component induced by Y ).
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based on eq. (5.1), a LPP can be used to compute a set of minimal P-semiflows agreeing with

the exact throughput of the system, i.e., Y ′
s ⊆ Ys (steps 8-17). It is easy to see that if a place p

is contained in the MLS of the system, then, the algorithm computes at least one P-semiflow y

s.t. p ∈ ||y|| , i.e., the information of all the places in MLS is captured. Moreover, the second

LPP is solved, at most, |P |−2 times. Finally, the MLS is easily obtained as the Cv-component

of Y .

5.2.2. Equilibria within a single region in CF-TCPNs

In this section, the relation between the set of equilibrium markings, E, and the MLS of unforced

CF-TCPN systems is considered. In particular, if the MLS is strongly connected, there is

a single equilibrium point in Class(m0). On the contrary, an infinite number of connected

equilibrium points exist. Finally, in section 5.2.4, the presented results are extended directly

to unforced TEC-TCPNs.

From corollary 5.1, we know that the token distribution of all the places contained in the

MLS must remain equal for any mq ∈ E. Moreover, if such marking is contained in a particular

region Ri, the token distribution of the places that constrain transitions at Ci also remain equal

∀mq ∈ Ei (in order to preserve the equilibrium flow).

Definition 5.7. Let ⟨N ,λ,µ⟩ represent a Cv and Ct CF-TCPN system, NM be its MLS and

Ci be a configuration s.t. Ei ̸= ∅. Then, Pfi = PM ∪ T Ci is defined as the set of places with

fixed marking at the equilibria in Ri. Pvi = P \Pfi is defined as the set of places with variable

marking at the equilibria in Ri

Based on Pfi, a |Pfi| × |P | matrix Mi is defined such that, the elementary vector ej is a row

of Mi if pj ∈ Pfi.

The following proposition states a condition that indicates whether the marking ∀p ∈ Pvi

is fixed to a unique value due to the token conservation laws of N , meaning that there can only

be a single equilibrium within the region.

Proposition 5.3. Let ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN system. Assume

that Ci is a configuration s.t. Ei ̸= ∅. If

rank

([
Mi

By
T

])
= |P | (5.2)

then, there is a single equilibrium marking in Ri.

Proof. Rename the places so that the first to appear are the ones in Pfi. Let us denote the
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marking of the places in Pfi as µfi. Then, consider the following system:[
Mi

By
T

]
mq =

[
µfi

BT
ym0

]
(5.3)

Any solution of (5.3) is a marking that: 1) contains the fixed part of all the equilibriums, and

2) fulfills the token conservation laws of N . Then, if (5.2) holds, (5.3) has a unique solution,

i.e., Ri has a single equilibrium marking.

If there exists a configuration Ci s.t. Ei ̸= ∅ and equation (5.2) does not hold, (5.3) may

have an infinite number of solutions that are within Ri. For instance, consider the marking

m2 = mq + βη where η is a vector in the kernel of
[
MT

i By

]T
and β ∈ R. If ∃β ̸= 0 s.t.

m2 ∈ Ri, then Ri contains an infinite number or equilibrium markings.

Example 5.3. Consider the system in Fig. 5.4 with λ7 = 1. For the depicted configuration

C1, Pv1 = {p8, p9, p10} and Pf1 = {p1, p2, p3, p4, p5, p6, p7}. Notice that, ∀p ∈ Pf1, its marking

mq[p] is fixed to a unique value ∀mq ∈ R1 (see definition 5.7), i.e., if there are multiple equi-

libria within the region, the difference must be on the markings related to places in Pv1. In this

case, however, the marking ∀p ∈ Pv1 is fixed to a unique value from the token conservation

laws:

mq[p8] = 4− (mq[p4] +mq[p5] +mq[p6])/2

mq[p9] = 4−mq[p7]

mq[p10] = 7−mq[p2]−mq[p3]− (mq[p4] +mq[p5] +mq[p6])/2.

On the other hand, (5.2) clearly holds at C1, i.e., |E1| = 1 and we obtain the same con-

clusion. Now, consider the system of Fig. 5.3 with the timing λ =
[
1 1 1 1

]T
at the

configuration C2 = {(p1, t1), (p2, t2), (p5, t3), (p6, t4)}. C2 is s.t. E2 ̸= ∅ and (5.2) does not

hold. Then, the marking of the places in Pvi = {p3, p4}, in the corresponding configuration,

is not fixed to a unique value by the token conservation laws of the net. In fact, consider

mq = [2.5 2.5 2.5 7.5 2.5 2.5 ]T ∈ E2 and η = [0 0 1 − 1 0 0 ]T ( η is s.t.
[
MT

i By

]T
η = 0),

then, ∀mq
2 = mq + βη with 0 ≤ β ≤ 5, mq

2 ∈ E2.

The following proposition relates the MLS of the system with condition (5.2).

Proposition 5.4. Let Σ = ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN system. Let

Ci be a configuration s.t. Ei ̸= ∅ and NM be the MLS of the system. NM is strongly connected

iff (5.2) holds.

Proof. First, notice that a basis for the P-flows of the system always exists s.t. By =
[
Bys Byf

]
where Bys is a basis that only contains information of the P-semiflows in Ys and Byf contains

linearly independent vectors so that dim(By) = dim(Bys) + dim(Byf ). Moreover, since all the

vectors in Bys can be seen as a linear combination of the rows in MT
i , then, rank([MT

i By]
T ) =

rank([MT
i Byf ]

T ).
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Sufficiency: Suppose that NM is not s.c., then, it is composed by s.c. components

sc1, ..., sck, each one related to different P-semiflows of Ys. Then, since N is s.c., there ex-

ists a P-semiflow yc /∈ Ys s.t. its corresponding Cv-component is connecting with sc1, ..., sck.

Hence, there exist pa, ..., pg ∈ ||yc|| that are input places to join transitions in sc1, ..., sck, i.e.,

those places do not constrain the flow of its output transition at Ci. Since yc /∈ Ys, its cor-

responding Cv-component must have extra tokens that can be distributed among the places

pa, ..., pg without violating the token conservation laws, then, there must exist more than one

equilibrium marking in the same region. Thus, the marking of the variable part of mq ∈ Ei is

not fixed to a unique value and rank([MT
i Byf ]

T ) < |P |.

Necessity: Assume that NM is s.c. and let PM and TM be their sets of places and

transitions. Then, NM is a Cv and Ct CF net with token flow-matrix CM . As in any net

of such kind rank(CM) = |PM | − dim(ByM) = |TM | − 1. Furthermore, NM is composed by

the Cv-components induced by the P-semiflows in Ys, then, a basis ByM can be computed as

ByM = Bys[PM ]. Thus, the dimension of both bases is the same and |PM |−|TM | = dim(Bys)−1.

Next, consider any Ci and it corresponding matrix Mi. By definition, rank(Mi) = |Pfi|.
Then, there are |T |−|TM | transitions that are not limited by places in PM , thus, |Pfi| = |PM |+
|T |−|TM | and rank(Mi) = |PM |+|T |−|TM | = |T |−1+dim(Bys). Since |T |−1 = |P |−dim(By)

and dim(By) = dim(Bys)+dim(Byf ), then, rank(Mi) = |P |−dim(Byf ). Finally, Byf contains

dim(Byf ) linearly independent vector to the rows in Mi (since each one of those P-flows contain

at least one place that is not in Pfi), then, it follows that (5.2) holds.

5.2.3. Equilibrium sets in Choice Free TCPN systems

The following theorem states that, whenever the MLS of the system is strongly connected, for

any µ ∈ Class(m0), a unique equilibrium marking exists. Notice that this is a stronger result

than the ones presented in propositions 5.3 and 5.4 since they only state conditions for the

existence of a unique equilibrium marking on a particular region.

Theorem 5.1. Let Σ = ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN system. Let

NM be the MLS of Σ. If NM is strongly connected, then, there is a single equilibrium marking

on the system.

Proof. Assume that two different equilibrium markings, mq
i and mq

j , exist and NM is s.c..

From prop. 5.4, if Ei ̸= ∅ then there is a single equilibrium marking in Ri. Thus, m
q
i and mq

j

activate two different configurations, Ci and Cj, respectively. Moreover, for any mq, regardless

of which configuration it activates, its entries related to places in PM and places whose output

transition is not-join remain equal. In other words, the difference between mq
i and mq

j is on

the marking of places, not in PM , which are input to join transitions. Then, there exists a join
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transition tk /∈ NM such that {pa, pb} ⊆ •tk, (pa, tk) ∈ Ci, (pb, tk) ∈ Cj, mq
i [pa] ̸= mq

j [pa] and

mq
i [pb] ̸= mq

j [pb] (i.e., the net is not evolving in the border of Ri and Rj).

Let Pa (Pb) be the set of all minimal P-semiflows, where the a-th (b-th) entry is different

from zero. We claim that in any Cv-component induced by any y ∈ Pa (resp. to any y ∈ Pb)

there must exist at least two join transitions, tk and another one t′a (resp. t′b). If it is not the

case, then marking ∀p ∈ ||y|| is the same in all the configurations, fixed by the equilibrium flow

or the token conservation laws. Hence, the number of tokens in pa cannot change from mq
i to

mq
j , unless it lies on the border of Ri, Rj, a contradiction. Thus, there exists t′a. Moreover

t′a ∈ NM , otherwise the net is not MTS. Similarly, there exists a join transition t′b ∈ NM in the

Cv-component induced by a P-semiflow in Pb.

At Cj, place pb constrains tk, i.e., m
q
j [pb] its such that f q[tk] = αkx[tk], where αk is the

speed of the slowest Cv-components. If this marking is reduced, then the flow in transition tk

is lower than the slowest parts of the net, which it is not possible. Then mq
i [pb] ≥mq

j [pb], and,

in this case mq
i [pb] > mq

j [pb] since the marking is not in the border of both regions.

Similarly, at mq
i , pa constrains tk in the corresponding configuration, i.e., mq

i [pa] is s.t.

f q[tk] = αkx[tk]. Thus, by following a similar reasoning, mq
i [pa] < mq

j [pa]. Then, in order to

fulfill the token conservative laws imposed by the P-semiflows in Pa, m
q
i [p] > mq

j [p] in the places

p ∈ •t′a. Now consider a P-semiflow y′ ∈ Pb whose induced Cv-component includes place p ∈ •t′a

(if such Cv-component does not exist, then, it is not connected to NM , a contradiction). Since

the marking in p increases in mq
i , then the marking in mq

i [pb] must be reduced with respect to

mq
j [pb], but this is not possible since mq

i [pb] > mq
j [pb]. Thus, such markings, mq

i ̸= mq
j , cannot

exists. Then, there exists a unique equilibrium marking in Class(m0).

Finally, the following theorem states that the set of equilibrium markings in Cv and Ct

unforced CF systems are always connected.

Theorem 5.2. Let Σ = ⟨N ,λ,µ⟩ represent an unforced Cv and Ct CF-TCPN system. Let

NM be the MLS of Σ. If NM is not strongly connected, then, Class(m0) contains an infinite

number of connected equilibrium markings.

Proof. IfNM is not strongly connected, then, there is an infinite number of equilibrium markings

on the system (this follows from Prop. 5.4). Now, consider any two different markingsmq
1,m

q
2 ∈

E and let us show that they are connected by building a piecewise line segment of equilibria

between them.

Let assume that mq
1 ∈ R1 and mq

2 ∈ R2 s.t. the corresponding configurations C1 ̸= C2. By
Prop. 5.1, we can consider that all the transitions in TM are being constrained by the places in

PM at C1, thus, there are an infinite number of Eq. markings in E1, i.e. ker(
[
MT

1 By

]T
) ̸= ∅.

Since C1 ̸= C2, some transitions are beign constrained by some other places pa, ..., pd at C2
w.r.t. C1. Since the places pa, ..., pd are not constraining its output transitions at C1, ∃η1 ∈
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ker(
[
MT

1 By

]T
) s.t. the entries related to some of them are not null (since some of those

places must be included in the places with variable marking at such configuration). Then, with

an appropriate β, a marking mq
α = mq

1 + βη1 can be computed so that mq
α lies in the border of

R1 and Rα. Notice that the corresponding configuration Cα must fulfill that some of the places

pa, ..., pd are constraining its output transition.

Finally, this procedure can be repeated iteratively untilR2, and thereforemq
2, are reached.

Then, since this procedure can be used for any pair of equilibrium markings, E must be con-

nected.

Theorem 5.2 states a condition for the existence of infinite many equilibria in Cv and Ct

CF-TCPN. However, it is worth noting that, since these systems are deterministic, the equilib-

rium point to which the system will evolve from a particular initial condition µ ∈ Class(m0)

is unique.

Example 5.4. Consider the system in Fig. 5.4 with the depicted initial marking. The support

of the minimal P-semiflows of N are ||y1|| = {p1, p2}, ||y2|| = {p7, p9}, ||y3|| = {p4, p5, p6, p8}
and ||y4|| = {p2, p3, p4, p5, p6, p10}. Let us consider two different timings. First, if λ7 = 1/3, by

using Alg. 8 we obtain that NM is the subnet induced by PM = {p1, p2, p7, p9}, i.e., NM is not

s.c.. Then, as theorem 5.2 states, the system has an infinite number of connected equilibrium

markings. In fact, consider the markings

m1 =
[
1 1 1 1 1 2 3 2 1 3

]T
m2 =

[
1 1 1 3 1 2 3 1 1 2

]T
m3 =

[
1 1 2 3 1 2 3 1 1 1

]T
and the configurations

Ca = {(p1, t1), (p2, t2), (p3, t3), (p9, t4), (p5, t5), (p6, t6), (p7, t7)}

and

Cb = {(p1, t1), (p2, t2), (p8, t3), (p9, t4), (p5, t5), (p6, t6), (p7, t7)}

The set of equilibrium markings in regions Ra and Rb are Ea = −−−→m1m2 and Eb = −−−→m2m3,

respectively (
−→
ab denotes the closed line segment between a and b). Moreover, E = Ea ∪ Eb,

which clearly is connected.

However, if λ7 = 1, NM is the subnet induced by PM = {p1, p2}, i.e., it is s.c.. In this

case, according to theorem 5.1, there is a single equilibrium marking for any initial condition

µ ∈ Class(m0), E =
[
1 1 1 1 1 2 1 2 3 3

]T
.
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p1 p2

t1

p3 p4

t2

p1 p2

t'12

p3 p4

Figure 5.5. A net with transitions t1 and t2 (with firing rates λ1 and λ2) in TEC relation

and its equivalent CF net with λ[t′12] = λ1 + λ2.

5.2.4. Equilibrium sets in TEC-TCPN systems

Let ⟨N ,λ,m0⟩ be a TEC system. It is well known that if N is structurally live and structurally

bounded the system can be reduced to an equivalent CF system by merging the transitions

in TEC relation into only one flow-equivalent transition (Fig. 5.5). The resulting CF system

preserves the evolution of their input places and so, the flow associated to the output transitions.

Then, the results presented in the previous sections can be extended to TEC systems.

Corollary 5.2. Let ΣTEC = ⟨N ,λ,µ⟩ represent an unforced structurally live and structurally

bounded TEC-TCPN system. Let ΣCF = ⟨N ′,λ′,µ′⟩ its equivalent CF system.

• If the MLS of N ′ is strongly connected, then, there is a single equilibrium marking on the

system ΣTEC.

• Otherwise, there is an infinite number of connected equilibrium markings on the system ΣTEC.

Proof. Since we are dealing with unforced TCPNs, the transformation is always possible. Then,

N ′ is a Cv and Ct CF-TCPN. Finally, since the evolution of both systems is equivalent, the

statements follow from Theorem 5.1 and Theorem 5.2, respectively.

5.3—Concluding remarks

In this chapter, different methods for analyzing the equilibrium sets of TCPN systems are

presented.

First, a general approach to analyze the connectivity of the equilibrium sets in a given

TCPN system was introduced. The idea is to reduce the complexity of the analysis, compared to

the currents methods found in the literature, by means of pre-processing the TCPN information.

It was tested against benchmarks of real-life systems, obtaining a significant reduction in the
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complexity of the analysis. From the previous analysis, we obtain the so-called connectivity

graph of the system, ⟨V,E⟩.

Regarding the analysis of controllability in TCPNs, the previous results complement the

results presented in chapters 3 and 4 in the following manner:

� Given a TCPN system that is NRC, if ⟨V,E⟩ is strongly connected, then, the system is

globally controllable, i.e., BIC over the set of all of the equilibrium markings.

� Given a TCPN system that is NRC, if ⟨V,E⟩ is not strongly connected, the system is

BIC over the each of the Macro-Regions of the system.

Clearly, the complexity of the method is still heavily influenced by the initial number of

configurations of the TCPN system. Nevertheless, the substantial reduction in the number of

pairs to analyze when using the proposed method is a promising development.

Moreover, we addressed the analysis for net subclasses. In particular, a qualitative analysis

of the equilibrium sets in Topologically Equal Conflict (TEC) systems is presented. First,

for unforced conservative and consistent Choice-Free systems, with suitable m0, the relation

between the number of equilibrium points of the system and the qualitative characteristics of

its maximal limiting subnet (MLS) is presented. In particular, it is shown that when the MLS

is strongly connected, there exists a unique equilibrium marking in the system. Otherwise, an

infinite number of them exist. Moreover, it is shown that the connectivity of the equilibrium

sets is always fulfilled. Finally, those results are straightforwardly extended to unforced TEC

systems. This can be used to state stronger controllability results in TEC systems.



Chapter 6
Towards applications of structural

controllability

This chapter is devoted to demonstrating some practical applications of the analysis techniques

presented in the previous chapters. In particular, we present two case studies of real-life systems,

used to demonstrate the effectiveness and applicability of the techniques in various contexts

and provide a deeper understanding of their potential impact.

The first case study consists of a kanban-like flexible manufacturing system (FMS) consist-

ing of two workflows with shared/limited resources (like machines or buffers). For the second

case, we present the analysis of a clinical pathway of hip fracture from the “Lozano Blesa”

University Hospital in Zaragoza, Spain. In both cases, we conduct a structural controllability

analysis, by means of the use of the results and algorithms developed in the previous chapters.

As a part of the contributions of this thesis, these algorithms were implemented in the

MATLAB toolbox, SimHPN. These tools are described in the following sections.

Additionally, we propose a control scheme to optimize the behavior of TCPN systems

with the presence of uncontrollable transitions. The scheme is based on an On-Off type control

over the firing speed at the controllable transitions that reduce the marking error, i.e., the

difference between the desired and actual state of the system. The proposed control law can be

computed easily online, despite the complexity of a given system. The proposed control scheme

is implemented in the case study of the clinical pathway and its effectiveness is studied using

simulation results.

6.1— Implementation in SimHPN

SimHPN is a MATLAB-embedded software that provides support for infinite server and product

semantics in both, discrete and continuous, types of transitions. This MATLAB package enables

the analysis, design, and simulation of hybrid nets with these two firing semantics. For a more

detailed explanation of the different functionalities of the toolbox, an interested reader may

75
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(i)

(iii)

(ii)

Figure 6.1. SimHPN: the toolbox used for the performance and structural controllabil-

ity analysis of the system.

consult Júlvez et al. [2012].

In the previous chapters, different algorithms for the analysis of structural controllability

have been developed for the case of TCPNs under infinite server semantics. The implementa-

tion of these algorithms in SimHPN provides a practical tool for researchers and practitioners

to analyze complex systems modeled as TCPNs, enhancing the practical applicability and ac-

cessibility of our research. In this section, we describe the algorithms that have been adapted

to SimHPN and their functionalities.

The main window of SimHPN is depicted in Fig. 6.1. The Menu bar (placed horizontally,

on the top of the window) displays a set of six drop-down menus at the top of the window. In

particular, the menu Continuous menu calls procedures for analysis and synthesis of continuous

Petri nets. Our algorithms can be found on the submenu Structural controllability analysis (Fig.

6.2).

This submenu provides a set of various tests for determining the net rank-controllability

property of a given TCPN and the computation of the sets of equilibrium markings of the

system.
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6.1.1. Influence of controllable transitions

This routine computes the sets of influenced places and transitions by the controllable transi-

tions, PI , and TI . This is a necessary condition for net rank-controllability and it indicates

the sets of nodes whose marking and flow can be affected by the activity on the controllable

transitions, regardless of the configuration. If a controllable transition does not influence all

places in the net, the net cannot be net rank-controllable. It is carried out by implementing

Algorithm 1 in chapter 4.

When the user selects this routine, a window is opened and the user should introduce the

set of controllable transitions. After this, the results are shown in a pop-up window containing

one of two possible messages: 1) A message indicating that influence is not total and indicating

the sets of influenced nodes, PI ⊂ P and TI ⊂ T , 2) A message indicating that influence is

total, i.e., PI = P and TI = T .

6.1.2. Net rank-controllability test

This routine verifies sufficient conditions guaranteeing net rank-controllability. It is carried out

by implementing Algorithm 3 (Chapter 4, section 5). It is efficiently performed by verifying

some structural conditions:

• Structural Condition 1 (SC1): Given N , the influence of Tc is total.

• Structural Condition 2 (SC2): Given N , for all choice place, pc ∈ {p ∈ P ||p•| > 1},
p•c ⊆ Tc.

• Structural Condition 3 (SC3): Given N , let TF = {t ∈ T ||t•| > 1} be the set of fork

transitions. For all tf ∈ TF , we assume that |{t•f}• ∩ Tnc| ≤ 1.

When the user selects this routine, a window is opened and the user should introduce the

set of controllable transitions. After this, the results are shown in a pop-up window indicating

if the net fulfills the property. In case it is not fulfilled, it indicates which one of the structural

conditions does not hold.

6.1.3. Equilibrium connectivity graph

This routine computes the equilibrium sets and their connectivity for a specified TCPN system.

The output is a graph where each node represents a configuration of the system whose region

contains equilibrium markings, and the edges indicate the connection between the equilibrium

markings of the different regions. You can save the results of this analysis by selecting the “Save

Equilibrium Connectivity Graph to Workspace” submenu. Additionally, if all the equilibrium

sets are connected, the function will return a message indicating this.
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Figure 6.2. SimHPN: the toolbox used for the performance and structural controllabil-

ity analysis of the system.
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6.2—A Kanban-like flexible manufacturing system

Let us consider again the Kanban-like flexible manufacturing system (FMS) consisting of two

workflows that are attended by a pool of three machines (Fig. 6.3), to perform a structural

controllability analysis with SimHPN. A TCPN that models the system is presented in Fig. 6.4

(this model is available in the models folder as Model FMS 3.mat). It has 216 configurations

and 11 transitions, each one representing one of the following events:

� Loading of material to the machines (t1, t3, t5, t7, t9).

� Unloading of the processed material to be stored in a buffer (t2, t4, t6, t8, t10).

� Removing parts from the system output (t11).

The timing of the net is given by λ =
[
1 1

3
1 1

4
1 1

3
1 1

5
1 1

5
1
]T
.

Figure 6.3. Production process of a manufacturing system.

We work based on the assumption that machines are consistently working at their nominal

speed and are freed up as soon as the material is processed. As a result, we have identified

Tnc = {t2, t4, t6, t8, t10}. The remaining events are controllable because it is possible to decide

when to use a specific machine to process a particular piece, and we can always empty the

output buffer. This leads to Tc being Tc = {t1, t3, t5, t7, t9, t11}.

Net rank-controllability analysis: Once the model has been loaded, the test can

be carried out by selecting Continuous → Structural controllability analysis → Net rank-

controllability test. We present 3 cases:

• Tc = {t1, t5}: We enter this set of controllable transitions on the pop-up windows as [1 5] and

we obtain the message

“Influence is not total! Therefore, the set of controllable transitions does not guarantee net
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In_A(p1)

In_B(p7)

M1_Iddle(p5) M2_Iddle(p6)

M1_A(p2)

B1_A(p3)

M2_A(p4)

M2_B(p8) B1_B(p9) M1_B(p10)

Max_B_1B(p18)

Max_B_1A(p17)

B2_A(p11)

B2_A(p12)

M3_Iddle(p13)

M3_Work(p14) B_3(p16)

Max_B_3(p15)
t3

t9 t10 t11

t2t1 t4

t5 t6 t7 t8

Figure 6.4. TCPN that models the flexible system in Fig. 6.3. The controllable events

transitions are depicted in black.

rank-controllability. The only influenced nodes are: Places = [1 2 3 4 5 6 7 8 9 10 11 12 17

18] Transitions = [1 2 3 4 5 6 7 8]”

This means that, since the property of influence does not hold, then there are configurations

in which the net is not rank-controllable.

• Tc = {t1, t5, t9, t11} By entering this set of controllable transitions as [1 5 9 11] we obtain the

message

“It is not possible to decide if the timed net is net rank-controllable. The condition related to

the choice places is not fulfilled.”.

In this case the test cannot conclude if the system is NRC, since one of the sufficient condi-

tions does not hold. In particular, the one related to the choice places. This serves to give

indications to the operator/researcher about where the problem may be in order to guarantee

controllability.

• Tc = {t1, t3, t5, t7, t9, t11}: Here we choose the set that we will consider in our case study,

which is such that it satisfies all the structural conditions for controllability and is indicated

by the message: “The timed net is net rank-controllable.”.

From the previous analysis, we conclude that the system is NRC. Moreover, this system

is a live and bounded TCPN. Therefore, Tc also guarantees that the system will be controllable

over its connected sets of equilibrium markings.

Equilibrium connectivity graph: This routine can be used to calculate the equilib-

rium connectivity graph of a system by selecting the menu Continuous → Structural controlla-

bility analysis → Equilibrium connectivity graph and entering the set of controllable transitions

as the input. Each node of the resulting graph represents a configuration of the system whose

region contains equilibrium markings, and the edges indicate the connection between the equi-

librium markings of the different regions. This provides insights into the controllability of the
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Connectivity graph of the system

1

4

7

8

12

13

Figure 6.5. Equilibrium connectivity graph of the FMS system. Each node corresponds

to a single region of the TCPN system in which it contains equilibrium markings.

system, showing the sets of equilibrium points where the controllability property holds.

Using this routine and selecting the set of controllable transitions [1 3 5 7 9 11], a matrix

E conf is obtained. Each row of this matrix represents a configuration of the system in which

equilibrium markings are present in the corresponding regions. For this particular case, the

results are the following:

E conf =

1 2 3 4 7 8 9 10 13 14 16 (node 1) 1 2 3 4 7 8 9 10 13 15 16 (node 2)

1 2 3 4 18 8 9 10 12 14 16 (node 3) 1 2 3 4 18 8 9 10 12 15 16 (node 4)

1 2 3 4 18 8 9 10 13 14 16 (node 5) 1 2 3 4 18 8 9 10 13 15 16 (node 6)

17 2 3 4 7 8 9 10 11 14 16 (node 7) 17 2 3 4 7 8 9 10 11 15 16 (node 8)

17 2 3 4 7 8 9 10 13 14 16 (node 9) 17 2 3 4 7 8 9 10 13 15 16 (node 10)

17 2 3 4 18 8 9 10 11 14 16 (node 11) 17 2 3 4 18 8 9 10 11 15 16 (node 12)

17 2 3 4 18 8 9 10 12 14 16 (node 13) 17 2 3 4 18 8 9 10 12 15 16 (node 14)

17 2 3 4 18 8 9 10 13 14 16 (node 15) 17 2 3 4 18 8 9 10 13 15 16 (node 16)
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For instance, the region corresponding to the configuration

C1 = {(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p7, t5), (p8, t6), (p9, t7), (p10, t8), (p13, t9), (p14, t10), (p16, t11)}

(node 1) contains equilibria. Furthermore, the routine generates a variable-type graph called

E graph, which has 16 nodes and 76 edges, representing the connectivity of the equilibrium

sets. This graph can be plotted (as in Fig. 6.5), providing a visual representation of the

equilibrium connectivity of the system. For this particular case, the equilibrium sets in all the

regions are connected, meaning that the system exhibits the controllability property over all of

its equilibrium markings.

6.3—Analysis and optimization of clinical pathway

In this section, we propose a TCPN system that can be used for the analysis of a clinical

pathway of hip fracture from the “Lozano Blesa” University Hospital in Zaragoza.

6.3.1. Motivation

This case study focuses on the analysis and optimization of healthcare systems based on clinical

pathways [Rotter et al., 2010]. A clinical pathway is a structured approach to the treatment and

management of patients with a particular diagnosis or condition. It provides a standardized set

of recommendations for medical staff to follow in terms of diagnostic tests, interventions, and

treatments for each step of a patient’s care journey. As a case study, we consider the analysis

of the clinical pathway of hip fracture from the “Lozano Blesa” University Clinical Hospital in

Zaragoza, Spain.

To deal with this problem, DEDS and, in particular, Petri nets have proven to be highly

appropriate for modeling the event-driven nature of healthcare systems [Augusto and Xie, 2014,

Bernardi et al., 2019, Kang et al., 2019, Wang, 2023]. The advantage of this approach is that

by leveraging these formalisms, healthcare professionals can gain valuable insights into the op-

eration of these complex systems, leading to better patient outcomes and a higher quality of

care. However, it is well-known that the use of analysis techniques for DEDS may become inef-

ficient in highly populated systems since they suffer from the state explosion problem, requiring

a substantial amount of time to complete the analysis.

In order to cope with this, we propose a model to describe the structure and dynamics

of the clinical pathway using TCPNs. The proposed model is based on the one presented in

Bernardi et al. [2019] where Stochastic Well-Formed (SWN) Petri nets were used to model

the clinical pathway and available SWN solution techniques, such as event-driven simulation

[Amparore et al., 2016], were used to obtain an estimation of different performance indices.
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The advantage of our approach is that it achieves a reduction in computational complexity for

analyzing the system while maintaining a good level of accuracy with respect to the behavior

of the discrete model.

TCPNs have been previously used in the literature to model healthcare systems [Dotoli

et al., 2009b, Fanti et al., 2012]. However, these works deal with the optimization of the system

differently. For instance, Fanti et al. [2012] proposes to optimize the healthcare system by

solving a linear programming problem for the determination of the optimal resources, i.e., by

redesigning the system by changing its initial parameters and resource availability. In this work,

we use a different approach: our goal is to manage the available resources to optimize system

performance, assuming redesign is not desirable or feasible.

In order to do that, we take a control theory approach. First, we deal with the control-

lability analysis of the proposed model by using the results presented in the previous chapters

that efficiently deal with the controllability verification. This is a crucial property of any dy-

namic system since if a system is not controllable, then there does not exist a controller that

drives the system to the desired state. We use the implemented algorithms in SimHPN. Next,

we propose a control scheme, based on the one proposed in Ross-León et al. [2014] that enables

the modeled system to reach a state of maximum throughput more quickly. The scheme is

based on an On-Off type control over the firing speed at the controllable transitions that re-

duces the marking error, i.e., the difference between the desired and actual state of the clinical

pathway. In the context of the modeled system, the proposed control law can be interpreted

as that it prioritizes activities that reduce the marking error, resulting in an optimized use of

personnel and a more efficient system. The proposed control law can be computed easily online,

despite the complexity of the system. Finally, we provide simulation results that demonstrate

the effectiveness of the proposed control scheme in the model under study.

6.3.2. TCPN model of the clinical pathway

In this section, we present a TCPN model for the study of the clinical pathway of hip fracture

from the “Lozano Blesa” University Clinic Hospital in Zaragoza, Spain. It is based on the

model developed in Bernardi et al. [2019], as a stochastic well-formed Petri net (SWN). We

validate our model by comparing the results obtained through TCPN simulation with those of

the discrete system. We show how the TCPN system can be used to obtain a more efficient

continuous-time analysis of the patient flow and resource utilization dynamics while maintaining

a good level of accuracy, w.r.t. the original model.

The proposed TCPN model is depicted in Fig. 6.6. It contains some modifications w.r.t.

the original SWN, which will be explained in the following. As in the original discrete model, it

captures the clinical pathway for hip fracture treatment: it consists of all the tasks that need to

be done during the pre-operative day of hospitalization (left side of the figure), the surgery (at
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the bottom of figure), and the post-operative day (right side of the figure). The TCPN model

includes places that represent both the patients (p1) and the resources of the system, such as

nurses (p41) and doctors (p42). The model shows how these entities are utilized throughout the

clinical pathway.

Originally, the SWN contains conflicts that represent the different alternatives through

the clinical pathway. For instance, p6 models the possibility of the patient having a urinary

infection or not. In the SWN (Fig. 8 in Bernardi et al. [2019]), a choice place is used to

model this scenario and a probabilistic resolution policy is used to solve the conflict. For this

particular case, statistically, only 10% of the patients suffer from urinary infection and need

an urgent pre-operative study (procedure modeled from p7 to t9) while 90% of the cases can

continue the pathway without it. For simplicity of analysis, we remove the probabilistic choices

in our model by introducing equivalent structures composed by fork transitions (t6, t10, and

t37) that divide the token flow proportionally to each branch’s probability. For instance, for t6,

for each token that consumes, it allocates 0.9 tokens to the first branch and 0.1 tokens to the

second branch, representing the behavior of the original system.

Next, to set the parameters for performance evaluation purposes, we need to determine

the timing of the transitions. For the SWN, the mean time delay of each transition is defined

according to the time interval it takes to accomplish the task it represents. This information

is reported in Table 1 of Bernardi et al. [2019]. The SWN model has two types of transitions:

immediate and timed. The former type represents events that occur instantaneously, such as

the allocation and release of resources or probabilistic choices (depicted as black transitions

in Fig. 6.6). The latter represents the tasks that must be performed during the clinical path

(depicted as white transitions in the figure). This information is used to define the firing rate

of the transitions in the TCPN model, summarized in Table A.1. It is worth noticing that

we assume that the timing of the immediate transitions is not instantaneous but only much

faster than the rest of the transitions. This way, we can still consider the controllability analysis

techniques from the previous chapters, which do not consider the case of immediate transitions,

while still obtaining a good approximation of the original model.
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Table 6.1

Firing rates of the transitions of the clinical pathway.

Transitions set Timing (1/min)

{t4, t5, t12, t15, t16, t20} 1

{t11, t17, t29, t30, t34, t38} 1/5

{t3, t28} 1/15

{t8, t25, t31} 1/30

{t23} 1/120

{t1, t2, t6, t7, t9, t10, t13, t14, t18,
t19, t21, t22, t24, t26, t27, t32, t33

t35, t36, t37, t39, t40} 10

Finally, the initial marking of the system is determined by the number of available entities:

number of patients nP , number of nurses nN , and number of doctors nD. Initially, the marking

in the rest of the places is 0, representing that no patient is receiving care. Several cases will

be simulated in order to validate the model. For more information on the modeled clinical

pathway, please see Bernardi et al. [2019].

6.3.3. TCPN model validation

In order to validate the proposed TCPN, we present the performance results of our model

under different assumptions of patient workload and resource plan and compare them with the

results obtained for the SWN in Bernardi et al. [2019]. The results are summarized in Fig.

6.7. The performance index of interest is the cycle time of t1, CTt1 , multiplied by the number

of patients, nP , i.e., CT = CTt1nP . This measure corresponds to the mean time spent for a

patient to undergo the treatment Bernardi et al. [2019]. The CT values for the discrete case

were obtained by event-driven simulation using GreatSPN 1 [Amparore et al., 2016] and the

SWN model.

To calculate this performance index in the TCPN system, we first obtain the cycle time

of a transition by analyzing its throughput (the flow through its transitions at the steady state)

[Silva et al., 2011]. This was performed by simulating the behavior of the system until it reached

a steady state, using SimHPN2. The throughput of transition t1 can then be obtained from the

flow at the steady state, fss, as

χ1 = fss[t1]

Specifically, the throughput of a transition corresponds to the inverse of its cycle time. Hence,

1GreatSPN2.0, available at http://www.di.unito.it/~greatspn/index.html
2The simulations are performed using the algorithms implemented on SimHPN with a computer with i5-6600

CPU @ 3.30GHz and 16GB RAM.

http://www.di.unito.it/~greatspn/index.html
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Figure 6.6. A TCPN system that models a hip fracture clinical pathway. The con-

trollable transitions of the system are represented with a red outline. The model is

contained in SimHPN’s models folder as Model HipFractureClinicalPathway SS.mat
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the overall performance index can be computed as

CT =
1

χ1

nP
1

1440

where the factor 1
1440

is added to convert the time units from minutes (used in the TCPN

simulation) to days.

The simulation results for both models are reported in Fig. 6.7. We simulated the 26

different scenarios presented in Bernardi et al. [2019], where the authors considered several

patient workloads on the interval [1, 100] and different personnel resource plans. We compared

the CT obtained by using our proposed fluid model (5th column) against the one obtained by

the event-driven simulation (8th column). The table also shows the relative error between the

performance values computed with both techniques (6th column). The error was computed by

considering the results of the event-driven simulation as reference values:

Rel.Err =
CT SWN − CT TCPN

CT SWN
× 100

Furthermore, the solution time for obtaining the performance values in each case is reported in

columns 7 and 9.

The results in Fig. 6.7 show that the TCPN system provides a suitable approximation for

the problem under consideration. Notably, the error tends to decrease as the number of tokens

(resources) increases. This is likely due to the fact that fluidization typically provides a good

approximation of the original system in highly marked systems Mahulea et al. [2009], which

are often the most challenging cases to analyze for the SWN model. Overall, the relative error

between the TCPN approximation and the SWN model is relatively low, with a maximum

error of 21.05% occurring in only one scenario (case 5), in which the number of tokens is

relatively low. For the rest of the scenarios, the error is below 12.25%, indicating that the

TCPN approximation provides an accurate representation of the system behavior. Moreover,

we observed that the simulation time of the SWN model worsens as the number of resources

increases. In contrast, the TCPN simulation can handle larger systems with less computational

time, making it a more scalable approach for complex systems.

6.3.4. Control and optimization of the fluid model

The use of the TCPN model offers the advantage of enabling the application of various analysis

and design techniques developed for this formalism. In this section, we demonstrate how this

feature can be leveraged to improve the performance of the system by analyzing its controlla-

bility and designing an appropriate control law. In particular, we show the implementation of

a control law that enables the system to reach its state of maximum throughput more quickly.
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Case nP nD  nN CT Rel.Err. Sol. Time CT Sol. Time

1 100 3 5 9.396 11.53% 303.19 10.62 11.03

2 76 3 5 7.141 11.89% 227.83 8.105 8.02

3 50 3 5 4.698 12.24% 128.77 5.353 6.01

4 26 3 5 2.443 10.97% 61.26 2.744 3.04

5 2 3 5 0.1879 21.05% 9.25 0.238 0.03

6 1 3 5 0.1712 0.71% 6.89 0.17 0.02

7 100 6 5 4.698 7.97% 134.29 5.105 59

8 76 6 5 3.5703 10.43% 99.06 3.986 40.08

9 50 6 5 2.349 9.23% 67.34 2.588 29.06

10 26 6 5 1.2214 10.91% 29.22 1.371 15.01

11 2 6 5 0.1708 0.70% 9.23 0.172 0.05

12 100 9 5 3.1318 6.99% 79.23 3.367 132.08

13 76 9 5 2.3803 8.31% 64.08 2.596 98.07

14 50 9 5 1.566 7.12% 39.78 1.686 65.08

15 26 9 5 0.8143 6.29% 21.53 0.869 36.08

16 2 9 5 0.1708 1.07% 9.45 0.169 3.07

17 100 15 5 1.879 4.62% 63.84 1.97 1123.04

18 76 15 5 1.428 5.49% 37.24 1.511 936.08

19 50 15 5 0.94 5.72% 24.37 0.997 416.01

20 26 15 5 0.488 4.87% 12.20 0.513 200.07

21 2 15 5 0.1707 1.01% 7.61 0.169 2.03

22 100 25 5 1.1503 3.58% 274.14 1.193 1293.06

23 76 25 5 0.8742 1.66% 228.07 0.889 578.08

24 50 25 5 0.575 1.71% 248.67 0.585 707.02

25 26 25 5 0.299 8.00% 202.34 0.325 106.06

26 2 25 5 0.1708 0.47% 9.79 0.17 88.02

   SWN Sim Resources TCPN Sim

Figure 6.7. Cycle time (CT ) values estimated using TCPN (5th column) and SWN

simulation (8th column). The relative error between both techniques is also reported

(6th column) and the solution time for each of the different scenarios (7th and 9th

columns). CT values are given in days and the solution time in seconds.
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We provide simulation results to demonstrate the effectiveness of our controller in practical

settings.

6.3.5. Structural controllability analysis using SimHPN

In this section, we analyze the controllability of the fluid model employing the techniques

developed in this thesis, which we have implemented in the toolbox SimHPN. The model and

parameters of this system are included in the toolbox (to load the model select Model → Import

from .mat file → models\Model HipFractureClinicalPathway SS.mat). The controllability test

can be carried out by selecting Continuous → Structural controllability analysis → Net rank-

controllability test (Fig. 6.1). This test verifies sufficient conditions for net rank-controllability

efficiently. The transitions that can be controlled are depicted with a red outline in Fig. 6.6.

They represent the events of the patients entering the pathway, assigning nurses and doctors

to the different stages of the process and some tasks within the pathway. We present 3 control

scenarios

1. Tc = {t1, t11, t38}, i.e., the events of assigning nurses and doctors cannot be controlled :

For this case, we obtain the message:

“Influence is not total! Therefore, the set of controllable transitions does not guarantee

net rank-controllability. The only influenced nodes are: Places = [1 2 3 4 5 6 7 10 11 12

13 14 38 39 40 41] Transitions = [1 2 3 4 5 6 10 11 12 13 38 39 40]”.

From a system point of view, total influence means that the behavior of all states in

the system can be influenced by a set of controllable transitions, which is a necessary

condition for NRC. In the context of a clinical pathway, if the property of influence is not

fulfilled, it means that there are some modes of operation (configurations) in which the

behavior of several parts of the pathway cannot be affected by means any control action.

2. Tc = {t1, t7, t11, t14, t22, t38}, i.e., the events of assigning nurses cannot be controlled : By

entering this set of controllable transitions we obtain the message

“It is not possible to decide if the timed net is net rank-controllable. The condition related

to the choice places is not fulfilled.”.

In this case the test cannot conclude if the system is NRC, since one of the structural

sufficient conditions does not hold. In particular, the one related to the choice places.

This serves to give indications to the user about where the problem may be in order to

guarantee controllability.

3. Tc = {t1, t2, t7, t11, t14, t19, t22, t27, t33, t36, t38}, i.e., the allocation of these resources can be

decided upon: Here we choose the set that we will consider in our case study, which is

such that it satisfies all the structural conditions for controllability and is indicated by

the message:

“The timed net is net rank-controllable.”
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6.3.6. Control law implementation

After dealing with the controllability analysis, we turn our attention to the following control

design problem:

Given a TCPN system, ⟨N ,λ,m0⟩ and a required target marking, mr, design a control law that

drives the marking of the TCPN from m0 to mr, and then keeps the marking at mr indefinitely.

To solve this problem from our particular case study, we adopt a control law presented in

Ross-León et al. [2014], originally designed for the case where all the transitions are controllable.

This scheme is based on defining a required marking, mr ∈ E and defining the marking error

as:

e(τ) = mr −m(τ) (6.1)

Based on this, we can now define the contribution degree of a controllable transition. This

is a measure of how much the firing of a particular transition contributes to reducing the overall

error in the system, formally defined as:

The contribution degree of the k-th transition, Ψk(τ), is defined as:

Ψk(τ) = eT (τ)C[•, k] (6.2)

Now, we can define the control law as follows:

Definition 6.1. Let ⟨N ,λ,m0⟩ be a TCPN system and mr ∈ E be the required marking. For

each tk ∈ Tc, its control input at instant τ is given by:

Ick(τ) =

1 if Ψk(τ) > 0

0 otherwise
(6.3)

The goal is to reach a state that guarantees maximum throughput, i.e., allocate the

available resources to ensure the optimal performance of the system. To establish the target

marking, we can use SimHPN to compute such a state using: Continuous → Optimal →
Optimal Control. In order to compare the performance of the controlled system against the

unforced system (u(τ) = 0), we choose the state of maximal throughput of the unforced system

as our target. To do this, we set the value of Uncontrolled Transitions as = [1:40] (as if there are

no controllable transitions), in the optimal control menu and use the default values for the “Gain

Vector w.r.t. Flow: w” and “Cost Vector Due to Immobilization to Maintain the Product Flow

z” options. Although other target markings could be chosen by applying additional constraints,
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Controller

 Eq. (6.3)

Figure 6.8. Control scheme for the TCPN system.

we select this one to enable a direct comparison. The obtained target marking is

mr = [0.0022 0.0022 0.3326 0.0222 0.0222 0.0022 0.0002 0.0665 0.0002 0.0022

0.0554 0.0222 0.0022 0.0022 0.0222 0.0222 0.1109 0.0022 0.0022 0.0222

0.0022 70.5474 2.6607 0.0022 0.6652 0.0022 0.0022 0.3326 0.1109 0.1109

0.6652 0.0022 0.0022 0.1109 0.0022 0.0022 0.0022 0.0554 0.0022 0.0022

3.1659 0.0067]T

Once an optimal steady state has been computed, the objective is to reach and maintain the

desired marking in the shortest amount of time possible.

Before implementing the proposed control law (Eq. 6.3), it is important to notice that due

to its nature, it will generate a high-frequency control input Ross-León et al. [2014], switching

between two possible states: a transition working at maximum capacity (when the value is 1)

and stopping its activity (when the value is 0). Therefore, the control input may lack physical

meaning for the discrete system, making its interpretation and implementation difficult. Nev-

ertheless, we propose a solution by implementing the control scheme depicted in Fig. 6.8 that

adapts the high-frequency switching input to a smoother, more physically meaningful signal,

ensuring that our approach is not only feasible but also suitable for the intended application.

In particular, we filtered the On-Off control input of each transition by computing the

running mean of the corresponding control signal and applying a first-order low-pass filter to it

(using off-the-shelf functions in MATLAB). The result of this procedure is depicted in Fig. 6.9

for the control signal of t7. The upper subplot shows the high-frequency control input computed

with Eq. (6.3). The zooms on the plot show how the duty cycle of the signals changes over time.

The lower subplot shows the filtered signal, which captures the control input as a smoother

control signal for the controllable transitions of the system.

Figure 6.10 shows the simulation results of the implemented control: The upper subplot

depicts the marking error (the difference between the desired and the current state) of the

unforced case; the lower subplot depicts the marking error for the forced case. Notice that

it takes more than 1700 minutes for the unforced case to reach the target. On the contrary,

for the forced case it takes around 700 minutes to reach it. The filtered control signal on the

different transitions is depicted in Fig. 6.11.

To interpret the physical meaning of the simulation results in the context of the clinical
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Figure 6.9. Filtering control input of transition t7.

Figure 6.10. Marking error for the unforced and the forced case.
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Figure 6.11. Filtered control signal of the controllable transitions.

pathway, it is important to remember that the control inputs in our model correspond to delays

in the firing rate of certain transitions. In a clinical pathway model with limited resources,

the delays represent the addition of extra time to certain activities to prioritize others, thus

optimizing the use of the available resources to ensure that the system achieves its maximum

productivity as quickly as possible. For instance, in Fig. 6.11, the delay added to transition t1

(which represents the entrance of patients to the pathway), can be seen as the rate at which

patients enter the pathway is being regulated to avoid bottlenecks in the early parts of the

process and prioritize the efficient use of the available personnel. Another example is the

control actions of t7 and t22 which represent the use of doctors in a pre-operative phase and

during the surgery, respectively: at the beginning of the process, we may prioritize the use of

doctors during the preoperative stage (t7), to ensure that patients are adequately prepared for

surgery. As more patients enter the pathway and become ready for surgery, we can then shift

the focus to the surgical stage (t22), where doctors are needed to perform the operations. These

are examples of how, by carefully controlling the flow through the controllable transitions, we

can ensure that the available resources are utilized efficiently and that the system reaches its

steady state as quickly as possible, optimizing the overall throughput of the system.

6.4—Concluding remarks

In this chapter, we presented different contributions to showcase the applicability of the results

presented in the previous chapters.

First, we showed the implementation of the results presented in previous chapters in the

toolbox SimHPN. The implementation of these algorithms in SimHPN provides a practical tool
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for researchers and practitioners to analyze complex systems modeled as TCPNs, enhancing

the practical applicability and accessibility of our research.

Then, as a first case study, we showed the use of SimHPN for the analysis of a Kanban-like

flexible manufacturing system, showcasing the results in the analysis of controllability and the

computation of equilibrium sets.

As a second case study, we proposed a novel approach using timed continuous Petri

nets to analyze and optimize healthcare systems through clinical pathways. Our approach is

demonstrated through a case study of a hip fracture clinical pathway at the “Lozano Blesa”

University Clinical Hospital, in Zaragoza Spain. First, it was shown that the TCPN model can

be used to perform a more efficient analysis of the patient flow and resource utilization dynamics

of the system while maintaining a good level of accuracy, w.r.t. the discrete techniques. Next,

a control scheme that enables the modeled system to reach its state of maximum throughput

more quickly, was proposed. The effectiveness of the proposed method is demonstrated using

simulation results.

While a formal proof of convergence for the proposed control scheme is not provided,

the chapter highlights its potential and the need for further investigation to understand its

limitations. Future research can also explore the practical implementation of the proposed

control scheme into the discrete system, following a similar scheme as the one proposed in

Vázquez and Silva [2009].



Chapter 7
Conclusions and Future Work

This chapter summarizes the main contributions presented in this thesis and discusses some of

the possible future research directions.

7.1—Concluding remarks

This dissertation presents a structural theory for the analysis of controllability in timed con-

tinuous Petri nets under infinite server semantics:

• In Chapter 3, it was demonstrated that the analysis of Bounded Input Controllability

(BIC) in TCPN systems, under infinite server semantics, can be studied through property of

net rank-controllability (NRC), a global structural property of the TCPN. There, the relation-

ship between both properties was established. First, the relation between NRC and BIC in a

single region was stated, and then, between multiple regions in a given system. In particular,

an important result was introduced: if the system is live as untimed, then, NRC is a sufficient

condition for BIC over multiple regions (each of the Macro-regions of the system) (Thm. 3.1).

Moreover, it was pointed out that in non-live systems NRC is not sufficient nor necessary for

BIC.

Furthermore, a first necessary structural condition for NRC, was derived: the control actions

must influence the marking at all the nodes of the net, in any given configuration. The property

of influence was defined and then, intuitively explained by showing the relationship between

controllability and its connection to the the structure of the net. It was shown that influence

can be verified from the net structure in polynomial time, avoiding the analysis by configu-

rations. However, it was established that influence is not a sufficient condition since, even if

influence is fulfilled, there might exist a linear dependence between marking variations in dif-

ferent places (i.e., due to the existence of uncontrollable marking invariants corresponding to

the uncontrollable invariant subspaces of the system [Wonham, 1985]).

• In order to deal with that, Chapter 4 introduces a series of structural conditions to

guarantee NRC. This is achieved by introducing the effective flow dynamic system. We study

the controllability of this system by defining the uncontrollable flow invariants (UFIs), which

95
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correspond the uncontrollable invariant subspaces of the flow system. The existence of UFIs

was then associated with net structural objects such as P-flows or choice places, among others,

thus facilitating the characterization of the controllability of the flow system. Finally, as it was

shown in Lemma 4.2 and Proposition 4.6, the controllability of the flow system can be related

to the property of NRC. Taking this into consideration, in Thm. 4.2, it was demonstrated that

if total influence holds and there are no UFIs, NRC is guaranteed. Finally, polynomial-time

algorithms based only on purely structural conditions from the net for the verification of NRC

(and therefore, for the verification of BIC), were provided. These algorithms are able to verify,

in polynomial time, sufficient conditions for NRC (i.e., that the rank of the controllability

matrices in all the configurations has its maximum possible rank), regardless of the potentially

exponential number of configurations.

• In Chapter 5, different methods for analyzing the equilibrium sets of TCPN systems

were presented. The study of this sets and its connectivity is closely related to the analysis

of controllability, as stated extensively in Chapter 2. We defined the connectiviy graph of a

system, ⟨V,E⟩, as a graph containing the information of the equilibrium markings in all of the

different regions of the system. First, a general approach was introduced to compute this graph

and analyze its connectivity. The idea is to reduce the complexity of the analysis of connectivity

by means of pre-processing the TCPN information. It was tested against benchmarks of real-

life systems, obtaining a significant reduction in the complexity of the analysis, compared to

the brute force methods used in the literature.

Moreover, the analysis for subclasses of nets was adressed. In particular, a qualitative analysis

of the equilibrium sets in Topologically Equal Conflict (TEC) systems is presented. First,

for unforced, conservative, and consistent Choice-Free systems, with suitable m0, the relation

between the number of equilibrium points of the system and the qualitative characteristics of

its maximal limiting subnet (MLS) is presented. In particular, it was shown that when the MLS

is strongly connected there exists a unique equilibrium marking in the system. Otherwise, an

infinite number of them exist. Moreover, it is shown that the connectivity of the equilibrium

sets is always fulfilled. Finally, those results are straightforwardly extended to unforced TEC

systems. This can be used to state stronger controllability results and as a useful tool for the

synthesis of controllers in TEC systems.

Regarding the analysis of controllability in TCPNs, the previous results complement the results

presented in chapters 3 and 4 in the following manner:

� Given a TCPN system that is NRC, if ⟨V,E⟩ is strongly connected, then, the system is

globally controllable, i.e., BIC over the set of all of its equilibrium markings.

� Given a TCPN system that is NRC, if ⟨V,E⟩ is not strongly connected, the system is

BIC over the each of the Macro-Regions of the system.

Clearly, the complexity of the method is still heavily influenced by the initial number of config-
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urations of the TCPN system. Nevertheless, the substantial reduction in the number of pairs

to analyze when using the proposed method is a promising development.

• Finally, in Chapter 7, we presented different contributions to showcase the applicability

of the results presented in the previous chapters. First, we showed the implementation of our

results in the toolbox SimHPN. The implementation of these algorithms in SimHPN provides a

practical tool for researchers and practitioners to analyze complex systems modeled as TCPNs,

enhancing the practical applicability and accessibility of our research.

Then, as a first case study, we showed the use of SimHPN for the analysis of a Kanban-like

flexible manufacturing system, showcasing the results in the analysis of controllability and

the computation of equilibrium sets. As a second case study, we proposed a novel approach

using timed continuous Petri nets to analyze and optimize healthcare systems through clinical

pathways. Our approach is demonstrated through a case study of a hip fracture clinical pathway

at the “Lozano Blesa” University Clinical Hospital, in Zaragoza Spain. First, it was shown

that the TCPN model can be used to perform a more efficient analysis of the patient flow and

resource utilization dynamics of the system while maintaining a good level of accuracy, w.r.t.

the discrete techniques.

Next, a control scheme for TCPNs under ISS with the presence of uncontrollable transitions

was proposed. The scheme is based on an On-Off type control over the firing speed at the

controllable transitions that reduce the difference between the desired and actual state of the

system. The proposed control law can be computed easily online, despite the complexity of a

given system. In order to study the effectiveness of the proposed method, it was implemented

in the case study of the clinical pathway. By using simulation results, it was shown that the

control scheme enables the modeled system to reach its state of maximum throughput more

quickly.

It is important to note that the proposed control scheme’s applicability extends beyond the

presented case study, since its general formulation allows for implementation in general TCPN

systems. While a formal proof of convergence for the proposed control scheme is not provided,

this chapter highlights its potential and the need for further investigation to understand its

limitations.

7.2— Future work

Considering the research done during this thesis, some of the problems which remain open or

require more research, are stated below:

A first next step on this research will be to extend the study of NRC to non-live systems.

By using the most recent results in the literature about the structural analysis of liveness

and deadlock avoidance, a first approach would be formulating methodologies, by means of an

appropriate control strategy, for enforcing liveness in a given TCPN system. After that, the
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results from this thesis could be used in the resulting live system. Moreover, extending the

results presented for the analysis of NRC to particular subclasses would be useful to obtain

stronger results and determine supplementary information about the connection between the

controllability property and the net structure.

Regarding the results related to the analysis of equilibria, as future work, it is expected

to extend the results herein presented to the forced TEC systems. Since a forced system can

be viewed as an unforced one with timing variations and, due to the linear behaviour of a

system within each single region, it is expected that connectivity will hold for the forced case.

Moreover, a possible extension of the presented work will be the study of the connectivity of

equilibrium sets in more general subclasses such as Mono-T-Semiflow systems, by pursuing the

structural approach herein presented.

Moreover, as in the case of the case study of the clinical pathway presented in Chapter

6, a fluid version of the model of the manufacturing process for transport platforms (Appendix

A) could be developed in order to use the results presented in this thesis, allowing the analysis

of different properties of the system, such as controllability, control design, and more efficient

steady-state performance.

Finally, regarding the results from the presented control scheme, further investigation

should be provided to guarantee its applicability in broader classes of systems. Furthermore,

some future work could explore the practical implementation of the proposed control scheme

into the discrete system, following a similar scheme as the one proposed in Vázquez and Silva

[2009].
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Este caṕıtulo resume las principales contribuciones presentadas en esta tesis y discute

algunas posibles direcciones para investigaciones futuras.

7.3—Observaciones finales

Esta disertación presenta una teoŕıa estructural para el análisis de la controlabilidad en redes

de Petri continuas temporizadas bajo la semántica de infinitos servidores:

• En el Caṕıtulo 3, se demostró que el análisis de la Controlabilidad con Entrada Acotada

(BIC) en sistemas TCPN, bajo la semántica de infinitos servidores, puede estudiarse a través de

la propiedad de net rank-controllability (NRC), una propiedad estructural global de la TCPN.

Alĺı, se estableció la relación entre ambas propiedades. Primero, se indicó la relación entre

NRC y BIC en una sola región, y luego, entre múltiples regiones en un sistema dado. En

particular, se introdujo un resultado importante: si el sistema es vivo, entonces, NRC es una

condición suficiente para BIC sobre múltiples regiones (las Macro-regiones del sistema) (Thm.

3.1). Además, se señaló que en sistemas no vivos, NRC no es suficiente ni necesario para

BIC. Además, se derivó una primera condición estructural necesaria para NRC: las acciones

de control deben influir en el marcado en todos los nodos de la red, en cualquier configuración

dada. La propiedad de influencia fue definida y luego, explicada de manera intuitiva al mostrar

la relación entre la controlabilidad y su conexión con la estructura de la red. Se demostró que

la influencia se puede verificar desde la estructura de la red en tiempo polinómico, evitando el

análisis por configuraciones. Sin embargo, se estableció que la influencia no es una condición

suficiente, ya que, incluso si se cumple la influencia, podŕıa existir una dependencia lineal entre

las variaciones de marcado en diferentes lugares (es decir, debido a la existencia de invariantes

de marcado no controlables correspondientes a los subespacios invariantes no controlables del

sistema [Wonham, 1985]).

• Para abordar esto, el Caṕıtulo 4 introduce una serie de condiciones estructurales para

garantizar NRC. Esto se logra mediante la introducción del sistema dinámico de flujo efectivo.

Estudiamos la controlabilidad de este sistema al definir los invariantes no controlables de flujo

(UFIs), que corresponden a los subespacios invariantes no controlables del sistema de flujo. La

existencia de UFIs luego se asoció con objetos estructurales de la red, como P-flujos o lugares

de elección, entre otros, facilitando aśı la caracterización de la controlabilidad del sistema de

flujo. Finalmente, como se mostró en el Lema 4.2 y la Proposición 4.6, la controlabilidad del

sistema de flujo se puede relacionar con la propiedad de NRC. Considerando esto, en Thm. 4.2,

se demostró que si se cumple la influencia total y no hay UFIs, se garantiza NRC. Finalmente,

se proporcionaron algoritmos en tiempo polinómico basados solo en condiciones puramente

estructurales de la red para la verificación de NRC (y, por lo tanto, para la verificación de

BIC). Estos algoritmos pueden verificar, en tiempo polinómico, condiciones suficientes para

NRC (es decir, que el rango de las matrices de controlabilidad en todas las configuraciones
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tenga su rango máximo posible), independientemente del potencial número exponencial de

configuraciones.

• En el Caṕıtulo 5, se presentaron diferentes métodos para analizar los conjuntos de

equilibrio de sistemas TCPN. El estudio de estos conjuntos y su conectividad está estrechamente

relacionado con el análisis de la controlabilidad, como se detalla extensamente en el Caṕıtulo 2.

Definimos el grafo de conectividad de un sistema, ⟨V,E⟩, un grafo que contiene la información de

los conjuntos de marcados de equilibrio en todas las diferentes regiones del sistema. En primer

lugar, se introdujo un enfoque general para calcular este grafo y analizar su conectividad. La

idea es reducir la complejidad del análisis de conectividad mediante el preprocesamiento de

la información de TCPN. Se probó con benchmarks de la literatura, que modelan sistemas

reales, obteniendo una reducción significativa en la complejidad del análisis, en comparación

con los métodos de fuerza bruta utilizados en la literatura. Además, se abordó el análisis

de subclases de redes. En particular, se presenta un análisis cualitativo de los conjuntos de

equilibrio en sistemas Conflictos Topológicamente Igualados (TEC). Primero, para sistemas no

forzados, conservativos y consistentes sin elecciones (CF), con un m0 adecuado, se presenta la

relación entre el número de puntos de equilibrio del sistema y las caracteŕısticas cualitativas

de su Maximal Limiting Subnet (MLS). En particular, se mostró que cuando la MLS está

fuertemente conectada, existe un marcado de equilibrio único en el sistema. De lo contrario,

existen infinitos. Además, se muestra que la conectividad de los conjuntos de equilibrio siempre

se cumple. Finalmente, esos resultados se extienden directamente a sistemas TEC no forzados.

En cuanto al análisis de la controlabilidad en TCPNs, los resultados anteriores complementan

los resultados presentados en los caṕıtulos 3 y 4 de la siguiente manera:

� Dado un sistema TCPN que es NRC, si ⟨V,E⟩ es fuertemente conexo, entonces, el sistema

es globalmente controlable, es decir, BIC sobre el conjunto de todos sus marcados de

equilibrio.

� Dado un sistema TCPN que es NRC, si ⟨V,E⟩ no es fuertemente conexo, el sistema es

BIC sobre cada una de las Macro-Regiones del sistema.

Claramente, la complejidad del método sigue estando fuertemente influenciada por el número

inicial de configuraciones del sistema TCPN. No obstante, la reducción sustancial en la cantidad

de pares a analizar al utilizar el método propuesto es un desarrollo prometedor.

• Finalmente, en el Caṕıtulo 7, presentamos diferentes contribuciones para demostrar

la aplicabilidad de los resultados presentados en los caṕıtulos anteriores. En primer lugar,

mostramos la implementación de nuestros resultados en el toolbox de MATLAB, SimHPN. La

implementación de estos algoritmos en SimHPN proporciona una herramienta práctica para que

investigadores y profesionales analicen sistemas complejos modelados como TCPNs, mejorando

la aplicabilidad práctica y accesibilidad de nuestra investigación. Luego, como primer caso de

estudio, mostramos el uso de SimHPN para el análisis de un sistema de fabricación flexible tipo
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Kanban, exhibiendo los resultados en el análisis de la controlabilidad y el cálculo de conjuntos

de equilibrio. Como segundo estudio de caso, propusimos un enfoque nuevo utilizando redes de

Petri continuas temporizadas para analizar y optimizar sistemas de atención médica a través

de trayectorias cĺınicas. Nuestro enfoque se demostró a través de un caso de estudio de una v́ıa

cĺınica de fractura de cadera en el Hospital Cĺınico Universitario ”Lozano Blesa” de Zaragoza,

España. Primero, se mostró que el modelo TCPN puede utilizarse para realizar un análisis

más eficiente de la dinámica de flujo de pacientes y la utilización de recursos del sistema,

manteniendo un buen nivel de precisión en comparación con las técnicas discretas.

A continuación, se propuso un esquema de control para TCPNs bajo ISS con la presencia de

transiciones no controlables. El esquema se basa en un control tipo On-Off sobre la velocidad

de disparo en las transiciones controlables que reduce la diferencia entre el estado deseado y

real del sistema. La ley de control propuesta puede calcularse fácilmente en ĺınea, a pesar

de la complejidad de un sistema dado. Para estudiar la efectividad del método propuesto,

se implementó en el caso de estudio de la v́ıa cĺınica. Mediante resultados de simulación, se

mostró que el esquema de control permite que el sistema modelado alcance su estado de máxima

capacidad más rápidamente.

Es importante señalar que la aplicabilidad del esquema de control propuesto se extiende más

allá del caso de estudio presentado, ya que su formulación general permite su implementación

en sistemas TCPN generales. Aunque no se proporciona una prueba formal de convergencia

para el esquema de control propuesto, este caṕıtulo destaca su potencial y la necesidad de una

investigación adicional para comprender sus limitaciones.

7.4—Trabajo futuro

Considerando la investigación realizada durante esta tesis, se presentan a continuación algunos

de los problemas que aún están abiertos o requieren más investigación:

Un primer paso siguiente en esta investigación será extender el estudio de NRC a sistemas

no vivos. Utilizando los resultados más recientes en la literatura sobre el análisis estructural

de vivacidad y evitación de bloqueos, un primer enfoque seŕıa formular metodoloǵıas, mediante

una estrategia de control adecuada, para hacer cumplir la vivacidad en un sistema TCPN

dado. Después de eso, los resultados de esta tesis podŕıan utilizarse en el sistema en vivo

resultante. Además, extender los resultados presentados para el análisis de NRC a subclases

particulares seŕıa útil para obtener resultados más sólidos y determinar información adicional

sobre la conexión entre la propiedad de controlabilidad y la estructura de la red.

En relación con los resultados relacionados con el análisis de equilibrios, como trabajo

futuro, se espera extender los resultados presentados aqúı a sistemas TEC forzados. Dado

que un sistema forzado puede considerarse como uno no forzado con variaciones temporales

y, debido al comportamiento lineal de un sistema dentro de cada región única, se espera que
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la conectividad se mantenga para el caso forzado. Además, una posible extensión del trabajo

presentado será el estudio de la conectividad de los conjuntos de equilibrios en subclases más

generales, como los sistemas Mono-T-Semiflow, siguiendo el enfoque estructural presentado

aqúı.

Además, como en el caso de estudio de la v́ıa cĺınica presentada en el Caṕıtulo 6, se

podŕıa desarrollar una versión fluida del modelo del proceso de fabricación para plataformas de

transporte (Apéndice A) para utilizar los resultados presentados en esta tesis, permitiendo el

análisis de diferentes propiedades del sistema, como la controlabilidad, el diseño del control y

un rendimiento más eficiente en estado estacionario.

Finalmente, en cuanto a los resultados del esquema de control presentado, se debe realizar

una investigación adicional para garantizar su aplicabilidad en clases más amplias de sistemas.

Además, algún trabajo futuro podŕıa explorar la implementación práctica del esquema de con-

trol propuesto en el sistema discreto, siguiendo un esquema similar al propuesto en Vázquez

and Silva [2009].
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Appendix A
Analysis of an industrial manufacturing

process

In order to showcase the capabilities of Petri net formalisms, this appendix focuses on the

modeling and performance analysis of the manufacturing process for transport platforms at

the Alimak Group facility in La Muela, Spain. The objective is to leverage formal tools to

gain insights into this complex manufacturing process and explore potential applications such

as control and optimization. This section presents a preliminary study, where a Generalized

Stochastic Petri net model of the manufacturing process is proposed to be used for simulation,

performance analysis, and optimization of the system.

A.1— Introduction

In the modern era of complex systems, industries face the challenge of effectively managing

intricate processes while striving for efficiency and optimal performance. This is particularly

evident in the manufacturing sector, where companies aim to deliver high-quality products

within tight timelines, all while maintaining cost-effectiveness. To tackle these challenges,

it has become imperative to employ formal tools that can provide valuable insights into the

underlying processes and aid in the design of efficient operational techniques [Campos et al.,

2018, Seatzu, 2019, Shao et al., 2019].

Alimak Group, a renowned player in the manufacturing industry, specializes in the pro-

duction of vertical access solutions, including elevators and work platforms. The manufacturing

process of such systems involves numerous interconnected stages, encompassing production, as-

sembly, quality control, and logistics. To optimize this intricate process, Alimak Group acknowl-

edges the importance of adopting formal tools that can aid in analysis and decision-making,

ultimately leading to improved operational efficiency and product quality.

To showcase this, in this secwion, we propose a Petri net-based formal model to represent

the manufacturing process of transport platforms, depicted in Fig. A.1, at the Alimak Group

111
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2

1

4

3

Figure A.1. The standard configuration of the transport platform and its main compo-

nents: 1) the erection platform, 2) the drive unit, 3) the frame, 4) the mast unit.

facility in La Muela, Spain. In particular, we use Generalized Stochastic Petri nets (GSPNs)

[Balbo, 2007] to model the system under consideration. One key motivation for employing

GSPN models is their ability to estimate essential performance measures that provide insights

into system behavior [Lee et al., 2002, Li and Reveliotis, 2015, Melani et al., 2022]. Parameters

such as throughput, resource utilization, and system efficiency can be accurately evaluated us-

ing state-based techniques and/or event-driven simulation, leveraging the capabilities of GSPN

models [Amparore et al., 2016, Ratzer et al., 2003, Rodŕıguez et al., 2018, Zimmermann and

Knoke, 2001]. These quantitative measures provide valuable information for decision-making

and process optimization, such as identifying bottlenecks, optimizing resource allocation, the

assessment of different scenarios, and evaluation of alternative strategies without disrupting

the actual production process.

A.2—Production process of transport platforms

In this section, we describe the production process of the standard configuration of the transport

platforms (TPL), which are produced at the Alimak Group facility in La Muela, Spain. The

layout of the manufacturing process is depicted in Fig. A.2: it consists of a storage area for

the parts, four production spots for TPLs, an adjacent spot for assembling 4 drive units in

parallel, and an output buffer. Additionally, the production process is supported by a test

bench (consisting of a mobile mast unit and masses for the load tests) and a forklift, to be

used during the different stages of the process. The production of a TPL is composed of the

sequential assembly of its main components:
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Figure A.2. General layout of the production process.

1. Erection platform: The erection platform is the base of the system. It serves as a facilitator

for efficient mast fastening during erection and secure attachment of mast ties to the wall.

2. Drive unit : The drive unit is responsible for driving the TPL along the mast sections via

a series of guide rollers. The gear motor, overload system, and safety device system are

all installed in this unit.

3. Frame of the unit : It consists of the base platform (floor’s self-supporting structure)

to which the front panel, back panel (removable panel in front of machinery and safety

device), and the falling object protection structure (roof) are attached.

4. Electric control panel : This panel acts as a centralized unit that integrates all the neces-

sary commands for platform operation and the control of safety systems.

A.2.1. Assembly of the transport platforms

The production process can be divided into two main activities that are carried out in parallel:

On one hand, the drive units are built on the adjacent production spot, installing, the

gear motor, overload system, and safety device system on the drive frame (Procedure 1, in Fig

A.3). Four drive units can be produced in parallel.

On the other hand, the TPLs are assembled on the 4 production spots (4 TPLs can be

assembled in parallel). Firstly, the erection platform is installed on an available production

spot, installing the cable basket and a mast section on it. Subsequently, one of the finished

drive units and the control panel are installed (Procedure 2, in Fig A.3). Finally, the four
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elements composing the frame are integrated to complete the assembly (Procedure 3, in Fig

A.3).

The parts that are required for the TPL assembly are stored in the general storage area.

As the TPL production process progresses, operators carry the necessary parts from the storage

area. Depending on the complexity of the different tasks (often requiring carrying heavy parts

from the storage), they can be performed by either one, two operators or two operators utilizing

a forklift, depending on its difficulty.

After assembly, the unit undergoes testing on a movable test bench. This test bench is

transported to the production spot using a forklift, with the two operators ensuring its safe

transfer. The test bench enables critical safety checks, including maximum velocity testing and

assessment of safety device functionality through drop tests. Upon successful completion of the

tests, the unit is transferred to the output buffer area (Procedure 4 in Fig. A.3).

It is worth highlighting that, given the overall process throughput is relatively slow, the

need to model the arrival of new parts to the storage area is deemed unnecessary as the slow

utilization rate ensures consistent availability of parts at all times in the unit storage.

A.3—Petri net model of the manufacturing process

To model the manufacturing process, we propose a Generalized Stochastic Petri Net (GSPN)

model. For a deeper insight on the formalism, the interested reader can consult Balbo [2007].

The GSPN model serves as a powerful tool for accurately representing and analyzing the

complex dynamics of the manufacturing system under investigation. Due to the complex-

ity of the proposed model, we do not include it in this section but it is available online at

https://github.com/arzola91/PNModels.git. In order to give some general insight into the

model, Fig. A.3 depicts the main PN structures that model the different procedures described

in the previous section:

P1 models the assembly of the drive units, which is carried out in parallel with the rest of

the production process. As mentioned early, 4 drive units can be assembled in parallel, resulting

in a PN structure with four branches, each resembling the assembly process represented by P1.

Similarly, the sequential procedures for completing a TPL are represented by the pro-

cedures depicted in P2, P3, and P4. The composition of these 3 structures represents the

activities performed at a specific production spot. Since the system contains 4 production

spots, the proposed model also exhibits four parallel branches, with each branch representing

the sequential activities (P2 =⇒ P3 =⇒ P4) performed at different production spots within

the system.

The model contains other places, representing the shared resources to be used during the

https://github.com/arzola91/PNModels.git
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Figure A.3. Main procedures involved in the assembly of a TPL, represented by Petri

net structures. P1 is carried out in parallel to the rest, which are carried out in a

sequential manner P2 =⇒ P3 =⇒ P4.

process: available operators, available forklifts, available test bench availability of a production

spot, output buffer, etcetera. Those places are pre-conditions for the different transitions of

the system. Those places, however, are not depicted here for the sake of readability. Clearly,

for each transition, these pre-conditions will depend on the complexity of each task. This is

depicted clearly and without ambiguity on the complete model.

A.3.1. Model parameters

In order to assess the system performance, time delays must be associated with transitions.

The mean time delay of each transition is defined according to the time interval it takes to

accomplish the task it represents. This information is obtained in collaboration with the expert

engineers of Alimak and is summarized in Table A.1. The model has two types of transitions:

immediate and timed. The former type represents events that occur instantaneously, such as

the allocation of resources and the decisions that can be taken during the process (depicted as

black transitions in Fig. A.3). The latter represents the completion of the different stages of

the process. (depicted as white transitions in Fig. A.3).

The initial marking distribution of the system is determined by the number of available

resources: number of operators, number of production spots (4), output buffer size (8 units)1,

1In the following, the number of production spots and output buffer size is considered constant since redesign
of the layout and production plant is neither desirable nor feasible.

https://github.com/arzola91/PNModels.git
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Table A.1

Delay times of each of the events included in the manufacturing process.
Event Time delay
Base on spot 40 min
Basket installed 60 min
Mast installed 60 min
Drive frame on spot 40 min
Overspeed device installed 60 min
Overload device installed 60 min
Gearbox installed 80 min
Drive unit installed 80 min
Control panel + cable routing ready 90 min
Platform installed 80 min
Back panel installed 60 min
Front panel installed 60 min
Roof installed 60 min
Test finished 80 min
Unit ready for shipping 40 min
Unit on buffer 30 min

number of forklifts and, number of test benches. Initially, the marking in the rest of the places

is 0, representing that no unit is being processed.

A.4—Performance analysis of the system

In this section, we present a performance analysis of the system. In particular, Alimak aims

to optimize the process to reduce production time while maintaining or improving quality.

Currently, they can produce, on average, four TPLs in 40 hours using 4 operators, 1 forklift,

and 1 test bench. Therefore, the selected goal of this contribution is to study how different

distributions of resources (operators and forklifts) may affect the production time of the TPLs.

We simulated 6 scenarios, considering different personnel/resource cases.

In order to carry out the performance analysis, we use event-driven simulation techniques

(GreatSPN). The considered performance index was the throughput of the output transition

of the system, χout, i.e., a measure of how many units of TPLs can be processed in a given

amount of time. This was obtained by simulating2 the behavior of the system until it reached a

steady state, using the steady state simulation module of GreatSPN (solver: GreatSPN Legacy ;

confidence: 95%).

Once this performance index is obtained, we can compare its performance with the real

production plant. To compare it with the current layout, the performance index chosen for

2The simulations were performed using a computer with an 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz processor and 16GB RAM.
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Case #Op  #FkL

1 4 1 37.68 1.078 0.083

2 6 1 35.19 2.868 0.016

3 8 1 34.63 4.823 0.003

4 4 2 29.11 0.223 0.810

5 6 2 20.78 0.721 0.339

6 8 2 18.50 2.043 0.128

Resources

PT (Hrs.) Avg. #Idle_Op Avg. #Idle_FkL

Figure A.4. Production time (PT ) values estimated using GreatSPN for different re-

source situations. PT values are given in hours. The second (#Op) and third (#FkL)

columns indicate the number of operators and the number of forklifts considered in each

case, respectively. Moreover, the fifth and sixth columns indicate the average number

of idle operators and idle forklifts, respectively

our analysis was the time required to produce four TPLs. This production time, PT , can be

computed as PT = 1
χout
× 4 (the amount it takes to produce one TPL multiplied by four, i.e.,

the amount it takes to produce 4 TPLs).

To ensure the reliability of our model, we validated it by considering Case 1 as the

baseline scenario (which represents the production implementation currently employed at the

manufacturing plant). By comparing the model’s predictions with the actual performance data

obtained from Case 1, we were able to assess the accuracy and validity of our model. After

this, we simulated different cases to study how different distributions of resources may affect the

production time of the TPLs, compared to the baseline scenario. These results are summarized

in Fig. A.4.

Other performance indices considered were the number of average idle operators and

average idle forklifts, i.e., the number of operators or forklifts that, on average, were not actively

engaged in productive tasks. This information is useful to understand if a resource might be

underutilized or if there are potential bottlenecks in the system. For instance, if the average

idle operators value is consistently high, it suggests that there may be an imbalance between

the available workforce and the workload, indicating a potential excess of operators. On the

other hand, a low average idle forklifts value signifies efficient utilization of forklifts, indicating

that they are effectively supporting the production process.
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A.4.1. Discussion

The results obtained from the event-driven simulation provide insights into the impact of re-

source allocation on the system performance. For instance, in this particular case, the obtained

results reveal that the availability of forklifts plays a crucial role in determining the production

time. Scenarios with limited forklift capacity (cases 1-3), even with an increased number of

operators, experienced prolonged production times due to a lack of ability to perform parallel

task execution (since most of the parallelizable tasks during the production process require the

use of the forklift). This can be seen also in the number of average idle operators of case 3 (8

operators and 1 forklift), indicating that the lack of resources to carry out the operations does

not allow to parallelize tasks in the system, even with a high amount of personnel. Therefore,

minimal improvements in efficiency were obtained in these cases.

On the other hand, an increase in the number of forklifts shows a significant improvement

in production times, even in the case of only 4 operators. This is due to the fact that this im-

provement allows the operators to perform several tasks in parallel, reducing production times.

Clearly, it is imperative to establish a balanced allocation of both operators and forklifts. This

ensures improved coordination among resources, enables parallel task execution, and enhances

overall efficiency.

A.5—Concluding remarks

In order to showcase the capabilities of Petri net formalisms, this appendix proposes a Gener-

alized Stochastic Petri net (GSPN) model to analyze and optimize the manufacturing process

for transport platforms at the Alimak Group facility in La Muela, Spain. It was shown that

the GSPN model can be used to perform the analysis of the production time and resource

utilization dynamics of the system under consideration. In addition, a preliminary study was

conducted to examine how different resource plans can affect the productivity of the system.

Through this study, it was observed that the GSPN model effectively enables the identification

of the specific resources that have a greater impact on the overall productivity of the system.

Future research can focus on

� Collaborating closely with Alimak and gathering comprehensive data to enhance the

accuracy and reliability of the GSPN model. Rigorous validation against real production

data will verify the model’s fidelity.

� Exploring and adapting existing optimization algorithms and resource allocation tools

developed for GSPNs, identifying efficient resource allocation strategies to maximize pro-

ductivity.
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� Implementation of the optimization results in the actual manufacturing process, achieving

tangible improvements.

Moreover, as in the case of the case study of the clinical pathway presented in section 6,

a fluid version of this model could be developed in order to use the results presented in this

thesis, allowing the analysis of different properties of the system, such as controllability, control

design, and more efficient steady-state performance.
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