
2024 228

Carlos Escuín Blasco

Crafting Non-Volatile Memory
(NVM) Hierarchies: Optimizing

Performance, Reliability, and
Energy Efficiency

Director/es
Ibáñez Marín, Pablo Enrique
Viñals Yufera, Víctor

Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Carlos Escuín Blasco

CRAFTING NON-VOLATILE MEMORY (NVM)
HIERARCHIES: OPTIMIZING PERFORMANCE,

RELIABILITY, AND ENERGY EFFICIENCY

Director/es

Ibáñez Marín, Pablo Enrique
Viñals Yufera, Víctor

Tesis Doctoral

Autor

2024

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática

Universidad de Zaragoza
Escuela de Ingeniería y Arqitectura

Crafting Non-Volatile Memory (NVM) Hierarchies:
Optimizing Performance, Reliability, and Energy Efficiency

Ph.D. Thesis

Carlos Escuin Blasco
2023

Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arqitectura

Universidad de Zaragoza

Crafting Non-Volatile Memory (NVM) Hierarchies:
Optimizing Performance, Reliability, and Energy Efficiency

Ph.D. Thesis

Author:

Carlos Escuin Blasco

Advisors:

Víctor Viñals Yúfera
Pablo Enrique Ibáñez Marín

2023

Abstract

The escalating number of cores and accelerators in modern computing systems and the
huge memory footprints and requirements of emerging applications beckon new challenges
in the design of today memory hierarchies. One way to mitigate the impact of inefficient
memory accesses resulting from these demanding memory requirements involves imple-
menting larger on-chip cache memory hierarchies. The last-level cache (LLC), which is the
last countermeasure when avoiding costly off-chip memory accesses, is traditionally built
using SRAM technology; a technology that does not scale well in terms of area and static
power. Emerging non-volatile memory (NVM) technologies have shown a great potential
when replacing or augmenting conventional SRAM and DRAM memory structures such as
the LLC, providing greater density and a reduced static power. However, these technologies
suffer from energy-hungry write operations that, in turn, gradually degrade the materials
eventually rendering the bitcells defective.

On the one hand, this dissertation studies and models the degradation of NVM bitcells
due to write operations. Accurately analysing and assessing the interplay between such
NVM degradation and the performance of the entire system is challenging. Therefore,
we develop a forecasting procedure that comprehensively analyse the evolution over
time of several figures of merit of the system; such as performance, lifetime, or energy.
Besides, a trace-driven simulation tool is also developed in order to speed up the design
space exploration of hybrid LLC architectures, insertion and replacement policies with the
presence of defective NVM bitcells.

On the other hand, this dissertation unveils novel microarchitectural solutions to
optimize such NVM-based LLCs for both performance and lifetime. These solutions consists
of fault-tolerant NVM-based LLC designs that synergistically combine fine-grain disabling
of defective memory regions, data compression, wear-leveling, and insertion/replacement
policies. The proposed designs leverage data compression not only to reduce the bytes
written to the NVM-based LLC but also to allow partially defective cache frames to hold
compressed blocks. Moreover, the compression capabilities of the cache blocks are taken
into account when guiding the insertion/replacement algorithms to further tune the lifetime
and performance tradeoffs.

Computing-in-memory (CiM) paradigms deals with the inefficient memory accesses
by bringing computational operations closer to memory structures, rather than the other
way around, as in traditional von Neumann architectures. NVMs play a pivotal role in the
CiM paradigm enabling analog computations within the memory array by exploiting their
memristive properties. This dissertation also explores this emerging paradigm by revisiting
an open-source CiM architecture, identifying and alleviating its limitations.

i

Resumen

El incesante aumento del número de cores y aceleradores de los sistemas computacio-
nales modernos y las exigentes necesidades de memoria de las aplicaciones emergentes
plantean nuevos retos en el diseño de las actuales jerarquías de memoria. Una forma de
mitigar el impacto de los ineficientes accesos a memoria que resultan de estos onerosos
requisitos consiste en implementar jerarquías de memoria caché en el chip con más capaci-
dad. La memoria caché de último nivel (LLC), que es la última contramedida para evitar los
costosos accesos a memoria fuera del chip, se construye tradicionalmente con tecnología
SRAM; una tecnología que no escacla bien en términos de área y potencia estática. Las
tecnologías de memoria no volátiles (NVM) más recientes han demostrado tener un gran
potencial a la hora de sustituir o complementar las estructuras convencionales de memoria
SRAM y DRAM como la LLC, ya que proporcionan una mayor densidad y una potencia
estática reducida. Sin embargo, estas tecnologías adolecen de unas operaciones de escritura
que consumen mucha energía y que, a su vez, degradan paulatinamente los materiales, lo
cual acaba por convertir las celdas en defectuosas.

Por un lado, esta tesis estudia y modela la degradación de las celdas NVM debida
a las operaciones de escritura. Analyzar y evaluar con rigor la interacción entre esta
degradación de las memorias NVM y el rendimiento de todo el sistema es todo un reto. Por
lo tanto, desarrollamos un procedimiento de pronóstico que analiza de forma exhaustiva la
evolución a lo largo del tiempo de varias figuras de interés del sistema como el rendimiento,
el tiempo de vida útil de la LLC y la energía. Además, se ha desarrollado una herramienta de
simulación basada en trazas de memoria para acelerar la exploración del espacio de diseño
de arquitecturas de LLC híbridas, y de políticas de inserción y reemplazo para cachés con
celdas NVM defectuosas.

Por otro lado, esta tesis presenta nuevas soluciones microarquitectónicas para optimizar
dichas NVM-LLCs en términos tanto de rendimiento como de tiempo de vida útil. Estas
soluciones consisten en diseños de LLCs tolerantes a fallos que combinan sinérgicamente la
desactivación de regiones defectuosas de memoria, la compresión de datos, wear-leveling,
y políticas de inserción y reemplazo. Los diseños propuestos aprovechan la compresión de
datos no solo para reducir los bytes escritos en la LLC, sino también para permitir que los
contenedores de caché parcialmente defectuosos puedan albergar bloques comprimidos.
Además, la compresibilidad de los bloques de caché se tiene en cuenta a la hora de guiar a
los mecanismos de inserción y reemplazo para afinar todavía más el equilibrio entre tiempo
de vida útil de la LLC y el rendimiento del sistema.

La computación en memoria (CiM) aborda los accesos ineficientes a memoria acercando
las operaciones de cómputo a las estructuras de memoria, en lugar de al revés, como en las
arquitecturas von Neumann tradicionales. Las NVMs desempeñan un papel fundamental
en el paradigma CiM, ya que permiten realizar cómputos de forma analógica dentro del
array de memoria aprovechando sus propiedades resistivas. Esta tesis también explora este
paradigma revisando una arquitectura CiM de código abierto, identificando y subsanando
sus limitaciones.

iii

Publications

Part of this dissertation includes results already published or accepted for publication. The
publications, in chronological order, are listed below:

1. STT-RAM Memory Hierarchy Designs Aimed to Performance, Reliability
and Energy Consumption.

Carlos Escuin, Teresa Monreal, José María Llabería, Víctor Viñals, Pablo Ibáñez.

ACACES 2019 Poster Abstracts, pp. 231-234. July 2019. ISBN 978-88-905806-7-3. [42]

2. HyCSim: A rapid design space exploration tool for emerging hybrid last-level
caches.

Carlos Escuin, Asif Ali Khan, Pablo Ibáñez, Teresa Monreal, Víctor Viñals, Jeronimo
Castrillon.

System Engineering for constrained embedded systems (DroneSE and RAPIDO ’22).
New York, NY, USA: ACM, 2022, pp. 1–6. [41]

3. L2C2: Last-Level Compressed-Cache NVM and a Procedure to Forecast Per-
formance and Lifetime.

Carlos Escuin, Pablo Ibáñez, Denis Navarro, Teresa Monreal, José María Llabería, Víctor
Viñals.

Plos One, 18 (2), e0278346. DOI: doi.org/10.1371/journal.pone.0278346. [38]

4. Compression-Aware and Performance-Efficient Insertion Policies for Long-
Lasting Hybrid LLCs.

Carlos Escuin, Asif Ali Khan, Pablo Ibáñez, Teresa Monreal, Jeronimo Castrillon, Víctor
Viñals.

2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA),Montreal, QC, Canada, 2023, pp. 179-192, DOI: doi.org/10.1109/HPCA56546.
2023.10070968. [39]
HiPEAC Paper Award.

v

https://doi.org/10.1371/journal.pone.0278346
https://doi.org/10.1109/HPCA56546.2023.10070968
https://doi.org/10.1109/HPCA56546.2023.10070968

vi Publications

5. Leveraging Data Compression for Performance-Efficient and Long-Lasting
NVM-based Last-Level Caches.

Carlos Escuin, Asif Ali Khan, Pablo Ibañez, Teresa Monreal, Denis Navarro, José María
Llabería, Jeronimo Castrillon, Víctor Viñals.

14th Annual Non-Volatile Memory Workshop. San Diego, CA. March 2023. URL:
http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-paper8-final_version_
your_extended_abstract.pdf. [40]
Memorable Paper Award Finalist.

6. MNEMOSENE++: Scalable Multi-Tile Design with Enhanced Buffering and
VGSOT-MRAM based Compute-in-Memory Crossbar Array

Carlos Escuin, Fernando García-Redondo, Mahdi Zahedi, Pablo Ibáñez, Teresa Monreal,
Víctor Viñals, José María Llabería, James Myers, Julien Ryckaert, Dwaipayan Biswas
and Francky Catthoor.

The 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS).
Istanbul, Turkey. December 2023. [37]

During the development of the thesis, open-source repositories have been published
containing the code of the work carried out:

1. Forecasting procedure: https://gitlab.com/uz-gaz/l2c2-forecasting [36].

2. HyCSim: https://gitlab.com/uz-gaz/hycsim [35].

http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-paper8-final_version_your_extended_abstract.pdf
http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-paper8-final_version_your_extended_abstract.pdf
https://gitlab.com/uz-gaz/l2c2-forecasting
https://gitlab.com/uz-gaz/hycsim

Acknowledgements

No one succeeds without the help and support of others. Since es de buen nacido ser
agradecido, the following lines are intended to express my gratitude to all the people whose
efforts have made possible the accomplishment of this thesis.

First and foremost, to Pablo and Víctor for their continuous support, guidance, and
constructive feedback during all these years. They passed on tome their passion for research.
Their eagerness and persistence encouraged me even when things were not going as well
as expected. To Teresa and J.M., for their kindness, critical view, and valuable feedback
on the weekly meetings; because they have been the second advisor. To the people in the
Grupo de Arquitectura de Computadores de Zaragoza (gaZ) for their warm hospitality and
support, for making me feel like one of them since the first day. And to the gaZ Bees, for
their comforting and distressing breaks, for our mutual understanding, for sharing this
challenging journey.

To the people in Dresden, to Asif and Jeronimo, for opening the doors of the Chair for
Compiler Construction. Getting to know and taking part in other ways of working is very
enriching professionally; I am very grateful for that.

To the IMEC people, to Fernando, Dwaipayan, Mohit, Mahdi, and Francky. For making
me take part in the ongoing projects of such an incredible environment and research center.
To Fernando again, for your closeness, for your invaluable patience and dedication when
introducing me to such a new and unknown topic for me.

To the Italian crew of Dresden, to the people of Kilimanjaro, and to the Ludovica FC.
For being my family when I was abroad, friendships made overseas are always intense and
special.

To all my close ones, for being a continuous inspiration, for always being there, for
giving me hope, and for all the good times we spent and those that are yet to come.

Last but not least, to my grandparents and my parents for their unwavering support
and for prioritizing and supporting the education I have always freely desired.

Carlos Escuin Blasco
Zaragoza, 22 de Noviembre, 2023

vii

To my parents, who have unconditionally
supported me during my whole life.

Contents

Abstract i

Resumen iii

Publications v

Acknowledgements vii

Acronyms xxi

Introduction 1

1 Introduction 3
1.1 Non-volatile memory (NVM) technologies 5

1.1.1 Magnetic RAM (MRAM) . 5
1.1.2 Phase change memory (PCM) . 5
1.1.3 Resistive RAM (ReRAM) . 6
1.1.4 The endurance problem of NVM technologies 7

1.2 Contributions . 8
1.3 Thesis structure . 10
1.4 Thesis project framework . 11

I Microarchitectural enchancements for NVM-based LLCs 13

2 L2C2: Last-level compressed non-volatile cache 15
2.1 Introduction . 16

xi

2.2 Related work . 17
2.3 Background . 20

2.3.1 Data compression . 20
2.3.2 Addition of redundant capacity . 21

2.4 Fault-tolerant NV-LLC microarchitecture 21
2.4.1 General overview . 21
2.4.2 BDI adaptation . 23
2.4.3 L2C2 metadata . 23
2.4.4 Block writing . 24
2.4.5 Block reading . 25
2.4.6 Rearrangement logic . 25
2.4.7 VLSI implementation . 27
2.4.8 L2C2+N: adding redundant capacity to L2C2 28

2.5 Evaluation . 28
2.5.1 Experimental setup . 29
2.5.2 Lifetime . 31
2.5.3 Performance . 32
2.5.4 Energy . 34
2.5.5 Intra-frame wear-leveling . 34
2.5.6 Fit vs. Best-Fit replacement . 35
2.5.7 Sensitivity analysis . 36

2.6 Concluding remarks . 38

3 Compression-aware and performance-efficient insertion policies for long-
lasting hybrid LLCs 39
3.1 Introduction . 40
3.2 Related work and motivation . 43

3.2.1 State-of-the-art hybrid LLC insertion policies 43
3.2.2 Motivation: quantitative analysis of hybrid LLC insertion policies . 43

3.3 Fault-tolerant hybrid LLC architecture . 44
3.4 Compression-aware insertion policies . 46

3.4.1 Naive compression-aware (CA) insertion 46
3.4.2 Read and write reuse aware insertion 47
3.4.3 CP_SD insertion: Set Dueling for performance 48
3.4.4 CP_SD_Th: CP_SD for both performance and lifetime 50

3.5 Evaluation . 51
3.5.1 Experimental setup . 52
3.5.2 Performance vs. Lifetime . 53
3.5.3 SRAM-NVM proportion variation 54
3.5.4 Impact of cv on performance and lifetime 55
3.5.5 L2 size sensitivity . 55
3.5.6 NVM latency sensitivity . 56
3.5.7 Overhead analysis & Equalizing costs 56

3.6 Concluding remarks . 57

II Methodological improvements for NVM-based LLCs 59

4 Forecasting lifetime and performance of NVM-based LLCs 61
4.1 Introduction . 61
4.2 Related work . 63
4.3 Forecasting procedure . 64

4.3.1 Data structures supporting the forecasting procedure 65
4.3.2 Basis of the forecasting procedure 66
4.3.3 Approximate forecasting procedure for frame disabling 67
4.3.4 Approximate forecasting procedure for byte disabling and data

compression . 68
4.4 Evaluation . 69

4.4.1 Validation . 69
4.4.2 Computational cost . 71
4.4.3 Specific situations . 72
4.4.4 Technological projections of lifetime and performance of NV-LLCs 72

4.5 Additional discussion . 73
4.5.1 Forecasting workload behavior in cloud data centers: a seemingly

similar problem . 73
4.6 Concluding remarks . 75

5 HyCSim: A rapid design space exploration tool for emerging hybrid LLCs 77
5.1 Introduction . 78
5.2 Related work . 79
5.3 HyCSim infrastructure . 80

5.3.1 Cache organization . 81
5.3.2 Disabling manager . 81
5.3.3 Content management policies . 81

5.4 Validation . 82
5.4.1 Simulation time analysis . 83
5.4.2 Fidelity analysis . 84
5.4.3 Proof of concept . 85

5.5 Concluding remarks . 85

III Compute-in-memory using NVMs 87

6 Extending MNEMOSENE, an NVM-based compute-in-memory general pur-
pose architecture 89
6.1 Introduction . 90
6.2 Background . 91

6.2.1 Analog computing-in-memory using NVMs 91
6.3 Enhancing the MNEMOSENE Tile Architecture 92

6.3.1 Original single-tile architecture . 93
6.3.2 Overcoming the RD buffer limitation 93

6.4 Enabling a Multi-Tile Architecture . 95
6.4.1 Multi-tile architecture . 95

6.4.2 Properly sizing scratchpads and interconnections 96
6.5 Evaluation . 97

6.5.1 Experimental Setup . 97
6.5.2 Experimental Results . 98
6.5.3 Depthwise-Convolution Analog vs. Digital 100

6.6 Concluding remarks . 100

Conclusions and future work 101

7 Conclusions and future work 105
7.1 Conclusions . 105
7.2 Future work . 107

7 Conclusiones y trabajo futuro 109
7.1 Conclusiones . 109
7.2 Trabajo futuro . 111

Appendices 113

A Time scaling of forecasted indexes when considering bitcells with more
endurance. 115

Bibliography 117

List of Figures

1.1 CPU - DRAM performance gap [55, 98]. 4
1.2 STT-MRAM cell. MTJ device together with the access transistor. 6
1.3 Schematic cross-section of a conventional PCM cell (a). Read, SET, and

RESET pulses (b). [126]. 6
1.4 Cell diagram of a metal oxide based ReRAM cell [46]. 7

2.1 Block flow diagram of the non-inclusive model. 22
2.2 Block classification regarding its compression ratio for the selected SPEC

CPU 2006 and 2017 applications. LCR blocks correspond to the CEs marked
as * in Table 2.1. 24

2.3 Layout of a frame entry in the SRAM tag and NVM data arrays. 24
2.4 Block writing flow. 24
2.5 Block reading flow. 25
2.6 Example of a 5-byte block rearrangement for writing (a) and reading (b). . 26
2.7 Effective capacity evolution over time until 50% of capacity is lost. 31
2.8 Normalized IPC evolution over time until 50% of capacity is lost. 33
2.9 Normalized energy evolution over time until 50% of capacity is lost. . . . 35
2.10 IPC evolution until losing 50% of capacity of an L2C2 without intra-frame

wear-leveling mechanism, L2C2-NWL, for cv = 0.2. 36
2.11 IPC evolution until losing 50% of capacity of an L2C2 with LRU-Best-Fit

replacement policy, L2C2-BF, for 𝑐𝑣 = 0.2. 36
2.12 IPC evolution until losing 50% of capacity of FD and L2C2 for 𝑐𝑣 = 0.2, dou-

bling cache size (a), doubling the number of cores while keeping the same
4MB/core (b), and considering the most memory-intensive applications (c). 37

3.1 Performance vs. time for various hybrid LLCs until the NVM part loses 50%
capacity. The write endurance of NVM bitcells follows a normal distribution
of 𝜇 = 1010 and 𝑐𝑣 = 0.2. Bounds of SRAM-only LLCs are also plotted. . . . 42

3.2 High-level overview of the hybrid LLC organization. 45
3.3 Example of a four-way cache set split into three NVM ways and one SRAM

way, showing fields and their sizes. 45

xv

3.4 Hybrid LLC hit rate with different 𝐶𝑃𝑡ℎ normalized to BH. 47
3.5 Normalized BW: average number of bytes written per frame in the NVM

part, normalized to BH, varying 𝐶𝑃𝑡ℎ . 47
3.6 CA_RWR insertion policy: distribution of 𝐶𝑃𝑡ℎ achieving the best hit rates

across execution epochs, vs. NVM part capacity (a). Uniquely for 100%
NVM capacity, the same distribution, but for each of the 10 workloads (b). 49

3.7 Hit rate and BW to NVM normalized to BH, for different Th [0-8%] and
different NVM capacities: 100-90-80% (circles, triangles, and squares). Tw
set at 5%. 51

3.8 Performance evolution until the NVMpart reaches 50% effective capacity for
different compression with Set Dueling (CP_SD)𝑇ℎ, for default parameters
(𝑐𝑣 = 0.2) (a), and for 𝑐𝑣 = 0.25 (b). 54

3.9 Performance evolution until the NVM part reaches 50% effective capacity
for default parameters and different CP_SD 𝑇ℎ, varying the NVM-SRAM
proportion (a), and increasing L2 size to 256 KB (b). 55

3.10 Performance evolution until the NVM part reaches 50% of effective capacity,
increasing 50% the NVM data array latency (a), and equalizing costs of
CP_SD systems with LHybrid (b). 56

4.1 Average write rate per frame in sets with 𝐴 alive frames as a function of
capacity (90%, 75%, and 50%). 62

4.2 Per-byte remaining writes (RW) (a) and write rate (WR) (b) maps. 65
4.3 Forecasting procedure diagram. Basic procedure in black, approximations

in blue. 66
4.4 Forecasted 𝑇50𝐶 (in years) as a function of the number of epochs for frame

disabling and L2C2 caches. Three coefficients of variation are employed:
𝑐𝑣 = 0.2, 0.25, and 0.3. 70

5.1 A⃝ Overview of the modeled cache hierarchy. B⃝ Input files, main functions
and data structures of HyCSim. 80

5.2 Simulation speedup compared to gem5. 84
5.3 Fidelity study. Each dot represents the hit rate provided by HyCSim and its

corresponding hit rate in gem5. 84
5.4 Bytes written (BW) to NVM frames normalized to BaseHybrid. 86

6.1 Analog dot product operation scheme. 91
6.2 Mapping of a GEMM to a NVM crossbar array (a). Example of a 3-bit

datatype size 3 × 3 matrix-matrix multiplication in the crossbar (b). 92
6.3 CiM intra-tile architecture. (a) MNEMOSENE original architecture and (b)

double-buffer proposal. 94
6.4 Timing diagram of multiplying the first matrix row in both (a) the original

single-tile and (b) the proposed optimization. Colors match the components
of Figure 6.3. RDBF stands for RD buffer fill, AC for analog computation,
ADC for ADC conversion and addition units, and IBF for IB fill. The penalty
imposed by the RD buffer is highlighted in red in (a). 95

6.5 CiM multi-tile architecture. (a) Proposed multi-tile organization and (b)
mapping a CNN model to the multi-tile architecture. We highlight how
after a CNN is transformed to be computed as a GEMM using im2col, the
different filters in a layer are distributed into a group of tiles. Independent
layers access separated areas on the two scratchpad memories, pipelining
the read/writes from/to the buffered data. 96

6.6 Energy/inference (in mJ) breakdown of the different architectural compo-
nents for the larger CNN models, evaluating distinct NVM technologies.
. 99

6.7 Normalized energy (in log scale) per inference for each CNN model. The
scratchpad memory is implemented using SRAM technology versus the
original one, implemented using STT-MRAM one. The energy is normal-
ized to that of the STT-MRAM scratchapd and, in turn, broken down into
dynamic and leakage energy. 100

List of Tables

2.1 BDI CEs and their sizes, in bytes. 20
2.2 Hardware cost comparison. 28
2.3 Frame costs in bits. Percentage overhead relative to FD. 29
2.4 System specification. 30
2.5 Selected SPEC 2006 and SPEC 2017 applications, with suffixes 06 and 17, re-

spectively and their MPKI. Superscript indicating top-10 memory intensive
applications. 30

2.6 𝑇50𝐶 , 𝑇99𝐶 , and 𝑇99𝑃 in years; 𝐼50𝐶 |5𝑦 in instructions. 32

3.1 CA_RWR insertion policy . 48
3.2 Summary of tested insertion policies. 51
3.3 System specification. 52
3.4 SPEC CPU 2006 and 2017 mixes. 53

4.1 Maximum elapsed times vs. number of epochs to forecast L2C2 from start
to 50% capacity. 71

4.2 𝑇90𝐶 and𝑇90𝑃 for FD+6, L2C2 and L2C2+6, varying 𝑐𝑣 and 𝜇.𝑚 = months, 𝑦
= years. 73

5.1 Baseline system configuration . 83
5.2 Configurations tested . 83

6.1 NVM technologies specification. 97
6.2 Analyzed CNN models, required number of tiles, computational utilization,

and memory footprint. 98
6.3 Latency and energy per inference for the analyzed CNN models. 98

xix

Acronyms

RAM random access memory

CPU central processing unit

DRAM dynamic random access memory (RAM)

LLC last-level cache

SRAM static RAM

NVM non-volatile memory

STT spin-transfer torque

SOT spin-orbit torque

MRAM magnetic RAM

ReRAM resistive RAM

PCM phase change memory

RTM racetrack memory

LRS low resistance state

HRS high resistance state

IoT internet-of-things

ECC error correction code

xxi

NV-LLC non-volatile LLC

L2C2 last-level compressed cache

TDDB time-dependent dielectric breakdown

CiM compute-in-memory

CNN convolutional neural network

VGSOT voltage-gate assisted SOT

MTJ magnetic tunnel junction

RL reference layer

FL free layer

SL source line

WL word line

BL bit line

IMEC Interuniversity Microelectronics Centre

IPC instructions per cycle

BDI Base-Delta-Immediate

LRU least recently used

MRU most recently used

VLSI very large-scale integration

DCC Decoupled Compressed Cache

RDE read disturbance error

CE compression encoding

ECP Error-Correcting Pointers

SECDED single error correction double error detection

DECTED double error correction triple error detection

DRM Dynamically Replicated Memory

OS operating system

LCR low compression ratio

HCR high compression ratio

CB compressed block

ECB extended CB

RECB rearranged ECB

FM fault map

WLC wear-leveling counter

FD frame disabling

MPKI misses per kilo instructions

APKI accesses per kilo instructions

TAP Thrashing Aware Placement

BH baseline hybrid

BH_CP BH with compression

CA compression-aware

BW bytes written

CA_RWR CA + read- write- reuse

CP_SD compression with Set Dueling

LB loop-block

NLB non-loop-block

RW remaining writes

WR write rate

CC compression class

GEMM general matrix multiplication

ISA instruction-set architecture

SIMD single instruction multiple data

RD Row Data

WD Write Data

IB input buffer

ADC analog-to-digital converter

DAC digital-to-analog converter

QoS quality of service

VM virtual machine

SLA Service Level Agreement

ML machine learning

LSTM Long Short-Term Memory

RNN recurrent neural network

DL deep learning

1D-CNN one-dimensional CNN

1D-pCNN 1D layers with different dilation rates CNN

RMSE root-mean-square error

FCFS first-come, first-served

NAS Network-Architecture-Search

VCMA voltage-controlled magnetic anisotropy

KWS keyword spotting

VWW visual wake words

Introduction

You come at the king, you best not miss.

Omar Little, The Wire.

1
Introduction

In the ever-evolving landscape of computing, the continuous pursuit of enhanced perfor-
mance, computational capabilities, and energy efficiency has been fueled by groundbreaking
principles such as Moore’s Law and Dennard Scaling since the 60s. These pioneering pos-
tulates have steered the semiconductor industry towards achieving exponential growth in
transistor density and processing power, enabling the development of smaller and more
powerful electronic devices [30, 89]. However, the different manufacturing processes and
integration capabilities resulted in performance improvements disparities between the
central processing unit (CPU) and main memory dynamic RAM (DRAM) devices.

In the early 90s, Wulf et al. identified these improvement disparities between CPU and
DRAM devices as exponential and predicted that the performance of future computing
systems would be dominated by memory devices [128], which was called the memory
wall. While CPU performance was improving 60% every year, DRAM was only doing
so 10%, see Figure 1.1. This gap was expected to keep growing 50% every year [55, 98],
posing a significant challenge to overall systems efficiency. However, in the last two
decades, the deceleration of Moore’s Law have slowed down the exponential growth of
CPU performance [43, 111]. This, together with the relative improvements in DRAM,
f.i. 3D stacking, turned this performance disparities not as abrupt as it was originally
predicted. Far from having solved the problem, this deceleration of Moore’s Law also made
the number of transistors per-core that can be packed for the last-level cache (LLC) tends
to be stagnated [43, 57, 111].

3

The wholesale generation of data together with emerging application domains such
as machine learning, artificial intelligence, or bioinformatics, which have huge memory
footprints, have only exacerbated the problem. Overcoming the memory wall challenge
became an imperative goal for the research community, steering towards advancements in
memory technologies, cache hierarchies, and memory management techniques to enable
more efficient and balanced computing systems.

Figure 1.1: CPU - DRAM performance gap [55, 98].

The memory wall problem has been tackled from various perspectives, encompassing
the integration of emerging memory technologies and deeper cache memory hierarchies
together with more sophisticated content management mechanisms, and the adoption of
innovative computing paradigms that go beyond traditional von Neumann architectures.

On the one hand, one way to mitigate the impact of inefficient memory accesses
resulting from the continuously growing memory requirements involves implementing
larger on-chip cache memory hierarchies. More specifically, the shared LLC is the last
countermeasure against costly off-chip memory accesses. As the number of cores/threads
integrated on a chip outpaces the growth in bandwidth with main memory, it is thereby
necessary to improve the LLC hit rate by not only increasing its overall size but also
the size per core. Traditionally, the LLC implementation relies on static RAM (SRAM),
a technology that does not scale well in terms of area and static power [43, 57, 74, 106].
Therefore, employing emerging non-volatile memory (NVM) technologies to replace or
augment conventional LLCs is rising as a promising alternative.

In the last decade, several NVMs have made their way down to the memory hierar-
chy [62, 115]. Several NVM technologies such as spin-transfer torque (STT)- or spin-
orbit torque (SOT)- magnetic RAM (MRAM), phase change memory (PCM), resistive
RAM (ReRAM), and racetrackmemory (RTM) can potentially replace or augment traditional
SRAM or DRAM structures [101, 107, 118, 137]. In particular, they are attractive to build
larger LLCs because they offer larger densities, lower static power and SRAM-competitive
read latencies [5, 19, 44, 47, 71, 74, 118, 121, 124, 130]. Nonetheless, write endurance is still
a hurdle so that these emerging technologies are deployed in large-scale manufacturing
processes [24, 28, 44, 107, 117, 121, 123, 124]

On the other hand, beyond the challenges related to the memory wall, the data move-
ment in von Neumann architectures impose significant overheads. The data transfer

4

Chapter 1, Introduction

between DRAM and the CPU consumes two orders of magnitude more energy than a single
floating point operation [82, 119]. Or even worse, a complete data fetch from main memory
supposes more than three orders of magnitude more energy that a single integer addi-
tion [51]. To address this energy consumption disparities, emerging computing paradigms
advocate for bringing computations closer to the memory, and processing data where it
logically makes more sense. For instance, compute-in-memory (CiM) using NVMs is an
emerging computing paradigm that exploits the memristor properties of NVMs to perform
simple logic and arithmetic operations within the memory array. It allows to perform
vector-vector and matrix-matrix multiplications, which are major operations in machine
learning applications, in a very efficient way in terms of both performance and energy.

1.1 Non-volatile memory (NVM) technologies

NVM technologies such as PCM, ReRAM, RTM, or MRAMs provide better scalability
tradeoffs compared to traditional SRAM and DRAM technologies. Contrary to DRAM and
SRAM, writing a NVM cell involves altering physical state or property of the materials that
compose such cells, which results in the definition of two resistive states: low resistance
state (LRS), f.i. logical "1", and high resistance state (HRS), f.i. logical "0".

1.1.1 Magnetic RAM (MRAM)

Magnetic memories such as STT-MRAM relies on magnetic tunnel junction (MTJ) devices,
which are composed by ferromagnetic (CoFeB) and dielectric (or insulating) (MgO) layers.
Figure 1.2 depicts an STT-MRAM cell, consisting of an MTJ device and the access transistor.
The MTJ device consists, in turn, of two ferromagnetic layers, the reference layer (RL) and
the free layer (FL), separated by the dielectric layer. The magnetic orientation of RL is fixed,
while the one of FL indicates the resistive state of the cell. If the magnetization of FL is
programmed to be aligned with RL, the state is parallel, providing low resistance (LRS). If
the magnetization is misaligned, the state is anti-parallel, providing high resistance (HRS).
To write the cell, once the word line (WL) is set, a positive current from bit line (BL) to
source line (SL) sets the MTJ device in parallel state, and vice versa, a positive current from
SL to BL sets the MTJ device in anti-parallel state. To read the cell, WL is activated and a
small voltage is applied in SL to sense the current in BL.

1.1.2 Phase change memory (PCM)

PCM relies on a chalcogenide alloy such as𝐺𝑒2𝑆𝑏2𝑇𝑒5 (GST), see Figure 1.3a. This material
is a kind of glass that is able to switch between two phases: amorphous and crystalline.
The amorphous phase has high resistance (HRS) while the crystalline one has a lower one
(LRS). The material can be changed between both phases by using current pulses that
heat the material [103], see Figure 1.3b. The GST material is crystallized by injecting a
long electrical pulse (SET pulse) that heats it above the crystallization temperature, but
below the melting one. The long SET pulse gradually cools down the material making it
possible the crystal growth. By contrast, a short but high electrical pulse (RESET pulse) is
injected and then abruptly cut off to turn the GST into the amorphous phase. In this case,

5

1.1. Non-volatile memory (NVM) technologies

Dielectric Layer

MTJ device

Word Line (WL)
Source Line (SL)

Reference Layer (RL)

Free Layer (FL)

Bit Line (BL)

Figure 1.2: STT-MRAM cell. MTJ device together with the access transistor.

the temperature exceeds the melting one and the material is suddenly cooled down into the
amorphous state. In order to perform a read operation, the resistance of the cell is sensed
out by means of a small and short pulse.

(a) PCM cell. (b) PCM cell switch and read diagram.

Figure 1.3: Schematic cross-section of a conventional PCM cell (a). Read, SET, and RESET
pulses (b). [126].

1.1.3 Resistive RAM (ReRAM)

ReRAM cells consist of a dielectric (or insulating) layer, either a metal oxide or a solid
electrolyte semiconductor, placed between the top electrode and the bottom electrode, as
shown in Figure 1.4. LRS is achieved by creating one or more conductive filaments in the
dielectric layer, electrically connecting the top and the bottom electrodes. HRS is achieved
by dissolving such filaments. The number, morphology and generation of these conductive
filaments depend on the device materials, sizing and input stimuli [46].

6

Chapter 1, Introduction

HRS state LRS state

Oxigen IonsTop Electrode

Bottom Electrode

Figure 1.4: Cell diagram of a metal oxide based ReRAM cell [46].

1.1.4 The endurance problem of NVM technologies

Writing 0 or 1 to an NVM bitcell requires to invest some energy for a period of time in
order to alter the value of a physical property in one of the bitcell circuit materials, whose
structure, components, dimensions and interface are critical to the proper functionality
of the memory [88, 101, 107]. Write operations, besides being more costly in time and
energy than read operations, eventually degrade bitcells, which render to lose its storage
capacity. In this context, the bitcell endurance is defined as the number of writes the bitcell
will withstand before it breaks down and loses its storage capability.

For example, in the case of STT-MRAM bitcells the wear produced by the cumulative
effect of writes eventually leads to what is called time-dependent dielectric breakdown
(TDDB). TDDB is the short-circuit of the thin dielectric layer, i.e. the dielectric layer
in Figure 1.2, that isolates the two ferromagnetic layers, RL and FL: once the dielectric
breakdown occurs the change is irreversible and the bitcell behaves as a small fixed-
value resistor; it is no longer possible to distinguish between the parallel and anti-parallel
states, whose respective resistances are designed to be sufficiently different to encode a bit
reliably [14, 117].

In the case of PCM, the pulses that are injected into the GST material produce a
thermal expansion and contraction that degrades the electrode storage contact, such that
programming currents are no longer reliably injected into the cell. Eventually, stuck-at-1 or
stuck-at-0 faults are produced because either the overheating of the GST material reduces
the overal resistance of the cell or an induced defect in the memory cell leads to an open
circuit [67, 78, 117].

In the case of ReRAM, the consecutive LRS-HRS state changes eventually produces the
deficiency or excessive doping of oxygen vacancies (in the case of metal oxide ReRAM)
in the cell, sticking the cell in either of the two states [117]. Some studies concluded that
larger voltage amplitudes reduce the lifetime of these devices [46, 59].

Modelling the write endurance

The write endurance of each bitcell can be modeled as an independent random variable
following a Gaussian distribution of mean 𝜇 = 10𝑘 writes and coefficient of variation
𝑐𝑣 = 𝜎

𝜇
, 𝑘 depending on the NVM technology and 𝑐𝑣 usually taking values between 0.2

and 0.3 [28, 44, 60, 110, 112, 133]. The coefficient of variation reflects the variability in the

7

1.2. Contributions

manufacturing process. The endurance figures are different for each technology and depend
on the manufacturer and the target market.

For instance, STT-MRAM endurance is subject to some design parameters tradeoffs
such as retention time, area, power efficiency and read/write latency [48, 91]. It is therefore
not surprising to find in the literature STT-MRAM endurance values from 106 for embedded
systems or internet-of-things (IoT) applications [24,48,79,124] up to 1012 for general purpose
microprocessors [44, 58, 121].

1.2 Contributions

The contributions of this dissertation are multi-fold and can be classified in the different
parts in which this thesis is divided:

Part I. Microarchitectural enchancements for NVM-based LLCs. Several works
propose optimizations in order to enhance the performance of NVM-based LLCs. Others,
focus on schemes that postpone or tolerate the occurrence of defective NVM bitcells, due
to repeated write operations, in order to enlarge their lifetime. However, synergistically
optimising for both performance and lifetime has rarely explored. Thus, the first part of the
thesis tries to fill this gap, proposing microarchitectural solutions to optimize NVM-based
LLCs for both performance and lifetime. The specific contributions are the following:

1. A detailed state-of-the-art review about mechanisms that either postpone or tolerate
hard-faults. These studies include techniques that either decrease the number of
writes, spread the writes among the whole memory structure, or tolerate (or recover
from) a certain number of transient or permanent faults.

2. Last-level compressed cache (L2C2): A fault-tolerant non-volatile LLC (NV-LLC)
design that combines fine-grain disabling of defective memory regions, data com-
pression and wear-leveling in order to uphold high performance for longer.

• It has the necessary metadata to separately identify faulty bytes in each cache
frame1 and a replacement mechanism that only considers those cache frames
with sufficient capacity to accommodate the incoming compressed block.

• It incorporates an intra-frame wear-leveling mechanism together with a block
rearrangement circuitry that enables the spreading of write operations among
the remaining non-faulty bytes within a frame.

• Using VLSI synthesis, we showed that this block rearrangement logic is feasible
in terms of latency, area and power for both reading and writing a block.

3. L2C2+N, the scaled version of L2C2. L2C2 design allows to seamlessly add an arbi-
trary number of 𝑁 redundant bytes to each cache frame for the purpose of reducing
the wear caused by writes from the beginning of operation. This thereby extends the
time during which L2C2 provides near-peak performance.

1Hereinafter in this dissertation, the term cache frame designates the set of physical bitcells of the data
array holding a cache block, either compressed or not.

8

Chapter 1, Introduction

4. A comprehensive analysis and evaluation in terms of performance and lifetime of the
proposed mechanisms. For a fair comparison, state-of-the-art solutions are included
in the evaluation.

Hybrid SRAM-NVM caches try to combine the best of both worlds, greater capacities
and energy efficiency due to NVMs while absorbing harmful write operation by the SRAM
part. State-of-the-art insertion policies identify and steer write-intensive blocks towards
the SRAM part and read-intensive blocks towards the NVM part. These policies reduce
the write traffic to the NVM part thereby enlarging the lifetime of such hybrid caches.
However, these improvements are achieved by conservatively inserting blocks in the NVM
part, which results in a limited performance. Our next contributions aim at bridging
the gap between state-of-the-art performance and lifetime disparities by proposing novel
hybrid LLC insertion policies that jointly optimize to provide both high performance and
reasonable lifetime:

1. A detailed state-of-the-art review about hybrid LLCs, identifying the suboptimal
performance of lifetime-oriented proposals. These studies include mechanisms that
predict the behaviour of the blocks, steering only read-intensive (predicted) blocks
towards the NVM part of the hybrid LLC.

2. Extend L2C2 into a hybrid approach, including a data array split into SRAM and
NVM. In other words, provide a conventional hybrid LLC with the fault-tolerant
mechanisms proposed for L2C2.

3. A novel insertion policy that considers not only the reuse properties of the incoming
block but also the compressed size to steer the block towards the NVM or the SRAM
part.

4. A threshold-based mechanism that tunes the write traffic to the NVM part. It al-
lows more or less blocks to be steered towards the NVM part in order to balance
performance and lifetime.

5. A comprehensive analysis and evaluation in terms of performance and lifetime of the
proposed mechanisms. For a fair comparison, state-of-the-art solutions are included
in the evaluation.

Part II. Methodological improvements for NVM-based LLCs. Properly assessing
the feasibility and suitability of such microarchitectural enhancements is pivotal. However,
the correct analysis and evaluation of the interaction between the degradation of such NVM
structures and the performance of the system is challenging. The second part of this thesis
propose methodological enhancements for the evaluation of such NVM-based LLCs that
get their capacity lessened over time due to write operations. The specific contributions
are the following:

1. A detailed state-of-the-art review on methodologies to assess lifetime and perfor-
mance of NVMs. These methodologies include from analytical metrics to simple
aging models. Besides, a state-of-the-art review on tools for design space exploration
of hybrid LLCs. These tools include from cycle-accurate simulators to trace-driven
ones.

9

1.3. Thesis structure

2. Forecasting procedure. A procedure that estimates the evolution over time of several
indexes of interest.

• It combines consecutive simulations and predictions to forecast how the NVM
bitcells become defective throughout time.

• It supports different disabling granularities, data compression, fault-aware
replacement mechanisms, and the aforementioned block rearrangement and
wear-leveling mechanisms.

3. HyCSim. A trace-driven simulation tool for hybrid LLCs that allows for a rapid
exploration and evaluation of different insertion policies.

• A disabling manager that handles defective bitcells. It supports the entirely or
partially disabling of cache frames due to hard faults.

• Support for data compression mechanisms. The traces can provide the com-
pressed block to be handled by the cache controller.

• State-of-the-art hybrid insertion policies are implemented in the public version
of the simulator.

Part III. Compute-in-memory (CiM) using NVMs. CiM using NVMs raised as
an interesting computing paradigm to face the bottlenecks of traditional von Neumann
architectures. A fair example of a CiM general purpose architecture is the MENMOSENE
single-tile one [134, 135]. This architecture performs simple analog computations within
the memory array and completes and delivers the result in the digital periphery. Besides,
this architecture is provided with an instruction-set architecture (ISA) that bridges the gap
between the high-level programming languages and the underlying circuit designs. The
third part of this thesis extends the MNEMOSENE single-tile architecture focusing on the
shortcomings of the original design. The specific contributions are as follows:

1. Revisit the internal buffering of the original MNEMOSENE single-tile architecture
and enhance the bottleneck communication with the outer system.

2. Design a multi-tile architecture. This design includes a shared scratchpad memory
and an interconnection framework to enable a seamlessly synchronization between
tiles.

3. Comprehensive evaluation of different convolutional neural network (CNN) models
mapped to the multi-tile architecture. This evaluation is performed for different
NVM technologies.

1.3 Thesis structure

This dissertation is organised as follows. Part I presents the microarchitectural improve-
ments for NVM-based LLCs. This part is divided, in turn, in two chapters. Chapter 2
introduces L2C2 and Chapter 3 presents the hybrid LLC insertion policies. Part II presents
the methodological enhancements to the evaluation of NVM-based LLCs in terms of both
performance and lifetime. This second part is divided, in turn, in two chapters as well.

10

Chapter 1, Introduction

Chapter 4 introduces the forecasting procedure and Chapter 5 introduces HyCSim. Finally,
Part III explores the CiM paradigm using NVM technologies. In this regard, Chapter 6
introduces the enhancements to the MNEMOSENE CiM framework.

1.4 Thesis project framework

This thesis has been developed at "Grupo de Arquitectura de Computadores de la Universi-
dad de Zaragoza (gaZ)", in the Departamento de Informática e Ingeniería de Sistemas (DIIS)
and Instituto de Investigación en Ingeniería de Aragón (I3A).

The research work that encompasses this thesis has been partially funded by:

• The Aragon Government through a scholarship grant to fund a pre-doctoral contract
through the University of Zaragoza.

• Project PID2019-105660RB-C21: "Jerarquía de memoria, gestión de tareas y opti-
mización de aplicaciones", from the Agencia Estatal de Investigación and TIN2016-
76635-C2-1-R: "Arquitectura y programación de computadores escalables de alto
rendimiento y bajo consumo", from the Spanish Ministry of Economy and Competi-
tive.

• The Aragon Government through the Research group recognition: T58_20R and
T58_23R research group from Aragon Government and European Social Fund, and
(3) 2014-2020 "Construyendo Europa desde Aragón" from European Regional Devel-
opment Fund.

Two research internships have been conducted. The first one was a 3-months visit to
the Chair for Compiler Construction at the Dresden University of Technology (Dresden,
Germany) under the supervision of professor Jeronimo Castrillon. This internship was
funded by a HiPEAC collaboration grant. The second one was a 6-months internship at
Interuniversity Microelectronics Centre (IMEC) (Leuven, Belgium) under the supervision of
Fernando García, Dwaipayan Biswas, and Francky Catthoor. This internship was partially
funded by both the Aragon Government and IMEC.

11

Part I

Microarchitectural enchancements
for NVM-based LLCs

We’re building something here, Detective, we’re
building it from scratch. All the pieces matter.

Detective Lester Freamon, The Wire.

2
L2C2: Last-level compressed non-volatile cache

Several emerging NVMs are rising as interesting alternatives to build the LLC. Their ad-
vantages, compared to SRAM memory, are higher density and lower static power, but write
operations wear out the bitcells to the point of eventually losing their storage capacity. In this
context, this chapter introduces L2C2, a novel NV-LLC organization to extend the lifetime of the
NVM data array. This design combines fault tolerance, data compression, and wear-leveling for
the first time. Data compression is not used to store more blocks and increase the hit rate, but
to reduce the write rate and increase the lifetime during which the cache supports near-peak
performance. In addition, to support byte loss without performance drop, L2C2 inherently
allows N redundant bytes to be added to each cache entry. Thus, L2C2+N, the endurance-scaled
version of L2C2, allows balancing the cost of redundant capacity with the benefit of longer
lifetime.

L2C2 has affordable hardware overheads compared to that of a baseline NV-LLC without
data compression in terms of area, latency and energy consumption, and increases up to 6 – 37
times the time in which 50% of the effective capacity is degraded, depending on the variability
of the manufacturing process. Compared to L2C2, L2C2+6, which adds 6 bytes of redundant
capacity per entry, meaning 9.1% of storage overhead, can increase up to 1.4 – 4.3 times the
time in which the system gets its initial peak performance degraded.

15

2.1. Introduction

2.1 Introduction

The goal of the cache subsystem in a shared memory multiprocessor is to reduce the number
of main memory accesses. Specifically, the LLC filters requests from the lower-level caches
turning slow main memory accesses into fast LLC hits, saving main memory bandwidth
and power, and increasing system performance. However, the number of cores/threads
integrated on a chip grows faster than the bandwidth with main memory. Therefore, it is
necessary to improve the hit ratio of the LLC by increasing not only total size but also size
per core/thread. Most LLCs are implemented with SRAM, a technology that does not scale
well in terms of density and static power [106].

In the short to medium term, NVM technologies rise as an alternative to SRAM due
to their higher density and lower static power. However, write operations on most NVMs
cause noticeable wear on their bitcells, making their lifetime much shorter than that of
SRAM. The simplest way to deal with an irreparable fault in a bitcell is to disable the
memory region to which it belongs, with a size that depends on the context: a cache frame
or a byte, or even a whole memory page if we consider main memory.

This chapter unveils the design and evaluation of L2C2, an NV-LLC design intended
to operate with memory bitcells that will wear out with writes until they can no longer
be reliably programmed. L2C2 is a new fault-tolerant last-level cache organization that
relies on byte disabling, data compression, and an intra-frame wear-leveling to to extend
the lifetime of degraded frames. In contrast to current alternatives, it is able to maintain
high performance for a longer time, or in other words, for a given time of use it achieves
higher performance, and it does so at a reasonable hardware cost. Moreover, its design is
inherently scalable in terms of lifetime: simply adding N additional spare bytes to each
frame, without modifying the design ideas, results in L2C2+N, the endurance-scaled version
of L2C2, which is able to support the nominal capacity for longer.

On the one hand, the design of L2C2 carefully considers previous concepts of non-
volatile main memory management and SRAM caches, namely:

• Support for byte disabling [45], by incorporating the necessary metadata to identify
non-operational bytes. Besides, an error correction code (ECC) mechanism is incor-
porated with the ability to trigger an operating system routine that disables a byte
by modifying such metadata.

• Base-Delta-Immediate (BDI) compression [99]. This data compression mechanism
is selected because it provides high coverage and a good compression ratio. These
two characteristics allow, simultaneously, to reduce the number of bitcells written
(more duration) and to increase the possibilities of saving the block in frames of
reduced size (more performance). In addition, its hardware implementation has low
decompression latency.

• LRU-Fit replacement algorithm [45]. After appropriate experimentation, this option
is selected. LRU-Fit is a locality-aware replacement algorithm, which selects the least
recently used (LRU) victim cache frame among all those that are large enough to
allocate the incoming compressed block (Fit).

16

Chapter 2, L2C2: Last-level compressed non-volatile cache

On the other hand, L2C2 incorporates two original enhancements, which are crucial to
maintain high performance for a longer time, namely:

• Intra-frame wear-leveling and compressed block rearrangement within the frame.
We propose a new mechanism that achieves three key objectives: (a) wear out the
live bytes of each frame evenly as the rest is failing, (b) upon inserting a compressed
block into L2C2, rearrange the byte layout of the compressed block to write the
appropriate subset of live bytes of the frame, and (c) the same but in the reverse
direction, i.e., in case of an L2C2 hit, reconstruct the original layout of a compressed
block, which is scattered in a partially broken frame, to supply it to the decompressor.
Using very large-scale integration (VLSI) synthesis, that circuitry has been shown to
be feasible in terms of area, latency and power consumption.

• Because the above mechanism is scalable, it is possible to add an arbitrary number of
N redundant bytes to each frame, privately and without any change in the design.
L2C2+N, the version of L2C2 with redundancy, thus has frames with 64+N data bytes
that cooperate in storing compressed blocks from the beginning, extending the cache
lifetime in proportion to the built-in N degree of redundancy.

The rest of the chapter is organised as follows. Section 2.2 reviews the literature and the
state-of-the-art in NV-LLC proposals and mechanisms to deal with the wear-out problem.
Section 2.3 lays the groundwork for NV-LLCs. Section 2.4 describes L2C2, showing the
storage overhead, the detailed design of the block read and write hardware, and the latency
penalty incurred in the block read service. Section 2.5 evaluates the degradation of L2C2
over time and compares it to various NV-LLC configurations. Finally, Section 2.6 concludes
this chapter.

2.2 Related work

It is inherent to NVM technologies that writes deteriorate the memory bitcells. This is
why NVM-based cache designs have mechanisms to 1) decrease the number of writes, 2)
spread out the writes (wear-leveling), avoiding wearing hot spots, and 3) tolerate both
transient and permanent faults. Thus, novel proposals for NV-LLC organizations focus
on mechanisms to decrease and/or balance the number of writes, seeking to increase the
lifetime and at the same time, if possible, counteract the high energy and latency cost of
writes.

Write reduction. Several works propose to reduce the number of inserted cache blocks
using some kind of filtering [4, 19, 105], or collaborating with the private levels [74]. Other
techniques to reduce writes are closely tied to particular bitcell designs, supporting e.g.,
read-before-write [65], or early-write-termination [131, 139]. It is also worth mentioning
the proposals for hybrid SRAM/NVM LLCs, which stand out for their great potential to
reduce writes, in exchange for a more complex design that seeks to send as many write
requests as possible to the SRAM part without losing performance or increasing power
consumption [19, 27, 123].

Wear-leveling mechanisms. They focus on evenly distributing write operations
throughout all the NV-LLC dimensions: cache sets, ways within sets, and bytes within

17

2.2. Related work

frames [2,44,65,121]. These works seek to slow down write wear by avoiding the formation
of hot spots, but unlike L2C2, none of them consider how to prolong service in the presence
of faulty bitcells, nor do they seek to achieve as gradual a loss of performance as possible.

Fault-tolerant mechanisms. Any memory structure is subject to experience a bitcell
failure during its operation, either transient or permanent. For example, STT-MRAM
bitcells, in addition to being able to fail permanently due to write wear, they can also fail
transiently in a number of different ways. From least to most important these transient
failures in STT-MRAM memories are: retention failure, where the stored value changes
without any read or write operation; write failure, in which a write operation does not
change properly the written value; and read disturbance error, where a read operation
switches the value originally stored, leaving a wrong value [21]. In NV-LLCs these transient
errors can occur in both the tag and data arrays.

Several specific techniques have been proposed to mitigate transient errors [20, 22, 23].
These techniques are orthogonal to our proposal since they deal with healthy bitcells. They
could therefore be integrated into L2C2, which seeks, in a complementary way, to maintain
the population of healthy bitcells as large as possible and for as long as possible.

To avoid a system crash, regardless of the transient or permanent nature of the error,
a dedicated hardware must detect the error and correct it. To achieve this, fault-tolerant
caches must protect each tag and cache frame with an ECC mechanism, capable at least
of single error correction double error detection (SECDED), and often capable of coping
with double error correction triple error detection (DECTED). For example, Wu et al.
to mitigate read disturbance errors in STT-MRAM LLCs, propose to dynamically switch
between SECDED to DECTED, and vice-versa, according to a temperature threshold for
individual cache banks [127]. As a result, the devoted ECC code storage changes according
to thermal stress.

Redundancy can be included in the error correction code itself, allowing to correct N
errors instead of just one [72,110]. However, the overhead required by such ECCs increases
rapidly with N, to the point of making it impractical.

Besides, if permanent errors accumulate in several bitcells of the same frame, in the
end no solution based on ECCs is scalable, since after a certain number of errors it will not
be possible to recover the correct value. The simplest solution is frame disabling, already
present in commercial processors long time ago [17, 129]. It consists of disabling the entire
cache frame as soon as the error detection limit is reached, since one more permanent
error could not be processed. In contrast, L2C2 relies on finer control of the disabling
granularity, allowing to disable individual bytes in each frame and thus, together with
block compression, increasing the cache lifetime.

Alternatively, redundancy can be added outside the ECC mechanism by noting perma-
nently failed bitcells and correcting their value [110,112,133]. For example, Schechter et al.,
in the context of main memory proposes the Error-Correcting Pointers (ECP) mechanism
that stores for each faulty bitcell its frame position and the value it should store, e.g. a
nine-bit pointer for a 64-byte memory frame and a one-bit data, respectively [110]. The
extra storage cost limits this approach to a moderate number of faulty cells. In fact, the
authors evaluate the mechanism for up to N = 6 defective bitcells (ECP-6).

18

Chapter 2, L2C2: Last-level compressed non-volatile cache

Other work proposes to take advantage of memory frames with defects without having
to disable them entirely. For example, Ipek et al. proposes Dynamically Replicated Memory
(DRM), that stores a memory page in two partially faulty page frames [60]. Or, with a higher
complexity, Jadidi et al. advocate the use of compression to harden main memory [63].
They assume a PCM with ECP-6 protection for each 64-byte frame. Their mechanism
allows storing a compressed block in a degraded frame, as long as there is a contiguous
chunk within the frame, called compression window, of size greater than or equal to the
compressed block, and with no more than 6 bitcell faults. This allows a memory frame to be
used even if it has more than 6 faults, as long as they are outside the compression window.
In summary, this proposal increases memory lifetime by three aggregate effects: it has a
repair mechanism, it decreases the write rate by the same amount as the compression rate
achieved, and it does not create write hot spots because it has an intra-frame wear-leveling
mechanism. However, although its ideas are inspiring, this proposal has been developed
to collaborate with operating system (OS) paging system and its direct transfer to cache
memory hardware is not straightforward at all.

Finally, the possibility of storing compressed blocks in NV-LLCs has hardly been ex-
plored and, anyway, has never been proposed to extend lifetime. For example, Choi et al.
explores an adaptation of the Decoupled Compressed Cache (DCC) compression scheme
proposed for SRAM caches [108], but applying it to embedded NVM caches [26]. Similar to
the DCC scheme for conventional caches, the aim is to increase the effective capacity by
allowing the total number of compressed blocks stored in a cache set to exceed the nominal
associativity. Using a set dueling mechanism, they dynamically adjust the activation/deac-
tivation of compression to balance the miss rate vs. write rate tradeoff, concluding that
their proposal increases energy efficiency, but decreases lifetime by 8% with respect to a
cache without compression.

Mittal proposes a technique called SHIELD that uses compression to mitigate the effects
of read disturbance errors (RDEs) in STT-MRAM [87]. The approach is to process misses by
inserting two identical copies of the same compressed block in the target cache frame. For
this purpose, SHIELD uses, like L2C2, a BDI compression scheme [99]. The first read leaves
one of the two copies unusable by the RDEs, but a second copy is still intact for a second
service. In this way, often, cache block reads do not require a restore (write-after-read),
costly in energy and cache bank occupation [122].

Data compression has also been proposed in the context of caches operating at near-
threshold voltage. Ferrerón et al. propose the Concertina cache, which provides each frame
with a bit vector or a few pointers identifying the bytes that fault when the supply voltage
drops [45]. These metadata are calculated once, by scanning the cache when entering
in low-voltage mode, and do not change as long as the supply voltage remains constant.
Before inserting a new block, a simple null subblock compression mechanism searches in
LRU order for the existence of a frame with enough live bytes. Concertina does not need
or seek to level write wear, nor requires a high-coverage compression mechanism, but part
of its design will be useful for the operation of L2C2.

19

2.3. Background

2.3 Background

This section briefly reviews the background regarding data compression in the context of
NVMs, with emphasis on BDI compression, and the addition of redundant capacity.

2.3.1 Data compression

Data compression reduces the block size. This is beneficial in the NVM context because
it allows fewer bits to be written and, consequently, compression has the potential to
extend the lifetime of the main memory or cache [26,31,63,96], and/or to decrease the RDE
rate [87]. Yet, compression has another benefit in the context of a byte-level fault tolerant
NV-LLC such as L2C2: it allows cache frames with dead bytes to hold blocks if compression
is high enough [45, 63]. Any compression mechanism that achieves wide coverage even
at the cost of a moderate compression ratio can be useful, so that a large percentage of
blocks, once compressed, can be stored in degraded cache frames. On the other hand, the
decompression latency must be very low in terms of processor cycles, since decompression
is on the critical path of the block service and may affect system performance.

The chosen mechanism is Base-Delta-Immediate (BDI), as it achieves high coverage,
fast decompression (1 cycle) and a substantial compression ratio [99]. BDI is based on value
locality, i.e. on the similarity between the values stored within a block. It assumes that a
64-byte block is a set of fixed-size values, either 8 8-byte values, 16 4-byte values, or 32
2-byte values. It determines whether the values can be represented more compactly as a
Base value and a series of arithmetic differences (Deltas) with respect to that base.

A block can be compressed with several Base + Delta combinations which are computed
in parallel. An example with 14 BDI compression encodings (CEs) is shown in Table 2.11,
along with the size values for the Base, Delta and the total compressed size. Thus, the
compression mechanism chooses for each block the compression encoding (Base + Delta
combination) that achieves the highest compression ratio.

Table 2.1: BDI CEs and their sizes, in bytes.

Name Base Delta Size Name Base Delta Size

All Zeros 0 0 0 B2Δ1 2 1 37
Rep. V(8) 8 0 8 B8Δ4 8 4 37
B8Δ1 8 1 16 *B8Δ5 8 5 44
B4Δ1 4 1 21 *B4Δ3 4 3 51
B8Δ2 8 2 23 *B8Δ6 8 6 51
B8Δ3 8 3 30 *B8Δ7 8 7 58
B4Δ2 4 2 36 Uncomp. – – 64

1To calculate the sizes in this example, an implicit Base, taking the value zero, is assumed. This allows both
very large and very small values to be coded at the same time but adds one bit per value to distinguish whether
to consider the calculated or the implicit Base.

20

Chapter 2, L2C2: Last-level compressed non-volatile cache

2.3.2 Addition of redundant capacity

The reliability of the NV-LLC can be improved by adding redundant capacity. This can be
done by using classical ECCs or more sophisticated techniques [60, 110, 112, 127, 133]. The
maximum number of bit errors that can be detected and corrected is limited by the available
area and energy budget. For instance, Schechter et al. propose ECP, an ECCmechanism that
encodes the location of defective bitcells and assigns healthy ones to replace them [110].

However, in order to further increase reliability, a substantial portion of the redundant
capacity could be dedicated to the replacement or expansion of the rated cache capacity
stated in the commercial specification. Both alternatives will be evaluated later in this
chapter.

2.4 Fault-tolerant NV-LLC microarchitecture

In this section, we present an overview of the L2C2 organization, with emphasis on BDI
compression adaptation and metadata layout. In addition, we explain and analyze in detail
the block rearrangement and replacement mechanisms. Finally, we explore how to add
redundant capacity to improve reliability.

2.4.1 General overview

NVM-friendly non-inclusive LLC

Non-inclusive LLC designs increase caching capacity by only partially duplicating data
between the private and shared levels. The non-inclusive relationship allows replacing a
block in LLC without having to invalidate copies in the private levels [136]. In an NVM-
friendly implementation of this model, a miss in all cache levels involves a main memory
access that takes the block directly to the private L1/L2 levels. In turn, the victim block
replaced in L2, clean or dirty, is sent to the LLC and written if it was not there [29]. Most
NVM-based LLCs follow this mostly-exclusive implementation because it reduces the write
traffic in the LLC [18, 19, 84, 105].

Therefore, a non-inclusive organization is used to minimize writes in L2C2, see Fig-
ure 2.1. A block is inserted into L2C2 by effect of a replacement in L2, provided that the
block was not already in L2C2. In case of a write miss (GetX) in L1 and L2, and a hit in
L2C2, the corresponding block is brought to L1/L2 and invalidated in L2C2. This imme-
diate invalidation improves LLC performance because it leaves room for the replacement
algorithm to reuse it as needed. The obsolete copy of the invalidated block in LLC will be
written anyway when the dirty block is evicted from L1/L2. These coherency features are
already implemented in the MOESI_CMP_directory Ruby protocol in gem5 [83].

Replacement algorithm

To select the victim block, L2C2 takes into account the recency order according to the
following rules: 1) inserted blocks are placed in an LRU list at the most recently used (MRU)
position (lowest replacement priority), 2) a read hit in L2C2 places the block to the MRU

21

2.4. Fault-tolerant NV-LLC microarchitecture

L2 L2C2 MM

Figure 2.1: Block flow diagram of the non-inclusive model.

position, and 3) replacement of a clean block in the private caches is communicated to
L2C2; in case such a block is present, it is also placed at the MRU position.

However, if the LRU cache frame does not have sufficient capacity for the incoming
compressed block, it cannot be used as a victim. Then there are two possibilities, either
to search in order from least to most recent for the first frame with sufficient capacity
(LRU-Fit policy) or to choose the frame with the smallest possible capacity, and if there are
several with the same capacity, the LRU one (LRU-Best-Fit policy). Ferrerón et al. test both
alternatives and choose LRU-Fit for its better performance [45], but since in their context
writes do not produce degradation, the LRU-Best-Fit policy could be advantageous for the
L2C2 design. LRU-Best-Fit avoids writes on the highest capacity frames, and therefore
poorly compressible blocks would see their residency opportunities increase. Therefore, in
Section 2.5.6 the two policies will be confronted.

Bitcell fault detection

Memory cells become defective after a certain number of writes. It is thereby essential
to handle these permanent faults without losing information. From the architectural
perspective, these memory structures must be provided with ECCs to detect and correct
hard faults. We assume Hamming SECDED protection in all arrays. In particular, we use
code (527, 516) for the NVM data array: it can correct one fault and detect up to two faults.
Besides, this ECC mechanism, upon detecting and correcting a single bit fault, triggers an
OS exception, notifying the identity of the faulty byte [133]. In order to prevent a second
uncorrectable error from arising within the same region, the exception routine will disable
the corresponding region, a whole frame using frame disabling, or a byte in L2C2. Note
that this ECC protection does not bring any additional overhead as they already exists in
SRAM LLCs to cope with soft and transient faults [3, 9, 44, 66, 116, 132]; for instance, AMD
Zen’s SRAM LLC employs DECTED protection [116].

Different disabling granularities in the LLC have different performance implications.
For example, disabling at frame granularity incurs little overhead but severe degradation of
capacity and, thus, performance. Conversely, disabling at a finer granularity, such as at
byte level, requires more metadata (overhead) but allows live bytes within a frame to be
used [45, 120, 125]. By leveraging compression, these partially disabled frames can be used
as functional frames, and the impact of bitcell failures on performance can be effectively
mitigated. For instance, if a byte in an NVM cache frame (64B) is disabled, it can still be used
to store all cache blocks of compression encodings B8Δ7 and above (≤ 58B), see Table 2.1.

22

Chapter 2, L2C2: Last-level compressed non-volatile cache

Wear-leveling mechanism

Writing compressed blocks in a frame is a new source of imbalance in the wear of the cells
acting within the frame itself. As we will quantify, if, for example, compressed blocks are
always stored from the beginning of the frame, the first bytes of the frame will receive
more writes than the last ones.

Therefore, an intra-frame wear-leveling mechanism is needed to evenly distribute the
writes within the frame. We assume a global counter modulo the cache frame size [63].
Blocks are written into the frames starting from the byte indicated by this counter and
using the frame as a circular buffer. Each time the value of the counter is changed, the
entire cache must be flushed, but since this must be done every few days or weeks, the
impact on performance is negligible. Further details on how this mechanism copes with
partially defective frames can be found in Section 2.4.6.

2.4.2 BDI adaptation

Pekhimenko et al. focus their application on achieving a large average compression ratio
and therefore dispense with compression encodings with small compression ratios [99],
those marked with an * in Table 2.1. However, L2C2 incorporates them, because in this
way frames with few defective bytes will be able to store low compression blocks and thus
performance increases noticeably [45].

To quantify the importance of such low compression blocks, Figure 2.2 shows a classifi-
cation of all blocks written in L2C2 according to the achieved BDI compression ratio for
the SPEC CPU 2006 and 2017 applications used in this work. On average, 22% of the blocks
written are uncompressible (Unc), 29% have low compression ratio (LCR) (compressed block
size > 37) and 49% have high compression ratio (HCR) (compressed block size ≤ 37). For
instance, if all frames in an L2C2 cache have a faulty byte, and the compression mechanism
does not use the LCR encodings, the chance to store 29% of the blocks would be lost.

2.4.3 L2C2 metadata

The tag array undergoes the most write requests as it must keep the coherence and replace-
ment states up to date. Should these bitcells fail, the entire data frame should be deactivated.
Therefore, we assume the tag array is built using SRAM technology, free of wear by writing.
Our proposal only adds a 4-bit field to store the frame capacity to each tag array entry. This
frame capacity is represented in terms of the largest compression encoding the frame can
allocate, see Figure 2.3. The data array is built using NVM technology. Each frame must
have a capacity of 66 bytes: 64 data bytes plus one or two metadata bytes: up to 11 ECC
bits and 4 bits representing CE of the data block.

In addition, a fault map is needed along with the data array to identify faulty bytes.
Every frame has an associated fault map that points out the faulty bytes. This fault map
information is initialized to ’1’s indicating that all bytes in a frame are non-defective. It
requires 66 bits for each frame and is updated every time a byte becomes faulty, i.e., at most
66 times (until the frame is completely dead). This low amount of write accesses leads to
no wear problems, and thus the fault map can be implemented in NVM technology.

23

2.4. Fault-tolerant NV-LLC microarchitecture

w
rf

bw
av
es
17

de
al
II

ca
ct
uB

SS
N
17

lib
qu

an
tu
m

om
ne
tp
p

ro
m
s1
7

Ge
m
sF
D
TD

xa
la
nc
bm

k
bz
ip
2

hm
m
er

xz
17

as
ta
r

le
sli
e3
d

go
bm

k
ze
us
m
p

m
cf
17

m
ilc

lb
m
17

so
pl
ex

Av
er
ag
e

0

50

100

%
of

bl
oc
ks

HCR LCR Unc

Figure 2.2: Block classification regarding its compression ratio for the selected SPEC CPU 2006
and 2017 applications. LCR blocks correspond to the CEs marked as * in Table 2.1.

Tag + LRU +
Valid+ Dirty + Coherency

Frame
Capac.

RECB = CE + ECC + Compressed Block

SRAM Tag Array NVM Data Array

Fault
Map

34 b 528 b 4 b 66 b

Figure 2.3: Layout of a frame entry in the SRAM tag and NVM data arrays.

2.4.4 Block writing

Figure 2.4 shows the flow of writing a block into L2C2. First, the BDI compression units
receive every incoming block B (64 B) [1 BDI compression]. The result of each compression
unit is a) whether the block is compressible or not and, if so, b) the compressed block (CB). As
a result, CBwith the highest compression ratio (CB, 0-64 B) is selected and the corresponding
CE (4 b) is obtained.

+

-

B8Δ1

B4Δ1

B8Δ2

B8Δ7

CE 4bits

NVM Frames
capacities

LRU
information

Replacement
Mechanism

1 BDI Compression

2.2 Replacement

2.1 ECC

Wear-leveling
Counter

Write Mask

CrossbarECB 66B

RECB 66B

Victim

Fault map

3 Block rearrangement

Index

SECDED
generation

Index
generation

CB 0-64B

Figure 2.4: Block writing flow.

The extended CB (ECB) is then formed by combining CB with the 4-bit CE and the
11-bit SECDED code. The ECCs are computed from 516-bit, i.e., the combined CE (4-bit)
and 512-bit vector (the CB bit vector plus the required number of zeros to make 512-bit)

24

Chapter 2, L2C2: Last-level compressed non-volatile cache

[2.1 ECC]. In parallel to SECDED generation, the replacement algorithm will look for the
target frame among those with an effective capacity greater than or equal to the incoming
CB (Fit-LRU) [45] [2.2 Replacement]. For this, the replacement logic considers the CE of
the incoming block B along with the capacities and LRU order of the frames still alive in
the involved cache set.

Besides, L2C2 is also providedwith a block rearrangement circuitry that scatters the ECB
throughout the non-faulty bytes of the target frame, generating the rearranged ECB (RECB)
and a write mask for selective writing [3 Block rearrangement]. This block reordering
synergistically works with an intra-frame wear-leveling mechanism to evenly distribute
the wear of write operations across the remaining non-faulty bytes in the target frame. To
do this, the block rearrangement circuitry maintains a counter that indicates the byte at
which the write operation is performed. This counter is global, shared among all sets, and
increments after long periods of time (a few hours or even days) so that the writing region
of the frames gets shifted over time [63].

2.4.5 Block reading

Analogously, but in the opposite order to the writing flow, Figure 2.5 summarises the reading
flow of a block in L2C2. First, RECB is read. In parallel, the index vector I[i] is computed as
for writing the block. This index vector is now used to obtain ECB from RECB. First, the
block is rearranged using as input RECB, the fault map, and the wear-leveling counter [1
Block rearrangement]. Then, the ECC of ECB is checked [2 ECC], and CB is eventually
decompressed so that B is obtained and forwarded to L2/L1 [3 BDI Decompression].

Crossbar
RECB 66B

ECB 66B CB 0-64B

CE

Fault map Index
generation

SECDED
checking

B8Δ1

B4Δ1

B8Δ2

B8Δ7

OS exception

1 Block rearrangement

Wear-leveling
Counter

Index

2 ECC 3 BDI Decompression

Figure 2.5: Block reading flow.

2.4.6 Rearrangement logic

The rearrangement logic is composed of two elements: index generator and crossbar. The
index generator determines the mapping from ECB bytes to RECB bytes (L2C2 write) or
conversely, from RECB bytes to ECB bytes (L2C2 read) while the crossbar transfer the bytes
from the input ports to the corresponding output ports.

Figure 2.6a shows an example of rearranging a 5-byte ECB for scattering into an 8-byte
frame with faulty bytes (2 and 5) while Figure 2.6b shows the opposite, how a 5-byte RECB
is gathered from the same 8-byte frame. Focusing on the write example, on the left side
of the Figure 2.6a, the index generator computes an index vector I[i] from the fault map
and the wear-leveling counter. Each index indicates which byte of the ECB is to be placed

25

2.4. Fault-tolerant NV-LLC microarchitecture

in each RECB byte (x stands for don’t care). For example, I[6]=2 indicates that byte 2 of
the ECB is placed in RECB byte 6. Thus, this index vector controls the output ports of the
crossbar used to obtain the RECB. In the example, crossbar output 6 selects input 2. For
the write mask, the first 𝑛 positions starting from the wear-leveling counter value, and
corresponding to non-faulty bytes, are set to 1s; 𝑛 being the ECB size.

8 B

CB
SEC
DED

ECB

RECB

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1

1

0

1

1

0

1

1

I[0] = 4
I[1] = x
I[2] = x
I[3] = 0
I[4] = 1
I[5] = x
I[6] = 2
I[7] = 3

Fault Map (0 = Faulty)

Index
Vector

Counter = 3

Wear-leveling

CE

1 1 0 1 1 0 0 1
Write
mask

4

5

6

0

1

2

2

3

0

1

2

3

4

5

6

7

Start: I[3] = 0

Index generation

Output-controlled
crossbar

(a) Writing example.

8 B

CB SEC
DED

ECB

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Index
Vector

CE

RECB

Input-controlled
crossbar

I[0] = 4
I[1] = x
I[2] = x
I[3] = 0
I[4] = 1
I[5] = x
I[6] = 2
I[7] = 3

(b) Reading example.

Figure 2.6: Example of a 5-byte block rearrangement for writing (a) and reading (b).

Figure 2.6b shows a rearrangement example of the same 5-byte RECB from Figure 2.6a
for delivery to L2. In this case, each index indicates the target output crossbar for each
input, e.g., I[6]=2 means that input 6 is forwarded to output 2. Within the already aligned
block (ECB), CE indicates the length of the compressed block. This value is employed to
fill the bytes not used to store CB with zeros in order to match the SECDED previously
generated during the writing. Besides, it selects the corresponding BDI decompressor.

Algorithm 1 describes the index generation for both writing and reading. It takes, as
inputs, the fault map (FM) of the target frame, the wear-leveling counter (WLC), and the
size of the block (extracted from CE). The outputs are the index vector I[N = frame size],
that controls the output ports of the crossbar, and the write mask (WM) in the case of
writing.

The first for loop (line 2) computes indexes without consideringWLC. That is, assuming
that, for example, ECB is to be rearranged starting with the byte zero of the destination
frame. Note that the calculation of each iteration uses the result of the previous one. This
implies using 𝑁 adders in series. Alternatively, our implementation uses a tree of adders,
which reduces the computation time to that of 𝑙𝑜𝑔2(𝑁) adders in series. Each adder uses
𝑙𝑜𝑔2(𝑁) bits at most.

In the two next loops (lines 5 and 6), the indexes are adjusted regarding WLC. Now,
the iterations within each loop are independent and can be computed in parallel. The
computation time of the two iterations is, thus, the equivalent of two adders in series.

Finally, the last loop (line 7) computes the write mask. This loop can be synthesized
with an array of 64 7-bit comparators. These comparators act on the computed indexes and
their operation can overlap with the crossbar traversal.

The index vector is computed when writing and reading in the same way. In the write
circuit, the crossbar is an array of multiplexers governed directly by the index vector. In the
read circuit, the crossbar acts as right-aligner and is more complex. Our implementation

26

Chapter 2, L2C2: Last-level compressed non-volatile cache

Algorithm 1: Index generation.
Input:
FM: N-bit vector fault map
WLC: wear-leveling counter
size: ECB size, computed from CE

0 ≤𝑊𝐿𝐶, 𝑠𝑖𝑧𝑒 ≤ 𝑁 − 1
Output:
I[N]: N crossbar output port indexes
WM[N]: write mask N-bit vector

1 I[0] = 0
2 for i=1; i<N; i++ do I[i] = I[i-1] + FM[i-1];
3 T = I[N-1] + FM[N-1];
4 WLCI = I[WLC];
5 for i=0; i<N; i++ do I[i] = I[i] - WLCI;
6 for i=0; i<WLC; i++ do I[i] = I[i] + T;
7 for i=0; i<N; i++ do
8 if I[i] < size && FM[i] == 1 then
9 WM[i] = 1

10 else
11 WM[i] = 0

assumes 𝑁 × 𝑁 comparators of 𝑙𝑜𝑔2(𝑁) bits and 𝑁 output multiplexers of 𝑁 bytes to 1
byte with decoded control. The decoded control of the multiplexer that produces the byte 𝑖
is generated by 𝑁 comparators between the value 𝑖 and the 𝑁 elements of the index vector.

2.4.7 VLSI implementation

In order to put the costs and delays of the rearrangement logic into context, we select a
L2C2 built with 22nm STT-MRAM technology, the largest scale of integration available
in NVSim [33]. Table 2.2 shows area, latency and power of the SRAM tag array and the
STT-MRAM data array, which make up the 4MB cache banks used in the experimental
section.

Both writing and reading rearrangement logic are outside the L2C2 core, but the latter
is located in the critical path of block delivery to L1/L2. In order to quantify their physical
features both have been specified, simulated and laid out with the Synopsys Design Compiler
R-2020.09-SP2 and Synopsys IC Compiler R-2020.09-SP2. Due to the lack of a 22nm library,
we used the SAED16nm FinFET Low-Vt technology in worst case condition (typical-typical,
125 ºC and 0.8 volts). These tools allowed us to estimate post-layout costs in terms of
area, latency and power consumption. The dynamic power values were calculated from
the cache activity factors measured during the workload simulations. The latency of the
RECB→ ECB logic (0.38 ns) plus the delay and setup times of the input and output registers,
respectively, can be estimated at about two cycles at 3.5 GHz. That is, rearranging and

27

2.5. Evaluation

Table 2.2: Hardware cost comparison.

SRAM STT-MRAM ECB→RECB RECB→ECBTag Array 4MB Data Array
22 nm 22 nm 16 nm 16 nm

Area (mm2) 0.233 1.222 0.021 0.025
Latency (ns) 0.44 2.66 0.33 0.38
Dynamic read 0.11 6.05 – 0.53power (mW)
Dynamic write 0.11 17.41 0.73 –power (mW)

Static power (mW) 5.69 9.62 0.53 0.7

decompression increases the L2C2 load-use latency, with respect to a frame-disabling cache,
from 30 to 32 cycles, a 6.7%.

In summary, looking at the figures as a whole, the overhead seems to be affordable on
all metrics. Regarding storage costs, Table 2.3 also provides a comparison between all the
evaluated cache candidates.

2.4.8 L2C2+N: adding redundant capacity to L2C2

Providing L2C2 with a few spare bytes in each frame could be very convenient since it
would allow to continue working without loss of performance after the failure of several
bytes of each cache frame.

The design presented so far allows to add N spare bytes in a very straightforward way:
just increase each frame from 66 to 66+N bytes in the data array, and also increase the
fault maps from 66 to 66+N bits. In addition, the rearrangement logic has to be extended to
handle 66+N byte blocks, and the wear-leveling counter has to count modulo 66+N.Without
further changes, the wear-leveling logic will take care of distributing the writes throughout
the available 66+N bytes. A frame will only start to impose performance constraints when
its effective capacity falls below 66 bytes.

2.5 Evaluation

This section shows the evolution of capacity and performance for several NV-LLC organi-
zations, from 100% to 50% capacity, along with experiments on wear-leveling, replacement,
cache size and workload. Four NV-LLCs candidates are analyzed, two based on frame
disabling and two on byte disabling plus compression:

• Frame disabling (FD) cache. A bitcell failure is just handled by disabling the
corresponding frame [17, 129].

• FD cache with ECP-6 (FD+6). Frame endurance is increased allowing the failure of
up to six bitcells. After the seventh failure, the frame is disabled, because an eighth

28

Chapter 2, L2C2: Last-level compressed non-volatile cache

failure would no longer be recoverable [110]. This is achieved by adding six ECPs
per frame to the base SECDED mechanism.

• L2C2. A bitcell failure is handled by disabling the corresponding byte. Cache blocks
are stored compressed with BDI. It has an intra-frame wear-leveling mechanism and
an LRU-Fit replacement policy; see Section 2.4.

• L2C2+6. An L2C2 with 6 spare bytes per cache frame; see Section 2.4.8.

Two variations of L2C2 are also tested:

• L2C2-NWL. An L2C2 without the intra-frame wear-leveling mechanism. The index
generation circuit has less complexity; see Section 2.4.6. Writing always starts at the
least significant live byte of the frame.

• L2C2-BF. It is an L2C2 with LRU-Best-Fit replacement policy instead of LRU-Fit.

Table 2.3 shows the number of storage bits per frame of the tag and data arrays, along
with the percentage increments with respect to FD.

Table 2.3: Frame costs in bits. Percentage overhead relative to FD.

SRAM Tag Array STT-MRAM Data Array
Bits Overhead, % Bits Overhead, %

FD 34 – 529 –
FD+6 34 0 595 12.5
L2C2 38 11.8 594 12.3

L2C2+6 38 11.8 648 22.5

2.5.1 Experimental setup

Details of the multicore system modeled for the cycle-by-cycle simulation phase of each
epoch are shown in Table 2.4. It consists of 4 cores, each with two private cache levels L1 and
L2, split into instructions and data. In addition, there is a third cache level (L2C2) which is
shared, non-inclusive and distributed in four banks among the cores. The coherence protocol
is directory-based MOESI, and the interconnection network is a crossbar connecting the
L2 private levels, the banks of the LLC and the directory. The main memory controller is
located next to the directory.

We use Gem5 [83] along with the Ruby memory subsystem and Garnet interconnection
network. In addition, we use NVSim for the L2C2 latency estimations [33]. The workload
consists of 10 mixes randomly built by SPEC CPU 2006 and 2017 benchmarks [12, 56],
leaving aside applications with very little activity on the LLC [92]. Fast-forwarding is
performed for the first two billion instructions and then 200M cycles are simulated in detail.
Table 2.5 shows the applications that make up each mix along with the LLC misses per kilo
instructions (MPKI) of the mix, computed by dividing total cache misses by total number of

29

2.5. Evaluation

Table 2.4: System specification.

Cores 4, ARMv8, out-of-order (up to 8 inst/cycle), 3.5 GHz.
Coherence MOESI, directory distributed among LLC banks.
Protocol 64 B data blocks in all levels.

L1 Private, 32 KB D, 32 KB I, 4 ways, LRU.
3-cycles load-use delay. Fetch on write miss.

L2 Private, L1-inclusive, 128 KB D, 128 KB I, 16 ways, LRU.
11-cycles load-use delay. Fetch on write miss.
Shared, non-inclusive, 4 banks, 4MB/bank, 16 ways, LRU.

STT-MRAM Load-use delay: 30-cycles frame disabling; 32-cycles L2C2.
NV-LLC Frames protected by SECDED.

Baseline endurance: mean 1011 wr., 𝑐𝑣 = 0.2, 0.25, and 0.3.
Main 1 memory controller, DDR4.

Memory 1 channel, 8GB/channel (1200 MHz)
NoC Crossbar between L2C2 banks and L2s. 32 B flits.

Table 2.5: Selected SPEC 2006 and SPEC 2017 applications, with suffixes 06 and 17, respectively
and their MPKI. Superscript indicating top-10 memory intensive applications.

mix Applications MPKI
#1 zeusmp06 gobmk06 dealII06 bzip2067 1.4
#2 hmmer06 bzip2067 wrf06 roms179 2.6
#3 zeusmp06 cactuBSSN171 hmmer06 soplex06 6.1
#4 omnetpp06 astar06 milc06 libquantum064 4.9
#5 xalancbmk0610 leslie3d063 bwaves176 mcf178 10.4
#6 lbm175 xz17 GemsFDTD062 wrf06 6.6
#7 cactuBSSN171 dealII06 libquantum064 xalancbmk0610 7.3
#8 gobmk06 milc06 mcf178 lbm175 6.0
#9 xz17 astar06 bwaves176 soplex06 3.5
#10 GemsFDTD062 omnetpp06 roms179 leslie3d063 10.6

instructions executed by all applications in the mix. Besides, the top ten memory intensive
applications, in terms of accesses per kilo instructions (APKI) are superscripted.

In order to analyze the performance evolution over time of such NV-LLCs that lose
capacity due to hard faults, a forecasting procedure is employed. It allows to accurately
measure the impact of different insertion policies on the evolution over time of performance,
capacity of the NVMdata array, and energy of the NV-LLC; taking into account the disabling
of frames or bytes and the use of hardware data compression. The forecasting procedure
alternates between simulation and prediction phases. The simulation phase starts reading
the NV-LLC state; for instance, in L2C2 such state is the fault map of every frame, then it
performs a full system simulation reporting several indexes of interest, e.g., the write rate
on the frames, system instructions per cycle (IPC), and LLC hit rate. The prediction phase
receives such write rates, computes the next 𝑘 NVM bitcells to become faulty, and update
the fault map for the next simulation. In this chapter, the forecasting procedure advances in
time until the NVM data array loses 50% of its capacity, but there is no problem in reaching
full depletion. Chapter 4 delves into all the details of such a forecasting procedure. The IPC

30

Chapter 2, L2C2: Last-level compressed non-volatile cache

evolution depicted in Section 2.5.3 figures is obtained at each simulation phase, computing
the arithmetic mean of the IPCs of the mixes conforming the workload. Analogously, the
energy evolution depicted in Section 2.5.4 figures is obtained at each simulation phase by
multiplying the energy associated to each single event by the number of events occurred
in the workload.

2.5.2 Lifetime

Figure 2.7 shows capacity degradation, from start-up until 50% of effective capacity is
lost, considering bitcells with increasing manufacturing variabilities for the four NV-LLC
candidates. The effective capacity shown on the Y-axis is the one contributing to cache
block storage. For example, L2C2+6 has 100% effective capacity as long as its nominal 16MB
capacity is available, regardless of whether or not the spare bytes are coming into play.
Besides, Table 2.6a shows 𝑇50𝐶 , the time required to lose 50% of the nominal cache capacity.

0 4 8 12 16
Time (years)

50

60

70

80

90

100

Eff
ec
tiv

e
ca
pa
ci
ty
(%
)

FD
FD+6

L2C2
L2C2+6

(a) 𝑐𝑣 = 0.20

0 4 8 12 16
Time (years)

50

60

70

80

90

100

Eff
ec
tiv

e
ca
pa
ci
ty
(%
)

FD
FD+6

L2C2
L2C2+6

(b) 𝑐𝑣 = 0.25

0 4 8 12 16
Time (years)

50

60

70

80

90

100

Eff
ec
tiv

e
ca
pa
ci
ty
(%
)

FD
FD+6

L2C2
L2C2+6

(c) 𝑐𝑣 = 0.3

Figure 2.7: Effective capacity evolution over time until 50% of capacity is lost.

First of all, it can be seen that FD manufactured with high variability starts with an
effective capacity that may be well below the nominal one; i.e., an FD with 𝑐𝑣 = 0.3
starts operating with less than 80% of nominal capacity because many frames come out
of production with defective bitcells; see Figure 2.7c. FD+6, in contrast, completely solves
this problem by adding redundancy. On the other hand, 𝑇50𝐶 decreases markedly for FD

31

2.5. Evaluation

and FD+6 as the manufacturing variability increases, while for L2C2 and L2C2+6 it is the
other way around; see Table 2.6a. This is due to the byte-level disabling capability of L2C2,
which tolerates early byte failures and takes advantage of the later ones.

Second, compared to the sharp drop observed in frame-disabling caches, the byte-
disabling ones show a much more progressive degradation of capacity, resulting in a longer
𝑇50𝐶 . L2C2 is the longest lasting cache, in terms of 𝑇50𝐶 from 13.7 to 15.4 years, and FD the
least, from 2.2 to 0.42 years, depending on 𝑐𝑣 . L2C2+6 lasts a little less than L2C2, but it is
the one that maintains the nominal capacity for the longest time, namely 𝑇99𝐶 , between
5.6 and 3.1 years, depending on 𝑐𝑣 ; see Table 2.6b. As an example, in terms of 𝑇50𝐶 , see
Table 2.6a, L2C2 is alive 6, 11 and 37 times longer than FD for 𝑐𝑣 values of 0.2, 0.25 and 0.3,
respectively.

Third, as time goes by, and contrary to expectations, the effective capacity of L2C2+6
is no longer greater than that of L2C2, with the curves intersecting at around 7.5 – 5.5
years, depending on 𝑐𝑣 . As will be seen in the next subsection the explanation is as follows:
before the curves cross, the L2C2+6 system maintains a higher IPC, which implies a higher
write rate and a consequent earlier degradation.

Table 2.6: 𝑇50𝐶 , 𝑇99𝐶 , and 𝑇99𝑃 in years; 𝐼50𝐶 |5𝑦 in instructions.

𝑇50𝐶 , years. 𝑇99𝐶 , years.
cv 0.2 0.25 0.3 0.2 0.25 0.3
FD 2.2 1.3 0.42 1.1 – –

FD+6 3.3 2.6 1.9 2.9 2.1 1.3
L2C2 13.7 14.5 15.4 3.9 2.4 0.9

L2C2+6 12.9 13.4 14.0 5.6 4.4 3.1
(a) (b)

𝑇99𝑃 , years. 𝐼50𝐶 |5𝑦 , instr. ×1018

cv 0.2 0.25 0.3 0.2 0.25 0.3
FD 1.7 0.65 – 0.89 0.51 0.16

FD+6 3.1 2.4 1.6 1.32 1.05 0.77
L2C2 4.3 2.8 0.82 2.01 1.96 1.90

L2C2+6 5.9 4.7 3.5 2.03 2.03 1.98
(c) (d)

2.5.3 Performance

Figure 2.8 shows the IPC evolution over time from start-up until 50% of effective capacity
is lost for the NV-LLC candidates. The IPC is normalized to the IPC of a system with an
NV-LLC with all bitcells operational. The bottom dotted red line (0% EC) represents the
IPC of a system with a fully impaired NV-LLC, i.e. with zero effective capacity.

First, after losing 50% of capacity, the IPC in FD caches is around 20% higher than that
in L2C2 caches. This is because having 50% effective capacity with FD or FD+6 implies
that 50% of frames can store any block, whereas with L2C2 and L2C2+6, it implies that the

32

Chapter 2, L2C2: Last-level compressed non-volatile cache

0 4 8 12 16
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(a) 𝑐𝑣 = 0.2

0 4 8 12 16
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(b) 𝑐𝑣 = 0.25

0 4 8 12 16
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(c) 𝑐𝑣 = 0.3

Figure 2.8: Normalized IPC evolution over time until 50% of capacity is lost.

capacity of all frames has been reduced and therefore some blocks cannot be stored in any
frame.

Second, consistent with the effective capacity degradation, the IPC drops later and
more gradually in L2C2 and L2C2+6. The steps seen in their lines correspond to periods in
which the possibility of storing blocks of a given compression encoding has been lost.

Third, the crossings in the IPC and capacity curves occur at the same times. After these
crossings, L2C2 performs slightly better and lasts slightly longer than L2C2+6. The reason
is to be found in the first 4 – 6 years of operation of L2C2+6 at maximum performance,
years that, compared to L2C2, cause a higher write wear.

And fourth, in the first years of operation L2C2+6 keeps the maximum performance,
L2C2 loses it progressively, and FD and FD+6 loses it abruptly. The index 𝑇99𝑃 , the time
during which performance holds above 99% of the maximum allows to quantify these facts;
see Table 2.6c. L2C2+6 excels at 𝑇99𝑃 for all 𝑐𝑣 values, with L2C2 in second place, except
for 𝑐𝑣 = 0.3, where FD+6 is better.

From the above analysis, L2C2+6 seems to be the best candidate, followed by L2C2, and
at some distance FD+6.

To get more insight, we propose to measure the work performed by the different
organizations using the aggregate number of instructions executed by the four cores, with

33

2.5. Evaluation

a utilization of 100%, until a certain wear-out condition is reached. We compute this value
by integrating the IPC curve. According to Belkhir et al., the average lifetime of a server is
three to five years [8], we thereby propose the index 𝐼50𝐶 |5𝑦 which measures the number of
instructions executed until 50% of the capacity is exhausted or until five years have elapsed,
whichever is earlier; see Table 2.6d.

Regarding this index, we can say that the increase in manufacturing variability is very
bad for frame disabling, with reductions of 82 and 42% of 𝐼50𝐶 |5𝑦 in FD and FD+6, going
from 𝑐𝑣 0.2 to 0.3. In contrast, that same increase in 𝑐𝑣 slightly reduces 𝐼50𝐶 |5𝑦 in L2C2 and
L2C2+6 by 5.5 and 2.5%, respectively.

In short, L2C2+6 offers the best performance in all indexes, with an additional storage
cost over L2C2 and FD+6 of less than 10%. The second option, cheaper but with less
performance, is L2C2, which requires about 12.3% more data array storage than FD, the
base option without redundancy.

2.5.4 Energy

Figure 2.9 shows the energy evolution over time of the different NV-LLCs from start-up
until 50% of effective capacity is depleted. The energy is normalized to the energy of a FD
cache with all bitcells operational. The energy overheads of L2C2 caches regarding the
metadata and the rearrangement circuits introduced in Section 2.4.7 and Table 2.2 are taken
into account for the analysis.

First, the energy consumed by L2C2 is 9% less than that of FD at the beginning of the
cache life, see Figure 2.9a. Although the metadata overhead increases the static power and
the rearranging circuits increase both the dynamic read and write energy, the selective
writing thanks to the data compression and the write mask offsets these increases by
significantly reducing the dynamic write energy. This allows us to conclude that, despite
the hardware overheads, our design does not incur in a higher energy consumption.

Second, the energy drops are consistently aligned with the performance drops observed
in Figure 2.8 for all the considered configurations. The capacity degradation leads to a loss
of performance, which, in turn, reduces the activity of the NV-LLC.

Besides, both FD+6 and L2C2+6 increase the energy consumption compared to FD and
L2C2, respectively. This is because the redundant information increase the static power
of the storage structures. Therefore, the prolonged higher performance of the redundant
versions is achieved at the cost of a higher energy consumption.

2.5.5 Intra-frame wear-leveling

In this experimentwe aim to see the importance of the intra-framewear-levelingmechanism.
In an L2C2 without intra-frame wear-leveling, there is an imbalance between the number
of writes that receive the low order bytes and the high order bytes of a frame. Concretely,
higher order bytes will not be written if the block compressed to some extent. This
imbalance will make lower order bytes receive more write operations than higher order
ones so they will become faulty before than in a cache with intra-frame wear-leveling.

34

Chapter 2, L2C2: Last-level compressed non-volatile cache

0 4 8 12 16
Time (years)

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

en
er
gy

FD
FD+6

L2C2
L2C2+6

(a) 𝑐𝑣 = 0.2

0 4 8 12 16
Time (years)

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

en
er
gy

FD
FD+6

L2C2
L2C2+6

(b) 𝑐𝑣 = 0.25

0 4 8 12 16
Time (years)

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

en
er
gy

FD
FD+6

L2C2
L2C2+6

(c) 𝑐𝑣 = 0.3

Figure 2.9: Normalized energy evolution over time until 50% of capacity is lost.

Figure 2.10 shows the IPC evolution until the NV-LLC loses 50% of its effective capacity
for 𝑐𝑣 = 0.2 of L2C2 and L2C2-NWL, an L2C2 whithout the intra-frame wear-leveling
mechanism. The IPC of L2C2-NWL starts dropping at 3.7 years while L2C2 IPC drops at
4.3 years (16% later). This temporal shift linking points of equal performance is evident
throughout the duration studied, being around one year on many occasions.

2.5.6 Fit vs. Best-Fit replacement

In L2C2 an alternative replacement policy to LRU-Fit is LRU-Best-Fit, which consists of
choosing the smallest LRU frame capable of holding the incoming compressed block; see
L2C2-BF in Figure 2.11. In principle, LRU-Best-Fit could be advantageous since it would
preserve frames with larger capacity from writes, allowing in the long term the hosting of
blocks with low compression capacity; see Section 2.4.1. However, L2C2-BF takes 8.9 years
to lose 50% of its capacity, while L2C2 reaches the same loss at 13.7 years, i.e. 54% longer.
Besides, the IPC drop L2C2-BF experiences at the early stages (0 – 2 years) is even more
pronounced than that of FD. The explanation for both effects is that when the first frame
in a set experiences the first byte failure, all the compressible blocks addressed to this set,

35

2.5. Evaluation

0 4 8 12
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

L2C2 L2C2-NWL 0% EC

Figure 2.10: IPC evolution until losing 50% of capacity of an L2C2 without intra-frame wear-
leveling mechanism, L2C2-NWL, for cv = 0.2.

78% of the total, will be allocated to this recently degraded frame; see Figure 2.2 in page 6.
This incurring in substantial conflict misses that degrade performance.

0 4 8 12
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2-BF

0% EC

Figure 2.11: IPC evolution until losing 50% of capacity of an L2C2 with LRU-Best-Fit replace-
ment policy, L2C2-BF, for 𝑐𝑣 = 0.2.

2.5.7 Sensitivity analysis

To further add generality to the results presented so far, we elaborate on three aspects; see
Figure 2.12. First, the LLC bank size is increased from 4 to 8 MB per bank. Second, the
system is scaled by a factor of 2, going from 4 to 8 cores, from 4 to 8 banks of NV-LLC
and from 1 to 2 main memory controllers. And third, the workload mixes are changed,
including only the top ten memory intensive applications; see applications with superscript
in the Table 2.5.

Doubling cache capacity with the same number of cores extends performance over time
to a similar amount across all cache organizations. For example, for L2C2+6,𝑇50𝐶 goes from
12.9 to 25.3 years when increasing size from 16 to 32 MB; see Figure 2.8a vs. Figure 2.12a.

36

Chapter 2, L2C2: Last-level compressed non-volatile cache

0 4 8 12 16 20 24 28
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(a) 32MB caches.

0 4 8 12 16
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(b) 8 cores.

0 4 8 12 16
Time (years)

0.6

0.8

1.0

N
or
m
al
iz
ed

IP
C

FD
FD+6

L2C2
L2C2+6

0% EC

(c) Memory-intensive.

Figure 2.12: IPC evolution until losing 50% of capacity of FD and L2C2 for 𝑐𝑣 = 0.2, doubling
cache size (a), doubling the number of cores while keeping the same 4MB/core (b), and consid-
ering the most memory-intensive applications (c).

By scaling the system, simultaneously doubling number of cores, cache size and mem-
ory bandwidth, the performance-time curves for all cache organizations maintain their
shape; see Figure 2.8a vs. Figure 2.12b. This is an expected conclusion, which reinforces
the possibility of incorporating L2C2-type caches in future generations of on-chip multi-
processors.

When considering more memory intensive applications, a first observation is that the
performance at full capacity exhaustion is lower, which indicates, not surprisingly, a higher
dependence of performance on the quality of the memory hierarchy; see the red baselines
(0% EC) in Figure 2.8a vs Figure 2.12c. In addition, the performance drop is sharper and
occurs earlier. For example, for L2C2+6 the first drop is one year earlier and the relative IPC
drops from 0.76 to 0.64. Again, it can be reasoned that applications that exhibit intensive
LLC usage are more sensitive to capacity loss, so overall system performance is more
affected.

In summary, this sensitivity analysis shows that the results are consistent when varying
two significant dimensions, capacity and workload.

37

2.6. Concluding remarks

2.6 Concluding remarks

In this chapter, L2C2 has been introduced. It is a new fault-tolerant NV-LLC organization
that achieves per-byte write rate reduction without performance loss and allows compressed
blocks to be placed in degraded frames. L2C2 evenly distributes the write wear within each
frame, uses an appropriate replacement policy, and inherently allows adding redundant
capacity in each cache frame, further extending the time in which the cache remains
without performance degradation. Data compression and decompression circuits have been
synthesized, considering intra-frame wear-leveling, concluding that their inclusion seems
very feasible in terms of area, power and latency.

Our evaluation shows that, with an affordable hardware overhead, L2C2 achieves a
large lifetime improvement compared to a reference NV-LLC provided with frame disabling.
The lifetime is multiplied by a factor from 6 to 37 times depending on the variability in the
manufacturing process. Increasing redundancy significantly increases the time to loss of
performance by one to two years in all configurations, regardless of the variability in the
manufacturing process. However, it does not increase the lifetime of the L2C2.

38

Money ain’t got no owners. Only spenders.

Omar Little, The Wire.

3
Compression-aware and performance-efficient
insertion policies for long-lasting hybrid LLCs

As seen in the previous chapter, NVMs can potentially replace large SRAM memories such
as the LLC. However, despite recent advances, NVMs suffer from higher write latency and
limited write endurance. NVM-SRAM hybrid LLCs are proposed to combine the best of both
worlds. Several policies have been proposed to improve the performance and lifetime of hybrid
LLCs by intelligently steering the incoming LLC blocks into either the SRAM or NVM part,
regarding the cache behavior of the LLC blocks and the SRAM/NVM device properties. However,
these policies neither consider compressing the contents of the cache block nor using partially
worn-out NVM cache blocks.

This chapter proposes new insertion policies for a hybrid-extended version of L2C2, which
is a byte-level fault-tolerant hybrid LLC that collaboratively optimize for lifetime and perfor-
mance. Specifically, we leverage data compression to utilize partially defective NVM cache
entries, thereby improving the LLC hit rate. The key to our approach is to guide the insertion
policy by both the reuse properties of the block and the size resulting from its compression. A
block is inserted in NVM only if it is a read-reuse block or its compressed size is lower than
a threshold. It will be inserted in SRAM if the block is a write-reuse or its compressed size is
greater than the threshold. We use set-dueling to tune the compression threshold at runtime.
This compression threshold provides a knob to control the NVM write rate and, together with a
rule-based mechanism, allows balancing performance and lifetime.

39

3.1. Introduction

Overall, our evaluation shows that, with affordable hardware overheads, the proposed
schemes can nearly reach the performance of an SRAM cache with the same associativity
while improving lifetime by 17× compared to a hybrid NVM-unaware LLC. Our proposed
scheme outperforms the state-of-the-art insertion policies by 9% while achieving a comparative
lifetime. The rule-based mechanism shows that by compromising, for instance, 1.1% and 1.9%
performance, the NVM lifetime can be further increased by 28% and 44%, respectively.

3.1 Introduction

The ever-growing working set sizes of emerging application domains such as machine
learning and artificial intelligence require larger on-chip LLCs. Increasing the LLC capacity
is also imperative as the number of cores sharing it grows, because it is the last line
of defense of the processor against costly off-chip memory accesses. However, with the
deceleration of Moore’s law, the increase in the LLC capacity has stagnated [57]. The scaling
of conventional SRAM-based LLCs significantly increases the leakage power consumption
and is becoming prohibitive in terms of both capacity and area [74]. Therefore, recent
research advocates employing emerging NVM technologies to increase the LLC capacity.

Emerging NVM technologies such as STT- and SOT- MRAM, PCM, ReRAM, and RTM
have shown great promise to replace or augment conventional SRAM and DRAMs tech-
nologies. In the last decade, some NVM technologies have matured greatly and have made
their way into the memory hierarchy [62, 115]. Compared to conventional SRAM technolo-
gies, NVMs, particularly MRAMs are attractive alternatives for large size LLCs because
they are extremely energy efficient, offer larger densities, and SRAM-competitive read
latencies [5, 19, 71, 74]. However, without proper buffering the slow write operation on
NVMs can degrade performance by throttling subsequent critical reads, potentially leading
to core stalls. In addition to the read/write asymmetry, most NVMs also have a limited
endurance, i.e., the number of writes that each bitcell supports, until it deteriorates and
loses its retention capacity is limited and can be approximated by a normal distribution
with a mean that can vary between 106 and 1012 [24, 44, 121, 123, 124]. Many device, circuit,
and architectural optimizations have been proposed to mitigate the impact of the write
operations on the NVM-LLC performance and lifetime [52,74,94]. However, these solutions
increase the overall power consumption and reduce the NVM capacity, thereby offsetting
the NVMs benefits.

Recent proposals combine the best of both worlds, i.e., performance and endurance of
SRAM/DRAMs with the energy efficiency and density of STT-MRAM to implement hybrid
LLCs [5, 49, 71, 84]. MRAMs, compared to other NVM technologies, offer better endurance
and SRAM comparable read latencies with higher density. However, it still suffers from
higher write latencies and limited endurance compared to conventional SRAM/DRAMs
technologies. Therefore, the performance, energy, and lifetime improvements of these
hybrid proposals are associated with the reduction in number of write requests to the NVM.
Thus, various techniques have been proposed to identify and steer write-intensive blocks
towards the SRAM part and read-intensive blocks towards the NVM part [19, 84]. The
identification of read- and write-intensive blocks is either performed with address-based
predictors that sample LLC accesses [5] or with predictors using counters and threshold
values for LLC block accesses [73].

40

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

The asymmetric read-write operations in NVMs have also motivated novel insertion
policies. For instance, Luo et al. propose Thrashing Aware Placement (TAP) which clas-
sifies LLC write requests into demand-writes, prefetch-writes, and clean/dirty thrashing-
writes [84]. Thrashing requests are routed to the SRAM part to reduce the LLC energy
consumption and improve lifetime. Compared to the LRU replacement policy, their proposal
reduces the energy consumption by 25%. Similarly, Cheng et al. propose LHybrid [19], a
loop-block aware policy to insert only clean blocks that are frequently reused (loop-blocks)
in the NVM part, protecting them from non-loop-blocks when a victim is selected for re-
placement. LHybrid significantly reduces write traffic and improves LLC lifetime. However,
in these previous proposals, the LLC lifetime improvement is only achieved by conservative
insertion in the NVM part, which limits LLC performance.

In addition to specific insertion and replacement policies, a different class of optimiza-
tion techniques improves the NVM lifetime and performance by decreasing the average
number of bits written in each write request [25, 95, 96]. In particular, compression can
increase effective main memory capacity and reduce bandwidth utilization by 2 − 4× [1].
Unfortunately, compression has received only little attention in the context of hybrid
LLCs. In particular, the behavior of the state-of-the-art insertion policies for hybrid-LLCs
enhanced with compression are yet to be investigated.

Figure 3.1 shows a forecast of the performance evolution of a hybrid LLC over time,
until the capacity of the NVM drops to 50%. Twelve and four ways have been devoted to
NVM and SRAM storage, respectively. Further details on the methodology and workload
are discussed in Section 3.5.1. The baseline hybrid (BH) LLC configuration manages a single
LRU list for all ways in a cache set. The insertion policy does not distinguish between
NVM and SRAM parts and incoming blocks are written to the LRU way, regardless of its
technology. BH initial performance is excellent, but the write wear on the NVM part leads
to 50% of its capacity being exhausted in less than three months.

Compared to BH, LHybrid [19], thanks to its selective insertion policy, improves LLC
lifetime by more than 19×, but at the cost of significant performance degradation (> 11%).
TAP [84] sacrifices even more performance in exchange for a lifetime improvement of 39×.

This chapter bridges the performance and lifetime disparities between BH and LHybrid
approaches by proposing compression with Set Dueling (CP_SD), a hybrid insertion policy
that combines data compression and block reuse information. Besides, the NVM part
tolerates byte-level faults and is provided with a block rearrangement circuitry. As can be
seen in Figure 3.1, CP_SD maintains for almost two years 97% BH performance, reaching
50% capacity exhaustion in about three years and nine months. Our solution strikes a
good balance in the performance vs. lifetime tradeoff, prioritizing performance without
neglecting lifetime. Moreover, this chapter also proposes a rule-based mechanism to
further tune this tradeoff: CP_SD_Th4 and CP_SD_Th8 in Figure 3.1 trade 1.1% and 1.9%
performance in exchange for 28% and 44% NVM lifetime improvement, respectively.

Specifically, this chapter makes the following contributions to shared hybrid NVM-
SRAM LLCs whose NVM part tolerates byte-level faults and leverages data compression:

• A novel insertion scheme that places cache blocks into either the SRAM or NVM
part of the LLC, considering the read-reuse, write-reuse and compression features
of cache blocks. In the NVM part, the replacement algorithm considers an NVM

41

3.1. Introduction

0 1 2 3 4 5 6 7 8 9
Time(years)

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
BH

CP_SD
LHybrid

CP_SD_Th4
CP_SD_Th8

TAP
4w SRAM

Figure 3.1: Performance vs. time for various hybrid LLCs until the NVM part loses 50%
capacity. The write endurance of NVM bitcells follows a normal distribution of 𝜇 = 1010 and
𝑐𝑣 = 0.2. Bounds of SRAM-only LLCs are also plotted.

fault-map and the compressed size of the incoming LLC block, replacing the LRU
block from the frames the incoming block can fit in.

• A threshold-based mechanism tunes the write-traffic to the NVM part, thereby
allowing to explore the tradeoff between performance and lifetime. We propose to
use Set Dueling [102] to capture the runtime behaviour of the workload and allow
more (or less) compressed blocks to be inserted in the NVM part. The sample cache
sets collect the number of writes and the number of hits. Based on these counters, a
rule-based decision mechanism balances lifetime and performance.

• The forecasting procedure, which is introduced in Chapter 4, is adapted to the hybrid
LLC scenario. This procedure tracks NVM aging, providing the temporal evolution
of performance and capacity. It allows to analyze all dimensions of the hybrid LLC
design.

• For a fair comparison, it is necessary to test existing insertion policies on NVM
caches that lose capacity due to aging. Therefore, the state-of-the-art LHybrid and
TAP policies [19, 84] are implemented in a fault-aware environment, extended with
frame-disabling to tolerate hard-errors [17, 129].

• For evaluation, we consider multi-programmed workloads of memory-intensive
applications from the SPEC 2006 and SPEC 2017 suites. The evaluation environment
combines three elements: a fast architectural simulator, developed in Chapter 5, a
detailed cycle-level simulator [83] and the forecasting procedure mentioned above.
We present a comprehensive analysis and evaluation of our novel schemes and their
comparison to the state-of-the-art. We show that our proposals consistently and
significantly outperform the state-of-the-art in all performance metrics.

42

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

The rest of the chapter is organized as follows. Section 3.2 motivates this study. Sec-
tion 3.3 describes the microarchitecture of the hybrid LLC. Section 3.4 describes the pro-
posed insertion policies together with the Set Dueling mechanism. Section 3.5 presents the
results of our insertion policies against the state-of-the-art. Finally, Section 3.6 concludes
the chapter.

3.2 Related work and motivation

3.2.1 State-of-the-art hybrid LLC insertion policies

This section outlines LHybrid [19] and TAP [84], two state-of-the-art insertion policies for
hybrid LLCs.

LHybrid [19] classifies LLC blocks into loop-blocks and non-loop-blocks. Cache blocks
that are not modified during their round trips between L1/L2 and LLC, i.e., read-only
blocks that show reuse in the LLC are referred to as loop-blocks (LBs). They are of utmost
importance in the context of hybrid LLCs because they are ideal residents of the NVM
part. LHybrid strives to keep as many LBs in the NVM part as possible and to steer
non-loop-blocks (NLBs) into the SRAM part.

The LHybrid insertion scheme works as follows. All blocks in LLC and L2 are tagged
as LB or NLB and this tag is supplied along with the block in both directions. Initially, all
blocks entering L2 from the main memory are marked as NLB. A block evicted from L2,
marked as NLB and not present in the LLC, is inserted into the SRAM part. Conversely, a
block evicted from L2 and tagged as LB, if not in the LLC, is inserted into the NVM part. A
read request from L2 that hits LLC implies a previous eviction from L2, and thus a reuse.
This read request will tag the block as LB if, and only if, the block is clean. In the LHybrid
replacement scheme, for the NVM part, the LRU block is simply evicted (local replacement).
In SRAM, the replacement policy first searches for LBs, and if found, the most recent LB,
in LRU order, is migrated to the NVM part; otherwise, the LRU block is evicted.

Similar to LHybrid, TAP [84] defines thrashing-blocks as blocks that have hit in the
LLC more than 𝑇𝐻𝑡ℎ𝑟𝑎𝑠ℎ times. TAP only inserts clean thrashing-blocks to the NVM part
because they are expected to stay longer in the LLC, preventing energy-hungry NVM write
operations from other blocks. In terms of NVM insertions, TAP is more conservative than
LHybrid, see Figure 3.1, because a block needs to show reuse more than once (unlike the
LHybrid LB) to be inserted in the NVM part. We thus use LHybrid as the state-of-the-art
reference policy so that results are more comparable in terms of performance.

3.2.2 Motivation: quantitative analysis of hybrid LLC insertion policies

As described in the previous section, state-of-the-art insertion policies conservatively target
the NVM part, which extends lifetime but sacrifices performance. To demonstrate this, we
evaluate ten multi-programmed workloads from the SPEC 2006 and SPEC 2017 benchmarks
on a hybrid LLC having 12 NVM-ways and 4 SRAM-ways (see Section 3.5.1 and Table 3.2 for
more details) and show the impact of different configurations on the LLC performance and
lifetime in Figure 3.1. For comparison, we use SRAM-only LLC configurations with 16-ways
(best-case) and 4-ways (worst-case, as if the 12-NVM ways were faulty), to determine the

43

3.3. Fault-tolerant hybrid LLC architecture

upper and lower bounds on the hybrid LLC performance. Both configurations employ the
LRU replacement scheme and are compared to the following.
BH, that is NVM-unaware and naively fills data into NVM and SRAM ways implementing
a global LRU replacement policy and frame-disabling, achieves performance similar to that
of a 16-way SRAM cache, the expected upper limit. The small performance loss compared
to an SRAM cache is exclusively due to the increased latency in the STT-MRAM ways,
since the contents of both caches are exactly the same. However, for a mean endurance of
1010, it takes less than three months for the NVM part to lose 50% of its effective capacity.
LHybrid, which conservatively inserts into the NVM by steering only the loop-blocks into
it and employs a local loop-block-aware replacement scheme. As a result, it improves the
NVM lifetime by 19.7× compared to BH but at the cost of a significant 11% performance
decrease.
TAP is more conservative than LHybrid. Blocks must show higher level of reuse (clean
thrashing-blocks) to be inserted in the NVM. It improves the hybrid cache lifetime by 39×
compared to BH in exchange for 15% performance drop.

To reduce these wide disparities between performance and lifetime of different configu-
rations, this chapter investigates hybrid LLC designs that achieve near-BH performance
and near-LHybrid lifetime by jointly optimizing for both metrics.

3.3 Fault-tolerant hybrid LLC architecture

Hybrid LLC designs require intelligent insertion policies supported by the underlying
microarchitecture. L2C2, which is a monolithic NV-LLC, see chapter 2, laid the groundwork
for our hybrid LLC design. This section presents our microarchitectural extensions to L2C2
in order to get the most out of the insertion policies.

Figure 3.2 shows a high-level overview of the proposed hybrid LLC design. Our hybrid
LLC, as in L2C2 -see 2.4.1- employs data compression together with byte-disabling and the
intra-frame wear-leveling mechanism to mitigate the effective capacity drop due to NVM
hard-faults. It also features a non-inclusive hierarchy and a more sophisticated insertion
mechanism that will be introduced in the following section. It is also assumed that all
memory structures are provided with ECCs. Note that this ECC protection does not bring
any additional overhead as they are needed by state-of-the-art designs to deal with faults
and are already present in SRAM LLCs to cope with soft and transient faults [3,9,44,66,116,
132]. The main difference regarding L2C2 is that the data array, see Figure 3.3, is split in
NVM ways and SRAM ways, typically, with a factor of three NVM ways for every SRAM
way [19, 84].

Filling a block in the proposed hybrid LLC follows a flow similar to that of L2C2, which
is comprehensively described in Section 2.4.4. When a block arrives to the hybrid LLC,
the block is first compressed. Then, the compressed block (CB) is protected with ECCs
and, in parallel to this, the insertion engine selects the victim frame. In case that the block
must be written to the NVM part, the replacement algorithm will look for the target frame
among those with an effective capacity greater than or equal to the incoming compressed
block (LRU-Fit) [45]. Besides, the compressed block is properly rearranged regarding the
intra-frame wear-leveling and the fault map. On the contrary, if the block is directed to

44

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

Main Memory

...

...C1

Hybrid LLC

Read ReuseWrite Reuse

NVM

M ways

...

M+N ways

...

Data Array

Insertion Engine
Compression
 Threshold

BDI Compression/Decompression

64B

...

C2 Cn

M ways

Tag Array Fault Map

...

...

...

L2 L2 L2

L1 L1 L1

SRAM SRAM

N ways

...

NVM

Compressed
Block

Uncompressed
Block

Figure 3.2: High-level overview of the hybrid LLC organization.

the SRAM part, a conventional LRU is employed for replacement, and the block is stored
uncompressed.

Latency overheads. Using VLSI synthesis for 16 nm, the block rearrangement circuitry
has proven to be feasible in terms of latency (incurring 0.33 and 0.38 ns for writing and
reading, respectively) as well as area and power consumption, see Section 2.4.7. The BDI
decompressor, that is a single instruction multiple data (SIMD)-style vector adder [75, 99],
incurs a 2-cycle latency overhead. Note that all the competing mechanisms need SECDED
for hard-fault detection. For this reason, the latency incurred by SECDED is not accounted
for in the overheads.

Tag Array Data Array

Way 0

Way 1

Way 2

Way 3

Tag + LRU + Valid +
 Dirty + Coherency Block + ECC

(Compressed Block + CE) + ECC

(Compressed Block + CE) + ECC

(Compressed Block + CE) + ECC

Fault
Map

NVM

SRAM

34b 528b 66b

Tag + LRU + Valid +
 Dirty + Coherency

Tag + LRU + Valid +
 Dirty + Coherency

Tag + LRU + Valid +
 Dirty + Coherency

Fault
Map

Fault
Map

Figure 3.3: Example of a four-way cache set split into three NVM ways and one SRAM way,
showing fields and their sizes.

45

3.4. Compression-aware insertion policies

3.4 Compression-aware insertion policies

Data compression reduces the size of the incoming blocks to the LLC and thereby reduces
number of bytes written to cache frames. Together with byte-disabling, compression can
be used to allocate reduced size blocks to partially defective NVM frames, always taking
care to level the write wear among the remaining non-faulty bitcells. This section describes
how block features such as compressed size, read-reuse and write-reuse information can
be leveraged to develop performance-efficient and lifetime-aware content management
policies.

3.4.1 Naive compression-aware (CA) insertion

We denote blocks whose compressed size is lower than or equal to a given compres-
sion threshold (𝐶𝑃𝑡ℎ) as small blocks and blocks that are either incompressible or whose
compressed size is greater than the threshold as big blocks. Intuitively, the greater the
compression ratio a block achieves, the less harmful it is to write it on the NVM part. A
naive compression-aware (CA) insertion policy, therefore, directs small blocks to NVMways
and big blocks to SRAM ways. Both NVM and SRAM ways follow a local LRU replacement
policy.

CA may lead to performance degradation. The performance loss occurs when there
is an imbalance between the number of references to blocks allocated in NVM and SRAM
ways.

For instance, 100% of the cache blocks are incompressible in the benchmarks xz17 and
milc, see Figure 2.2, and as a result CA will direct all blocks to the SRAM ways. On the
contrary, in benchmarks such as GemsFDTD and zeusmp, where almost all cache blocks are
highly compressible (HCR), the CA policy will only insert blocks into NVM ways. In both
cases, one part of the LLC is over-referenced, experiencing many misses and leading to
performance degradation.

CA evaluation. The light green bars (CA) in Figure 3.4 show the LLC hit rate for
different 𝐶𝑃𝑡ℎ values, normalized to BH hit rate. Unless otherwise mentioned, all results
in this and the following sections are averaged across ten multiprogrammed mixes of
four randomly selected applications from the employed subset of SPEC 2006 and SPEC
2017, see Table 3.4. The normalized hit rate varies between 0.89 and 0.99, with the highest
figure being obtained for a 𝐶𝑃𝑡ℎ of 58. With this 𝐶𝑃𝑡ℎ value, only uncompressed blocks are
inserted into SRAM and the rest into NVM. The attained hit rate is very close to BH, which
indicates that this 𝐶𝑃𝑡ℎ value achieves a block distribution with only little conflict misses
compared to BH and, therefore, is well balanced.

The light green bars (CA) in Figure 3.5 show the number of bytes written (BW) to the
NVM part for different 𝐶𝑃𝑡ℎ values normalized to the values obtained in BH. As can be
seen, the 𝐶𝑃𝑡ℎ has a considerable impact on the number of BW in the NVM part, varying
between 5% and 80% of the writes for BH. With a 𝐶𝑃𝑡ℎ of 58, the best in terms of hit rate
from Figure 3.4, the number of BW is still 40% lower than the BH cache.

46

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

30 36 37 44 51 58 64
0.8

0.9

1 CP_SD

𝐶𝑃𝑡ℎ

N
or
m
al
iz
ed

H
it
Ra

te CA CA_RWR

Figure 3.4: Hybrid LLC hit rate with different 𝐶𝑃𝑡ℎ normalized to BH.

30 36 37 44 51 58 64
0

0.5

1

CP_SD

𝐶𝑃𝑡ℎ

N
or
m
al
iz
ed

BW

CA CA_RWR

Figure 3.5: Normalized BW: average number of bytes written per frame in the NVM part,
normalized to BH, varying 𝐶𝑃𝑡ℎ .

3.4.2 Read and write reuse aware insertion

As discussed in Section 3.2, several works have shown that content management based on
block reuse properties can reduce the number of writes in NVM caches [19, 84]. We now
discuss how to incorporate read and write reuse along with the CA insertion policy: CA +
read- write- reuse (CA_RWR).

We classify blocks into three categories based on their reuse properties: blocks that
have not yet demonstrated any reuse, blocks with read reuse, and blocks with write reuse.
Initially, all blocks are classified as non-reused when copied from the main memory to
the cache hierarchy. A hit in the LLC classifies a block into either a read-reused block if it
has not been modified or a write-reused block if it has been written at least once. Notice
that our read-reuse class corresponds to the loop-blocks in LHybrid while write-reuse and
non-reuse blocks correspond to non-loop-blocks.

Table 3.1 summarizes CA_RWR, our proposed insertion policy that places blocks in
either SRAM or NVM depending on the size of the compressed block and its reuse type:

• Blocks that show read reuse are candidates to stay longer in the LLC. Inserting them
in the NVM part is beneficial, regardless of the compressed size, because they will
stay longer in the LLC, preventing other writes in the frame.

47

3.4. Compression-aware insertion policies

• Blocks that show write reuse are candidates to stay for a short time in the LLC due to
the invalidate-on-hit coherence policy of LLC requests with write permission (GetX),
see Section 2.4.1. Such dirty blocks will be inserted back into LLC when they are
evicted from L2. Therefore, they should be placed in SRAM since they are candidates
for multiple LLC writes.

• Blocks without reuse are inserted either into SRAM or NVM, depending on their
compressed size, i.e., small blocks are inserted in NVM and big blocks in SRAM.

Note that NVM frames render partially defective due to write operations. Therefore, a
block directed to NVM that does not fit in any NVM frame, because its compressed size is
bigger than any of their effective capacities, will be placed in SRAM.

Table 3.1: CA_RWR insertion policy

Compressed size
Small Big

Reuse
no NVM SRAM
R NVM NVM
W SRAM SRAM

As mentioned above, blocks are initially inserted into SRAM or NVM depending only
on their compressed size, since they have not yet shown any reuse. In fact, many of them
will be evicted from the LLC without being reused. But for those that do show reuse, the
final destination will depend on the type of reuse, read or write. Therefore, it is sometimes
necessary to migrate blocks between SRAM and NVM arrays: i) blocks initially stored in
NVM that show reuse on write, and ii) blocks initially stored in SRAM that show reuse on
read. On the one hand, reuse on write is detected when a GetX request hits in LLC and
the block is invalidated. Later, when the block is evicted from L2, it will be inserted into
SRAM as a write-reused block (regardless of its compressed size). On the other hand, a
block initially stored in SRAM that is reused on read remains in SRAM until it is evicted
(due to a replacement). At that time, the block is migrated to NVM.

CA_RWR evaluation. The dark green bars (CA_RWR) in Figures 3.4 and 3.5 show
the normalized LLC hit rate and BW on a CA_RWR cache, varying 𝐶𝑃𝑡ℎ . Compared to the
cache with CA policy, the reuse information in the block insertion policy has a relatively
small impact on the hit rate but a noticeable impact on BW, especially for high𝐶𝑃𝑡ℎ values.
The hit rate is better than the CA cache for small values of 𝐶𝑃𝑡ℎ and marginally worse
for high values of 𝐶𝑃𝑡ℎ ; specifically, the CA_RWR hit rate only increases by 1.9% for 𝐶𝑃𝑡ℎ
values between 30 and 51 and increasing to 5.4% for 𝐶𝑃𝑡ℎ 58. Compared to the CA, the
relative decrease in BW for CA_RWR is significant, reaching 73% for𝐶𝑃𝑡ℎ 51. Even though
BW varies between 4.4% and 28.6% as 𝐶𝑃𝑡ℎ varies between 30 and 64.

3.4.3 CP_SD insertion: Set Dueling for performance

Figures 3.4 and 3.5 illustrate in simplified form the influence of 𝐶𝑃𝑡ℎ on the normalized hit
rates and BW, averaging the results for the entire workload and assuming full capacity in
the NVM part. However, for the best𝐶𝑃𝑡ℎ selection, one must delve deeper into the impact

48

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

of two key factors. First, applications may exhibit different behaviors throughout their
execution, and second, as the NVM part ages, its capacity decreases.

To analyze the impact of workload time variability and NVM capacity loss we will
divide the workload execution time into epochs of fixed duration and calculate the hit rate
achieved in each epoch with each 𝐶𝑃𝑡ℎ value. The different bar colors in Figure 3.6 show
the percentage of epochs for which each 𝐶𝑃𝑡ℎ value achieves the highest number of cache
hits. Specifically, Figure 3.6a presents the distributions of optimal 𝐶𝑃𝑡ℎ varying the NVM
part capacity from 100 to 50%, and Figure 3.6b presents the distributions of optimal 𝐶𝑃𝑡ℎ
for each workload in an LLC with 100% capacity in the NVM part.

%
 o

f
ep

o
ch

s

(a) % of NVM effective capacity (b) By workload

Figure 3.6: CA_RWR insertion policy: distribution of 𝐶𝑃𝑡ℎ achieving the best hit rates across
execution epochs, vs. NVM part capacity (a). Uniquely for 100% NVM capacity, the same
distribution, but for each of the 10 workloads (b).

Let us consider the bar that represents the NVM cache with 100% capacity in Figure 3.6a.
This is the same cache that was used in Figure 3.4, where we observed that the maximum
hit rate is achieved with 𝐶𝑃𝑡ℎ values 58 or 64. However, Figure 3.6 reveals that these 𝐶𝑃𝑡ℎ
values are not optimal throughout the entire workload execution. In 30% of the epochs,
the optimal hit rate is attained with 𝐶𝑃𝑡ℎ values less than 58. Furthermore, this percentage
varies greatly depending on the workload, reaching 96% in mix 5, see Figure 3.6b. In Figure
3.5, we demonstrated that these smaller 𝐶𝑃𝑡ℎ values are beneficial as they reduce BW to
the NVM. This implies that a fixed 𝐶𝑃𝑡ℎ value may easily lead to both sub-optimal overall
system performance and sub-optimal NVM lifetime. The impact of varying optimal 𝐶𝑃𝑡ℎ
values becomes even more prominent as the cache loses effective capacity, see Figure 3.6a,
because frames with higher capacities become more scarce.

For an adaptive 𝐶𝑃𝑡ℎ value selection mechanism, we propose CP_SD, a new insertion
policy using Set Dueling [102] that reacts to both the changing workload behavior and the
decreasing capacity of the NVM part. We propose to specialize some sets to use a fixed
value of 𝐶𝑃𝑡ℎ , from 30 to 64. Every value is tested on a group of N/32 sets, where N is the
number of sets in the LLC. The rest of the sets follow the group of sets whose 𝐶𝑃𝑡ℎ brings
optimal performance, the group of sets with the maximum number of hits in the previous
epoch.

49

3.4. Compression-aware insertion policies

CP_SD evaluation. The red horizontal lines in Figures 3.4 and 3.5 indicate hit rate
and BW of CP_SD, respectively. CP_SD achieves a hit rate equivalent to the best-case
CA_RWR (with values of 𝐶𝑃𝑡ℎ 58 and 64), which is also comparable to the hit rate of the
reference system BH. However, in terms of BW, CP_SD reduces the number of writes by a
significant 83.4% compared to the BH cache and by 22.9% and 42% compared to CA_RWR
for 𝐶𝑃𝑡ℎ 58 and 64, respectively. Besides, we perform these experiments varying the epoch
size and our evaluation shows that 2M cycles achieves the best Set Dueling performance.
This value is used for all evaluations in the following sections.

3.4.4 CP_SD_Th: CP_SD for both performance and lifetime

By using the CP_SD insertion policy it may happen that a very small difference in perfor-
mance in an epoch determines the selection of a 𝐶𝑃𝑡ℎ value that produces a much larger
number of BW to the NVM part. We thereby introduce CP_SD_Th: a variation that seeks a
better tradeoff between performance and lifetime. It is based on selecting 𝐶𝑃𝑡ℎ considering
not only the number of hits in LLC but also the number of BW to the NVM part.

We have not found a simple arithmetic function that combines both metrics to compute
the Set Dueling winner, largely because their ranges of variability are very different and
highly dependent on workload and NVM cache capacity. Alternatively, we will make a
rule-based decision with two thresholds: i) Th, the maximum percentage of cache hits we
are willing to sacrifice, and ii) Tw, the minimum percentage of NVM BW decrement we
require to admit a performance loss. As usual, the rule for choosing 𝐶𝑃𝑡ℎ is applied at the
beginning of each epoch by first looking for the value 𝑖 of𝐶𝑃𝑡ℎ that achieved the maximum
number of hits in the previous epoch. Then, the smallest value 𝑗 of 𝐶𝑃𝑡ℎ that satisfies the
following inequalities is selected:

𝐻 (𝑗) > 𝐻 (𝑖) ∗ (1 − 𝑇ℎ

100) &𝑊 (𝑗) <𝑊 (𝑖) ∗ (1 − 𝑇𝑤100) (3.1)

Where 𝐻 (𝑥) and𝑊 (𝑥) are the number of hits and bytes written to NVM, respectively,
in the sampler sets whose 𝐶𝑃𝑡ℎ was 𝑥 in the previous epoch.

CP_SD evaluation by varying Th and Tw. Our evaluation of Set Dueling with
different values for the parameters Th and Tw shows that the sensitivity of the number of
hits and BW to NVM to the parameter Tw is very low; therefore, Figure 3.7 only shows
data for values of Th 0, 2, 4, 6, and 8% (different colors) keeping Tw = 5%. The different
shapes represent different NVM capacities: the circles, triangles and squares correspond to
NVM part capacities of 100, 90 and 80%, respectively. Both the number of hits and BW to
NVM are normalized to BH with 100% NVM capacity.

The observed trend is similar for the three NVM capacities analyzed. Increasing the
value of Th always produces a decrease in both the number of hits and BW to NVM.
However, the relative decrease is much larger in BW, especially when the cache capacity
decreases. For example, going from Th = 0 to Th = 8% for 80% NVM capacity, the number
of cache hits decreases from 0.925 to 0.916 (1.0% reduction) while the number of writes
decreases from 0.059 to 0.035 (40.7% reduction). However, the same Th variation for a 100%
NVM capacity results in a 18.7% relative decrease in the bytes written to NVM.

50

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

0.05 0.10 0.15
Normalized bytes written to NVM

0.92

0.94

0.96

0.98

N
or
m
al
iz
ed

hi
tr
at
e

Th0 Th2 Th4 Th6 Th8

Figure 3.7: Hit rate and BW to NVM normalized to BH, for different Th [0-8%] and different
NVM capacities: 100-90-80% (circles, triangles, and squares). Tw set at 5%.

Note that the 8% limit on Th only produces a real loss of 1% in hits, since a) in many
epochs no change in 𝐶𝑃𝑡ℎ is applied to decrease hits because in return there is not enough
reduction in bytes written, and b) when the change is applied the decrease in hits will be
between 0 and 8%. In addition, by construction, the decrease in bytes written can be much
greater than the decrease in hits because the𝐶𝑃𝑡ℎ is only changed in those epochs in which
the decrease in bytes written is large and the decrease in hits is small.

3.5 Evaluation

This section evaluates the impact of compression-aware insertion policies on the lifetime and
performance of a hybrid LLC, comparing them to the state-of-the-art proposals described
in Section 3.2, see Table 3.2: CP_SD and CP_SD_Th refer to insertion policies introduced
in Sections 3.4.3 and 3.4.4, respectively.

Table 3.2: Summary of tested insertion policies.

Name Disabling Data NVM
granularity Compression aware

BH Frame No No
BH_CP Byte Yes No
LHybrid Frame No Yes
CP_SD Byte Yes Yes

CP_SD_Th Byte Yes Yes

Section 3.5.1 introduces the experimental setup, including system specification, sim-
ulation infrastructure, and benchmark suites. Section 3.5.2 compares CP_SD insertion
policies with state-of-the-art in terms of performance and NVM lifetime, showing how the

51

3.5. Evaluation

rule-based mechanism effectively trades performance in exchange for lifetime by tuning
CP_SD 𝑇ℎ. Sections 3.5.3, 3.5.4, 3.5.5, and 3.5.6 present sensitivity studies concerning to
the ratio of NVM size vs. SRAM size, the impact of the coefficient of variation on system
performance and NVM lifetime, the size of L2 (x2), and the increase in NVM access latency
(x1.5); respectively. Finally, in Section 3.5.7 the cost of fine-grain disabling, i.e. the overhead
of the byte fault map, is discussed, evaluating its impact by reducing the number of ways
in the NVM part by an amount equivalent to such overhead.

3.5.1 Experimental setup

We use a 4-core system with private L1 (instructions and data) and L2 caches and a shared
hybrid LLC, as detailed in Table 3.3. The hybrid LLC is non-inclusive and partitioned into
four banks. The system uses a directory-based MOESI coherence protocol, and a crossbar
that connects the private levels (L2) with the LLC banks and the directory.

Table 3.3: System specification.

Cores 4, ARMv8, out-of-order (up to 8 inst/cycle), 3.5 GHz
Coherence MOESI, directory distributed among LLC banks
Protocol 64 B data block in all levels

L1 Private, 32 KB D, 32 KB I, 4 ways, LRU
3-cycles load-use delay. Fetch on write miss

L2 Private, 128 KB D, 128 KB I, 16 ways, LRU
11-cycle load-use delay. Fetch on write miss

Hybrid
LLC

Shared, non-inclusive, 4 banks, 4MB/bank
4 SRAM ways, 28-cycle load-use delay (4-cycle D-array)
12 NVM ways, 32-cycle load-use delay (8-cycle D-array)
+2 cycles for decompression and block rearrangement
20-cycle data array write latency
Endurance: mean = 1010 writes, cv = 0.2

Main 1 memory controller, DDR4
Memory 1 channel, 8GB/channel (1200 MHz)
NoC Crossbar between the hybrid LLC banks and L2s. 32 B flits

As for the simulation, we use two different infrastructures: a trace-driven simulator
called HyCSim, see Chapter 5 for design space exploration and for figures in Section 3.4, and
gem5 [83] for the detailed cycle-accurate full-system simulation presented in this Section.
To estimate hybrid LLC latencies we use NVSim [33].

We adapted the forecasting procedure, which is introduced in Chapter 4, to the hybrid
LLC scenario. It allows to accurately measure the impact of different insertion policies on
the evolution over time of performance and capacity of the NVM part, taking into account
the disabling of frames or bytes and the use of compression. BH and LHybrid are provided
with frame-disabling to tolerate hard faults while BH_CP and CP_SD employ byte-disabling
together with data compression. The forecasting procedure alternates between simulation
and prediction phases. The simulation phase starts reading the NVM LLC state; for instance,
in BH_CP and CP_SD such state is the fault map of every NVM frame, then it performs a full
system simulation reporting several indexes of interest, e.g., the write rate on NVM frames,
system IPC, and LLC hit rate. The prediction phase receives such write rates, computes the

52

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

next 𝑘 NVM bitcells to become faulty, and update the fault map for the next simulation. In
this work, the forecasting procedure advances in time until the NVM part loses 50% of its
capacity, but there is no problem in reaching full depletion. The IPC evolution depicted
in the figures of following sections is obtained at each simulation phase, computing the
arithmetic mean of the IPCss of the mixes conforming the workload.

The experimental evaluation is made on the ten multi-programmed workloads shown in
Table 3.4. Mixes are formed by randomly selecting applications from the SPECCPU 2006 and
2017 suites, leaving out applications that do not show substantial memory activity [12, 56].
Fast forward is performed for 2 billion instructions, warm-up for 60 million cycles, and
then 200 million cycles are simulated to collect statistics.

Table 3.4: SPEC CPU 2006 and 2017 mixes.

mix 1 zeusmp06 gobmk06 dealII06 bzip206
mix 2 hmmer06 bzip206 wrf06 roms17
mix 3 zeusmp06 cactuBSSN17 hmmer06 soplex06
mix 4 omnetpp06 astar06 milc06 libquantum06
mix 5 xalancbmk06 leslie3d06 bwaves17 mcf17
mix 6 lbm17 xz17 GemsFDTD06 wrf06
mix 7 cactuBSSN17 dealII06 libquantum06 xalancbmk06
mix 8 gobmk06 milc06 mcf17 lbm17
mix 9 xz17 astar06 bwaves17 soplex06
mix 10 GemsFDTD06 omnetpp06 roms17 leslie3d06

3.5.2 Performance vs. Lifetime

The solid lines in Figure 3.8a show the performance evolution over time of the proposed
insertion policies for hybrid LLCs (CP_SD, CP_SD_Th), comparing them with BH, BH_CP
and LHybrid. Dashed lines mark the upper and lower performance bounds. The upper
bound corresponds to a a 16-way SRAMLLC, while the lower bound corresponds to a hybrid
LLC whose NVM part is fully impaired (4w SRAM). Finally, we also show performance of a
BH with compression (BH_CP) LLC. BH_CP uses compression and byte-disabling, but it is
oblivious to the NVM wear due to writing and uses a global LRU-Fit replacement policy. In
BH_CP, the victim frame is the one containing the LRU block from among those occupying
frames with a size greater than or equal to the size of the block to be inserted, either in the
SRAM or NVM.

Initially, in the first few months, the performance of BH_CP is similar to that of BH be-
cause both use a global, unconstrained LRU replacement algorithm. However, compression
and byte disabling, even without compression-aware insertion and replacement policies,
reduce the number of writes in the NVM part and manage to extend the lifetime of BH_CP
by 4.8× with respect to BH. Still, the effective capacity of 50% is reached in 13 months, far
short of the LHybrid 53 months.

CP_SD, the performance-optimized configuration, manages to delay the 50% capacity
loss to 45 months, multiplying BH lifetime by 16.8×. This increase in lifetime is achieved

53

3.5. Evaluation

0 1 2 3 4 5 6
Time(years)

0.80

0.85

0.90

0.95

1.00
N
or
m
al
iz
ed

IP
C

16w SRAM
BH

BH_CP
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(a) cv = 0.2

0 1 2 3 4 5 6
Time(years)

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
BH

BH_CP
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(b) cv = 0.25

Figure 3.8: Performance evolution until the NVM part reaches 50% effective capacity for
different CP_SD 𝑇ℎ, for default parameters (𝑐𝑣 = 0.2) (a), and for 𝑐𝑣 = 0.25 (b).

at the cost of a performance loss of only 3.3% at the beginning of the cache lifetime. This
performance level remains almost unchanged beyond two years. From this point on,
the NVM part starts to gradually lose capacity, which translates into a gradual drop in
performance. Compared to LHybrid, CP_SD reaches the 50% capacity 8 months earlier but
always maintains a significant difference in performance, especially in the long initial stage
where it reduces the performance loss compared to the upper limit (dotted green line) from
11.2% of LHybrid to only 3.3%.

As introduced in Section 3.4.4, CP_SD can be further tuned to trade performance in
exchange for lifetime and vice versa. Figure 3.8a shows the results for𝑇ℎ 4 and 8%, keeping
𝑇𝑤 = 5. CP_SD_Th4 and CP_SD_Th8 achieve 28% and 44% increase in lifetime compared to
CP_SD, in exchange for 1.1% and 1.9% performance degradation, respectively. Compared
to LHybrid, CP_SD_Th4 and CP_SD_Th8 achieve 9% and 22% more lifetime while keeping
7.6% and 6.8% higher performance, respectively.

3.5.3 SRAM-NVM proportion variation

We analyze the behavior of the hybrid LLC by increasing asymmetry between the sizes
of the SRAM and NVM. Specifically, Figure 3.9a shows hybrid LLCs with a 3-way SRAM
and a 13-way NVM part. The decrease in the number of SRAM ways has little impact on
BH and BH_CP because block insertion and replacement do not depend on this parameter.
The original 12-way NVM wears similarly in this new 3/13-way configuration. The only
additional performance degradation occurs due to the loss of capacity of the new NVM
way.

In LHybrid, the SRAMpart acts as a read-reuse detector for the NVMpart. By decreasing
the number of SRAM ways, less read reuse is detected, thereby resulting in fewer block
insertions to the NVM part. This translates into a 14% longer lifetime and a 2.2% lower
performance compared to the 4/12 configuration. For CP_SD-based policies, increasing the
SRAM/NVM asymmetry also means a slight increase in lifetime (5.5%, 3.4%, and 7.4%) and a
slight drop in performance (2.2%, 2.1%, and 2.6%), for CP_SD, CP_SD_Th4, and CP_SD_Th8,
respectively.

54

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

0 1 2 3 4 5 6
Time(years)

0.75

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
BH

BH_CP
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(a) NVM-SRAM proportion variation

0 1 2 3 4 5 6
Time(years)

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
BH

BH_CP
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(b) L2 size = 256KB

Figure 3.9: Performance evolution until the NVM part reaches 50% effective capacity for
default parameters and different CP_SD 𝑇ℎ, varying the NVM-SRAM proportion (a), and
increasing L2 size to 256 KB (b).

3.5.4 Impact of cv on performance and lifetime

We model the endurance of NVM memory bitcells using a normal distribution, see Sec-
tion 1.1.4. The coefficient of variation 𝑐𝑣 of this distribution reflects the memory manu-
facturing variability. This parameter has a significant impact on the evolution of the LLC
capacity. A higher coefficient of variation implies a larger dispersion in the number of
writes supported by each cell. Consequently, the first faults occur earlier, thereby impacting
frame- and byte-disabling techniques.

In Figure 3.8b we have repeated the experimentation assuming a higher manufacturing
variability, changing the coefficient of variation 𝑐𝑣 from 0.20 to 0.25 and keeping the mean
𝜇 = 1010 constant. The lifetime of frame-disabling caches is drastically reduced as the
coefficient of variation increases. The time to reach 50% capacity goes from 2.7 months
to 1.6 months for BH and from 53 to 30 months for LHybrid. However, the impact on the
lifetime of the models with byte-disabling is much smaller: for BH_CP, it remains the same,
for CP_SD it drops from 45 to 42 months, for CP_SD_Th4, it drops from 58 to 53 months,
and for CP_SD_Th8 it drops from 65 to 60 months. Consequently, CP_SD-based policies
manage to significantly improve both performance and lifetime over LHybrid as 𝑐𝑣 grows:
CP_SD, CP_SD_Th4, and CP_SD_Th8 achieve 1.4×, 1.8×, and 2× greater lifetime while
maintaining 8.9%, 7.6%, and 6.8% greater performance, respectively.

3.5.5 L2 size sensitivity

Figure 3.9b shows performance evolution when L2 size is increased from 128 to 256 KB.
Increasing the L2 size means increasing the overall system performance. Besides, it also
means that the L2 can filtermorewrite operations from the hybrid LLC, which translates into
a slight increase in lifetime. Compared to the systems in Figure 3.8a, lifetime increases 19%,
18%, 14%, 8%, and 10% for BH, BH_CP, CP_SD, CP_SD_Th4, and CP_SD_Th8, respectively.
On the contrary, the lifetime of LHybrid decreases by 11%. As already mentioned, in
LHybrid, a block must experience a hit in the SRAMways before being inserted in the NVM
ones. When the L2 capacity is increased, the SRAM activity and the number of block-fills

55

3.5. Evaluation

decrease, so the blocks spend more time in the SRAM ways. The more time a block is
present in the LLC, the higher the probability of it being hit and detected as a loop-block.
Detecting more loop-blocks results in an overall increase in the write rate to the NVM part
and, thereby, a lifetime reduction.

0 1 2 3 4 5 6
Time(years)

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
BH

BH_CP
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(a) 1.5× NVM latency

0 1 2 3 4 5 6
Time(years)

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

IP
C

16w SRAM
CP_SD

CP_SD_Th4
CP_SD_Th8

LHybrid
4w SRAM

(b) Equalizing costs

Figure 3.10: Performance evolution until the NVM part reaches 50% of effective capacity,
increasing 50% the NVM data array latency (a), and equalizing costs of CP_SD systems with
LHybrid (b).

3.5.6 NVM latency sensitivity

NVM technology and system integration may have various optimization targets. As a
result, the NVM latency might vary significantly. Figure 3.10a shows results for an NVM
latency equal to 1.5× the original one, i.e. the NVM data array read latency is increased
from 8 to 12 cycles. As expected, policies that insert more aggressively on the NVM part
are more affected by increased latency than those that insert more conservatively. For
instance, compared to Figure 3.8a, the performance at the beginning of CP_SD, CP_SD_Th4,
CP_SD_Th8, and LHybrid decreases by 0.7, 0.3, 0.4, and 0.4%, respectively. This small
drop in performance translates into a slight reduction in the NVM write rate, and these
configurations experience a slight increase in lifetime. However, overall, there is no drastic
change in the hybrid LLC performance and lifetime.

3.5.7 Overhead analysis & Equalizing costs

In the previous sections it has been shown that insertion policies tailored to compression
and byte disabling improve the state of the art in both performance and lifetime, and
achieve this even with a higher read latency due to rearrangement and decompression,
see Section 3.3. But of course, this is at the cost of a non-negligible storage overhead. It
is therefore necessary to re-evaluate the comparison, using the same total storage in the
systems without and with compression.

All evaluated configurations employ SECDED protection, able to point out the faulty
bitcell and disable the corresponding region, see Section 3.3. Regarding the metadata
overhead, BH and the state-of-the-art (LHybrid, TAP) are provided with frame-disabling
and hence require one bit per NVM frame. BH_CP and CP_SD, similar to L2C2, see

56

Chapter 3, Compression-aware and performance-efficient insertion policies for
long-lasting hybrid LLCs

Chapter 2, need a fault map to disable at byte granularity: one bit per NVM byte. Compared
to LHybrid, CP_SD incurs a storage overhead of 8.6%, i.e., 12.3% of the NVM data array.

Hence, we now analyze the performance and lifetime of CP_SD, CP_SD_Th4 and
CP_SD_Th8 with a similar storage cost to LHybrid. We thereby reduce the number of NVM
ways of these caches from 12 to 11 and 10, which results in 1.8% higher and 5.2% lower
storage cost than LHybrid, respectively.

The solid, dashed, and dotted pattern lines in Figure 3.10b show the data from caches
with 12, 11, and 10 NVM ways, respectively. All CP_SD configurations decrease their
performance and lifetime when the number of ways is reduced. Nonetheless, the normalized
IPC in the initial phase of the cache lifetime is in all configurations significantly higher
than that of LHybrid. The CP_SD_Th8 cache with 10 NVM ways, with a 5.2% lower storage
cost than LHybrid, manages to increase the normalized IPC of LHybrid by 6.4% during the
first two years and maintains a higher IPC throughout the whole life of the cache.

3.6 Concluding remarks

Hybrid LLCs bridge the performance and capacity gap between the high-performance
SRAM and high-capacity NVM LLC designs. Existing hybrid LLC proposals particularly
optimize for LLC lifetime by only conservatively inserting cache blocks into the NVMways.
These lifetime-focused optimizations significantly reduce the LLC performance.

In this chapter, we leverage that 78% of the total LLC blocks are compressible to
some extent and thus propose fault-aware policies to smartly steer cache blocks into the
NVM or SRAM ways by analyzing both the cache block read-/write-reuse behavior and its
compressed size. We use Set Dueling to identify the best-performing compression threshold,
𝐶𝑃𝑡ℎ , depending on the workload behavior and the NVM capacity. Our proposed insertion
policy can be further tuned to trade performance in exchange for NVM lifetime by adjusting
the NVM write rate with a rule-based mechanism.

Our evaluations show that our insertion policies with Set Dueling nearly achieve the
performance of a SRAM cache with the same associativity while improving lifetime by 17×
compared to a hybrid NVM-unaware LLC. For a fair comparison, we adapt state-of-the-
art hybrid LLC insertion policies to a fault-aware environment. Our design outperforms
the state-of-the-art by 9% while attaining a comparable lifetime. Besides, the rule-based
mechanism can achieve, for instance, 9% and 22% more lifetime than LHybrid while still
outperforming it by 7.6% and 6.8%, respectively.

57

Part II

Methodological improvements for
NVM-based LLCs

A man must have a code.

Detective Bunk Moreland, The Wire.

4
Forecasting lifetime and performance of

NVM-based LLCs

Although different approaches are used in the literature to analyze the degradation of a
NV-LLC, none of them allows to study in detail its temporal evolution. This chapter proposes a
forecasting procedure that combines detailed simulation and prediction, allowing an accurate
analysis of the impact of different cache control policies and mechanisms (replacement, wear-
leveling, data compression, etc.) on the temporal evolution of the figures of merit, such as the
effective capacity of the NV-LLC or the system IPC.

This forecasting procedure combines cycle-accurate simulations with predictions. The
simulations receive the healthy state of the NVM-based LLCs and report several indexes of
interest, e.g., the write rate on NVM frames, system IPC, and LLC hit rate. The prediction phases
receive such write rates and computes the next NVM bitcells to become faulty. As a result, such
a forecasting procedure enabled us to comprehensively analyse different microarchitectual
optimizations and content management policies in Chapters 2 and 3.

4.1 Introduction

NVMs can potentially replace large SRAM memories such as the LLC. Despite their many
advantages, non-volatile memories face a critical challenge related to endurance, often
referred to as the "wear-out" problem. This challenge stems from the limited number of

61

4.1. Introduction

write operations that NVMs, such as ReRAM, PCM, or STT-MRAM can withstand before
their performance and reliability begin to degrade [7,14,65,74,77,101,106,107,130,137]. The
repeated write operations that these memories endure during regular operation gradually
lead to material fatigue, resulting in a deterioration of the memory cells and an eventual
data corruption.

The essence of the problem is as follows. NVM bitcells age with writes. And, as memory
degrades, performance and write rates change as well. However, its detailed simulation,
cycle by cycle, requires a time that would far exceed the lifetime of the system under study.

Focusing on the LLC, its degradation leads to an increase in the miss rate, which results
in a loss of performance which in turn results in a decrease of the NV-LLC write rate. Let’s
quantify how the write rate per frame may change as the NV-LLC degrades. Figure 4.1
shows the average write rate per frame in a 16MB, 16-way frame-disabling NV-LLC at
various aging stages (see Section 2.5.1 for the simulated system details). Each bar depicts
the average write rate of all frames belonging to a given group of sets, namely the sets with
𝐴 alive frames in a degraded NV-LLC with 90%, 75% and 50% effective capacity, respectively.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Alive frames (A)

0

2500

5000

7500

10000

w
rit
es

/s

90 % 75 % 50 %

Figure 4.1: Average write rate per frame in sets with 𝐴 alive frames as a function of capacity
(90%, 75%, and 50%).

At 90% capacity, all sets have between 16 and 7 alive frames. However, when the
capacity is reduced to 75%, more degraded sets appear, which only have between 6 and 1
alive frames. Regardless of the capacity, as 𝐴 decreases, the write rate per frame increases
noticeably. This increase in write rate has two causes: i) the miss rate increases in the sets
with fewer alive frames and therefore those sets experience a higher write rate, and ii) the
write rate per set will be spread over fewer alive frames. By contrast, when considering the
reduction in capacity from 75% to 50%, a decrease in the write rate per frame is observed
for any value of 𝐴, which is due to a noticeable decrease in system performance.

Furthermore, this non-uniform degradation may affect differently the threads sharing
the NV-LLC, selectively reducing the IPC of some of them and changing the pattern of writes
in the entire NV-LLC. The existence of compression further complicates the modeling, as

62

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

the data set referenced by each thread may have different compression capabilities that
will wear cache bytes unevenly. In short, in order to capture the complexity of all these
interactions a comprehensive assessment procedure is needed.

Contributions. Accurately addressing this feedback between degradation and perfor-
mance loss over the lifetime of NV-LLCs is crucial to show and prove the microarchitectural
enhancements introduced in Chapters 2 and 3. We introduce a forecasting procedure to
estimate the evolution over time of any metric of interest linked to the NV-LLC (effective
capacity, miss rate, IPC, energy, etc.), from the time it starts operating until its storage
capacity is exhausted.

Forecasting relies on a sequence of epochs that sample the lifetime of the NV-LLC.
Each epoch starts with a performance simulation and ends with an aging prediction. The
performance simulation is carried out with cycle detail on a snapshot of the NV-LLC at
a particular aging stage and obtains performance metrics (miss rate, IPC, etc.) and in
particular, all the write rate statistics needed to feed the aging prediction. The aging
prediction removes from operation the bytes or frames that die, according to the bitcell
endurance model, the NV-LLC organization, and the write rate statistics received. At the
end of each aging prediction phase, a new NV-LLC snapshot is generated, with lower
capacity than the previous one.

Thus, performance and capacity forecasting considers the interaction between the
workload and the non-uniform degradation of the NV-LLC in its multiple dimensions (bank,
set, way, byte). It can be applied to a wide range of NVM-basedmainmemory or NVM-based
cache designs, although in this chapter we have focused on L2C2 and related alternatives,
considering replacement and operation with compressed blocks and degraded frames under
different redundancy schemes. Of course, performance or capacity forecasts are useful
for research purposes, but also can be an industry tool to estimate the life cycle of an NV
memory and provide customers with a clear commitment to lifespan and performance. The
code is available so that anyone can use it for research purposes [36].

The rest of the chapter is organised as follows. Section 4.2 reviews literature in aging
models and studies of NVMs. Section 4.3 introduces the forecasting procedure, which is
conducted both on systems provided with frame disabling and on systems provided with
byte disabling and data compression. Section 4.4 evaluates and validates the forecasting
procedure. Section 4.5 further discusses the applicability of forecasting procedures to other
computer architecture problems. Finally, Section 4.6 concludes this study.

4.2 Related work

Previous work on aging and degradation of NV-LLCs often highlights the difficulty of
accurately modeling aging in NVMs and its effects on performance. In the absence of a
standard procedure, practical solutions have been proposed, designed to assess specific
aspects of one or another mechanism.

A first group of papers related to the evaluation of reliability improvement in NVM-
based main memories or caches, focuses exclusively on measuring either the reduction in
the number of writes or their variability [31, 96, 121]. For instance, Wang et al. compare
wear-leveling mechanisms in NV-LLCs by calculating the elapsed time from startup to

63

4.3. Forecasting procedure

the first bitcell fault [121]. Such cache lifetime is computed by dividing the maximum
number of writes supported by a bitcell by the number of writes per unit time (write rate)
on the cache line that accumulates the most writes. The procedure consists of a single
cycle-accurate simulation to record write variability, followed by an aging prediction that
assumes such variability to be constant throughout the life of the cache. This procedure is
simple, fast and allows the production of performance metrics such as the number of IPC,
but does not consider the manufacturing variability in bitcell endurance. More importantly,
it also does not allow to calculate the time evolution of the capacity or performance in
degraded mode of operation, in which cache frames are progressively lost.

A second group of works, focused on extending the main memory lifetime, already
incorporate process variability, modeling bitcell endurance bymeans of a normal probability
distribution [60, 63, 110, 112, 133].

Ipek et al. [60] and Seong et al. [112] assume that writes are spread evenly across the
main memory. Their quality metric is the number of writes the memory can receive until
the first unrecoverable fault occurs on any of its pages [112] or until the memory loses
all its capacity (each page is deactivated when it reaches its write limit) [60]. They do not
relate the number of writes to the time elapsed, and therefore do not need to simulate any
application. Yoon et al. propose the same quality metric [133], but assume that the page
write rate is constant, thus expressing memory lifetime in elapsed time, rather than number
of writes.

Schechter et al. [110] and Jadidi et al. [63] simulate a workload on a system whose main
memory has no faulty cells. The former to obtain frequency of writes and the latter to
obtain traces of memory accesses. Schechter et al. evenly distribute the number of writes
among all alive pages and calculate the bitcell that will fail first [110]. When the number
of faulty cells in a page reaches a threshold, the page is deactivated and its writes are
distributed evenly among the remaining alive pages. Jadidi et al. use the trace of writes to
main memory to accumulate the number of writes to each bitcell, deactivating them when
they reach their maximum number [63]. The simulation is repeated several times, until
the memory loses half of its capacity. They measure the lifetime by counting the number
of times the trace is reinjected. Now, from the execution time of the detailed simulation
that produced the trace they can calculate a lifespan in terms of elapsed time, but always
assuming that performance does not vary with memory degradation.

In summary, no procedure capable of accurately estimating the simultaneous degrada-
tion of capacity and performance over time has been proposed to date.

4.3 Forecasting procedure

This section describes a procedure to forecast the capacity and performance evolution of
an NV-LLC through time, from its initial, fully operational condition, until its complete
exhaustion. The forecast is driven by a detailed, cycle-by-cycle simulation of aworkload, and
the maximum number of writes supported by bitcells is modelled by a normal distribution,
as stated in Section 1.1.4.

The forecasting procedure determines the alive byte configuration in discrete steps
of capacity loss, which we call epochs. An epoch starts with a detailed Simulation phase,

64

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

where performance and write rate measurements are extracted, and continues with a
Prediction phase, where the corresponding memory region that fails is disabled depending
on the disabling granularity, and the remaining number of writes of those bytes that are
still alive is updated.

To the best of our knowledge, this is the first NV-LLC capacity and performance
forecasting procedure proposed so far.

4.3.1 Data structures supporting the forecasting procedure

For each byte of the data array it is necessary to keep track of two key attributes, namely
the number of remaining writes (RW) per-byte and the write rate (WR) per-byte. These
attributes are represented in two data structures, called maps and abbreviated as RW map
andWR map, respectively.

RW map. Each entry of RW map holds the number of remaining writes 𝑟𝑤𝑖 𝑗𝑘 of
byte 𝐵𝑖 𝑗𝑘 (set 𝑖 , way 𝑗 , byte 𝑘), see Figure 4.2a. RW map is initialised according to the
statistical endurance model of the memory technology used, as in [28, 44, 60, 110, 112, 133],
see Section 1.1.4.

rwijk

Bijk

Fij

RW map

way j

set i

BijkBijk

(a) RW map

wrijk

Bijk

Fij

WR map

way j

set i

BijkBijk

(b) WR map

Figure 4.2: Per-byte remaining writes (RW) (a) and write rate (WR) (b) maps.

Once the RW map is initialized, it would be sufficient to simulate the NV-LLC with
the desired workload and update the map on each write, subtracting in all the alive bytes
of the frame being written. When any byte of the cache reaches its maximum number of
writes (𝑟𝑤𝑖 𝑗𝑘 = 0), the corresponding cache region is disabled, the whole frame with frame
disabling or the single byte with byte disabling. Then, the simulation would continue with
the degraded system.

The simulation should be detailed, cycle-accurate, so that the progressive degradation
is reflected in the miss rate and write rate of the remaining healthy regions. However, this
naive approach is not feasible, since at detailed simulation speed only a few milliseconds of
forecast could be attained.

WRmap. An alternative approach, which is nearly as accurate, but with lower simula-
tion cost is the following. After a suitable simulation time we write down in a WR map,

65

4.3. Forecasting procedure

the write rate per byte𝑤𝑟𝑖 𝑗𝑘 , see Figure 4.2b. On the assumption that these per-byte write
rates remain constant as long as no further byte is disabled, we can compute the predicted
lifetime (PLT) of each byte 𝐵𝑖 𝑗𝑘 as:

𝑃𝐿𝑇 (𝐵𝑖 𝑗𝑘) =
𝑟𝑤𝑖 𝑗𝑘

𝑤𝑟𝑖 𝑗𝑘

We can use 𝑃𝐿𝑇 to predict the next byte that becomes faulty.

4.3.2 Basis of the forecasting procedure

The lifetime of an NV-LLC can be forecast using the procedure outlined with black lines
in Figure 4.3. The RW map is first initialized taking samples from a normal statistical
distribution of the maximum number of writes a bitcell can endure. Forecast then proceeds
through successive epochs, which consist of a Simulation phase followed by a Prediction
phase.

Stop

RW
map

Simulation
 - cycle-accurate

Endurance model

Prediction
 - next fault ← T= min(PLT)
 - increase forecasted
 lifetime by value T
- update RW map

Simulation
 - cycle-accurateFaults < K?

Yes
1

2

3

No

Last byte alive

Forecasted lifetime

Start

wr_avg (A)

wr_avg (A, CC)
_

wr_avg (A)

wr_avg (A, CC)
_

Approximations

First
epoch

Second
epoch

RW
map

WR
map

WR
map

Prediction
 - next fault ← T= min(PLT)
 - increase forecasted
 lifetime by value T
- update RW map

Figure 4.3: Forecasting procedure diagram. Basic procedure in black, approximations in blue.

The Simulation phase requires the development of a microarchitectural LLC model
that allows to dynamically configure a different associativity in each set and, if applicable,
a different number of bytes per frame. The Simulation will thereby consider the cache
regions that are still alive according to the RWmap, run the workload for a suitable number
of cycles, compute the write rates in each alive byte, and finally update theWR map.

The Prediction phase combines the values of both maps to calculate 𝑃𝐿𝑇 (𝐵𝑖 𝑗𝑘), selecting
the byte with the lowest remaining lifetime, 𝑡 =𝑚𝑖𝑛(𝑃𝐿𝑇 (𝐵𝑖 𝑗𝑘)). The prediction consists
of advancing the forecasted lifetime by exactly that value 𝑡 . To do so, it is sufficient to

66

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

subtract from the number of remaining writes in each byte of the cache, the number of
writes that would have occurred in that byte in a time 𝑡 (∀ 𝑖 𝑗𝑘 : 𝑟𝑤𝑖 𝑗𝑘 = 𝑟𝑤𝑖 𝑗𝑘 − 𝑡 ∗𝑤𝑟𝑖 𝑗𝑘).
In this way the next simulation will be performed with the corresponding region disabled,
cache frame or byte, so that the behavior of the LLC will take into account the degradation
experienced in the data array.

Forecast advances through single-prediction epochs until all bytes in the cache are
disabled. Each epoch adds the variable time 𝑡 to the NV-LLC lifetime, which depends
on the initial RW map and the write rate variation. Although the Prediction phase is
computationally very light, this alternative approach still requires as many simulations as
there are bytes in the cache, and it is also not affordable considering the runtime required
for a detailed simulation.

To decrease the number of simulations we propose an approximate procedure that
extends the forecast duration within each epoch. This approximate forecasting procedure
acts as follows. In each epoch, the simulation phase does not change: it receives an RWmap
and obtains the corresponding WR map. However, the prediction phase has an extension of
𝐾 consecutive predictions, corresponding to the failure of 𝐾 bytes. After every prediction
step the RW map is updated; see 1 in Figure 4.3.

The challenge now is that, as bytes die during the multiple-prediction epoch, the values
of the WR map may not reflect the effect of the progressive degradation of the NV-LLC
during the epoch.

When a cache byte dies there may be a tiny decrease in hit rate and system performance,
which may result in tiny changes of the byte write rate across all cache frames. Our model
does not take this reduction into account during the Prediction phase within each epoch.
However, if we focus on a shrinking cache set, i.e. one in which a byte has just been disabled,
the new write rate in the frames of that set can increase significantly. This effect is evident
with frame disabling, see Figure 4.1, but occurs equally with byte disabling. Consequently,
to increase the epoch extension without introducing significant error, a model is needed to
approximate new write rates as bytes fail during prediction.

Without loss of generality, a uniform distribution of writes among cache sets is assumed
in this paper; see Section 4.4.3 for a more general discussion. Accordingly, the write rate on
the bytes of a cache set whose health state has just degraded after a prediction step can be
computed by the average write rate of all the bytes belonging to the sets that were already
in that degraded health state during the simulation. As will be seen below, the health state
of a cache set is defined differently for frame- and byte-disabling caches.

4.3.3 Approximate forecasting procedure for frame disabling

In frame disabling, all bytes in a frame receive the same write rate, and it matches the write
rate in the frame. Therefore, theWR map stores information at frame granularity.

Under the assumption of a uniform distribution of references across sets, for NV-LLCs
with frame disabling, the health state of a set can be defined simply as its 𝐴 number of alive
frames, with 𝐴 between one and the initial associativity.

At the end of a Simulation phase, 𝑤𝑟_𝑎𝑣𝑔(𝐴), the average write rate per byte in sets
with 𝐴 alive frames, is computed from the WR map; see 2 in Figure 4.3. Thus, during the

67

4.3. Forecasting procedure

Prediction phase the write rate applied to the bytes of a frame changes as the health state
of its set changes. That is, while a set has 𝐴 alive frames, the prediction calculations age
its bytes with 𝑤𝑟_𝑎𝑣𝑔(𝐴), but when one of them dies, the aging will be performed with
𝑤𝑟_𝑎𝑣𝑔(𝐴 − 1).

Note that in the Prediction phase, after disabling a certain number of frames, sets with a
value of𝐴 not yet simulated may appear. For instance, let us focus on the black distribution
of write rates per frame we showed in Figure 4.1. It corresponds to the Simulation phase of
an epoch that starts with 90% effective capacity. In that epoch, the Prediction phase handles
sets with 7 or more alive frames. But before reaching 𝐾 predictions a byte belonging to
a set with 𝐴 = 7 may die, appearing a new health state, that of the sets with 𝐴 = 6 for
which there are no available write rate data yet. To cope with these cases, we can stop the
prediction, thus ending the epoch prematurely and starting a new simulation. Alternatively,
to keep low the number of simulations, we can continue the prediction, also allowing some
more error and apply the previous value𝑤𝑟_𝑎𝑣𝑔(7). In this work, we will adopt this second
approach.

4.3.4 Approximate forecasting procedure for byte disabling and data com-
pression

Unlike frame disabling, in a NV-LLC with byte disabling and data compression, such as
L2C2, a write to a frame does not always imply a write to all the bytes of the frame and
therefore the write rate to the bytes of a frame is lower than the write rate to the frame.
The wear-leveling mechanism ensures an even distribution of writes among the alive bytes
of a frame. Consequently, during prediction, we can assume that the write rate on all alive
bytes of a frame is equal, and is calculated as the average of the write rates on all of them.

Moreover, a fault in one or more bytes of a L2C2 frame does not preclude storing blocks,
as long as their compressed size is appropriate. Now the health state of its sets is more
diverse than in frame disabling: at any given time there are not only alive and dead frames,
but frames with a very diverse range of effective capacities.

The number of faulty bytes in a frame limits the compression encodings (CEs) it can
accommodate. A frame with a certain effective capacity is associated with a compression
class (CC) if it can accommodate compressed blocks of size CC or smaller. For example, a
frame with 3 defective bytes has an effective capacity of 61 bytes, which accommodates
blocks of any compression encoding but those of size 64 bytes (see Table 2.1); it is thereby
associated with CC = 58.

In this context, the prediction of write rate per byte is more complex. For example, let’s
consider a set that has only one frame of CC = 64. All non-compressible blocks will end
up in that single frame, which can become a hot spot for writes within the set. But, in
another cache set with a majority of frames with CC = 64, the write rate of the set will be
distributed in a substantially equal way among frames.

With this, our Prediction phase will assume that the write rate a byte receives depends
on the CC of its frame as well as on the CCs of the rest of the frames in the same cache
set. Therefore, now the health state of a set is abstracted as a 12-tuple 𝐴. It aggregates the

68

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

compression classes to which each frame belongs to. For instance, a set with tuple 𝐴 = (0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15) has one frame with CC = 58 and 15 frames with CC = 64.

Thus, during prediction, the aging write rate to consider for the bytes of a given frame
𝐹𝑖 𝑗 will depend on its compression class CC and the health state (tuple 𝐴) of the set that
contains 𝐹𝑖 𝑗 : 𝑤𝑟_𝑎𝑣𝑔(𝐴,CC).

More specifically,

𝑤𝑟_𝑎𝑣𝑔(𝐴,CC) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑤𝑟𝑖 𝑗𝑘)
∀ 𝑖 𝑗 | i) 𝐹𝑖 𝑗 ∈ set with tuple 𝐴

ii) 𝐹𝑖 𝑗 ∈ compression class CC

Each time a byte is disabled in a frame 𝐹𝑖 𝑗 , CC of the frame and 𝐴 of the set are
recomputed. Thereafter, 𝑤𝑟𝑖 𝑗 , the aging write rate of 𝐹𝑖 𝑗 with compression class CC, is
approximated by𝑤𝑟_𝑎𝑣𝑔(𝐴,CC); see 3 in Figure 4.3.

As in frame disabling, as faults are predicted in succession, sets with a tuple value 𝐴
not yet simulated may appear. For instance, suppose a set with the same 12-tuple as before:
one frame associated with CC = 58, and 15 frames associated with CC = 64:

𝐴1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15).

Suppose a byte of one of the fifteen frames with CC = 64 fails during the Prediction phase.
Now the tuple modeling the set becomes:

𝐴2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 14).

But if in the epoch Simulation no 𝐴2 tuple was tracked, the values of 𝑤𝑟_𝑎𝑣𝑔(𝐴2,−)
are unknown. As in frame disabling, in this work we chose to continue the prediction,
tolerating some more error and using for that set the previous values of𝑤𝑟_𝑎𝑣𝑔(𝐴1,−) as
an approximation of𝑤𝑟_𝑎𝑣𝑔(𝐴2,−).

4.4 Evaluation

In order to validate the forecasting procedure, it would be necessary to contrast its projec-
tions with data from the operation of real NV-LLCs as they age with a known workload.
But unfortunately, there is no such information in the public literature. Therefore, in this
section we provide tests of the correctness of the assumed hypotheses as a function of the
number of epochs employed, evaluating the tradeoff between accuracy and time spent in
the forecasting procedure. Finally, we outline alternatives for situations in which some
underlying assumptions are not met.

The followed methodology, system configuration, and compared systems in this section
are the same as in Chapter 2. Please refer to Section 2.5 should you need further details.

4.4.1 Validation

As discussed in Sections 4.3.3 and 4.3.4, the main source of forecast inaccuracy lies in the
Prediction phase, where it is necessary to approximate the write rate of health states that

69

4.4. Evaluation

have not yet appeared in the Simulation phase. Of course, using epochs of small extension
implies low approximation and can improve the quality of the forecast, but at the same
time it increases computational cost.

To explore this tradeoff between quality and cost, several experiments have been
performed, using epochs of different extension in each experiment, which predict a certain
NV-LLC degradation. Specifically, we predict how much time elapses until 50% of the
NV-LLC, 𝑇50𝐶 , degrades. A 50% capacity degradation is a common case study [63, 110, 133],
and in our experiments we will also focus on it, but any other percentage, including 100%,
corresponding to total degradation, could also be used.

A different number of epochs of constant extension is used in each experiment. The
epoch extension is the number 𝑘 of consecutive predictions disabling frames or bytes,
depending on the NV-LLC model, and is calculated by simply dividing 50% of the cache
size, measured in frames or bytes, by the number of epochs.

The Y-axes in Figure 4.4a and Figure 4.4b shows 𝑇50𝐶 as a function of the number of
epochs for frame disabling and L2C2, respectively; built with bitcells of different manufac-
turing variabilities.

As can be seen, the forecast of 𝑇50𝐶 converges as the number of epochs increases for
all coefficients of variation. Using a number of epochs greater than or equal to 8 and 16,
𝑇50𝐶 varies less than 0.8 and 1.1% for frame disabling (𝑘=16384 frames) and L2C2 (𝑘=524288
bytes), respectively.

Previous works performs a single simulation from a fully operational NV memory to
obtain the write rate data [60,63,110,112]. From this data, they compute the time at which a
bitcell dies, and then recalculate the write rate analytically. In this sense, this methodology
is similar to ours when a single epoch is used. But, as Figure 4.4 shows, in both cases but
specially for compression, using a single epoch incurs in a non-negligible error.

1 2 4 8 16

Number of epochs

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e
(y
ea
rs
)

cv=0.2 cv=0.25 cv=0.3

(a) Frame disabling

1 2 4 8 16 32 64

Number of epochs

4

6

8

10

12

14

16

Ti
m
e
(y
ea
rs
)

cv=0.2 cv=0.25 cv=0.3

(b) L2C2

Figure 4.4: Forecasted𝑇50𝐶 (in years) as a function of the number of epochs for frame disabling
and L2C2 caches. Three coefficients of variation are employed: 𝑐𝑣 = 0.2, 0.25, and 0.3.

Finally, in order to prove that different RW maps do not lead to inconsistent results, five
different random seeds have been used. The seeds are used to initialize different RW maps
for the three values of 𝑐𝑣 and forecast is performed for all of them. Again, the convergence

70

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

metric is 𝑇50𝐶 in a 16-epoch forecast of an L2C2. The standard deviation of the different
forecasted times is below 2% of the arithmetic mean.

4.4.2 Computational cost

In the following we provide the computational cost of the most expensive procedure, the one
related to the forecasting of a byte-disabling LLC, together with actual time measurements.

The computational cost of the Simulation phase comes from the execution of the gem5
simulator. It depends on the number of mixes, 𝑀 , used as workload and the number of
cycles, 𝐶𝑦, simulated for each mix. Thus, using the same input parameters the simulation
cost does not depend on the number of epochs.

The computational cost of the Prediction phase is proportional to the epoch extension,
𝐾 , and to the size of the cache in bytes,𝐶 . Indeed, on the one hand, the cost is proportional
to the number 𝐾 of bytes to be disabled, i.e., the epoch extension. On the other hand, it is
also proportional to the size of the cache in bytes,𝐶 , since to predict the death of a byte it is
necessary to scan the entire cache to find the byte 𝐵𝑖 𝑗𝑘 whose 𝑃𝐿𝑇 (𝐵𝑖 𝑗𝑘) is the minimum.

Thus, to forecast the evolution of an L2C2 until it loses a given fraction 𝑓 of its number
of bytes 𝐶 , 𝐸 = 𝑓 𝐶

𝐾
epochs are needed. Putting all together, the total forecasting cost of a

fraction 𝑓 of capacity 𝐶 , with 𝐸 epochs,𝑀 mixes and 𝐶𝑦 cycles is:

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝑓 ,𝐶, 𝐸,𝑀,𝐶𝑦) = 𝐸 · 𝑐𝑜𝑠𝑡 (𝑆𝑖𝑚 + 𝑃𝑟𝑒𝑑) =

𝑓1(𝑓 ·
𝐶

𝐾
·𝑀 ·𝐶𝑦) + 𝑓2(𝑓 ·

𝐶

𝐾
· 𝐾 ·𝐶) = 𝑓1(𝐸 ·𝑀 ·𝐶𝑦) + 𝑓2(𝑓 ·𝐶2)

(4.1)

where functions 𝑓1() and 𝑓2() depend on the details of the server hardware carrying out
the forecasting. In summary, the computational cost of the forecasting procedure is linear
with the number of epochs and quadratic with the size of the cache. However, as we will
see from the experimental data, the value of 𝑓2() is much smaller than that of 𝑓1().

Table 4.1 shows the maximum elapsed times, broken down into Simulation and Predic-
tion phases, for a prediction reaching up to 50% degradation of L2C2 capacity, i.e. 𝑓 = 0.5.
These figures were obtained on a 2GHz AMD EPYC 7662 multi-core server with 100GB of
main memory. As it can be seen, the cost of a Simulation phase does not depend on the
number of epochs, while the cost of a Prediction phase decreases as the number of epochs
increases. As a result, the computational cost of the forecasting procedure grows linearly
with the number of epochs.

Table 4.1: Maximum elapsed times vs. number of epochs to forecast L2C2 from start to 50%
capacity.

epochs One Simulation
phase, minutes.

One Prediction
phase, minutes.

Total forecast,
days.

16 210 38 2.8
32 210 21 5.1
64 210 11 9.8

71

4.4. Evaluation

On the other hand, as it was shown in Figure 4.4, after a certain number of epochs the
forecasting error is negligible. Given this trade-off, all the forecasts presented below are
made with E = 16 epochs, a good balance between error and cost.

4.4.3 Specific situations

In all the experiments performed in this work, the forecasting procedure assumes a uniform
distribution of writes among sets. This condition is met in most systems either because the
workload is diverse over time and produces an even distribution, or because the NV-LLC
incorporates good wear-leveling mechanisms among sets, or both.

However, in some scenarios it may be important to take non-uniformity into account.
As an example, we can think of an embedded system that always runs the same applications.
Here the distribution of accesses to the cache sets may well be non-uniform, encouraging
the design and comparison of mechanisms to even out the wear between sets.

Certainly, the forecasting procedure could also be applied in this context, although the
model that approximates the new write rates during the Prediction phase would have to
be modified. In particular, the new model could no longer use the average write rate of
all frames belonging to sets with a given health state. An alternative could be to obtain
the approximation from the distribution of write rates of those frames. We think such
specialized forecast is entirely feasible, but it is beyond the scope of this paper.

4.4.4 Technological projections of lifetime and performance of NV-LLCs

As we have explained so far, the forward-looking behavior of an NV-LLC can be estimated
by applying a forecasting procedure that has three key elements, namely, a statistical model
of bitcell write endurance, a detailed simulation model of the NV-LLC organization, and a
workload. In principle, a new forecast with a change in any of these three elements requires
a feasible, but high computation time.

The results showed in Chapter 2, Section 2.5 were obtained for baseline bitcells with
given endurance values modelled with mean 𝜇 = 1011 and 𝑐𝑣 = 0.2 − 0.3. To obtain results
concerning other bitcell endurance values and/or NV-LLC latencies, of course the whole
forecasting procedure can be repeated, creating new RW maps and changing the latencies
in the simulation model.

However, as long as the NV-LLC latencies are assumed constant, it is possible to take
advantage of the properties of the linear transformation of Gaussian distributions to reuse
the forecast data and obtain projections for other NVM technologies with a different bitcell
write endurance values.

Specifically, if an NV-LLC is built with an improved technology, which offers the same
cache latencies, but uses bitcells with 𝑘 times more endurance (𝜇𝑖 = 𝑘 · 𝜇𝑏, 𝜎𝑖 = 𝑘 · 𝜎𝑏), new
capacity and IPC indexes as a function of time can be calculated as follows:

• Cap. improved bitcells (𝑡) = Cap. baseline bitcells (𝑡
𝑘
)

• IPC improved bitcells (𝑡) = IPC baseline bitcells (𝑡
𝑘
)

72

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

That is, new indexes with improved bitcells at time (𝑡) can be obtained from the forecast
made with baseline bitcells at an earlier time (𝑡

𝑘
); see Appendix A.

Thus, from a few reference forecasts, many technology projections can be obtained.
Table 4.2 is an example that focuses on two arbitrary, but interesting, indexes: 𝑇90𝐶 and
𝑇90𝑃 , calculated from the central column forecasts for 𝜇 = 1011 and 𝑐𝑣 = 0.2 − 0.3. 𝑇90𝐶 and
𝑇90𝑃 are the elapsed times to reduce the rated capacity and performance, measured in IPC,
to 90% of the initial values, respectively. Note that the values of 𝑇90𝐶 and 𝑇90𝑃 scale linearly
with the value of 𝜇. That is, the value of 𝑇90𝐶 for 𝜇 = 1012 is equal to 10 times the value of
𝑇90𝐶 for 𝜇 = 1011. As it can be seen, 𝑇90𝐶 always trails 𝑇90𝑃 and L2C2+6 is the best cache
organization.

Table 4.2: 𝑇90𝐶 and 𝑇90𝑃 for FD+6, L2C2 and L2C2+6, varying 𝑐𝑣 and 𝜇. 𝑚 = months, 𝑦 =
years.

Mean number of writes to fail, 𝜇.

𝑐𝑣 Cache 1010 1011 1012

𝑇90𝐶 𝑇90𝑃 𝑇90𝐶 𝑇90𝑃 𝑇90𝐶 𝑇90𝑃

0.2
FD+6 3.7m 3.9m 3.1y 3.2y 30,7y 32.2y
L2C2 7.1m 7.2m 5.9y 6.0y 58,9y 60.1y

L2C2+6 7.7m 7.8m 6.4y 6.5y 63.8y 64.7y

0.25
FD+6 2.8m 3.1m 2.4y 2.5y 23.5y 25.4y
L2C2 5.7m 5.8m 4.7y 4.9y 47.3y 48.7y

L2C2+6 6.4m 6.5m 5.3y 5.4y 53.1y 54.2y

0.3
FD+6 2.0m 2.2m 1.6y 1.9y 16.4y 18.6y
L2C2 4.5m 4.7m 3.7y 3.9y 37.3y 39.1y

L2C2+6 5.1m 5.3m 4.3y 4.4y 42.5y 43.8y
Projections Forecast Projections

These types of indexes can serve as a basis for signing a Service Level Agreement (SLA)
with prospective customers. It is plausible to think that a manufacturer can have a portfolio
of NVM qualities and technologies and that a customer can choose the product with the
best performance/cost ratio for her/his needs. For example, for a smartphone projected for a
daily usage of 6 hours at 100% and with an average product life of 1.8 years [8] several cache
organizations and manufacturing variabilities of those shown in the 𝜇 = 1011 writes/bitcell
columns may fit. These figures could be representative of a technology with moderate
write endurance, but comparatively inexpensive.

4.5 Additional discussion

4.5.1 Forecasting workload behavior in cloud data centers: a seemingly
similar problem

Forecasting procedures are relevant today in computer architecture literature. Another
problem, similarly addressed, consists of forecasting the demand for resources, e.g. CPU,
memory, network and storage, and their power consumption in data centers offering cloud
computing services [32, 109].

73

4.5. Additional discussion

The objective is to manage in advance the virtual machines (VMs) and/or physical
resources needed to elastically adapt supply to demand, complying with the quality of
service (QoS) parameters specified in the SLAs made with customers [32, 109]. It is usually
assumed that the forecasting procedure receives as input the time series of past events and
its outcome will feed a management system capable of automatically commanding resource
management in advance. Among other activities, such resource management consists of
mapping tasks to VMs and VMs to physical servers. This requires making decisions such
as adding or removing VMs, or forcing the live migration of a VM to a different server. It is
also necessary to provision the hardware resources of VMs (e.g. number of CPUs, amount
of memory and storage required, and communication bandwidth) or decide whether to
consolidate several VMs on one server, possibly by physically shutting down part of the
servers previously dedicated to those VMs.

Forecasting future demand in cloud data centers is an open problem. It is being ap-
proached in the literature from many points of view, both in the workload specification
and in the forecasting model itself. In the following, we will review some representative
recent work to illustrate this variety of approaches [10, 70, 80, 81, 97].

Regarding the specification of theworkload, i.e. how to reproduce the history of resource
allocation, usage and release when assigning tasks to VMs, two approaches stand out. The
first one consists of describing a synthetic workload, either in a static form [10], or from
estimated resource life-cycle probabilities [81]. The second, more widespread, considers
time series recorded in real data centers annotated with the relevant events [70, 80, 97].

As for the forecasting model, there are numerous approaches. Most, but not all, are
based on machine learning (ML), although no definitive winner is emerging at the moment.
For example:

• Bouaouda et al. compare two algorithms taken from the area of operational research
to estimate the energy consumed by a cloud data center, namely Ant-Colony Opti-
mization, a population-based metaheuristics, and First Fit Decreasing, an algorithm
to solve the Bin Packing problem [10]. The relevant workload events are generated
by Cloudsim, a federated cloud data center simulator [13].

• Li investigates how to obtain the maximum benefit, i.e., the best performance/cost
ratio, by managing the provision of resources based on the analytical solution of a
multi-variable optimization problem [81]. A synthetic workload, defined by prob-
ability distributions (task arrival rates, task execution times, waiting times, etc.),
is assumed to be executed by multiple computing clusters, consisting of heteroge-
neous servers of varying speed deployed in a federated cloud environment. Each
computer cluster is modeled as an M/M/m queuing system. Two energy cost models
are assumed according to the dynamic consumption in idle state. In addition, a
benefit/cost model is proposed that considers service revenues, energy expenses and
infrastructure amortization charges.

• Finally, we review a selection of recent works based on ML to predict workload
behavior [80, 97], including also its energy consumption [70]. All proposals forecast
future behavior based on time series (called traces) obtained from real data centers of
providers such as Alibaba, Bitbrains or Google. Khan et al. consider several typical
ML algorithms such as linear regression, Bayessian Ridge Regression, Automatic

74

Chapter 4, Forecasting lifetime and performance of NVM-based LLCs

Relevance Determination Regression, elastic nets, and finally, a deep learning (DL)
approach, the Gated Recurrent Unit, a particular class of recurrent neural networks
(RNNs) that proved to be the best [70]. Leka et al. propose to handle the time series
by chaining two neural networks, first a one-dimensional CNN (1D-CNN), which is
very suitable for extracting features that relate VMs to each other, and then a Long
Short-Term Memory (LSTM) network, another particular class of RNN, to perform
the temporal processing of the extracted features and make the forecast [80]; however,
the success of the proposal is assessed by comparing it only with CNN or LSTM
working separately. Lastly, Patel et al. propose a similar idea in which the 1D-CNN
network consists of three parallel dilated 1D layers with different dilation rates
CNN (1D-pCNN) to learn CPU load variations at different scales [97]; in addition,
the LSTM layer that learns temporal dependencies is fed not only with the patterns
recognized by the 1D-pCNN, but also with the original CPU utilization values present
in the input time series. Unlike the previous work, Patel et al. compare the forecast
errors with a much larger number of alternatives, but only in the area of DL networks.

However, an observation common to the previous referenced work, and to most of the
literature on workload and energy forecasting, is the absence of cross-comparisons between
complex and simple models [85]. For example, simple statistical methods are rarely used
as a baseline for forecasting, making it difficult to quantify the advantage provided by the
very expensive methods that rely on complex DL models.

Regarding our purpose of predicting the progressive degradation of the NV-LLC present
in a multicore chip of a computing server, we can make several observations. 1) The
specification of the problem is very different, in our case there are no time series of
degradation events, because NV-LLCs are a pre-industrial product and, if they exist, such
traces have not been made public. 2) Related to the above, it is not possible to quantify the
goodness of the solution with the typical error metrics that compare reality and predicted
value, i.e. the root-mean-square error (RMSE). The validation of our model needed to
be done in another way, see Section 4.4.1. 3) The forecasting behavior in data centers is
based on reproducing a resource demand that does not follow any known law, while the
degradation of NVM bitcells is governed by write reiteration and its Gaussian behavior is
well accepted, see Section 1.1.4. 4) The modeled hardware in a data center is assumed to be
functional and fault-free, there is still no work that incorporates the detection, diagnosis and
repair/replacement life cycle of servers, storage or routers into the forecast; on the contrary,
in our case, the main assumption is the existence of a performance-critical component, the
NV-LLC, whose capacity, and with it the system performance, will progressively decrease.

Therefore, we can conclude that despite the variety of procedures for forecasting the
behavior of cloud data centers, it is not possible to adapt them to our problem, whether
they are statistical, operational research or deep learning methods.

4.6 Concluding remarks

This chapter comprehensively described a procedure that allows to comprehensively fore-
cast the evolution over time of NV-LLCs whose effective capacity drops due to repeated
write operations. To the best of our knowledge, the proposed forecasting procedure is

75

4.6. Concluding remarks

the first in its class. It couples simulation phases in which statistics are gathered from the
system with prediction phases in which the bitcells that become faulty are predicted. This
methodology has allowed us to compare several NV-LLC organizations in terms of lifetime
and performance. It has also allowed us to measure the influence of manufacturing process
variability on these results.

Knowledge of how performance evolves through time could be essential for manu-
facturers to be able to incorporate NVM technologies with the confidence that they can
guarantee certain performance for a reasonably appealing time period.

Finally, the new forecast procedure leaves the door open to detailed evaluation of
different cache organizations, varying, for example, content management policy between
cache levels, replacement policy, or wear-leveling.

76

The pawns in the game, they get capped quick.
They be out early.

D’Angelo Barksdale, The Wire.

5
HyCSim: A rapid design space exploration tool

for emerging hybrid LLCs

Recent years have seen a rising trend in the exploration of NVMs in the memory subsystem.
Particularly in the cache hierarchy, hybrid LLC solutions are proposed to meet the wide-ranging
performance and energy requirements of modern days applications. These emerging hybrid
solutions need simulation and detailed exploration to fully understand their capabilities before
exploiting them. Existing simulation tools are either too slow or incapable of prototyping such
systems and optimizing for NVM devices. To this end, we propose HyCSim, a trace-driven
simulation infrastructure that enables rapid comparison of various hybrid LLC configurations
for different optimization objectives. Notably, HyCSim makes it possible to quickly estimate
the impact of various hybrid LLC insertion and replacement policies, disabling of a cache
region at byte or cache frame granularity for different fault maps. In addition, HyCSim allows
to evaluate the impact of various compression schemes on the overall performance (hit and
miss rate) and the number of bytes written to both the NVM and SRAM parts of the LLC.
Our evaluation on ten multi-program workloads from the SPEC 2006 benchmarks suite shows
that HyCSim accelerates the simulation time by 24×, compared to the cycle-accurate Gem5
simulator, with high-fidelity.

77

5.1. Introduction

5.1 Introduction

Off-chip memory accesses continue to be one of the leading performance bottlenecks
of multiprocessor systems [74, 84]. This has led to a widespread adoption of LLCs that
prevent some requests from private caches from reaching off-chip memories. Increasing
the LLC capacity can help reduce the memory wall and meet the larger working set sizes
of modern applications. However, traditional SRAM-based LLCs do not seem to scale well
to greater sizes due to their higher static power and limited density. Emerging NVMs
have been proposed as an alternative to SRAM due to their lower static power and higher
density [7, 74, 77, 101, 130, 137]. These technologies, in turn, suffer from limited endurance
and costly write operations. Indeed, write operations, in addition to being more time- and
energy-consuming than read operations, eventually degrade the bit cells, causing them to
lose their storage capacity.

Hybrid cache designs attempt to combine the best of both technologies, i.e., NVMs
provide a larger capacity to increase the cache hit rate, and SRAM or DRAM can take up
most of the write operations, reducing the dynamic power and increasing the endurance of
the NVM device [19,49,84]. These hybrid designs offer a huge set of design parameters and
design space for exploration. For instance, in typical hybrid LLC designs, write-intensive
cache blocks are dynamically mapped to SRAM and read-intensive blocks are mapped
to NVMs since they are generally read-friendly devices. However, in hybrid LLCs with
compression, the read and write operations feature different tradeoffs due to blocks with
different sizes and need more detailed exploration. Similarly, unified (i.e. non-hybrid) cache
insertion/replacement policies and compression policies may not be sufficient as the two
technologies have different limitations. To explore and evaluate these design alternatives,
simulation tools are needed that accurately model different hybrid designs and their content
management policies.

Detailed cycle-accurate and full-system simulators such as gem5 and sniper [16, 83]
are several orders of magnitude slower than real machines running workloads [11] and
are thus impractical to evaluate hundreds of cache configurations. For sensitivity analysis,
serial simulations and even minimal modifications to a configuration force researchers to
wait hours, and sometimes days, before obtaining the desired result. In addition to this,
these tools do not support hybrid cache models and their particular policies. To fill this gap,
we propose a flexible trace-driven simulating infrastructure, called HyCSim and whose
code is available so that anyone can use it for research purposes [35], that enables rapid
exploration of the design space of hybrid LLCs. Our infrastructure makes it possible to
quickly assess the interaction between different optimization schemes such as policies
for insertion, migration or replacement, mechanisms for data compression, or support to
fault management. As starting point, HyCSim requires traces generated from a full-system
simulation which can be subsequently used in a series of simulations for the same or
different cache models. Our fidelity analysis shows that HyCSim produces simulation
outputs with acceptable variations (see Section 5.4.2).

More specifically, our contributions are:

• Rapid exploration of LLC: Compared to the cycle-accurate gem5 simulator, HyC-
Sim reduces the simulation time by 24𝑥 . If not available already, our tool requires a

78

Chapter 5, HyCSim: A rapid design space exploration tool for emerging hybrid LLCs

single run of an application in a cycle-accurate simulator to collect memory traces.
HyCSim can then swiftly evaluate a series of cache configurations with high-fidelity.

• Built-in fault support: HyCSim is the first simulator to allow disabling memory
regions at different granularities in order to explore different content management
policies in sets with defective frames or in frames with defective bytes. In this work
we call cache frame the array of physical bits that hold a cache block.

• Compression support: HyCSim allows designers to explore different block sizes,
generatedwith different compressionmechanisms. For now, the compression schemes
themselves are not implemented in our tool, so the compression information is ex-
ported as part of the generated traces. However, these mechanisms can be imple-
mented in HyCSim in a straightforward way.

• State-of-the-art policies for hybrid LLCs: In HyCSim we implemented state-
of-the-art policies from the literature. Making these policies available within a
single open-source framework will enable future research and contribute to a better
reproducibility of research.

5.2 Related work

Simulation tools are essential to implement and characterize new architectures and un-
derstand their behavior and bottlenecks. Some simulators support modeling an entire
system for processor-based systems, i.e., processors and cores, the cache hierarchy, on-chip,
and off-chip interconnection frameworks. In contrast, others only focus on a detailed
exploration of the memory system or the cache hierarchy. Brais et al. [11] present a survey
of the state-of-the-art cache simulators supporting different types (functional, timing),
modes (trace-driven, execution-driven), and levels (application-level, full system) of cache
simulation. Execution-driven cycle-accurate simulators such as gem5 [83] or sniper [16]
better capture microarchitectural features and the impact of various design decisions on
the overall system. However, they are considerably slower and therefore impractical to
explore the space of hundreds of hybrid cache configurations.

Trace-driven simulation is an attractive alternative and is widely used by the community
to find optimal system and cache configurations. For the cache hierarchy, in particular, a
number of simulators exist that accurately model the behavior of all/certain cache levels in
the hierarchy [11]. For instance, Cachegrind [93], a stable open source project, supports
first and last level caches. Dinero IV supports the entire memory hierarchy but primarily
reports only hit and miss information [34]. Similarly, CASPER [61] and Pycachesim [50]
model the entire cache hierarchy with various standard coherence protocols and standard
insertion/replacement policies. Contrary to thesemulti-level cache simulators, CMP$im [64]
and RExCache [113] model unified LLCs with different configurations, but they are only
academically published and are closed-source.

All these simulation tools model only unified cache designs. The recent trend in hybrid
designs, employing emerging technologies, requires new tools to model their diverse set of
properties. For instance, in NVMs, the write operations are not only slow but also harmful
and can result in defective bitcells. There are many proposals in the literature to cope

79

5.3. HyCSim infrastructure

with defective bitcells, i.e., providing memory structures with ECCs or redundant (spare)
information [110, 133]. In addition, there are mechanisms that allow to deactivate defective
regions from the nominal operation, i.e., frame disabling (similar to the Intel Cache Safe
Technology) [17, 129]. Therefore, the simulation tool should allow marking NVM regions
as defective in order to compare different content management policies over a hybrid LLC
with degraded capacity.

In addition to the error correction schemes, a number of optimization schemes are
proposed to better exploit the performance and lifetime of the hybrid models. For instance,
cache insertion and migration policies are presented that aim at reducing the number
of write operations in the NVM device [19, 84, 123]. None of the existing open-source
simulating infrastructures allow for modeling hybrid caches, and their optimizations, to
the best of our knowledge. NVMain [100] and NVmain-ext [69] allow modeling unified
NVM-based main memory and LLCs but do not implement any NVM specific policies and
optimizations.

5.3 HyCSim infrastructure

1 M 1 N

B

SRAM

...

...C1

Main Memory

C2 Cn

L2 L2 L2

NVM

Hybrid LLC

Gem5
Trace

Config File

C
o
n
fi
g
 M

a
n
a
g
e
r

Byte/Frame Level

Disabling ManagerTrace Reader

...
Request queue

Data Array

SRAM

System model

Simulator overview

A

Cache Controller

Fault Map

...

SET 1

SET N

HyCSim

LHybrid CMPHybrid
Base

Hybrid

Tags Array

...

SET N

SET 1

...

SET N

SET 1

Fault Map

SET 1

NVM SRAM
waysways

NVM
ways

Figure 5.1: A⃝ Overview of the modeled cache hierarchy. B⃝ Input files, main functions and
data structures of HyCSim.

The HyCSim simulator models the full functionality of a hybrid LLC (SRAM-NVM) in
order to evaluate different content management mechanisms and compare them in terms
of performance (hit/miss rate) and number of writes to the NVM part. An overview of
the infrastructure is depicted in Figure 5.1. There is a cache controller that implements
conventional cache functionalities like the address-to-set mapping function, insertion
of blocks and the LRU replacement policy. The BaseHybrid (Section 5.3.3), the LHybrid
(Section 5.3.3), and the compression-aware models (Section 5.3.3) extend the cache controller
functionalities accordingly.

The simulator takes the following files as inputs:

1. The configuration file includes general cache parameters such as size, associativity,
and disabling granularity among others.

2. The trace file collects all memory requests coming to the LLC from a profiling run.
The traces can be extracted using any tool. We use gem5 for this purpose.

80

Chapter 5, HyCSim: A rapid design space exploration tool for emerging hybrid LLCs

3. The fault map file indicates how many faulty bytes each NVM frame has. This is
needed by the fault-aware mechanism to disable at different granularities.

To schedule requests entering the LLC, a first-come, first-served (FCFS) policy is used,
i.e., requests in the trace file are served by the cache controller in the order of their arrival.
Three data structures are required to carry out the functional simulation, namely: i) SRAM
tag arrays, for both SRAM and NVM data arrays, ii) the data arrays themselves, divided
into NVM and SRAM ways, and iii) the fault map for NVM ways. In the following sections,
we explain the modules of the simulator.

As output, the simulator generates performance statistics such as cache miss and hit
rates, number of bytes written per frame, number of LLC bypasses, number of migrations
and number of LLC reads and writes. We use the hit rate and the bytes written per NVM
frame for performance and lifetime comparison among different models.

5.3.1 Cache organization

HyCSim models hybrid set-associative LLC designs consisting of a unified tag array and
a hybrid NVM-SRAM data array. It is fully configurable and is not restricted to specific
technologies. Technology-specific parameters for the tag and data arrays can also be defined
in the configuration file.

The configuration file also defines hybrid design specific parameters, in addition to the
standard cache parameters. For instance, the associativity of the NVM and SRAM regions
in the data array can be different (e.g., 4-way SRAM and 12-way NVM as in our target
system in Table 5.1). Similarly, the two technologies can have different replacement policies,
as explained in Section 5.3.3, which can be defined in the configuration file.

5.3.2 Disabling manager

Disabling can be done both at byte and frame level. For this, the Fault Map that points out
defective bytes must be managed accordingly. Disabling with byte granularity results in
frames with different capacities. To cope with this, data compression has been proposed in
the literature to compress blocks so that they fit in frames with reduced capacity [45]. The
cache controller has to know which bytes are and are not defective to perform read and
write operations. To this end, the Fault Map consists of a bit per byte that indicates whether
the byte is defective or not. We assume that there is a wear-leveling mechanism that is able
to evenly distribute the write operations across the alive bytes within a frame [2].

5.3.3 Content management policies

Non-inclusive hierarchies have been widely used in the literature, specially in order to
avoid redundant data-fills (insertions) that are harmful for NVMs [19]. Such a non-inclusive
hierarchy aims at minimizing the number of write operations and thus increase the lifetime
of NVMs. Potential LLC block insertions take place when the blocks are evicted from
the private levels and the blocks are not present in the LLC. The simulator implements
various insertion and data handling policies (see the three boxes under cache controller in
Figure 5.1) as explained in the following.

81

5.4. Validation

BaseHybrid

The baseline hybrid LLC model (BaseHybrid) assumes frame disabling, i.e., the entire frame
is disabled as soon as a single byte is faulty. The insertion policy for incoming blocks
is based on a global LRU replacement algorithm, which will point to the lowest priority
way, either from the SRAM or from the NVM alive ways, as in the reference models used
in [19, 84]. That is, a single LRU priority list is used for all ways in both the SRAM and
alive NVM ways. Further default parameters can be found in the third row of Table 5.1.

LHybrid

Hybrid memory structures need special content management policies to take into account
various trade-offs. Chen et al. classify all the blocks coming to the LLC into loop blocks,
and non-loop blocks [19]. A loop block is a clean block that goes back and forth from the
LLC to the private levels. Keeping these blocks in the NVM part prevents the NVM ways
from suffering from redundant write operations. Therefore, they proposed LHybrid, an
insertion and migration policy with the objective to avoid write-intensive blocks to be
placed in the NVM part in order to reduce the energy consumption [19]. Since LHybrid is a
renowned management policies for hybrid cache designs, HyCSim has built-in support for
it. Every block has a loop block bit that is set to 1 if the block is clean and has completed
one round between the private levels and the LLC. Only the blocks whose loop-block bit is
set are placed in the NVM part. Other non-loop blocks are placed in SRAM.

CMPHybrid

This model supports a compression-aware insertion policy. For compression support, the
simulator needs to receive either the compressed size of each block or the block’s bitstream
to calculate the compressed size. In the current version of HyCSim, we assume that the
block compression information is exported with every LLC write request in the trace file.
However, if different compression schemes are needed to be explored, they can also be
implemented at the HyCSim end. For this, the block’s bitstream should be included in the
trace file.

CMPHybrid implements byte disabling and the following insertion policy. Blocks are
inserted either in SRAM or in NVM ways according to a global LRU replacement algorithm,
similar to the BaseHybrid. However, unlike BaseHybrid, the disabling takes place at the
byte granularity, and CMPHybrid intelligently exploits the fault map information in the
replacement algorithm. NVM frames having a capacity lower than the incoming compressed
block sizes are not considered as replacement candidates.

5.4 Validation

In this section we compare HyCSim with a reference simulator, gem5 extended with the
Ruby memory subsystem, obtaining the simulation time and metrics of interest. For each
selected configuration the reference simulator produces a trace of LLC accesses that will
then be used to feed HyCSim, simulating, in turn, the same or another configuration.

82

Chapter 5, HyCSim: A rapid design space exploration tool for emerging hybrid LLCs

Table 5.1: Baseline system configuration

Cores 4, out-of-order, 3.5 GHz.
L1 Private, 32 KB D, 32 KB I, 4 ways, LRU.
L2 Private, inclusive, 128 KB D, 128 KB I, 16 ways, LRU.

Hybrid Shared, non-inclusive, 8MB, 4 SRAM ways,
LLC 12 NVM ways, LRU. 64B block
Main 1 memory controller, DDR4.

Memory 1 channel, 8GB/channel (1200 MHz)

Table 5.2: Configurations tested

% of frames (F) or
Model LLC size bytes (B) alive Acronym

in the NVM part

BaseHybrid 8MB 100%F BH
75%F BH_75%

16MB 100%F BH_16MB

LHybrid 8MB 100%F LH
75%F LH_75%

16MB 100%F LH_16MB

CMPHybrid 8MB 100%B CH
75%B CH_75%

16MB 100%B CH_16MB

The multiprocessor system modeled consists of 4 cores, each with two private cache
levels (L1 and L2) and an LLC, see Table 5.1. The coherence protocol is a directory-based
MOESI and the on-chip interconnection network, which is a crossbar, connects the private
levels, the LLC and the directory.

The workload consists of ten mixes randomly created from SPEC CPU 2006 benchmarks
[56]. The applications with low LLC activity have not been included to form the mixes [92].

The configurations selected appear in Table 5.2. They correspond to the three models
explained in Section 5.3, BaseHybrid, LHybrid and CMPHybrid. For each model with an
LLC of 8MB, a reduction in the capacity of the NVM part is considered, resulting in 75%
of available frames (BaseHybrid and LHybrid) or bytes (CMPHybrid). Furthermore each
model is tested with a 16 MB LLC with all the NVM capacity available.

5.4.1 Simulation time analysis

Figure 5.2 shows the increase in simulation speed achieved by HyCSim over gem5. Each
bar represents the simulation speedup when running a specific mix of the workload with
all the cache configurations in Table 5.2.

The tool accelerates the simulation by 24×, on average (geometric mean). In addition, we
can see that between Mix4 and Mix8 there is more than 4× difference in the speedup. This
is because different mixes have different computation and memory requirements. HyCSim

83

5.4. Validation

M
ix
1

M
ix
2

M
ix
3

M
ix
4

M
ix
5

M
ix
6

M
ix
7

M
ix
8

M
ix
9

M
ix
10

Ge
om

ea
n

0

20

40

Sp
ee
du

p
Figure 5.2: Simulation speedup compared to gem5.

only simulates the LLC while gem5 simulates the whole system. The simulation of mixes
with more LLC activity is not accelerated as much as simulations of computation-intensive
mixes.

0 20 40 60 80 100
Gem5 hit rate (%)

0

25

50

75

100

H
yC

Si
m

hi
tr
at
e
(%
)

BH
LH

BH_16MB
LH_16MB

BH_75%
LH_75%

CH_75%

(a) Exact traces

0 20 40 60 80 100
Gem5 hit rate (%)

0

20

40

60

80

100
H
yC

Si
m

hi
tr
at
e
(%
)

LH
BH_16MB

LH_16MB
BH_75%

LH_75%
CH_75%

(b) Different traces

Figure 5.3: Fidelity study. Each dot represents the hit rate provided by HyCSim and its
corresponding hit rate in gem5.

5.4.2 Fidelity analysis

In order to validate our HyCSim tool, we compare the simulation output of HyCSim with
that of the full-system simulation of gem5. Each cache configuration of Table 5.2 has been
simulated in the reference simulator, gem5, to obtain the metrics of interest and the trace
of LLC accesses. With the obtained traces, two experiments have been performed to check
the fidelity of the results obtained with HyCSim. First, each configuration was simulated
in HyCSim using the trace generated by gem5 for the same cache configuration. The
comparison with the results obtained by gem5 shows the error committed by inaccuracies in
the implementation of each configuration. Secondly, each configuration has been simulated
in HyCSim using always the trace generated by the base configuration (BH configuration
in Table 5.2). The comparison with the results obtained by gem5 shows the inaccuracy
introduced by the use of a trace generated with a configuration different from the simulated
one.

84

Chapter 5, HyCSim: A rapid design space exploration tool for emerging hybrid LLCs

The comparison in terms of LLC hit rate for the first experiment is shown in Figure 5.3a.
The X-axis represents the hit rate obtained by gem5 and the Y-axis represents the hit rate
obtained by HyCSim. Each point shows the values obtained for a configuration with the
trace of an application mix. If the hit rate provided by HyCSim matches that of gem5, the
dot is plotted over the black dashed line. As we can see, almost all the dots are over the
black line, meaning that HyCSim is able to capture the full LLC functionality accurately.

However, feeding each cache configuration in HyCSim with a trace generated using
the same cache configuration in gem5 is not feasible. It would require modeling and
simulating each configuration in the full-system simulator. This turns out impractical
during design space exploration and it is precisely what we want to avoid with the new
simulator. Therefore, traces are usually extracted using a reference cache configuration in
gem5 and are used to simulate many other different configurations in HyCSim. Figure 5.3b
depicts the hit rate provided by HyCSim when it is fed with traces extracted with a different
LLC model in a cycle accurate simulation. We can see that most of the dots remain at or
near the black line, which means that the tool is accurate enough to provide statistics even
when it is fed with different traces, correctly guiding design decisions. In terms of fidelity,
the data features a Spearman’s correlation factor of 𝜌 = 0.968.

5.4.3 Proof of concept

In this section, we present a proof of concept of our simulator. Specifically, we use HyCSim
to obtain the number of bytes written to the NVM frames of a hybrid LLC under the three
content management policies presented in Section 5.3.3. To complete the analysis, we
model a configuration that uses the LHybrid insertion and migration policy and also uses
compression to reduce the number of bytes written in the NVM part. All models use an 8
MB cache with all NVM frames available.

Figure 5.4 shows the number of bytes written to NVM frames using each management
policy normalized (in logarithmic scale) to the base configuration (BH in Table 5.2). Data
are shown for each workload mix and the average for all of them. LHybrid reduces writes to
NVM frames by 95.7% on average, with a range between 87.2% and 99.7%. Data compression
manages to reduce writes by 41.3% over the base system and 44.7% over LHybrid on average.
This preliminary analysis suggests that data compression can be an effective technique to
reduce the number of writes on NVM frames even in a cache that already incorporates
other techniques with the same objective as in the case of LHybrid.

5.5 Concluding remarks

This chapter introduced HyCSim, a tool for rapid design space exploration of hybrid LLCs.
Compared to the cycle-accurate full-system simulator gem5, HyCSim reduces the simulation
time by 24× (geometric mean). It implements state-of-the-art LLCs content management
policies and a disabling manager that allows disabling defective NVM regions at different
granularities. HyCSim is trace-driven and uses a generic trace format including cache
request type, cache block address and compression information, and the generating core ID.
The sources of the simulator along with configuration files are available open source [35].

85

5.5. Concluding remarks

M
ix
1

M
ix
2

M
ix
3

M
ix
4

M
ix
5

M
ix
6

M
ix
7

M
ix
8

M
ix
9

M
ix
10

Av
er
ag
e

100

102

N
or
m
al
iz
ed

BW
(%
)

BH CH LH CLH

Figure 5.4: Bytes written (BW) to NVM frames normalized to BaseHybrid.

With ten randommixes of the SPEC 2006 benchmarks, we demonstrate that for the same
cache model, HyCSim generates the same output statistics as gem5. For different cache
models, our fidelity analysis shows acceptable variations in the outputs of the simulations.
Note that, similar to any other trace-driven tool, this may not be the case if entirely
different cache models are simulated. For instance, a hybrid LLC model placed in a different
inclusive/exclusive hierarchy should need traces extracted from such a hierarchy. HyCSim
can be used to investigate different cache designs by changing design parameters. As an
example and proof of concept, we evaluate the content management policies in terms of
number of bytes written to the NVM part of a hybrid cache. More important, HyCSim
helped us with the design space exploration of the insertion policies proposed in Chapter 3.
More specifically, the hit rate and bytes written figures of Section 3.4 are extracted from
this tool.

86

Part III

Compute-in-memory using NVMs

We ain’t gotta dream no more.

Stringer Bell, The Wire.

6
Extending MNEMOSENE, an NVM-based

compute-in-memory general purpose
architecture

NVMs have shown their potential within the compute-in-memory (CiM) paradigm due to
their memristive properties. This chapter optimizes the MNEMOSENE architecture, a CiM
tile design integrating computation and storage for increased efficiency. We identify and
address bottlenecks in the Row Data (RD) buffer that cause losses in performance. Our pro-
posed approach includes mitigating these buffering bottlenecks and extending MNEMOSENE’s
single-tile design to a multi-tile configuration for improved parallel processing. The proposal
is validated through comprehensive analyses exploring the mapping of diverse neural net-
works evaluated on CiM crossbar arrays based on several NVM technologies. These proposed
enhancements lead up to 55% reduction in execution time compared to the original single-tile
architecture for any general matrix multiplication (GEMM) operation. Our evaluation shows
that while ReRAM and PCM offer notable energy advantages, their integration with scaled
CMOS is limited, which leads to voltage-gate assisted SOT (VGSOT)-MRAM emerging as a
promising alternative, due to its good balance between energy efficiency and superior integra-
tion capabilities. The VGSOT-MRAM crossbar arrays provide 12×, 49×, and 346× more energy
efficiency than PCM, ReRAM, and STT-MRAM ones, respectively. It translates, on average for
the considered workload, in 1.5×, 3×, and 14.5× better energy efficiency of the entire system.

89

6.1. Introduction

6.1 Introduction

In the pursuit of improving the energy efficiency and computational prowess of future
generations of computers, the focus has steadily shifted towards compute-in-memory
paradigms. Contrasting the traditional von Neumann architecture that segregates com-
puting and memory units, in-memory computing seamlessly integrates these units to
yield significant energy savings. A vast body of research has already been undertaken on
the design of memory arrays and their peripheral circuitry, with various emerging NVM
technologies, such as ReRAM, PCM, STT-MRAM or VGSOT-MRAM [6, 68, 114, 138].

One of the distinctive architectures in this domain is the compute-in-memory-periphery
(CiM-P) tile [134,135], where storage and computation are performed in the analog memory
array, with the resultant data delivered in the digital periphery. This approach not only
promotes energy efficiency but also presents a more streamlined operational model.

The MNEMOSENE CiM architecture is an epitome of this approach, featuring a NVM
array and peripheral circuitry with a defined ISA for bridging higher-level programming
languages to the underlying circuit designs [134, 135]. However, as with all leading-edge
architectures, their first implementations may present large margins for improvement. This
chapter focuses on the shortcomings of the current design, particularly in relation to the
concept of a single-tile implementation and the limitations of memory transactions with
the internal buffers.

This chapter’s key contribution is threefold: We first propose to revisit the current
internal buffering in the MNEMOSENE tile architecture to address the bottleneck caused
by expensive system memory requests. To this end, we suggest implementing a double
input buffer to decouple the data load to the tile from the analog computation, alleviating
such a bottleneck. This optimization aims at reducing performance overheads and enhance
energy efficiency.

Secondly, we extend the MNEMOSENE single-tile design towards a multi-tile microar-
chitecture. To this end, we suggest using a shared scratchpad memory and an efficient
interconnection network. We propose a co-design procedure that optimally and simultane-
ously sizes the scratchpad memory and the interconnection network, further mitigating
unnecessary delays. This co-design ensures efficient data retrieval, and enables seamless
communication across multiple tiles, thus increasing the computational capabilities of the
overall ensemble.

Finally, to validate the proposal, we perform a comprehensive analysis of both small and
large CNNs, ranging from TinyML and AnalogNet to more extensive networks like Nasnet
and Resnet. The performance of these CNNs under the enhancedMNEMOSENE architecture
provide valuable insights into the potential of our proposed modifications. Finally, we
perform an extensive evaluation using in-house MRAM technologies, such as STT-MRAM
and VGSOT-MRAM, and state-of-the-art PCM and ReRAM. This evaluation offers a broader
perspective on the implications of our proposed enhancements. The comprehensive analysis
underscores the effectiveness of faster, low-power NVM technologies such as VGSOT-
MRAM for energy-efficient CiM computations. The suitability of VGSOT-MRAM stems
from its ability to utilize reduced currents during inference time, a characteristic attributed
to its higher resistances.

90

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

The subsequent sections of this chapter delve into the specifics of the proposed ex-
tensions to the MNEMOSENE architecture, followed by the analysis of neural network
performance and the comprehensive evaluation of the improved architecture under different
NVM technologies.

6.2 Background

In the quest for more energy efficient and high performance computing, the CiM paradigm
using NVMs has emerged as a promising prospect. This paradigm exploits the memristive
properties inherent in NVM technologies. These memristive properties provide NVMs with
the ability to program the resistance of the cells, that is, the electrical resistance of NVM
cells changes in response to applied voltage or current in order to code numerical values.

6.2.1 Analog computing-in-memory using NVMs

The NVM crossbar array is the backbone of the analog CiM paradigm. NVM cells are
analogously conformed in an array fashion as in traditional memory arrays. Integer values
are coded as resistance values in one or more NVM cells within the crossbar array. By
properly sensing the cells, it is possible to perform from Boolean operations like bitwise
AND, OR, XOR, etc. to simple arithmetic operations as additions or dot products.

The dot product is the intrinsic operation in a GEMM, which is one of the pivotal
tasks in ML workloads such as CNNs. Figure 6.1 shows a simple example of an analog dot
product operation. Two NVM cells (or resistors) are placed in two different rows and share
the same column. Two integer values are coded in the magnitude of the resistance of the
two resistors, 𝑅1 and 𝑅2. The other two integers taking part in the dot product are coded
in the form of voltages, 𝑉 1 and 𝑉 2. These voltages are fed into the crossbar array through
the Digital-to-analog converters (DACs). The magnitude of the current that each row is
feeding into the column is proportional to the product of the integers coded as 𝑅1 and 𝑉 1
for the first row, and as 𝑅2 and 𝑉 2 for the second row. The result of the dot product is
proportional to the sum of the currents fed by both rows, 𝐼1 + 𝐼2, which will be sensed out
and decoded by an analog-to-digital converter (ADC) at the bottom of the column.

V1

V2

R1

R2

I1=V1/R1

I2=V2/R2

I=I1+I2

Figure 6.1: Analog dot product operation scheme.

91

6.3. Enhancing the MNEMOSENE Tile Architecture

Next we explain a more complex example, Figure 6.2a shows the mapping of a GEMM
operation in such a crossbar array. The multiplication ofMatrix A andMatrix B is performed
by first coding Matrix B as resistance values, which are written in the crossbar array. Then,
Matrix A is transposed and fed into the crossbar array as voltages through the DACs row
by row. Finally, the result, Matrix C, is collected through the ADCs in a massively parallel
fashion row by row.

x

Matrix C

=

Matrix A Matrix B

Matrix B

Matrix C

Matrix A

(a) Mapping a GEMM

a b c

d e f

g h i

j k l

m n ñ

o p q

r s t

u v w

x y z

x=

r = 20(22(a0j2+b0m2+c0o2) + 2(a0j1+b0m1+c0o1) + (a0j0+b0m0+c0o0)) +

 21(22(a1j2+b1m2+c1o2) + 2(a1j1+b1m1+c1o1) + (a1j0+b1m0+c1o0)) +

 22(22(a2j2+b2m2+c2o2) + 2(a2j1+b2m1+c2o1) + (a2j0+b2m0+c2o0)) +

j2 j1 j0

m2 m1 m0

o2 o1 o0

a2 a1 a0

b2 b1 b0

c2 c1 c0

k2 l0

n2 ñ0

p2 q0

(b) 3-bit datatype size GEMM example

Figure 6.2: Mapping of a GEMM to a NVM crossbar array (a). Example of a 3-bit datatype
size 3 × 3 matrix-matrix multiplication in the crossbar (b).

To be more specific, we now assume 3 × 3 matrices whose elements are 3-bit unsigned
integers. Figure 6.2b details the computation of the first element of Matrix C, 𝑟 in this
GEMM example. Let us assume that, as in the MNEMOSENE framework, each NVM cell
codes one bit, either in high or low resistance state (HRS/LRS), and Matrix B is already
written in the crossbar. Elements 𝑗 ,𝑚, and 𝑜 are placed in subsequent rows while their
corresponding bits, 2, 1, and 0 occupy adjacent columns. The elements of Matrix A, 𝑎, 𝑏,
and 𝑐 are shifted into the crossbar through the voltage drivers bit by bit. The result of
every partial dot product is sampled out through the ADCs and gathered together by a
digital periphery. This periphery performs a light post-processing to take into account
the weight of each bit in the product. The partial dot products are highlighted with the
corresponding colour to the one of the column that has generated them, f.i., orange dot
products are generated by the second column.

Note that in parallel with the computation of 𝑟 , the computation of 𝑠 and 𝑡 is also taking
place thanks to the storage of the elements (𝑘 , 𝑛, 𝑝 , 𝑙 , ñ, 𝑞) in the rest of the crossbar array.

6.3 Enhancing the MNEMOSENE Tile Architecture

Many studies in CiM have focused on developing standalone accelerators tailored to address
specific computational tasks. GEMMs are the dominant operations in today’s Machine

92

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

Learning workloads. From standard CNN to large transformers networks, the most common
layers are accelerated by its conversion to GEMM operations [138, 140].

However, the number of CiM architectures designed to seamlessly integrate with
general-purpose multiprocessor systems remains relatively limited. One notable project
that exemplifies this integration is MNEMOSENE. In their work, Zahedi et al. present a
programmable single-tile architecture alongside an ISA and a compiler that aims to establish
a standardized simulation framework for CiM designs [134,135]. This framework facilitates
the creation of a flexible interface between the CiM tile and the broader system, enabling
effortless interaction and integration within a general-purpose multiprocessor environment.
The defined ISA lies at the core of this integration and aims to enhance the flexibility and
generality of the hardware by shifting the complexity towards the compiler.

Note that in this chapter of the thesis the word "architecture" will be used repeatedly
to denote what has been called "microarchitecture" previously in this dissertation. This is
due to the collaboration with researchers close to MNEMOSENE’s pioneering work, and
therefore to the adoption of their terminology.

6.3.1 Original single-tile architecture

We now show the interactions between the main components of a single CiM-tile ar-
chitecture. More details on how the different instructions work and what their circuit
specifications are can be found in [134, 135].

Figure 6.3a illustrates the original MNEMOSENE single-tile architecture able to run a
GEMM. One matrix is stored in the memristive crossbar array through theWrite Data (WD)
buffer while the other one is transferred row by row to the Row Data (RD) buffer before
the analog computation can take place.

A row computation is pipelined in two stages, Stage 1 on top and Stage 2 below.
Aside from these stages, the tile controller plays a vital role in receiving nano-instructions,
decoding them into various control signals, and efficiently scheduling their execution across
each stage. In Stage 1, the RD buffer serves as the recipient for the data elements, which act
as inputs for each crossbar row. Then, the incoming elements are shifted one bit at a time
into the DACs to perform the analog computation in the memristive crossbar array. The
crossbar outputs are then collected from each column by the Sample-and-Hold (S&Hs) units.
In Stage 2, multiple columns share a single ADC. To handle this scenario, the partial results
from each column are sampled by the ADC in a time-multiplexed manner. Following this,
the addition units combine these partial results to generate the final outcomes, which are
then stored in the output buffer.

6.3.2 Overcoming the RD buffer limitation

Unfortunately, bringing the data to the RD buffer imposes significant overhead in the
original single-tile architecture. The tile is required to wait for the system to refill the
RD buffer for each subsequent matrix row since the RD buffer is written byte to byte.
Consequently, the RD buffer may inadvertently cause delays in standard workloads, thereby
hindering the overall efficacy of the compute-in-memory operations.

93

6.3. Enhancing the MNEMOSENE Tile Architecture

(a) Original single-tile architecture (b) Proposed single-tile architecture

R
ea

d/
In

p
ut

 D
A

C
s

Write DACs

S&Hs

Mux

ADC ADC ADC

Addition Units

Write Data buffer

R
ow

 D
at

a
b
uff

er

DoS

Column
select

CSR

Stage 1

DoA

Tile
Controller

Stage 2

Instructions

Output buffer

IADD

In
p

u
t

b
u

ff
er

In
te

r-
ti

le
 B

u
s

1
/2

In
te

r-
ti

le
 B

u
s

1
/2

R
ea

d/
In

p
ut

 D
A

C
s

Write DACs

S&Hs

Mux

ADC ADC ADC

Addition Units

Write Data buffer

R
ow

 D
at

a
b
uff

er

DoS

Column
select

CSR

Stage 1

DoA

Tile
Controller

Stage 2

Instructions

Output buffer

IADD

S
ys

te
m

 B
u

s

Figure 6.3: CiM intra-tile architecture. (a) MNEMOSENE original architecture and (b) double-
buffer proposal.

Figure 6.4a illustrates the timing diagram of computing the first row of 8-bit elements
GEMM. The timing depicts the breakdown of the execution time among the different
components. In the original configuration, the RD buffer has one entry per crossbar row (𝑛
rows in the figure) and every entry is 8 bits wide.

Filling the RD buffer consumes one cycle per buffer entry, while the full execution of the
8-bit element requires a delay that is dominated by the ADC conversion. On a permanent
basis, transferring the following row to the RD buffer imposes a significant latency overhead
that could be overlapped with the analog computation (AC) of the previous row.

Therefore, the goal is to hide the RD buffer latency penalty by overlapping it with
the analog computation. To this end, we propose to add an input buffer (IB) of the same
size of the RD buffer, see Figure 6.3b, to decouple the data load to the tile from Stage 1.
Thus, while the analog computation of the first row is taking place, the second row is being
fetched into the IB in the background, see 𝐴𝐶0 and 𝐼𝐵𝐹1 in Figure 6.4b. While the analog
computation of the current row, 𝐴𝐶𝑖 , is finishing, the next row, already loaded in the IB,
is copied to the RD buffer. Assuming the IB can be completely filled during the analog
computation of the previous element, the tile pipeline execution is now dominated by Stage
2. In Section 6.4.2 we will further investigate how the rest of the multi-tile components are
sized and parameterized so that the IB is seamlessly integrated and can be completely filled
in the background to avoid any additional overheads.

94

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

(b) Decoupling the data load to the tile from the analog computation.

IBF0

Stage 1

Stage 2

AC0

ADC0

Complete processing of one input matrix row

ADC1 ADC2

Input IBF1

AC1

IBF2

AC2

IBF3

ADC3

AC3

IBF4

ADC4

AC4

IBF5

(a) Original MNEMOSENE single-tile architecture.

RDBF0

0 1 n-1
n = number of crossbar rows

0 1 0 1 n-1

Time

Stage 1

Stage 2

AC0 RDBF1

ADC0

AC1 RDBF2 AC2

Complete processing of one input matrix row

ADC1 ADC2RD buffer penalty RD buffer penalty

n-1

0 1 7 0 1 7 0 1 7 0 1 7 0 1 7

0 1 7

0 1 7

0 1 7 0 1 7 0 1 7 0 1 7

0 1 7 0 1 7 0 1 7

0 1 7 0 1 7

0 1 7

IB to
RDB

IB to
RDB

IB to
RDB

IB to
RDB

IB to
RDB

IB to
RDB

Figure 6.4: Timing diagram of multiplying the first matrix row in both (a) the original
single-tile and (b) the proposed optimization. Colors match the components of Figure 6.3. RDBF
stands for RD buffer fill, AC for analog computation, ADC for ADC conversion and addition
units, and IBF for IB fill. The penalty imposed by the RD buffer is highlighted in red in (a).

Our experiments showed that the double input buffer approach leads up to 55% re-
duction in execution time for a single GEMM compared to the original MNEMOSENE tile
architecture.

6.4 Enabling a Multi-Tile Architecture

6.4.1 Multi-tile architecture

A multi-tile architecture is essential in CiM operations due to inherent scalability and
performance constraints associated with single-tile configurations. As computational tasks
grow in complexity, the capacity of a single tile to effectively address these requirements
diminishes. Transitioning to a multi-tile structure provides the system with the capability
to distribute computational tasks across multiple tiles, facilitating parallel processing and
augmenting overall performance.

Figure 6.5a depicts the proposed multi-tile architecture. It consists of numerous tiles,
logically placed in a two-dimensional fashion, two inter-tile buses and two scratchpad
memories. Each bus is connected to a scratchpad memory, allowing decoupling the read
and write flows of the tiles. The scratchpad memory serves both as intermediary with the
outer system and to enable tile-to-tile communication.

Figure 6.5b shows how a CNN model is mapped into such a multi-tile architecture.
The convolutions, which are the pivotal computational task in CNNs, are turned into
GEMM operations by means of the image to column (im2col) transformation [140]. The
ever-growing dimensions of these matrices hinder them to fit into a single tile. Weight
matrices are thereby broken down into chunks and distributed across multiple rows and/or
columns of tiles 1 . Input matrices are also split up and forwarded to the tiles matching
the corresponding weight chunks. While the analog computation takes place, a consistent
data stream flows from one scratchpad memory to the IB of the tiles 2 , and reciprocally,
from the tile output buffer back to the other scratchpad memory 3 . In this way, the partial
results from multiple tiles are aggregated in the additional logic conforming the complete

95

6.4. Enabling a Multi-Tile Architecture

(a) Proposed multi-tile architecture
(b) Mapping a CNN model

 to a multi-tile architecture

Inter-tile bus 1

Inter-tile bus 2

Scratchpad Memory 1

Tile11

Scratchpad Memory 2

Tile21

Tilen1

Tile12

Tile22

Tilen2

Tile1m

Tile2m

Tilenm

Additional
Logic

Additional
Logic

Additional
Logic

2

3

4

S
ys

te
m

 B
us

CNN model example
1×56×56×256

1×56×56×64

Conv2D

filter〈64×1×1×256〉
bias〈64〉

Relu

Conv2D

filter〈64×3×3×64〉
bias〈64〉

Relu

1
im2col

im2col instantiation

*

Conv2d
A1 A2 A3

B3

C3

A1 A2 A3

B1 B2 B3

C1 C2 C3

X1 X2
X1

Y2
X2

Y1 Y2

A1 A2 B1A1 A2 B1 B2 B2

x

GEMM

X1

X2

Y1

X1

X2

Y1

Y2

Y2

Tile11 Tile12

Tile21 Tile22

Figure 6.5: CiM multi-tile architecture. (a) Proposed multi-tile organization and (b) mapping
a CNN model to the multi-tile architecture. We highlight how after a CNN is transformed
to be computed as a GEMM using im2col, the different filters in a layer are distributed into
a group of tiles. Independent layers access separated areas on the two scratchpad memories,
pipelining the read/writes from/to the buffered data.

result of a GEMM. It is essential to note that the output matrix of one layer may become the
input matrix of the subsequent layer 4 . Hence, certain layers read from the top-positioned
scratchpad and write to the one below, while the adjacent layers operate vice versa.

6.4.2 Properly sizing scratchpads and interconnections

To overcome the limitations outlined in Section 6.3.2, it is crucial to optimally size the
scratchpad memory and the buses, preventing additional overheads during the population
of the tiles’ IBs. The architectural components delineated in the previous sections are
predominantly dependent on the workload. However, the flexibility of the MNEMOSENE
architecture enables comprehensive parameterization, allowing for optimal customization
for the task at hand. Experiments were conducted to size the proposed components
appropriately, validating the design’s feasibility.

96

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

To accurately size the scratchpad memory, focus is placed on identifying the CNN layer
with the largest memory footprint. This evaluation encompasses not only the dimensions
of the input and output matrices, but also takes into account the input data of concurrent
residual connectionswithin the CNN. On the other hand, to avoid additional communication
overheads between the scratchpad and the tiles, it is essential to ensure that the inter-
tile buses can transmit any matrix row from the scratchpad to the tiles within the time
frame in which the analog computation (𝐴𝐶𝑖) of the previous row takes place, as depicted
in Figure 6.4b. Therefore, the bus width must be properly sized to accommodate the
transmission of the matrix row of maximum size within this time frame; note that excessive
𝐼𝐵𝐹𝑖 times in Figure 6.4b would lead to undesired delays. Section 6.5.1 shows, for the
evaluated workloads, the optimal sizing values we obtained for both scratchpad memory
and buses.

6.5 Evaluation

6.5.1 Experimental Setup

Experiments utilized the MNEMOSENE simulator [134,135] with a 256x256 analog crossbar
array per tile, and 8-bit datatype size. All NVM technologies, ReRAM [53], PCM [76], STT-
MRAM [47], and VGSOT-MRAM, are configured in dual-state memory cells; their most
important figures are provided in Table 6.1. In the present experiments, the deployment
of a weight involves one column per weight bit. Our in-house STT-MRAM devices are
accompanied by a projected VGSOT-MRAM device simulation that, making use of a higher
voltage-controlledmagnetic anisotropy (VCMA) coefficient, relaxes the critical write current
and enables 4-pillar bitcells. DACs, S&Hs, and ADCs specifications, as well as a 1GHz
operating frequency, matched the original MNEMOSENE papers [134, 135]. Input and RD
buffers were modeled with Nandgate 15nm technology [86].

Table 6.1: NVM technologies specification.

ReRAM PCM STT-MRAM VGSOT-MRAM
Low Resistance State 5 kΩ 20 kΩ 6.2 kΩ 824.1 kΩ
High Resistance State 1 MΩ 10 MΩ 15 kΩ 2.1 MΩ

Memory Read Voltage 0.2 V 0.2 V 0.5 V 0.55 V
Memory Read Time 10 ns 10 ns 10 ns 3 ns

The workload comprised two small AnalogNets CNN models (keyword spotting (KWS)
and visual wake words (VWW)) [138], and two Tensorflow CNN models (Nasnet [141],
Resnet50 [54]). Notably, Nasnet presented the layer with the largest memory footprint,
reaching 7.3 MB. To accommodate memory requirements, 2 scratchpad memories of 4 MB
each were designed, consisting of eight 512 KB banks each, modeled using an in-house
STT-MRAM data memory featuring 22nm technology node, considering latency and energy
for comprehensive CNN inference evaluation. For efficient data transfer between tiles and
the scratchpad, a 48-byte bus width sufficed.

97

6.5. Evaluation

6.5.2 Experimental Results

Tables 6.2 and 6.3 summarizes the results after mapping one inference of the different CNN
models to our multi-tile architecture. Looking from a workload perspective, and regarding
the memory footprint of the models, the small AnalogNet models use at most 405 KB of
the scratchpad memory, 5% of its total size. Larger models thereby have larger memory
requirements, with 2.8 and 7.3 MB for Resnet50 and Nasnet, respectively. One complete
inference is performed and the latency and energy results are reported. The tile execution is
dominated by Stage 2, see Figure 6.4b, so all implementations of the same CNN, regardless
of the NVM technology, report the same expected latency. While small models complete
one inference within the range of 1 ms, the larger ones take up to 39.5 ms to finish it.

Table 6.2: Analyzed CNN models, required number of tiles, computational utilization, and
memory footprint.

CNN model Model size Required Computational Maximum
(#Parameters) tiles utilization (%) footprint

KWS Small 46 (7×7) 79.8 136.5 kB
VWW Small 75 (9×9) 57.6 405.0 kB
Nasnet Medium (5.3M) 6364 (80×80) 8.3 7.3 MB
Resnet50 Large (25.6M) 2966 (55×55) 97.6 2.8 MB

Table 6.3: Latency and energy per inference for the analyzed CNN models.

CNN model Latency of a Total energy of a single inference
single inference ReRAM PCM STT-MRAM VGSOT-MRAM

KWS 185.8 𝜇s 84.3 𝜇J 41.4 𝜇J 431.5 𝜇J 28.2 𝜇J
VWW 1.3 ms 85.3 𝜇J 45.6 𝜇J 406.1 𝜇J 33.4 𝜇J
Nasnet 39.5 ms 11.0 mJ 5.3 mJ 56.7 mJ 3.6 mJ
Resnet50 10.9 ms 7.5 mJ 3.8 mJ 37.8 mJ 2.6 mJ

Regarding energy, and due to the different conductances of each NVM technology, the
crossbar arrays report varying energy consumption figures for the same CNN model. In
particular, for our in-house NVM technologies, STT-MRAM provides ∼7× and ∼28× higher
energy consumption than ReRAM and PCM, respectively. Despite these higher power
consumption, the great advantage of STT-MRAM lies in its high integration capabilities
with scaled nodes [47]. As a successful tradeoff, VGSOT-MRAM combining reduced area
and lower energy requirements, becomes the most promising technology compared to
other NVMs. Based on our in-house device projections, the VGSOT-MRAM crossbar arrays
are 12×, 49×, and 346× more energy efficient than the PCM, ReRAM, and STT-MRAM
ones, respectively. It translates, on average for the considered CNN models, in 1.5×, 3×,
and 14.5× better energy efficiency of the entire system.

98

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

Figure 6.6 shows the energy per inference breakdown, for the different CNN models,
separating the contribution of the NVM crossbar array, the ADC, the RD buffer and the
scratchpad memory. As can be seen, the energy numbers differ significantly between
CNN models. For instance, for PCM and ReRAM, smaller analog CiM specific CNN models
operate in the range of 40 to 400 𝜇J, while standard larger models (NasNet and Resnet50)
consume 2 to 60 mJ per inference. Our research highlights that AnalogNet workloads, opti-
mized for analog CiM accelerators, demonstrated a better utilization of tile resources versus
peripheral areas and buffers. Therefore, we can highlight how optimizing its deployment
on analog hardware via Network-Architecture-Search (NAS) not only improved neural
network accuracy [138], but also significantly boosted energy efficiency, underscoring the
value of NAS for these specific accelerators.

AnalogNet
KWS

AnalogNet
VWW

CNN model

0

20

40

60

80

100

E
n

er
gy

/
in

fe
re

n
ce

[u
J
]

432 406

ReRAM

ADC

PCM

RD buffer

STT-MRAM

Scratchpad

VGSOT

(a) Small CNN models

Nasnet Resnet

CNN model

0

2

4

6

8

10

12
E

n
er

g
y
/
in

fe
re

n
ce

[m
J
]

57 38

ReRAM

ADC

PCM

RD buffer

STT-MRAM

Scratchpad

VGSOT

(b) Large CNN models

Figure 6.6: Energy/inference (in mJ) breakdown of the different architectural components for
the larger CNN models, evaluating distinct NVM technologies.

The varying energy efficiency across different technologies reveals a significant contrast
in the energy consumption of periphery and scratchpad components. On the one hand,
the energy consumed by these assisting components is minimal compared to the overall
energy for some technologies, see ADC + I/O Buffers + Scratchpad energy in Figure 6.6. For
instance, for STT-MRAM, the energy of the assisting components accounts for at most 7.9%
of the overall one for VWW. On the other hand, for VGSOT-MRAM, these components
emerge as the primary energy factor, up to 96.8% of the overall one for VWW. Further
improving the energy efficiency of such low power technologies will involve special efforts
to improve the peripheral components as well.

Scratchpad STT-MRAM vs. SRAM

In order to assess the energy efficiency of the scratchpad memory built using STT-MRAM
technology, the proposed STT-MRAM scratchpad is compared against an analogous one,
implemented with SRAM technology. For this, the 22 nm SRAM memory model from
CACTI [90] is used. In addition, it is verified that both scratchpad memories meet the
requirements of the multi tile architecture by checking that undesired delays are not
introduced during the inference execution of the considered CNN models.

Figure 6.7 shows the normalized energy consumption of the SRAM scratchpad versus
the STT-MRAM one; the energy is broken down into leakage and dynamic energy. The

99

6.6. Concluding remarks

STT-MRAM scratchpad is way more energy efficient than the SRAM one, depending on
the CNN model; up to 57.8× more energy efficient for Nasnet. The reason for this is the
higher static power of SRAM, which accounts for most of the overall power consumption.

AnalogNet
KWS

AnalogNet
VWW

Nasnet Resnet

CNN model

100

101

102
N

or
m

al
iz

ed
en

er
gy

p
er

in
fe

re
n

ce

19.9x

51.7x 57.8x

17.7x

STT-MRAM Dynamic

STT-MRAM Leakage

SRAM Dynamic

SRAM Leakage

Figure 6.7: Normalized energy (in log scale) per inference for each CNNmodel. The scratchpad
memory is implemented using SRAM technology versus the original one, implemented using
STT-MRAM one. The energy is normalized to that of the STT-MRAM scratchapd and, in turn,
broken down into dynamic and leakage energy.

6.5.3 Depthwise-Convolution Analog vs. Digital

During this research and in line with findings from previous studies [138], limitations with
depthwise convolutions were encountered. Such bottlenecks are critically notable when
NasNet was deployed on the multi-tile architecture. Compared to Resnet50, which has
5× as many parameters (see Table 6.2), Nasnet requires more than twice as many tiles to
be deployed, but reduces significantly the computation utilization of the arrays (8.3% in
NasNet versus 97.6% in Resnet50). Out of the scope of this work, but highlighted by it, our
results underscore a crucial need to adapt the NAS algorithm to the specific requirements
and constraints of analog tile-based systems [138].

6.6 Concluding remarks

In this study, we have effectively addressed the primary bottlenecks in the MNEMOSENE
architecture. By enhancing the original framework, we developed a robust multi-tile ar-
chitecture capable of improved parallel processing and optimized buffering. Moreover,
we successfully refined the communication between the tiles and the scratchpads, provid-
ing efficient data handling and significant performance enhancement. The architectural
enhancements served to ensure efficient computation and storage integration, thereby
propelling the MNEMOSENE design forward.

100

Chapter 6, Extending MNEMOSENE, an NVM-based compute-in-memory general purpose
architecture

In addition, a thorough evaluation involving a wide range of neural networks and
four different NVM technologies was conducted. These evaluations revealed a marked
discrepancy in energy consumption across the different technologies. Amidst these, VGSOT-
MRAM emerged as a promising compromise. It not only offers reduced area and lower
energy requirements, but also presents a high degree of integration and speed, thus standing
superior to STT-MRAM, and to both ReRAM and PCM. This finding accentuates VGSOT-
MRAM’s potential to effectively bridge the gap between computational efficiency and
energy conservation in future technological advancements.

101

Conclusions and future work

Wars end.

Detective Ellis Carter, The Wire.

7
Conclusions and future work

This thesis has sought to further pave the way for the incorporation of NVM technologies
down to the cache memory hierarchy. In this sense, this chapter sums up the conclusions of this
dissertation and suggests new research lines to push NVM technologies towards commercial
memory systems.

7.1 Conclusions

The low endurance to repeated write operations is one of the main stumbling blocks
preventing NVM technologies from being implemented in large-scale computer systems.
The main contributions of this dissertation are aimed to fight against this limitation with
the objective of designing long-lasting and fault-tolerant NVM-based caches.

The first part of this dissertation proposes microarchitectural solutions to optimize
NVM-based LLCs for both performance and lifetime. First, we introduce L2C2, a new
fault-tolerant NV-LLC design that combines fine-grain disabling (at byte granularity), data
compression and an intra-frame wear-leveling. L2C2 leverages data compression not only
to reduce the bytes written to the data array but to also allow partially defective frames to
hold compressed blocks. The VLSI implementation of the block rearrangement circuitry
shows that combining the intra-frame wear-leveling and the fine-grain disabling is feasible.
This synergy enables to evenly distribute the write wear across the remaining non-faulty
bytes within a frame. Besides, we propose L2C2+N, the redundant version of L2C2. Our

105

7.1. Conclusions

mechanisms are transparent to the N-byte extension of the cache frames; distributing
the write wear across the redundant bytes as well. The results show that L2C2+N is able
to further extend the time during which the NV-LLC remains with near-peak nominal
performance.

L2C2 designs can be augmented by incorporating SRAM in the data array, turning the
original L2C2 architecture into a traditional hybrid LLC in which the NVM part of the data
array is provided with the aforementioned fault-tolerant mechanisms. Existing hybrid
LLC proposals particularly optimize for LLC lifetime by conservatively inserting cache
blocks into the NVM part. These lifetime-focused optimizations significantly reduce the
LLC performance. In this regard, Chapter 3 leverages L2C2 to address these performance
and lifetime disparities seen in the state-of-the-art. Specifically, we propose new insertion
policies for hybrid LLCs that optimize for both performance and lifetime. Our solution
steers cache blocks towards either the SRAM or the NVM part considering the read/write-
reuse and compression properties of the blocks. Besides, a threshold-based mechanism
tunes the write-traffic to the NVM part by allowing more or less blocks to be allocated.
This mechanism successfully captures the runtime behaviour of the workload and allows
to further balance the tradeoff between performance and lifetime of the hybrid LLC.

The second part of this dissertation lays the methodological groundwork. First, Chap-
ter 4 introduces a procedure that allows to forecast in detail the temporal evolution of
NVM-based LLCs whose effective capacity gets lessened due to write operations. This
procedure combines simulation phases, in which figures of interest (write rate to NVM
frames, system IPC, etc.) are collected, with prediction phases that compute the next NVM
bitcells that become faulty due to write operations. This procedure is comprehensively
validated and effective to identify the limitations of state-of-the-art proposals in terms of
lifetime and performance. Moreover, we believe that knowing the evolution of the memory
capacity or the system performance could be pivotal for manufacturers to be confident in
guaranteeing certain performance of their memory devices.

Besides, Chapter 5 introduces HyCSim, a trace-driven simulator that allowed us to
do a fast design space exploration of hybrid LLCs insertion policies. HyCSim is open
source, includes state-of-the-art insertion policies and is provided with the fault-tolerant
mechanisms proposed in this thesis.

The third part of this dissertation shows the potential of NVM technologies in the CiM
paradigm. In order to reduce the data movement, simple arithmetic operations can be
performed directly within the memory array in a very efficient way. MNEMOSENE has
been chosen as it is a fair example of a general-purpose CiM architecture based on a crossbar
array of resistive NVM cells. By defining an abstract ISA, it can bridge the gap between high-
level programming languages and the design of the underlying circuits. We showed that
there is room for improvement in the original single-tile MNEMOSENE microarchitecture
by identifying some buffering bottlenecks. Besides, a single-tile microarchitecture has
inherent limitations in terms of scalability. Therefore, we scaled out the original single-tile
by designing a multi-tile microarchitecture. This design comprises both a shared scratchpad
memory and a communication framework to enable a seamless communication between
tiles. Our comprehensive evaluation highlights the effectiveness of our proposals and the
potential of VGSOT-MRAM technology, outperforming other NVMs in terms of energy
efficiency for the selected CNN models.

106

Chapter 6, Conclusions and future work

7.2 Future work

This dissertation unveils future research to keep on pushing NVM technologies down in
the memory hierarchy.

We developed a novel forecasting procedure that enables the evaluation and explo-
ration of different figures of merit of both the cache and the system. This forecasting
procedure assumes a generic approach in which the endurance of NVM bitcells follow a
normal distribution of mean 𝜇 = 10𝑘 writes, see Section 1.1.4, but these distributions may
vary significantly between technologies. Besides, asymmetry of the different switching
transitions, i.e. 0 → 0, 0 → 1, 1 → 0, 1 → 1, might have different implications depending
on the NVM technology [15]. Therefore, we believe that the forecasting procedure can be
extended by adding the particularities of each technology.

Furthermore, the forecasting procedure enables a holistic evaluation of microarchi-
tectural solutions and their potential synergies when addressing the NVM endurance
challenge from different perspectives. For instance, it allows to delve into the interplays
among sophisticated ECC mechanisms, the refinement of memory write access patterns,
the cache replacement mechanism, the disabling granularity of defective memory regions,
etc. Although these approaches seem orthogonal, their combined analysis may lead to the
discovery of novel designs and optimization strategies.

NVMs within the CiM paradigm has shown a great potential enhancing the energy
efficiency of modern computing systems by bringing computing operations closer to the
memory. However, the number of write operations in some of the CiM paradigms that
use NVMs drastically increases compared to traditional von Neumann architectures [104].
Besides, the access pattern of CiM applications significantly changes. That is, not only are
there more write operations, but the wear is more difficult to balance since the incorporation
of traditional wear-leveling mechanisms is not straightforward. This novel paradigm opens
up a variety of endurance problems that are yet to be solved; including wear-leveling and
fault-tolerant mechanisms aimed at CiM devices and accelerators.

107

7
Conclusiones y trabajo futuro

Esta tesis ha tratado de allanar aún más el camino para la incorporación de las tecnologías
NVM hasta la jerarquía de memoria caché. En este sentido, este capítulo resume las conclusiones
de esta tesis y sugiere nuevas líneas de investigación para seguir impulsando las tecnologías
NVM hacia los sistemas de memoria comerciales.

7.1 Conclusiones

La baja resistencia (endurance) a repetidas operaciones de escritura es uno de los principales
escollos que impiden la implementación a gran escala de las tecnologías NVM en los
sistemas computacionales. Las principales aportaciones de esta tesis pretenden luchar
contra esta limitación coon el objetivo de diseñar cachés duraderas y tolerantes a fallos
implementadas con tecnologías NVM.

La primera parte de esta tesis propone soluciones de microarquitectura para optimizar
el rendimiento y el tiempo de vida útil de LLCs implementadas con NVMs. En primer
lugar, presentamos L2C2, un nuevo diseño de NV-LLC tolerante a fallos que combina la
deshabilitación fina de regiones de memoria (a nivel de byte), la compresión de datos y
un wear-leveling para los contenedores de caché. L2C2 aprovecha la compresión no solo
para reducir los bytes que se escriben en el array de datos, sino también para permitir
que contenedores de caché parcialmente defectuosos alberguen bloques comprimidos. La
implementación VLSI del circuito de reorganización de bloque muestra que la combinación

109

7.1. Conclusiones

del mecanismo dewear-leveling y de la deshabilitación con granularidad fina es factible. Esta
sinergia permite distribuir de manera equitativa el desgaste que producen las operaciones
de escritura entre los bytes operativos de un contenedor de caché. Además, proponemos
L2C2+N, la versión redundante de L2C2. Nuestros mecanismos son transparentes a la
extensión de N bytes de los contenedores de caché, distribuyendo el desgaste entre los
bytes redundantes también. Los resultados muestran que L2C2+N es capaz de prolongar
aún más el tiempo durante el cual la NV-LLC permancece con las prestaciones cercanas a
las máximas nominales.

Los diseños de L2C2 pueden complementarse incorporando la implementación de una
parte del array de datos con tecnología SRAM, convirtiendo la arquitectura L2C2 original
en una LLC híbrida tradicional en la que la parte NVM del array de datos está dotada de
los mecanismos tolerantes a fallos anteriormente mencionados. Las propuestas de LLCs
híbridas del estado del arte optimizan el tiempo de vida útil de la LLC insertando de forma
conservadora bloques de caché en la parte NVM. Estas optimizaciones orientadas a tiempo
de vida útil reducen significativamente el rendimiento de la LLC híbrida. En este sentido, el
Capítulo 3 aprovecha L2C2 para abordar estas disparidades entre el rendimiento y el tiempo
de vida útil de las propuestas del estado del arte. En concreto, proponemos nuevas políticas
de inserción para LLCs híbridas que optimizan tanto el rendimiento como el tiempo de
vida útil. Nuestra propuesta direcciona los bloques de caché hacia la parte SRAM o la
parte NVM teniendo en cuenta las propiedades de reutilización de lectura y escritura, y
la compresibilidad de los bloques. Además, un mecanismo basado en umbrales ajusta el
tráfico de escritura a la parte NVM permitiendo que se inserten más o menos bloques. Este
mecanismo captura con éxito el comportamiento en tiempo de ejecución de la carga de
trabajo y permite equilibrar aún más el compromiso entre rendimiento y tiempo de vida
útil de la LLC híbrida.

La segunda parte de la tesis sienta las bases metodoógicas. En primer lugar, el Capítulo 4
introduce un procedimiento que permite pronosticar minuciosamente la evolución temporal
de las LLC implementadas con NVMs cuya capacidad efectiva se ve mermada debido a
als operaciones de escritura. Este procedimiento combina fases de simulación, en las que
se recogen cifras de interés (velocidad de escritura en los contenedores de caché, IPC del
sistema, etc.), con fases de predicción, que calculan las siguientes celdas que se convertirán
en defectuosas debido a las escrituras. Este procedimiento se valida exhaustivamente y es
eficaz para identificar las limitaciones de las propuestas del estado del arte en términos
de tiempo de vida útil y rendimiento. Además, creemos que conocer la evolución de la
capacidad de la memoria caché o el rendimiento del sistema podría ser fundamental para
que los fabricantes se sientan seguros a la hora de garantizar ciertas prestaciones de sus
dispositivos de memoria.

Además, el Capítulo 5 presenta HyCSim, un simulador basado en trazas de memoria
que ha permitido agilizar la exploración del espacio de diseño de las políticas de inserción
para LLCs híbridas. HyCSim es de código abierto, incluye las políticas de inserción del
estado del arte, y está provisto de los mecanismos de tolerancia a fallos porpuestos en esta
tesis.

La tercera parte de esta tesis expone el potencial de las tecnologías NVM en el paradigma
CiM. Para reducir el movimiento de datos, algunas operaciones aritméticas sencillas pueden
realizarse directamente dentro del array de memoria muy eficientemente. Se ha escogido

110

Chapter 7, Conclusiones y trabajo futuro

MNEMOSENE ya que es un buen ejemplo de arquitectura CiM de propósito general basado
en un crossbar array de celdas NVM resistivas. Definiendo una ISA abstracta, puede servir
de nexo de unión entre los lenguajes de programación de alto nivel y el diseño de los
circuitos electrónicos subyacentes. En esta tesis se demuestra que hay margen de mejora
en la microarquitectura MNEMOSENE de tile único mediante la identificación de algunos
cuellos de botella en los búferes de almacenamiento. Además, una microarquitectura de un
solo tile tiene limitaciones inherentes en términos de escalabilidad. Por lo tanto, hemos
ampliado la microarquitectura original de un solo tile diseñando una microarquitectura de
varios tiles. Este diseño incluye tanto una memoria scratchpad compartida como un sistema
de interconexión que permiten una comunicación fluida entre los tiles. La evaluación
detallada pone de manifiesto la utilidad de las propuestas y el potencial de la tecnología
VGSOT-MRAM, superando a otras NVMs en términos de eficiencia energética para los
modelos CNN seleccionados.

7.2 Trabajo futuro

Esta tesis desvela investigaciones de cara al futuro para seguir impulsando la adopción de
las tecnologías NVM en la jerarquía de memoria.

Se ha desarrollado un novedoso procedimiento de pronóstico que permite evaluar y
explorar diferentes índices de interés de la caché como del sistema. Este procedimiento
de pronóstico parte de un enfoque genérico en el que la resistencia de las celdas NVM
sigue una distribución normal de media 𝜇 = 10𝑘 escrituras, véase la Sección 1.1.4, pero estas
distribuciones pueden variar significativamente entre tecnologías. Además, la asimetría
entre las diferentes transiciones de conmutación, es decir, 0 → 0, 0 → 1, 1 → 0, 1 → 1,
podría tener diferentes implicaciones en función de la tecnología NVM [15]. Por lo tanto,
creemos que el procedimiento de previsión puede ampliarse añadiendo las particularidades
de cada tecnología.

Además, el procedimiento de pronóstico permite una evaluación exhaustiva de las
soluciones microarquitectónicas y sus posibles sinergias a la hora de abordar el reto del
problema de la endurance de las NVMs desde diferentes perspectivas. Por ejemplo, permite
profundizar en las interacciones entre mecanismos de ECC sofisticados, el refinamiento
de los patrones de escritura en la memoria, los mecanismos de reemplazo de cache, la
granularidad de la deshabilitación de regiones defectuosas de memoria, etc. Aunque estos
enfoques parezcan ortogonales, su análisis combinado puede descubrir nuevos diseños y
estrategias de optimización.

Las NVMs dentro del paradigma CiM han demostrado un gran potencial mejorando la
eficiencia energética de los sistemas de computación modernos al acercar las operaciones
de computación a la memoria. Sin embargo, el número de operaciones de escritura en
algunos paradigmas CiM que usan NVMs aumenta drásticamente en comparación con
las arquitecturas von Neumann tradicionales [104]. Además, el patrón de acceso de las
aplicaciones CiM varía significativamente. Es decir, no solo hay más operaciones de
escritura, sino que el desgaste es más difícil de equilibrar, ya que la incorporación de
los mecanismos tradicionales de nivelación del desgaste no es sencilla. Este novedoso
paradigma abre una variedad de problemas de endurance que todavía están por resolver;

111

7.2. Trabajo futuro

entre ellos, los mecanismos de nivelación de desgaste y tolerancia a fallos orientados a
dispositivos y aceleradores CiM.

112

Appendices

113

A
Time scaling of forecasted indexes when
considering bitcells with more endurance.

Let
𝑁 (𝑤𝑏 ; 𝜇, 𝜎) = 1

𝜎
√

2𝜋
𝑒

−(𝑤𝑏−𝜇)
2𝜎2

2

(A.1)

be the normal probability distribution function that estimates the number of writes 𝑤𝑏
causing failure in a baseline bitcell. Assuming a constant write rate WR (writes/s) on the
baseline bitcell, the probability distribution function of the failure time 𝑡𝑏 can be obtained
from Eq. A.1 by the linear transformation 𝑡𝑏 =

𝑤𝑏

WR :

𝑁 (𝑡𝑏 ; 𝜇

WR ,
𝜎

WR) (A.2)

We can characterize an improved bitcell, with 𝑘 times higher endurance, by applying to
Eq. A.1 and A.2 the linear transformation𝑤𝑖 = 𝑤𝑏 · 𝑘 . Thus, the probability distribution
functions of the number of writes and failure time for the improved bitcell are, respectively:

𝑁 (𝑤𝑖 ; 𝜇 · 𝑘, 𝜎 · 𝑘) and 𝑁 (𝑡𝑖 ;
𝜇 · 𝑘
WR ,

𝜎 · 𝑘
WR) (A.3)

On the other hand, the probability of failure of the baseline bitcell, 𝑃𝑏 , at a time 𝑡𝑏 ≤ 𝑡
is:

𝑃𝑏 (𝑡𝑏 ≤ 𝑡) =
∫ 𝑡

0
𝑁 (𝑡𝑏 ; 𝜇

WR ,
𝜎

WR)𝑑𝑡𝑏 (A.4)

115

To know the probability of failure of the improved bitcell, 𝑃𝑖 , at a time 𝑡𝑖 ≤ 𝑡 from 𝑃𝑏 , it
is necessary to apply another linear transformation: 𝑡𝑏 =

𝑡𝑖
𝑘
. Thus:

𝑃𝑖 (𝑡𝑖 ≤ 𝑡) = 𝑃𝑏 (𝑡𝑏 ≤ lin_trans𝑖→𝑏 (𝑡)) = 𝑃𝑏 (𝑡𝑏 ≤ 𝑡

𝑘
)) (A.5)

Rewriting the two probabilities as a function of 𝑡 , we have:

𝑃𝑖 (𝑡) = 𝑃𝑏 (
𝑡

𝑘
) (A.6)

To conclude, let us consider a cache with 𝑐 baseline bitcells, each with an endurance
approximated by the probability distribution of Eq. A.1 and subjected to a constant per-cell
write rate WR (writes/s). Assuming bit granularity the decrease of its effective capacity
with time, Ceff𝑏 (𝑡) is:

Ceff𝑏 (𝑡) = 𝐶 · (1 − 𝑃𝑏 (𝑡)) (A.7)

And for a cache of the same size made with improved bitcells:

Ceff𝑖 (𝑡) = 𝐶 · (1 − 𝑃𝑏 (
𝑡

𝑘
)) (A.8)

In this case, with byte granularity and different write rates in each frame, it can be
reasoned in the same way. That is, any forecasted index with enhanced cells at time t
matches the same index forecasted with base cells but at time 𝑡

𝑘
.

116

Bibliography

[1] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B. Agricola,
Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J. Starke, Haren Myneni, and
Charlie Wang. Data compression accelerator on ibm power9 and z15 processors : Industrial
product. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 1–14, 2020.

[2] Sukarn Agarwal. Linovo: Longevity enhancement of non-volatile caches by placement,
write-restriction & victim caching in chip multi-processors. In PhD Dissertation, Guwahati,
India, 2020.

[3] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. Selectively protecting error-correcting code
for area-efficient and reliable stt-ram caches. In 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 285–290. IEEE, 2013.

[4] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. Dasca: Dead write prediction assisted stt-ram
cache architecture. In 2014 IEEE 20th Int. Symp. on High Performance Computer Architecture
(HPCA), pages 25–36, 2014.

[5] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. Prediction hybrid cache: An energy-efficient
stt-ram cache architecture. IEEE Transactions on Computers, 65(3):940–951, 2015.

[6] Tanner Andrulis, Joel S Emer, and Vivienne Sze. Raella: Reforming the arithmetic for efficient,
low-resolution, and low-loss analog pim: No retraining required! In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–16, 2023.

[7] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti Tang, Daniel
Lottis, KiseokMoon, Xiao Luo, Eugene Chen, Adrian Ong, et al. Spin-transfer torque magnetic
random access memory (stt-mram). ACM Journal on Emerging Technologies in Computing
Systems (JETC), 9(2):1–35, 2013.

[8] Lotfi Belkhir and Ahmed Elmeligi. Assessing ict global emissions footprint: Trends to 2040 &
recommendations. Journal of cleaner production, 177:448–463, 2018.

[9] Koustav Bhattacharya, Nagarajan Ranganathan, and Soontae Kim. A framework for correction
of multi-bit soft errors in l2 caches based on redundancy. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 17(2):194–206, 2008.

[10] Amine Bouaouda, Karim Afdel, and Rachida Abounacer. Forecasting the energy consumption
of cloud data centers based on container placement with ant colony optimization and bin
packing. In 2022 5th Conference on Cloud and Internet of Things (CIoT), pages 150–157, 2022.

[11] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. A survey of cache simulators.
ACM Comput. Surv., 53(1), feb 2020.

117

Bibliography

[12] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-generation
compute benchmark. In Companion of the 2018 ACM/SPEC Int. Conf. on Performance Engineer-
ing, ICPE ’18, page 41–42, New York, NY, USA, 2018. Association for Computing Machinery.

[13] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar
Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

[14] Roberto Carboni. Characterization and modeling of spin-transfer torque (stt) magnetic
memory for computing applications. In Special Topics in Information Technology, pages 51–62.
Springer, Cham, 2021.

[15] Roberto Carboni, Stefano Ambrogio, Wei Chen, Manzar Siddik, Jon Harms, Andy Lyle, Witold
Kula, Gurtej Sandhu, and Daniele Ielmini. Modeling of breakdown-limited endurance in
spin-transfer torque magnetic memory under pulsed cycling regime. IEEE Transactions on
Electron Devices, 65(6):2470–2478, 2018.

[16] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 52:1–52:12, New York, NY, USA, 2011. ACM.

[17] Jonathan Chang, Ming Huang, Jonathan Shoemaker, John Benoit, Szu-Liang Chen, Wei Chen,
Siufu Chiu, Raghuraman Ganesan, Gloria Leong, Venkata Lukka, Stefan Rusu, and Durgesh
Srivastava. The 65-nm 16-mb shared on-die l3 cache for the dual-core intel xeon processor
7100 series. IEEE Journal of Solid-State Circuits, 42(4):846–852, 2007.

[18] Mu-Tien Chang, Shih-Lien Lu, and Bruce Jacob. Impact of cache coherence protocols on the
power consumption of stt-ram-based llc. In The Memory Forum Workshop, 2014.

[19] Hsiang-Yun Cheng, Jishen Zhao, Jack Sampson, Mary Jane Irwin, Aamer Jaleel, Yu Lu, and
Yuan Xie. Lap: Loop-block aware inclusion properties for energy-efficient asymmetric last
level caches. In 2016 ACM/IEEE 43rd Ann. Int. Symp. on Computer Architecture (ISCA), pages
103–114, 2016.

[20] Elham Cheshmikhani, Hamed Farbeh, and Hossein Asadi. Enhancing reliability of stt-mram
caches by eliminating read disturbance accumulation. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 854–859, 2019.

[21] Elham Cheshmikhani, Hamed Farbeh, and Hossein Asadi. A system-level framework for
analytical and empirical reliability exploration of stt-mram caches. IEEE Transactions on
Reliability, 69(2):594–610, 2020.

[22] Elham Cheshmikhani, Hamed Farbeh, and Hossein Asadi. 3rset: Read disturbance rate
reduction in stt-mram caches by selective tag comparison. IEEE Transactions on Computers,
71(6):1305–1319, 2022.

[23] Elham Cheshmikhani, Hamed Farbeh, Seyed Ghassem Miremadi, and Hossein Asadi. Ta-lrw:
A replacement policy for error rate reduction in stt-mram caches. IEEE Transactions on
Computers, 68(3):455–470, 2019.

[24] Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-
Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-Hung Shen, Harry Chuang, and Tsung-
Yung Jonathan Chang. 13.3 a 22nm 32mb embedded stt-mram with 10ns read speed, 1m
cycle write endurance, 10 years retention at 150° c and high immunity to magnetic field
interference. In 2020 IEEE Int. Solid-State Circuits Conf. (ISSCC), pages 222–224. IEEE, 2020.

118

Chapter A, BIBLIOGRAPHY

[25] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic technique to improve
pram write performance, energy and endurance. In 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 347–357, 2009.

[26] Ju Hee Choi, Jong Wook Kwak, Seong Tae Jhang, and Chu Shik Jhon. Adaptive cache
compression for non-volatile memories in embedded system. In Proc. of the 2014 Conf. on
Research in Adaptive and Convergent Systems, pages 52–57, 2014.

[27] Ju-Hee Choi and Gi-Ho Park. Nvm way allocation scheme to reduce nvm writes for hybrid
cache architecture in chip-multiprocessors. IEEE Trans. on Parallel and Distributed Systems,
28(10):2896–2910, 2017.

[28] Marcelo Cintra and Niklas Linkewitsch. Characterizing the impact of process variation on
write endurance enhancing techniques for non-volatile memory systems. In Proc. of the ACM
SIGMETRICS/Int. Conf. on Measurement and modeling of computer systems, pages 217–228,
2013.

[29] Jeanine Cook, Jonathan Cook, and Waleed Alkohlani. A statistical performance model of the
opteron processor. SIGMETRICS Perform. Eval. Rev., 38(4):75–80, mar 2011.

[30] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5):256–268, 1974.

[31] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and K. Mohanram. Compression architecture
for bit-write reduction in non-volatile memory technologies. In 2014 IEEE/ACM Int. Symp. on
Nanoscale Architectures (NANOARCH), pages 51–56. IEEE, 2014.

[32] Haiwei Dong, Ali Munir, Hanine Tout, and Yashar Ganjali. Next-generation data center
network enabled by machine learning: Review, challenges, and opportunities. IEEE Access,
9:136459–136475, 2021.

[33] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 31(7):994–1007, 2012.

[34] Jan Edler and Mark D. Hill. Dinero iv: Trace-driven uniprocessor cache simulator. http:
//pages.cs.wisc.edu/~markhill/DineroIV/, 1994.

[35] Carlos Escuin. Hycsim code. https://gitlab.com/uz-gaz/hycsim, 2022.

[36] Carlos Escuin. Forecasting code. https://gitlab.com/uz-gaz/l2c2-forecasting,
2023.

[37] Carlos Escuin, Fernando García-Redondo, Mahdi Zahedi, Pablo Ibánez, Teresa Monreal, Víctor
Viñals, José M. Llabería, James Myers, Julien Ryckaert, Dwaipayan Biswas, and Francky
Catthoor. Leveraging data compression for performance-efficient and long-lasting nvm-based
last-level caches. In Submitted to 2023 30th IEEE International Conference on Electronics, Circuits
and Systems (ICECS). IEEE, 2023.

[38] Carlos Escuin, Pablo Ibañez, Denis Navarro, Teresa Monreal, Jose M Llaberia, and Victor
Viñals. L2c2: Last-level compressed-cache nvm and a procedure to forecast performance and
lifetime. Plos one, 18(2):e0278346, 2023.

[39] Carlos Escuin, Asif Ali Khan, Pablo Ibánez, Teresa Monreal, Jeronimo Castrillon, and Víctor
Viñals. Compression-aware and performance-efficient insertion policies for long-lasting
hybrid llcs. In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pages 179–192. IEEE, 2023.

119

http://pages.cs.wisc.edu/~markhill/DineroIV/
http://pages.cs.wisc.edu/~markhill/DineroIV/
https://gitlab.com/uz-gaz/hycsim
https://gitlab.com/uz-gaz/l2c2-forecasting

Bibliography

[40] Carlos Escuin, Asif Ali Khan, Pablo Ibánez, Teresa Monreal, Denis Navarro, José M. Llabería,
Jeronimo Castrillon, and Víctor Viñals. Leveraging data compression for performance-efficient
and long-lasting nvm-based last-level caches. In 14th Annual Non-Volatile Memory Workshop.
University of Califronia San Diego, 2023.

[41] Carlos Escuin, Asif Ali Khan, Pablo Ibañez, Teresa Monreal, Victor Viñals, and Jeronimo
Castrillon. Hycsim: A rapid design space exploration tool for emerging hybrid last-level
caches. In System Engineering for constrained embedded systems (DroneSE and RAPIDO ’22),
pages 1–6, New York, NY, USA, 2022. ACM.

[42] Carlos Escuín Blasco, Teresa Monreal Arnal, José M Llaberia Griñó, Victor Viñals Yúfera, and
Pablo Ibáñez Marín. Stt-ram memory hierarchy designs aimed to performance, reliability and
energy consumption. In ACACES 2019: July 17, 2019, Fiuggi, Italy: poster abstracts, pages 231–
234. European Network of Excellence on High Performance and Embedded Architecture . . . ,
2019.

[43] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, page 365–376, New York, NY,
USA, 2011. Association for Computing Machinery.

[44] Hamed Farbeh, Hyeonggyu Kim, Seyed Ghassem Miremadi, and Soontae Kim. Floating-ecc:
Dynamic repositioning of error correcting code bits for extending the lifetime of stt-ram
caches. IEEE Trans. on Computers, 65(12):3661–3675, 2016.

[45] Alexandra Ferrerón, Dario Suárez-Grácia, Jesús Alastruey-Benedé, Teresa Monreal-Arnal, and
Pablo Ibáñez. Concertina: Squeezing in cache content to operate at near-threshold voltage.
IEEE Trans. on Computers, 65(3):755–769, 2015.

[46] Fernando García Redondo. Resistive RAM: simulation and modeling for reliable design. PhD
thesis, Telecomunicacion, 2017.

[47] Fernando García-Redondo et al. Stt-mram stochastic and defects-aware dtco for last level
cache at advanced process nodes. In IEEE 53st European Solid-State Device Research Conference
(ESSDERC), 2023.

[48] O. Golonzka, J. G. Alzate, U. Arslan, M. Bohr, P. Bai, J. Brockman, B. Buford, C. Connor, N. Das,
B. Doyle, T. Ghani, F. Hamzaoglu, P. Heil, P. Hentges, R. Jahan, D. Kencke, B. Lin, M. Lu,
M. Mainuddin, M. Meterelliyoz, P. Nguyen, D. Nikonov, K. O’brien, J.O Donnell, K. Oguz,
D. Ouellette, J. Park, J. Pellegren, C. Puls, P. Quintero, T. Rahman, A. Romang, M. Sekhar,
A. Selarka, M. Seth, A. J. Smith, A. K. Smith, L. Wei, C. Wiegand, Z. Zhang, and K. Fischer.
Mram as embedded non-volatile memory solution for 22ffl finfet technology. In 2018 IEEE Int.
Electron Devices Meeting (IEDM), pages 18–1. IEEE, 2018.

[49] Fazal Hameed and Jeronimo Castrillon. A novel hybrid dram/stt-ram last-level-cache archi-
tecture for performance, energy, and endurance enhancement. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(10):2375–2386, 2019.

[50] Julian Hammer. Pycachesim: A single-core cache hierarchy simulator in python. https:
//github.com/RRZE-HPC/pycachesim, 2016.

[51] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016.

[52] Alexander Hankin, Tomer Shapira, Karthik Sangaiah, Michael Lui, and Mark Hempstead.
Evaluation of non-volatile memory based last level cache given modern use case behavior.
In 2019 IEEE International Symposium on Workload Characterization (IISWC), pages 143–154.
IEEE, 2019.

120

https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim

Chapter A, BIBLIOGRAPHY

[53] Alexander Hardtdegen, Camilla La Torre, Felix Cüppers, Stephan Menzel, Rainer Waser, and
Susanne Hoffmann-Eifert. Improved switching stability and the effect of an internal series
resistor in hfo 2/tio x bilayer reram cells. IEEE transactions on electron devices, 65(8):3229–3236,
2018.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[55] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[56] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer Architecture
News, 34(4):1–17, 2006.

[57] Seokin Hong, Bulent Abali, Alper Buyuktosunoglu, Michael B Healy, and Prashant J Nair.
Touché: Towards ideal and efficient cache compression by mitigating tag area overheads.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 453–465, 2019.

[58] Yiming Huai. Spin-transfer torque mram (stt-mram): Challenges and prospects. AAPPS
bulletin, 18(6):33–40, 2008.

[59] P Huang, B Chen, YJ Wang, FF Zhang, L Shen, R Liu, L Zeng, G Du, X Zhang, B Gao, et al.
Analytic model of endurance degradation and its practical applications for operation scheme
optimization in metal oxide based rram. In 2013 IEEE International electron devices meeting,
pages 22–5. IEEE, 2013.

[60] Engin Ipek, Jeremy Condit, Edmund B Nightingale, Doug Burger, and Thomas Moscibroda.
Dynamically replicated memory: building reliable systems from nanoscale resistive memories.
ACM Sigplan Notices, 45(3):3–14, 2010.

[61] Ravi Iyer. On modeling and analyzing cache hierarchies using casper. In 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003., pages 182–187. IEEE, 2003.

[62] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al. Basic performance mea-
surements of the intel optane dc persistent memory module. arXiv preprint arXiv:1903.05714,
2019.

[63] A. Jadidi, M. Arjomand, M. K. Tavana, D. R. Kaeli, M. T. Kandemir, and C. R. Das. Exploring
the potential for collaborative data compression and hard-error tolerance in pcm memories.
In 2017 47th Ann. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN), pages 85–96,
2017.

[64] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp$im: A pin-based on-the-
fly multi-core cache simulator. In Proceedings of the Fourth Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), co-located with ISCA, pages 28–36, 2008.

[65] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and Yuan Xie.
Energy-and endurance-aware design of phase change memory caches. In 2010 Design,
Automation & Test in Europe Conf. & Exhibition (DATE 2010), pages 136–141. IEEE, 2010.

[66] Wang Kang, WeiSheng Zhao, Zhaohao Wang, Yue Zhang, Jacques-Olivier Klein, Youguang
Zhang, Claude Chappert, and Dafiné Ravelosona. A low-cost built-in error correction circuit
design for stt-mram reliability improvement. Microelectronics Reliability, 53(9-11):1224–1229,
2013.

121

Bibliography

[67] Sachhidh Kannan, Jeyavijayan Rajendran, Ramesh Karri, and Ozgur Sinanoglu. Sneak-
path testing of crossbar-based nonvolatile random access memories. IEEE Transactions on
Nanotechnology, 12(3):413–426, 2013.

[68] Riduan Khaddam-Aljameh, Milos Stanisavljevic, J Fornt Mas, Geethan Karunaratne, Matthias
Braendli, Femg Liu, Abhairaj Singh, Silvia M Müller, Urs Egger, Anastasios Petropoulos,
et al. Hermes core–a 14nm cmos and pcm-based in-memory compute core using an array of
300ps/lsb linearized cco-based adcs and local digital processing. In 2021 Symposium on VLSI
Circuits, pages 1–2. IEEE, 2021.

[69] Asif Ali Khan, Fazal Hameed, and Jeronimo Castrillon. Nvmain extension for multi-level
cache systems. In Proceedings of the Rapido’18 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[70] Tahseen Khan, Wenhong Tian, Shashikant Ilager, and Rajkumar Buyya. Workload forecasting
and energy state estimation in cloud data centres: Ml-centric approach. Future Generation
Computer Systems, 128:320–332, 2022.

[71] Beomjun Kim, Prashant J Nair, and Seokin Hong. Adam: Adaptive block placement with
metadata embedding for hybrid caches. In 2020 IEEE 38th International Conference on Computer
Design (ICCD), pages 421–424. IEEE, 2020.

[72] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe. Multi-bit error
tolerant caches using two-dimensional error coding. In 40th Ann. IEEE/ACM Int. Symp. on
Microarchitecture (MICRO 2007), pages 197–209, 2007.

[73] Namhyung Kim, Junwhan Ahn, Woong Seo, and Kiyoung Choi. Energy-efficient exclusive
last-level hybrid caches consisting of sram and stt-ram. In 2015 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pages 183–188. IEEE, 2015.

[74] Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni, Sreenivas
Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and Hong Wang. Density tradeoffs
of non-volatile memory as a replacement for sram based last level cache. In 2018 ACM/IEEE
45th Ann. Int. Symp. on Computer Architecture (ISCA), pages 315–327. IEEE, 2018.

[75] Aleksey S. Kozhin and Alexander V. Surchenko. Evaluation of cache compression for elbrus
processors. In 2018 Engineering and Telecommunication (EnT-MIPT), pages 135–139, 2018.

[76] Manuel Le Gallo, Abu Sebastian, Giovanni Cherubini, Heiner Giefers, and Evangelos Elefthe-
riou. Compressed sensing with approximate message passing using in-memory computing.
IEEE Transactions on Electron Devices, 65(10):4304–4312, 2018.

[77] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable dram alternative. In Proc. of the 36th annual Int. Symp. on Computer
architecture, pages 2–13, 2009.

[78] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu,
and Doug Burger. Phase-change technology and the future of main memory. IEEE Micro,
30(1):143–143, 2010.

[79] Yong Kyu Lee, Yoonjong Song, JooChan Kim, SeChung Oh, Byoung-Jae Bae, SangHumn
Lee, JungHyuk Lee, UngHwan Pi, Boyoung Seo, Hyunsung Jung, Kilho Lee, HyunChul Shin,
Hyuntaek Jung, Mark Pyo, Artur Antonyan, Daesop Lee, Sohee Hwang, Daehyun Jang,
Yongsung Ji, Seungbae Lee, Jungman Lim, Kwan-Hyeob Koh, Kihyun Hwang, Hyeongsun
Hong, Kichul Park, Gitae Jeong, Jong Shik Yoon, and E.S. Jung. Embedded stt-mram in 28-nm
fdsoi logic process for industrial mcu/iot application. In 2018 IEEE Symp. on VLSI Technology,
pages 181–182. IEEE, 2018.

122

Chapter A, BIBLIOGRAPHY

[80] Habte Lejebo Leka, Zhang Fengli, Ayantu Tesfaye Kenea, Abebe Tamrat Tegene, Peter Atan-
doh, and Negalign Wake Hundera. A hybrid cnn-lstm model for virtual machine workload
forecasting in cloud data center. In 2021 18th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pages 474–478, 2021.

[81] Keqin Li. Profit maximization in a federated cloud by optimal workload management and
server speed setting. IEEE Transactions on Sustainable Computing, pages 1–1, 2021.

[82] Shuangchen Li, Alvin Oliver Glova, Xing Hu, Peng Gu, Dimin Niu, Krishna T Malladi,
Hongzhong Zheng, Bob Brennan, and Yuan Xie. Scope: A stochastic computing engine for
dram-based in-situ accelerator. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 696–709. IEEE, 2018.

[83] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger,
Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj,
Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castrillon,
Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin,
Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi,
Dibakar Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson,
Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed
Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso
Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück, Omar Naji,
Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham,
Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier
Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert
Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. The gem5 simulator:
Version 20.0+. arXiv preprint arXiv:2007.03152, 2020.

[84] Jing-Yuan Luo, Hsiang-Yun Cheng, Ing-Chao Lin, and Da-Wei Chang. Tap: Reducing the
energy of asymmetric hybrid last-level cache via thrashing aware placement and migration.
IEEE Transactions on Computers, 68(12):1704–1719, 2019.

[85] SpyrosMakridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical andmachine
learning forecasting methods: Concerns and ways forward. PloS one, 13(3):e0194889, 2018.

[86] Mayler Martins, Jody Maick Matos, Renato P Ribas, André Reis, Guilherme Schlinker, Lucio
Rech, and Jens Michelsen. Open cell library in 15nm freepdk technology. In Proceedings of
the 2015 Symposium on International Symposium on Physical Design, pages 171–178, 2015.

[87] Sparsh Mittal. Mitigating read disturbance errors in stt-ram caches by using data compression.
In Nanoelectronics: Devices, Circuits and Systems, pages 133–152. Elsevier, 2019.

[88] Sparsh Mittal and Jeffrey S. Vetter. Reliability tradeoffs in design of volatile and nonvolatile
caches. Journal of Circuits, Systems and Computers, 25(11):1650139, 2016.

[89] Gordon E. Moore. Crammingmore components onto integrated circuits. Electronics, 38(8):114–
–117, 1965.

[90] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing nuca orga-
nizations and wiring alternatives for large caches with cacti 6.0. In 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), pages 3–14. IEEE, 2007.

[91] Masanori Natsui, Akira Tamakoshi, Hiroaki Honjo, Toshinari Watanabe, Takashi Nasuno,
Chaoliang Zhang, Takaho Tanigawa, Hirofumi Inoue, Masaaki Niwa, Toru Yoshiduka, Yasuo
Noguchi, Mitsuo Yasuhira, Yitao Ma, Hui Shen, Shunsuke Fukami, Hideo Sato, Shoji Ikeda,
Hideo Ohno, Tetsuo Endoh, and Takahiro Hanyu. Dual-port sot-mram achieving 90-mhz read

123

Bibliography

and 60-mhz write operations under field-assistance-free condition. IEEE Journal of Solid-State
Circuits, 2020.

[92] Agustín Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-Marín, and Víctor Viñals-
Yúfera. Memory hierarchy characterization of spec cpu2006 and spec cpu2017 on the intel
xeon skylake-sp. Plos one, 14(8):e0220135, 2019.

[93] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[94] Hiroki Noguchi, Kazutaka Ikegami, Satoshi Takaya, Eishi Arima, Keiichi Kushida, Atsushi
Kawasumi, Hiroyuki Hara, Keiko Abe, Naoharu Shimomura, Junichi Ito, Shinobu Fujita,
Takashi Nakada, and Hiroshi Nakamura. 7.2 4mb stt-mram-based cache with memory-access-
aware power optimization and write-verify-write / read-modify-write scheme. In 2016 IEEE
International Solid-State Circuits Conference (ISSCC), pages 132–133, 2016.

[95] Poovaiah M. Palangappa and Kartik Mohanram. Compex: Compression-expansion coding
for energy, latency, and lifetime improvements in mlc/tlc nvm. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 90–101, 2016.

[96] Poovaiah M Palangappa and Kartik Mohanram. Castle: compression architecture for se-
cure low latency, low energy, high endurance nvms. In 2018 55th ACM/ESDA/IEEE Design
Automation Conf. (DAC), pages 1–6. IEEE, 2018.

[97] Eva Patel and Dharmender Singh Kushwaha. A hybrid cnn-lstm model for predicting server
load in cloud computing. The Journal of Supercomputing, 78(8):1–30, 2022.

[98] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent ram. IEEE
micro, 17(2):34–44, 1997.

[99] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A Kozuch, Phillip B Gibbons,
and Todd C Mowry. Base-delta-immediate compression: Practical data compression for
on-chip caches. In 2012 21st Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT), pages 377–388. IEEE, 2012.

[100] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory simulator to model
(non-)volatile memory systems. IEEE Computer Architecture Letters, 14(2):140–143, July 2015.

[101] Moinuddin K Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase change memory:
From devices to systems. Synthesis Lectures on Computer Architecture, 6(4):1–134, 2011.

[102] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer. Set-dueling-
controlled adaptive insertion for high-performance caching. IEEE micro, 28(1):91–98, 2008.

[103] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology. In Proceedings of the
36th annual international symposium on Computer architecture, pages 24–33, 2009.

[104] Salonik Resch, Husrev Cilasun, Zamshed Chowdhury, Masoud Zabihi, Zhengyang Zhao,
Jian-Ping Wang, Sachin Sapatnekar, and Ulya R. Karpuzcu. On endurance of processing in
(nonvolatile) memory. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[105] R Rodríguez-Rodríguez, J Díaz, F Castro, P Ibáñez, D Chaver, V Viñals, J C Saez, M Prieto-
Matias, L Piñuel, T Monreal, and J M Llabería. Reuse detector: Improving the management of
stt-ram sllcs. The Computer Journal, 61(6):856–880, 2018.

[106] Sushil Sakhare, Manu Perumkunnil, T Huynh Bao, Siddharth Rao, Woojin Kim, Davide Crotti,
Farrukh Yasin, Sebastien Couet, Johan Swerts, Shreya Kundu, et al. Enablement of stt-mram
as last level cache for the high performance computing domain at the 5nm node. In 2018 IEEE
International Electron Devices Meeting (IEDM), pages 18–3. IEEE, 2018.

124

Chapter A, BIBLIOGRAPHY

[107] Soheil Salehi, Deliang Fan, and Ronald F. Demara. Survey of stt-mram cell design strategies:
Taxonomy and sense amplifier tradeoffs for resiliency. J. Emerg. Technol. Comput. Syst., 13(3),
April 2017.

[108] Somayeh Sardashti and David A. Wood. Decoupled compressed cache: Exploiting spatial
locality for energy-optimized compressed caching. In 2013 46th Ann. IEEE/ACM Int. Symp. on
Microarchitecture (MICRO), pages 62–73, 2013.

[109] Deepika Saxena and Ashutosh Kumar Singh. Workload forecasting and resource manage-
ment models based on machine learning for cloud computing environments. arXiv preprint
arXiv:2106.15112, 2021.

[110] Stuart Schechter, Gabriel H Loh, Karin Strauss, and Doug Burger. Use ecp, not ecc, for hard
failures in resistive memories. ACM SIGARCH Computer Architecture News, 38(3):141–152,
2010.

[111] BBC Science. The end of moore’s law: what happens next? BBC Science Focus Magazine,
2019.

[112] Nak Hee Seong, Dong HyukWoo, Vijayalakshmi Srinivasan, Jude A. Rivers, and Hsien-Hsin S.
Lee. Safer: Stuck-at-fault error recovery for memories. In 2010 43rd Ann. IEEE/ACM Int. Symp.
on Microarchitecture, pages 115–124, 2010.

[113] Su Myat Min Shwe, Haris Javaid, and Sri Parameswaran. Rexcache: Rapid exploration of
unified last-level cache. In 2013 18th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 582–587. IEEE, 2013.

[114] Abhairaj Singh, Mahdi Zahedi, Taha Shahroodi, Mohit Gupta, Anteneh Gebregiorgis, Manu
Komalan, Rajiv V Joshi, Francky Catthoor, Rajendra Bishnoi, and Said Hamdioui. Cim-based
robust logic accelerator using 28 nm stt-mram characterization chip tape-out. In 2022 IEEE 4th
International Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 451–454.
IEEE, 2022.

[115] Y. J. Song, J. H. Lee, S. H. Han, H. C. Shin, K. H. Lee, K. Suh, D. E. Jeong, G. H. Koh, S. C. Oh,
J. H. Park, S. O. Park, B. J. Bae, O. I. Kwon, K. H. Hwang, B.Y. Seo, Y.K. Lee, S. H. Hwang,
D. S. Lee, Y. Ji, K.C. Park, G. T. Jeong, H. S. Hong, K. P. Lee, H. K. Kang, and E. S. Jung.
Demonstration of highly manufacturable stt-mram embedded in 28nm logic. In 2018 IEEE
International Electron Devices Meeting (IEDM), pages 18.2.1–18.2.4, 2018.

[116] David Suggs, Mahesh Subramony, and Dan Bouvier. The amd “zen 2” processor. IEEE Micro,
40(2):45–52, 2020.

[117] Shivam Swami and Kartik Mohanram. Reliable nonvolatile memories: Techniques and
measures. IEEE Design & Test, 34(3):31–41, 2017.

[118] Rangharajan Venkatesan, Vivek Kozhikkottu, Charles Augustine, Arijit Raychowdhury,
Kaushik Roy, and Anand Raghunathan. Tapecache: A high density, energy efficient cache
based on domain wall memory. In Proceedings of the 2012 ACM/IEEE international symposium
on Low power electronics and design, pages 185–190, 2012.

[119] Oreste Villa, Daniel R Johnson, Mike Oconnor, Evgeny Bolotin, David Nellans, Justin Luitjens,
Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius, Anthony Scudiero, et al. Scaling the
power wall: a path to exascale. In SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 830–841. IEEE, 2014.

[120] Jue Wang, Xiangyu Dong, and Yuan Xie. Point and discard: a hard-error-tolerant architecture
for non-volatile last level caches. In Proceedings of the 49th Annual Design Automation
Conference, pages 253–258, 2012.

125

Bibliography

[121] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. i2wap: Improving non-volatile
cache lifetime by reducing inter-and intra-set write variations. In 2013 IEEE 19th Int. Symp.
on High Performance Computer Architecture (HPCA), pages 234–245. IEEE, 2013.

[122] Rujia Wang, Lei Jiang, Youtao Zhang, Linzhang Wang, and Jun Yang. Selective restore: An
energy efficient read disturbance mitigation scheme for future stt-mram. In Proceedings of
the 52nd Annual Design Automation Conference, pages 1–6, 2015.

[123] Zhe Wang, Daniel A. Jiménez, Cong Xu, Guangyu Sun, and Yuan Xie. Adaptive placement
and migration policy for an stt-ram-based hybrid cache. In 2014 IEEE 20th Int. Symp. on High
Performance Computer Architecture (HPCA), pages 13–24, 2014.

[124] Liqiong Wei, Juan G. Alzate, Umut Arslan, Justin Brockman, Nilanjan Das, Kevin Fischer,
Tahir Ghani, Oleg Golonzka, Patrick Hentges, Rawshan Jahan, Pulkit Jain, Blake Lin, Mesut
Meterelliyoz, Jim O’Donnell, Conor Puls, Pedro Quintero, Tanaya Sahu, Meenakshi Sekhar,
Ajay Vangapaty, Chris Wiegand, and Fatih Hamzaoglu. 13.3 a 7mb stt-mram in 22ffl finfet
technology with 4ns read sensing time at 0.9 v using write-verify-write scheme and offset-
cancellation sensing technique. In 2019 IEEE Int. Solid-State Circuits Conf. (ISSCC), pages
214–216. IEEE, 2019.

[125] Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti, Muhammad Khellah,
and Shih-Lien Lu. Trading off cache capacity for reliability to enable low voltage operation.
ACM SIGARCH computer architecture news, 36(3):203–214, 2008.

[126] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, Bipin
Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. Phase change memory. Proceedings of
the IEEE, 98(12):2201–2227, 2010.

[127] Bi Wu, Beibei Zhang, Yuanqing Cheng, Ying Wang, Dijun Liu, and Weisheng Zhao. An
adaptive thermal-aware ecc scheme for reliable stt-mram llc design. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 27(8):1851–1860, 2019.

[128] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of the obvious. ACM
SIGARCH computer architecture news, 23(1):20–24, 1995.

[129] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The asynchronous 24mb on-chip level-3
cache for a dual-core itanium/sup /spl reg//-family processor. In ISSCC. 2005 IEEE Int. Digest
of Technical Papers. Solid-State Circuits Conf., 2005., pages 488–612 Vol. 1, 2005.

[130] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shimeng
Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory architectures. In
2015 IEEE 21st Int. Symp. on High Performance Computer Architecture (HPCA), pages 476–488.
IEEE, 2015.

[131] Sadegh Yazdanshenas, Marzieh Ranjbar Pirbasti, Mahdi Fazeli, and Ahmad Patooghy. Coding
last level stt-ram cache for high endurance and low power. IEEE Computer Architecture Letters,
13(2):73–76, 2013.

[132] Doe Hyun Yoon and Mattan Erez. Memory mapped ecc: Low-cost error protection for
last level caches. In Proceedings of the 36th annual international symposium on Computer
architecture, pages 116–127, 2009.

[133] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ranganathan, Nor-
man P Jouppi, and Mattan Erez. Free-p: Protecting non-volatile memory against both hard
and soft errors. In 2011 IEEE 17th Int. Symp. on High Performance Computer Architecture,
pages 466–477. IEEE, 2011.

[134] Mahdi Zahedi, Muah Abu Lebdeh, Christopher Bengel, Dirk Wouters, Stephan Menzel,
Manuel Le Gallo, Abu Sebastian, Stephan Wong, and Said Hamdioui. Mnemosene: Tile
architecture and simulator for memristor-based computation-in-memory. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 18(3):1–24, 2022.

126

Chapter A, BIBLIOGRAPHY

[135] Mahdi Zahedi, Remon van Duijnen, Stephan Wong, and Said Hamdioui. Tile architecture
and hardware implementation for computation-in-memory. In 2021 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 108–113. IEEE, 2021.

[136] Mohamed Zahran, Kursad Albayraktaroglu, and Manoj Franklin. Non-inclusion property
in multi-level caches revisited. International Journal of Computers and Their Applications,
14(2):99, 2007.

[137] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and Frederic T. Chong.
Mellow writes: Extending lifetime in resistive memories through selective slow write backs.
In 2016 ACM/IEEE 43rd Ann. Int. Symp. on Computer Architecture (ISCA), pages 519–531, 2016.

[138] Chuteng Zhou, Fernando Garcia Redondo, Julian Büchel, Irem Boybat, Xavier Timoneda
Comas, SR Nandakumar, Shidhartha Das, Abu Sebastian, Manuel Le Gallo, and Paul N
Whatmough. Ml-hw co-design of noise-robust tinyml models and always-on analog compute-
in-memory edge accelerator. IEEE Micro, 42(6):76–87, 2022.

[139] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main
memory using phase change memory technology. ACM SIGARCH Computer Architecture
News, 37(3):14–23, 2009.

[140] Yangjie Zhou, Mengtian Yang, Cong Guo, Jingwen Leng, Yun Liang, Quan Chen, Minyi Guo,
and Yuhao Zhu. Characterizing and demystifying the implicit convolution algorithm on
commercial matrix-multiplication accelerators. In 2021 IEEE International Symposium on
Workload Characterization (IISWC), pages 214–225. IEEE, 2021.

[141] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

127

	TUZ_2741_Escuin_crafting.pdf
	2741_Escuin Blasco TESIS
	Abstract
	Resumen
	Publications
	Acknowledgements
	Acronyms
	Introduction
	Introduction
	Non-volatile memory (NVM) technologies
	Magnetic RAM (MRAM)
	Phase change memory (PCM)
	Resistive RAM (ReRAM)
	The endurance problem of NVM technologies

	Contributions
	Thesis structure
	Thesis project framework

	I Microarchitectural enchancements for NVM-based LLCs
	L2C2: Last-level compressed non-volatile cache
	Introduction
	Related work
	Background
	Data compression
	Addition of redundant capacity

	Fault-tolerant NV-LLC microarchitecture
	General overview
	BDI adaptation
	L2C2 metadata
	Block writing
	Block reading
	Rearrangement logic
	VLSI implementation
	L2C2+N: adding redundant capacity to L2C2

	Evaluation
	Experimental setup
	Lifetime
	Performance
	Energy
	Intra-frame wear-leveling
	Fit vs. Best-Fit replacement
	Sensitivity analysis

	Concluding remarks

	Compression-aware and performance-efficient insertion policies for long-lasting hybrid LLCs
	Introduction
	Related work and motivation
	State-of-the-art hybrid LLC insertion policies
	Motivation: quantitative analysis of hybrid LLC insertion policies

	Fault-tolerant hybrid LLC architecture
	Compression-aware insertion policies
	Naive compression-aware (CA) insertion
	Read and write reuse aware insertion
	CP_SD insertion: Set Dueling for performance
	CP_SD_Th: CP_SD for both performance and lifetime

	Evaluation
	Experimental setup
	Performance vs. Lifetime
	SRAM-NVM proportion variation
	Impact of cv on performance and lifetime
	L2 size sensitivity
	NVM latency sensitivity
	Overhead analysis & Equalizing costs

	Concluding remarks

	II Methodological improvements for NVM-based LLCs
	Forecasting lifetime and performance of NVM-based LLCs
	Introduction
	Related work
	Forecasting procedure
	Data structures supporting the forecasting procedure
	Basis of the forecasting procedure
	Approximate forecasting procedure for frame disabling
	Approximate forecasting procedure for byte disabling and data compression

	Evaluation
	Validation
	Computational cost
	Specific situations
	Technological projections of lifetime and performance of NV-LLCs

	Additional discussion
	Forecasting workload behavior in cloud data centers: a seemingly similar problem

	Concluding remarks

	HyCSim: A rapid design space exploration tool for emerging hybrid LLCs
	Introduction
	Related work
	HyCSim infrastructure
	Cache organization
	Disabling manager
	Content management policies

	Validation
	Simulation time analysis
	Fidelity analysis
	Proof of concept

	Concluding remarks

	III Compute-in-memory using NVMs
	Extending MNEMOSENE, an NVM-based compute-in-memory general purpose architecture
	Introduction
	Background
	Analog computing-in-memory using NVMs

	Enhancing the MNEMOSENE Tile Architecture
	Original single-tile architecture
	Overcoming the RD buffer limitation

	Enabling a Multi-Tile Architecture
	Multi-tile architecture
	Properly sizing scratchpads and interconnections

	Evaluation
	Experimental Setup
	Experimental Results
	Depthwise-Convolution Analog vs. Digital

	Concluding remarks
	Conclusions and future work
	Conclusions and future work
	Conclusions
	Future work
	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro
	Appendices
	Time scaling of forecasted indexes when considering bitcells with more endurance.

	Bibliography

