000135741 001__ 135741 000135741 005__ 20240705134226.0 000135741 0247_ $$2doi$$a10.1002/mma.10204 000135741 0248_ $$2sideral$$a138822 000135741 037__ $$aART-2024-138822 000135741 041__ $$aeng 000135741 100__ $$aShiromani, Ram 000135741 245__ $$aA computational approach for 2D elliptic singularly perturbed weakly coupled systems of convection–diffusion type with multiple scales and parameters in the diffusion and the convection terms 000135741 260__ $$c2024 000135741 5060_ $$aAccess copy available to the general public$$fUnrestricted 000135741 5203_ $$aIn this work, we consider the efficient resolution of a 2D elliptic singularly perturbed weakly coupled system of convection–diffusion type, which has small parameters at both the diffusion and the convection terms. We assume that the diffusion parameters can be distinct at each equation of the system, and also, they can have different orders of magnitude, but the convection parameter is the same at both equations of the system. Then, in general, overlapping regular or parabolic boundary layers can appear in the exact solution. The continuous problem is approximated by using the standard upwind finite difference scheme, which is constructed on a special piecewise uniform Shishkin mesh. Then, the numerical scheme is an almost first‐order uniformly convergent method with respect to all the perturbation parameters. Some numerical results, obtained with the numerical algorithm for one test problem, are presented, which show the good performance of the proposed numerical method and also corroborate in practice the theoretical results. 000135741 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/IUMA/MTM2017-83490-P 000135741 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000135741 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000135741 700__ $$0(orcid)0000-0003-1263-1996$$aClavero, Carmelo$$uUniversidad de Zaragoza 000135741 700__ $$aShanthi, Vembu 000135741 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000135741 773__ $$g(2024), [32 pp.]$$pMath. methods appl. sci.$$tMathematical Methods in the Applied Sciences$$x0170-4214 000135741 8564_ $$s6817521$$uhttps://zaguan.unizar.es/record/135741/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2025-05-06 000135741 8564_ $$s1711679$$uhttps://zaguan.unizar.es/record/135741/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2025-05-06 000135741 909CO $$ooai:zaguan.unizar.es:135741$$particulos$$pdriver 000135741 951__ $$a2024-07-05-12:55:51 000135741 980__ $$aARTICLE