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A B S T R A C T

Colorectal cancer is one of the most common cancers in the world. While colonoscopy is an effective screening
technique, navigating an endoscope through the colon to detect polyps is challenging. A 3D map of the
observed surfaces could enhance the identification of unscreened colon tissue and serve as a training platform.
However, reconstructing the colon from video footage remains difficult. Learning-based approaches hold
promise as robust alternatives, but necessitate extensive datasets. Establishing a benchmark dataset, the 2022
EndoVis sub-challenge SimCol3D aimed to facilitate data-driven depth and pose prediction during colonoscopy.
The challenge was hosted as part of MICCAI 2022 in Singapore. Six teams from around the world and
representatives from academia and industry participated in the three sub-challenges: synthetic depth prediction,
synthetic pose prediction, and real pose prediction. This paper describes the challenge, the submitted methods,
and their results. We show that depth prediction from synthetic colonoscopy images is robustly solvable, while
pose estimation remains an open research question.
1. Introduction

The Endoscopic Vision (EndoVis) challenges at MICCAI have been
an accelerator for surgical data science for several years (Maier-Hein
et al., 2017, 2020, 2022). Past challenges have evaluated a range of
tasks such as segmentation, image generation, or action triplet detec-
tion.1 Although the applications are widely different, all challenges
share a profound contribution to their respective research fields by
improving data availability and bringing attention to research gaps. In
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the spirit of this tradition, the SimCol3D — 3D Reconstruction during
Colonoscopy challenge was born. SimCol3D is the first challenge to
contribute both synthetic and real colonoscopy procedure sequences
to address depth estimation and 6D pose estimation from monocular
colonoscopy.

Colorectal cancer (CRC) is a leading cause of death (Araghi et al.,
2019), third only to lung and breast (for female) and prostate (for male)
cancer. Despite its prevalence, survival rates are high among individu-
als undergoing screening (Kaminski et al., 2010). The slow progression
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of CRC allows for an extended window for detecting and treating
pre-cancerous growths. But to be treated, such growths first need to
be accurately detected — an exceedingly difficult task. Fortunately, a
cohort of AI-based platforms has declared missed polyps a relic of the
past (Puyal et al., 2022; Ji et al., 2021; Zhao et al., 2022; Chadebecq
et al., 2023), making it possible to assist clinicians in identifying polyps
on the colon mucosa during colonoscopy in real-time. Yet, challenges
persist, particularly in detecting polyps hidden behind folds, which
constitute up to three-quarters of all missed polyps (Pickhardt et al.,
2004). Additionally, other lesions, such as dysplasia in Inflammatory
Bowel Disease (IBD) patients, pose an exceptional challenge, necessi-
tating meticulous screening of the entire colon mucosa. The quality of
the screening is often quantified as the time taken to withdraw the
colonoscope, a critical aspect of the procedure for lesion detection.
Withdrawal time is a key surrogate marker for adenoma detection
rate (Butterly et al., 2014), which, in turn, is associated with post-
colonoscopy CRC rate (Corley et al., 2014). But withdrawal time as a
measure of performance has significant limitations. It measures overall
time and fails to ensure sufficient attention to each colon segment.
A 3D map could help provide more useful quality indicators such as
withdrawal time per segment, or ratio of screened colon mucosa.

Researchers have thus proposed to generate an on-the-fly 3D map
of the colon during a colonoscopy that can flag areas of the colon
that need to be re-screened for colorectal polyps. But providing such
a map is difficult. The poor quality of real colonoscopy videos, caused
by artifacts such as specularities, air bubbles, blur, saturated pixels,
and lack of contrast (Ali et al., 2021), presents a significant hurdle
to feature-based methods. Repetitive textures and geometries, extreme
deformation, and challenging and view-dependent lighting additionally
challenge feature matching between images.

Data-driven approaches circumvent the need for robust features
and divide the task into depth prediction and pose estimation. But
despite the significant progress made by deep learning in reconstructing
3D scenes (Zhou et al., 2017), the translation of such approaches
to colonoscopy is limited by data availability. While cities or rooms
can be scanned using lidar or infrared sensors, such scanners are not
deployable within a spatially constrained colonoscope. To date, there
exists no dataset containing RGB images, camera poses, and depth maps
from a real colonoscopy. Attempts to work around this limitation, such
as registering previously acquired computer tomography (CT) scans of
the colon with images from the procedure, fail due to the immense
deformation of the colon during its inspection. Similarly, the calibration
of non-medical-grade structured-light sensors, electric-magnetic track-
ing sensors, and standard colonoscopes is exceptionally difficult, often
inaccurate, and only applicable to phantoms that deviate significantly
in visual and haptic characteristics from real colons. Synthetic data,
though visually distinct, offers precise and abundant annotations.

Previous work leveraging synthetic depth data mostly focused on
bridging the domain gap between real and synthetic data (Mahmood
and Durr, 2018; Rau et al., 2019; Mathew et al., 2020; Cheng et al.,
2021; Itoh et al., 2021; Rodriguez-Puigvert et al., 2022) and employed
existing depth networks. In contrast, the challenge organizers were
curious to explore depth prediction without accounting for the domain
shift between real and synthetic data and chose to evaluate methods
directly on synthetic depth. Data-driven pose prediction had yet to be
explored widely before the SimCol3D challenge, mostly due to the lack
of camera pose ground truth (Rau et al., 2023a). We therefore provided
synthetic and real pose labels to differentiate between the scenario in
which pose networks can be learned in a supervised manner and a
scenario where no ground truth is available.

We believe a mapping technology for colonoscopy to be within
reach and created the SimCol3D challenge to bringing us one step closer
to reliable 3D reconstruction of the colon.

In this paper, we

• introduce the SimCol3D challenge: the first of its kind for depth
2

and pose prediction in colonoscopy;
• analyze each participating group’s results, identifying trends and
best practices across three subtasks: synthetic depth prediction,
synthetic pose estimation, and real pose estimation;

• establish a benchmark for future comparisons of depth and pose
estimation methods in colonoscopy;

• introduce synthetic data based on two additional human CT scans,
augmenting our existing dataset;

• highlight avenues for future investigation.

2. Related work

To date, a profound gap exists between research efforts in depth
prediction and pose estimation, both intrinsic subtasks of 3D recon-
struction. Depth prediction solves the task of regressing or classifying
each pixel in an image, and such tasks are more easily learnable for neu-
ral networks if sufficient training data exists. However, understanding
camera movement and its geometric implications through regression
alone is a much more challenging task and remains underexplored (Rau
et al., 2023a). Some works have thus focused on leveraging the depth
and pose networks in a mutual framework. This section briefly re-
views essential works in the field to give context to the participants’
contributions.

Most works on depth prediction during colonoscopy have two things
in common: they are borrowed from general computer vision ap-
proaches, and they incorporate synthetic data in some way. Some
notable virtually generated or phantom-based public datasets were
proposed by Rau et al. (2019), Zhang et al. (2020), Ozyoruk et al.
(2021), Bobrow et al. (2022), and Rau et al. (2023a). While they were
an important addition to the research community, they all consist of
one anatomy only, and cannot be used to evaluate accuracy on an
unseen patient. Mahmood and Durr (2018) proposed one of the first
depth networks for colonoscopy and is based mainly on convolutional
neural fields proposed in Liu et al. (2015). The authors trained one
network for depth prediction on synthetic data and used a second,
independently optimized network to translate between the appearance
of real and synthetic images. Rau et al. (2019) use the well-known
pix2pix network (Isola et al., 2017) to integrate the depth and domain
translations networks into a single framework trained on both synthetic
and real data. Cheng et al. (2021) propose to train a well-known
GAN (Wang et al., 2018) on synthetic data with supervision and,
in a second, independent step, train the initialized network on real
images with self-supervision. Mathew et al. (2020) base their method
on the well-known CycleGAN network that maps virtual images to
real images and vice versa. Itoh et al. (2021) also borrow the cycle-
consistency losses from CycleGAN and decompose images based on a
Lambertian-reflection model to train their network on synthetic and
real data. Rodriguez-Puigvert et al. (2022) based their method on
MonoDepth2 (Godard et al., 2019) and trained an ensemble method
with a teacher trained on synthetic data. Though these methods help
progress the field, all of these method primarily focus on bridging the
domain gap between synthetic and real images, not on improving the
architectures of the respective depth networks. Accordingly, the evalu-
ation protocols focused on real colonoscopy frames that are oftentime
borrowed from in-house datasets. A common benchmark allowing a
systematic comparison of these methods is missing.

While methods that predict depth only largely rely on synthetic
data, approaches combining depth and pose networks can directly learn
from real data. Bae et al. (2020) use sparse SfM pseudo ground truth
to supervise their colon reconstruction pipeline. They reconstruct small
colon sections from eight consecutive frames using the derived poses
and sparse depth supervision to guide the initial U-Net based (Ron-
neberger et al., 2015) depth estimation. Ma et al. (2019) propose a
SLAM pipeline that integrates a well-known recurrent neural net for
depth and pose estimation (Wang et al., 2019). Freedman et al. (2020)
and Ozyoruk et al. (2021) propose self-supervised networks based on

the popular depth and pose networks (Gordon et al., 2019; Bian et al.,
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Fig. 1. Overview of the real images (top), synthetic images (center), and synthetic
depth maps (bottom) used in the challenge.

Table 1
Overview of the datasets in the SimCol3D challenge, indicating the number of
trajectories (traj.) and images per scene. The real sequences provide videos only.

Sub-dataset # Train traj. # Test traj. # Images

Synthetic colon I (Public mesh) 12 3 18k
Synthetic colon II (Patient A) 12 3 18k
Synthetic colon III (Patient B) 0 3 1.8k
Real Sequences 59 7 –

2019), respectively. All these approaches do not require synthetic data;
however, they can only be as accurate as the underlying feature-based
SfM reconstruction. Additionally, these works use in-house datasets and
do not provide a sufficient comparison between each other.

3. Tasks and datasets

3.1. Challenge tasks

The SimCol3D challenge aims to facilitate depth and camera pose
prediction during colonoscopy by providing a new public dataset with
ground truth depths and poses for training and testing. The challenge
comprises three tasks: Task 1 invited participants to train networks to
predict depth from simulated colonoscopy images. Task 2 evaluates
predicted camera poses from simulated colonoscopy. Task 3 extends
the challenge into the realm of real-world clinical practice, tasking
participants with predicting poses from real colonoscopy procedures.

3.2. Data

The SimCol3D challenge encompasses both synthetic and real
colonoscopy sequences. Table 1 provides an overview of the data used
in the challenge, and Fig. 1 shows illustrates qualitative examples.

3.2.1. Simulated colonoscopy data for Tasks 1 and 2
The synthetic data for Tasks 1 and 2 builds upon the dataset

introduced in Rau et al. (2023a), but expands its scope from one
anatomy (Synthetic Colon I) to encompass three distinct human colons
(Synthetic Colons I, II, and III) which are shown in Fig. 2. Two of the
three subsets (namely I and II) contain 15 trajectories of which 12
were randomly assigned for training and three for testing. Synthetic
Colon III only contains 3 trajectories for testing and no training data.
This setup allows to evaluate generalizability to new anatomies. Each
training trajectory contains 1201 images, ground truth depth maps,
and ground truth camera poses. Each test trajectory contains either
1201 or 601 frames and their labels. The simulated colon meshes
were extracted from computer tomography scans of human colons, and
the images were rendered using a Unity simulation environment (Rau
3

Fig. 2. Synthetic Colons I, II, and III in Unity environment with camera paths along
the center of the mesh. Synthetic Colons I and II include training and test trajectories.
Synthetic Colon III provides test trajectories only.

et al., 2019). The CT scan for Synthetic Colon I is publicly avail-
able (Ozyoruk et al., 2021), while the CT scans for Colons II and III
were acquired at University College London Hospital. In the simulation
environment, a virtual colonoscope followed a path through the center
of the meshes recording rendered RGB images, depth maps, and camera
poses. This path was randomly manipulated each time a new trajectory
was recorded resulting in different, random trajectories within the same
anatomy. In total, the training data for Task 1 and Task 2 contains
14,412 frames, and the test set contains 9009. For each frame the
challenge organizers provided the corresponding:

• 3 × 3 camera intrinsics matrix saved as txt file.
• Depth map in png format, including the depth value for each pixel

in the corresponding RGB image.
• Absolute camera pose in the Unity coordinate frame provide

in a .txt file. We represent camera pose as 7D vector [𝑡𝑥, 𝑡𝑦, 𝑡𝑧,
𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤], where 𝑡 denotes the translation along the 𝑥-, 𝑦-, and
𝑧-axes, and 𝑞 denotes the rotation in quaternion representation,
where 𝑤 denotes the scalar part, and 𝑥, 𝑦, and 𝑧 describe the
imaginary parts.

More details about the data generation process and the coordinate
systems used to represent the data can be found in the original publica-
tion (Rau et al., 2023a). The full synthetic dataset is publicly available
here: https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d
data. Participants were allowed to use additional datasets as long as
they were publicly available.

3.2.2. Real patient data for Task 3
For Task 3, the testing data contained three patients’ anatomies with

1–3 trajectories from each and 7 in total. The real data comes from
the EndoMapper dataset (Azagra et al., 2023), which is a collection of
complete endoscopy sequences obtained during regular medical proce-
dures.2 It includes 59 sequences with over 15 h of video and is the first
endoscopic dataset to include geometric and photometric endoscope
calibration. The dataset also includes meta-data and annotations. The
participants were encouraged to train their models on the EndoMapper
sequences that were not in the test set. For this task, we generated
COLMAP pseudo ground truth of the 7 testing sequences for method
evaluation. As COLMAP is not reliable in colonoscopy (therefore the
need for this challenge), two challenge organizers and a gastroenterol-
ogist, qualitatively verified each of the generated COLMAP trajectories
and sparse point clouds and chose those that were visually coher-
ent with respect to the direction of the movement of the endoscope
observed in the corresponding video.

3.3. Evaluation metrics

3.3.1. Task 1: Depth estimation
We utilize three standard evaluation metrics to assess the perfor-

mance of the depth prediction methods. We define the per image errors

2 https://www.synapse.org/Synapse:syn26707219/wiki/615178

https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
https://www.ucl.ac.uk/interventional-surgical-sciences/simcol3d-data
https://www.synapse.org/Synapse:syn26707219/wiki/615178
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where 𝑌 denotes the ground truth depth map, 𝑌 ′ denotes the predicted
depth map, 𝐷 is the number of pixels in 𝑌 , and 𝜇𝑑 represents the
median calculated for all valid arguments 𝑑. Let

𝑌𝑖 =
1
𝐷

∑

𝑑=1,…,𝐷
𝑌𝑖(𝑑), (4)

denote the mean depth over all pixels in a depth map 𝑖, then the scale
𝑠 is calculated per trajectory as

𝑠 =
∑

𝑖∈𝐼 𝑌𝑖 ⋅ 𝑌
′
𝑖

∑

𝑖∈𝐼 𝑌
′
𝑖 ⋅ 𝑌 ′

𝑖
, (5)

where 𝐼 denotes the number of images in a trajectory. We chose to
evaluate the scaled depths, as the task of monocular depth estimation
is ill-posed and networks are expected to predict depth up to scale. We
compute the 𝐿1 loss as the mean of the absolute differences between the
ground truth depth 𝑌 (𝑑) and the predicted depth 𝑌 ′(𝑑) over all pixels
in a depth map. As the relative loss, 𝐿𝑟𝑒𝑙, is sensitive to outliers, we use
the median instead of the mean over the per-pixel relative 𝐿1 errors.
Lastly, we measure the 𝐿𝑅𝑀𝑆𝐸 as it weights outliers more heavily than
the 𝐿1 loss. The per-depth map errors are then averaged over all depth
maps in a scene.

As we found all three metrics to be equally descriptive of perfor-
mance, but due to their different scales not comparable, we use a point
system for Task 1. We report the final score, ∑1, as the sum of ranks
per scene. For each of the three scenes and each of the three metrics,
the winner received six points, the runner-up five points, etc. The task
winners were the groups with the most points.

3.3.2. Task 2: Camera pose estimation on simulated data
To evaluate the predicted camera poses, we first composite the

relative poses 𝛺𝑖 to produce the complete trajectory of absolute poses
𝑃𝑖. The absolute pose of a camera 𝜏 in the world space is 𝑃1𝛺1 ⋯𝛺𝜏−1,
where each 𝛺𝑖 sequentially projects the initial pose 𝑃1 to the next one.
As monocular video can only be interpreted up to scale, the predicted
trajectory needs to be scaled using:

𝑠𝑟𝑒𝑙 =
𝛴𝜏 𝑡𝑟𝑎𝑛𝑠(𝛺𝜏 )𝑇 ⋅ 𝑡𝑟𝑎𝑛𝑠(𝛺′

𝜏 )
𝛴𝜏 𝑡𝑟𝑎𝑛𝑠(𝛺′

𝜏 )𝑇 ⋅ 𝑡𝑟𝑎𝑛𝑠(𝛺′
𝜏 )
, (6)

where trans denotes the translation of a projection matrix. We then as-
sess the scaled predicted trajectory’s accuracy with the Absolute Trans-
lation Error (𝐴𝑇𝐸), Relative Translation Error (𝑅𝑇𝐸), and Rotation
Error (𝑅𝑂𝑇 ).

𝑅𝑇𝐸 = 𝜇𝜏 (‖𝑡𝑟𝑎𝑛𝑠(𝛺−1
𝜏 𝛺′

𝜏 )‖)

𝐴𝑇𝐸 = 𝜇𝜏 (‖𝑡𝑟𝑎𝑛𝑠(𝑃𝜏 ) − 𝑡𝑟𝑎𝑛𝑠(𝑃 ′
𝜏 )‖)

𝑅𝑂𝑇 = 𝜇𝜏 (
𝑡𝑟𝑎𝑐𝑒(𝑅𝑜𝑡(𝛺−1

𝜏 𝛺′
𝜏 )) − 1

2
⋅
180
𝜋

)

(7)

here 𝑅𝑜𝑡 denotes the projection rotation, 𝛺′, 𝑃 ′ are the scaled pre-
icted relative and absolute poses, and ‖ ⋅ ‖ is the two-norm. The 𝐴𝑇𝐸
easures drift and the overall consistency of a predicted trajectory.
he 𝑅𝑂𝑇 measures the magnitude of the rotation errors locally. The
𝑇𝐸 reflects both translation and rotation errors locally. To achieve a

mall 𝑅𝑇𝐸, the predicted relative pose 𝛺′ must be close to the ground
ruth 𝛺, so that 𝛺−1

𝜏 𝛺′
𝜏 is close to an identity matrix. This is achieved,

hen both 𝑡𝑟𝑎𝑛𝑠(𝛺′) and 𝑅𝑜𝑡(𝛺′) are accurate. We consider the forward
irection only. Evaluating these three evaluation metrics, we obtain a
omprehensive assessment of the performance of the pose prediction
4

models. To determine the winner of Task 2, we define the task loss
∑

2 as the weighted average of RTEs on the three scenes, where we
weight SynCol III twice to account for the increased difficulty of pose
prediction on an unseen scene.

3.3.3. Task 3: Camera pose estimation on real-world data
We use the same evaluation metric for Task 3 as for Task 2. In

particular, we determine ATE, RTE, and ROT as defined in Eq. (7).
However, we scale the entire trajectory based on the absolute poses
to reflect that we are more interested in the global consistency in Task
3, than in local accuracy. The scaling factor in Task 3 is defined as:

𝑠𝑎𝑏𝑠 =
𝛴𝜏 𝑡𝑟𝑎𝑛𝑠(𝑃𝜏 )𝑇 ⋅ 𝑡𝑟𝑎𝑛𝑠(𝑃 ′

𝜏 )
𝛴𝜏 𝑡𝑟𝑎𝑛𝑠(𝑃 ′

𝜏 )𝑇 ⋅ 𝑡𝑟𝑎𝑛𝑠(𝑃 ′
𝜏 )
, (8)

he task score ∑

3 for Task 3 has three components: ATE, RTE, and ROT
veraged over all seven scenes.

.4. Challenge organization

The challenge was a one-time event with fixed submission deadline
f September 2022. In order to access the train and test data, partic-
pants had to register participation in the challenge on the challenge
ebsite.3 The teams provided their predictions for the test sets via the

hallenge website based on detailed submission guidelines including
ocker templates and evaluation scripts that participants could use for
alidation.4 The ground truth for the test data was published after the
hallenge had ended. The participants were not required to publish
heir code, but links to the code bases of the teams that chose to
re provided in Section 4. Ethics approval was not necessary for this
hallenge. In total, we received and approved 51 challenge registration
equests and 13 team registration requests.

. Methods for task 1: Depth prediction from synthetic images

For Task 1, final submissions were received from six teams.
Table 2 summarizes the key features of the teams’ methodology for

ask 1. Team details and the methodology proposed by each partici-
ating team are presented below.

.1. Fcbformer adaptation by Team CVML

Team CVML are Edward Sanderson and Bogdan J. Matuszewski
rom the University of Central Lancashire (UK). Team CVML proposed
he FCBFormer-D (as shown in Fig. 3 (I)), which is an adaptation of the
CBFormer (Sanderson and Matuszewski, 2022).

The overall architecture of FCBFormer-D is shown in Fig. 3(I-a).
he method consists of two branches: a transformer-based branch (TB)
Fig. 3(I-b)) extracting global features, and a convolutional branch
CB) (Fig. 3(I-c)) extracting local features that the TB could potentially
eglect. For the Transformer branch, the Pyramid Vision Transformer
2 (PVTv2) (Wang et al., 2022) (B3 variant pre-trained on ImageNet),
hich serves as image encoder and provides robust multiscale features

or dense prediction, is employed. PVTv2 then feeds into a lightweight
ecoder. The convolutional branch is based on a UNet-style architec-
ure inspired by Nichol and Dhariwal (2021) and includes multi-head
elf-attention at the lower levels to provide the model with global
ontext for this feature extraction. The feature maps from both branches
re then concatenated and fused using a UNet-style architecture also
nspired by Nichol and Dhariwal (2021) in the fusion module (FM)
ig. 3(I–d).

Finally, the output of the fusion module is passed through the
rediction head (PH) Fig. 3(I–e). The prediction head is a 1 × 1

3 https://www.synapse.org/Synapse:syn28548633/wiki/
4 https://github.com/anitarau/simcol

https://www.synapse.org/Synapse:syn28548633/wiki/
https://github.com/anitarau/simcol
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Fig. 3. Architecture overview for Task 1 (depth prediction) of the 6 participating teams. (I) Team CVML adapted FCBFormer (Sanderson and Matuszewski, 2022), (II) Team EndoAI
utilized GLPDepth (Kim et al., 2022) with Segformer encoder (Xie et al., 2021), (III) Team IntuitiveIL applied multiple DoG filters with varying scales as preprocessing and used
a NeW CRF network for depth prediction, (IV) Team KLIV utilized SUMNet (Nandamuri et al., 2019), (V) Team MIVA utilized DenseDepth (Alhashim and Wonka, 2018) as an
encoder–decoder network with skip connections, (VI) Team MMLab utilized Swin-UNet (Cao et al., 2023).
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Table 2
Summary of the participating teams of the SimCol Challenge — Task 1.

Team name Algorithm T/C Loss function Preprocessing Data augmentation Post-processing

CVML FCBFormer
adaptation
(Sanderson and
Matuszewski,
2022)

T&C MSE Alpha channel
removed, pixel intensity
normalization, resize,
depth scaling

Horizontal &
vertical flips

None

EndoAI GLPDepth
(Kim et al.,
2022)

T&C SILog Normalization,
Horizontal flip

Vertical cut
depth

Conv2D-ReLU-
Conv2D block to
adjust the
resolution of
output images

IntuitiveIL NeWCRFs
(Yuan et al.,
2022)

T SILog GC, DoG,
normalization, HSV

AS, FA None

KLIV SUMNet
(Nandamuri
et al., 2019)

C MAE + MSE +
SIL + BL

Resizing, normalization Low-pass GB

MIVA DenseDepth
(Alhashim and
Wonka, 2018)

C MAE + SSIM normalization Horizontal flip None

MMLab Swin-UNet
(Cao et al.,
2023)

T L1 Downsampling None Upsampling

T: Transformer backbone; C: Convolutional backbone; MAE: Mean Absolute Error; MSE: Mean Squared Error; BL: Berhu Loss; GC: Gamma Correction; DoG: Difference of Gaussian
filter; AS: Average Shape; FA: Feature Augmentation; GB: Gaussian Blur; SSIM: Structural Similarity loss; SILog: Scale-Invariant Logarithmic loss; HSV: Hue Saturation Value.
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convolutional layer with sigmoid activation that outputs dense depth
map. The depths are then upsampled to the original size of 475 × 475
sing bilinear interpolation.

The implemented network takes a 352 × 352 RGB image with pixel
ntensities in the range [−1, 1] as inputs. This involves resizing the
75 × 475 8-bit RGB images using bilinear interpolation with anti-
liasing prior to normalization. The output of the proposed network
hen provides a 475 × 475 depth map with relative depth values in
he range [0, 1]. During training and validation, the ground truth depth

values were scaled to a range of [0, 1], corresponding to [0cm, 20cm],
and the model was optimized to minimize the mean squared error
(MSE) loss. Team CVML used AdamW optimizer with a learning rate of
1𝑒 − 4, which was scheduled to halve when the MSE on the validation
data did not decrease over 10 epochs. The inputs were randomly
horizontally and vertically flipped with a probability of 0.5. The model
was trained for 300 epochs with a batch size of 24. The network weights
with the smallest MSE on the validation set were saved. Training was
performed on an ASUS ESC8000-G4 GPU server with six NVIDIA RTX
A6000 48 GB GPUs.

The groups’ method is inspired by their observation that a standard
UNet performs relatively weak at inferring the edges of the geometry,
as well as the depth of far away surfaces. Their network thus aims
to capture both, global features that help understand depth at all
distances, and local features that can infer steps in depth.

4.2. GLPDepth adaptation by Team EndoAI

Team EndoAI are Jiwoon Jeon from EndoAI (Korea) and Jae Young
Lee, Dong Jae Lee and Woonghyun Ka from Korea Advanced Insti-
tute of Science and Technology (Korea), who participated in all three
Tasks. Team EndoAI proposed to use GLPDepth (Kim et al., 2022), a
Transformer-based network for depth prediction (as shown in Fig. 3(b),
for the depth prediction task because this method has shown higher
generalization ability and robustness compared to previously developed
networks. To obtain the depth map prediction 𝐷𝑝𝑟𝑒𝑑 from the input
𝐼𝑅𝐺𝐵 , the local and global features are fused by Selective Feature
Fusion (SFF) in the decoder. For the encoder, Segformer (Xie et al.,
2021) is utilized.

The last layer of the original GLPDepth network decoder is modified
to include a Conv2D-ReLU-Conv2D block to adjust the resolution of the
6

t

resulting depth map. Further, to avoid scale adjusting, the model is di-
rectly trained to predict depth maps in the range of [0, 1] (corresponding
to [0cm, 20cm]) instead of using median scaling. GLPDepth uses the
Scale-Invariant Logarithmic (SILog) loss (Eigen et al., 2014) given by:

𝐿(𝐷𝑝𝑟𝑒𝑑 , 𝐷𝐺𝑇 ) =

√

√

√

√

√

1
𝑇

∑

𝑖
𝑑2𝑖 −

(

1
𝑇

∑

𝑖
𝑑𝑖

)2

, (9)

where 𝑑𝑖 is the pixel-wise log loss

𝑑𝑖 = log(𝐷𝑝𝑟𝑒𝑑 (𝑖)) − log(𝐷𝐺𝑇 (𝑖)) (10)

nd 𝑇 denotes the number of pixels in the depth map. For training the
LPDepth model, the original hyperparameters from (Kim et al., 2022)
re used. The model is fine-tuned for 20 epochs using the CosineAnneal-
ngWarmRestarts learning rate scheduler (Loshchilov and Hutter, 2016)
n the challenge metrics: L1 depth error, RMSE, and relative depth
rror. The final model is chosen based on the performance of all metrics
n the validation set.

.3. NewCRFs adaptation by Team IntuitiveIL

Team IntuitiveIL are Erez Posner, Netanel Frank, and Moshe Bouh-
ik from the Intuitive Surgical, who proposed to adapt Neural Window
ully-connected Conditional Random Fields (NeW CRFs) (Yuan et al.,
022) to accomplish colonoscopy monocular depth estimation lever-
ging the advantages of fully-connected (FC) CRFs (He et al., 2004).
n addition, they employed data augmentation techniques to address
he issue of illumination changes, which involved creating partially
llumination-invariant images.

For depth estimation, NeW CRFs are selected because they over-
ome the limitations of traditional depth estimation methods that rely
n Markov Random Fields (MRFs) or CRFs (Saxena et al., 2008, 2005).
eW CRFs embed a vision transformer to capture pairwise interactions
ith multi-head attention as the encoder and the neural CRFs module

n a network as the decoder. NeW CRFs can capture the relation-
hip between any node in a graph, making them much stronger than
eighbor CRFs. By splitting the input into windows and performing FC-
RFs optimization within each window, NeW CRFs reduce computation
omplexity while maintaining the advantages of FC-CRFs. Additionally,
he use of multi-head attention within a neural CRFs module further
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improves depth estimation performance. As shown in Fig. 3III(b), the
encoder initially extracts features across four levels. A Pyramid Pooling
Module (PPM) combines both global and local data, generating the
preliminary prediction X using the uppermost image feature F. Sub-
sequently, within each level, the neural window fully-connected CRF
component constructs multi-head energy from X and F, refining it to
an improved prediction X’.

In colon augmentation, the method originally proposed in Ye et al.
(2014) for face recognition is utilized, which contains the following
steps to create the grayscale illumination-invariant image:

𝐼𝑔𝑎𝑚𝑚𝑎 = 𝐺𝑎𝑚𝑚𝑎𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(Image)
𝐼𝐷𝑜𝐺 = 𝐷𝑜𝐺(𝐼𝑔𝑎𝑚𝑚𝑎)

𝐼𝑛𝑜𝑟𝑚 =
𝐼𝐷𝑜𝐺

𝑚𝑒𝑎𝑛(|𝐼𝐷𝑜𝐺|
𝑎) 1𝑎

𝐼𝑛𝑜𝑟𝑚 =
𝐼𝑛𝑜𝑟𝑚

𝑚𝑒𝑎𝑛(𝑚𝑖𝑛((𝜏), |𝐼𝑛𝑜𝑟𝑚|
𝑎))

1
𝑎

𝐼𝑛𝑜𝑟𝑚 =
𝜏 ∗ 𝑡𝑎𝑛ℎ(𝐼𝑛𝑜𝑟𝑚)

𝜏
,

(11)

where 𝐺𝑎𝑚𝑚𝑎𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 involves gamma correcting all images to the
same value, and 𝐷𝑜𝐺 represents the difference of Gaussians filter. In
the augmentation process, the original DoG image is replaced with
an average of several DoG filters with varied scales (as illustrated
in Fig. 3III(a)). This augmentation aims to improve local texture and
accommodates features of various sizes. Additionally, the input image
is changed from an RGB to an HSV representation, the value channel
is swapped for the algorithm’s output in grayscale, and the resulting
image is then converted back to an RGB representation. This allowed
stronger features even in the colon’s distant areas. Scale-Invariant
Logarithmic (SILog) loss is utilized as the loss function. SILog supervises
the training by first calculating the logarithm difference between the
predicted and the ground-truth depth map. For K pixels with valid
depth values in an image, the scale-invariant loss is computed to
measure the performance of the depth estimation (Yuan et al., 2022).

4.4. SUMNet adaptation by Team KLIV

Team KLIV are Varshini Elangovan from College of Engineering,
Guindy (India), and Sista Raviteja, Rachana Sathish, Debdoot Sheet
from the Indian Institute of Technology Kharagpur (India). KLIV pro-
posed to apply a fully convolutional neural network SUMNet (Nan-
damuri et al., 2019) to effectively generate colon depth maps from
frame buffers while preserving conformity around small structures and
preventing the loss of critical information.

Concretely, SUMNet (Nandamuri et al., 2019) consists of an en-
coder network with VGG11 architecture, activation concatenation, and
pooling index transfer. Several loss functions are taken into account
during the training process, including Mean Absolute Error (MAE),
Mean Squared Error (MSE), scale-invariant loss (Eigen et al., 2014),
and Berhu loss (Carvalho et al., 2018). In order to reduce the aliasing
effect in the predicted depth maps, a post-processing step is used to
apply a Gaussian Blur low-pass filter with a kernel size of 7 × 7.

From the provided training data 10,309 frames are used for training,
and 3,603 frames are used for validation. To give a more thorough
summary, the frame buffers in the simulated dataset were initially in
RGBA format, but for network compatibility, they are converted to
RGB images and resized to 448 × 448. Additionally, the images are
normalized using the training dataset’s mean and standard deviation.
The depth maps are scaled to 448 × 448 and translated into grayscale
images. These preprocessed images and depth maps are then used for
training the SUMNet model for depth estimation of synthetic colono-
scopic images. The network is implemented in PyTorch and trained for
50 epochs on an Nvidia GeForce GTX TITAN X GPU with a batch size
7

of 16 using the ADAM optimizer with an initial learning rate of 0.001
and an exponential learning rate scheduler with a decay factor of 0.98.
The complete training took 24 h.

The effectiveness of the model and the reliability of its predictions
are assessed using the L1 error, relative error, and root-mean-square
error. The model trained on MSE loss predicted results that are more
reliable and accurate, in comparison to the models trained on the other
loss functions. KLIV’s code is available.5

4.5. DenseDepth adaptation by Team MIVA

Team MIVA are Zhengwen Li and Yichen Zhu from ZheJiang Univer-
sity (China), who participated in all three Tasks. MIVA used
DenseDepth (Alhashim and Wonka, 2018) which is a fully convolu-
tional encoder–decoder architecture with skip connections (as shown
in Fig. 3(V)). The encoder is a DenseNet-169 (Huang et al., 2017) pre-
trained on ImageNet (Deng et al., 2009) as proposed by the original
DenseDepth. The authors also experimented with a DenseNet-201,
which performed worse in their experiments. To train the network,
MIVA used the loss 𝐿 as the weighted sum between the depth and SSIM
loss:

𝐿(𝑌 , 𝑌 ′) = 0.1 ⋅ 𝐿𝑑𝑒𝑝𝑡ℎ(𝑌 , 𝑌 ′) + 𝐿𝑆𝑆𝐼𝑀 (𝑌 , 𝑌 ′). (12)

he Loss term 𝐿𝑑𝑒𝑝𝑡ℎ is the point-wise L1 loss defined on the depth
alues and 𝐿𝑆𝑆𝐼𝑀 uses the Structural Similarity (SSIM). The authors re-
lace the original augmentation strategy with a 50% random horizontal
lipping and image normalization only. The synthetic data provided is
plit into training set (Rau et al., 2023a) and validation set in the way
ecommended by the SimCol3D challenge organizers, and the mean and
tandard deviation in normalization are calculated from all images in
he training set. The participants trained their method on an NVIDIA
eForce RTX 3090 GPU using a batch size of 16 and a learning rate of
0−4 with Adam optimizer for 40 epochs.

.6. Swin-UNet adaptation by MMLAB

Team MMLAB are Seenivasan Lalithkumar, Islam Mobarakol and
enHongliang are from National University of Singapore (Singapore),

mperial College London (UK) and Chinese University of Hong King
China), who participated in Task 1 and 2.

For the depth estimation task, a Unet-like Swin-Transformer (Swin-
Net) (Cao et al., 2023) (Fig. 3(VI)), a medical image segmentation
odel, is used. Swin-UNet forms a hierarchical Swin Transformer with

hifted windows in the encoder, a decoder with patch expanding layer
o perform upsampling on the feature maps and skip connections for
ocal–global semantic feature learning. Overall, there are three blocks
f the encoder and corresponding decoder in Swin-UNet. The model
as trained using L1 loss and SGD optimizer with a learning rate of
.01, a decay factor of 1e-4, and a momentum of 0.9. The input images
re resized to 224 × 224 during training and upsampled to the original
ize at test time after the prediction. The participants experimented
ith different loss functions such as L1, mean square error (MSE),

tructural similarity index (SSIM), and binary cross entropy (BCE).
ltimately, the L1 loss outperformed other loss functions with an MSE
f 0.000115 and an SSIM of 0.984670. The team’s code is publicly
vailable.6

. Methods for Task 2 and 3: Pose prediction from synthetic and
eal images

In total, 3 teams (EndoAI, MIVA and MMLab) participated in Task
(pose prediction from synthetic), two of which (EndoAI and MIVA)

lso participated in Task 3 (pose prediction from real images). Table 3
rovides an overview of the key features of the teams’ methodology.
he remainder of this section describes the participants’ methods in
etail.

5 https://github.com/SistaRaviteja/Colonoscopy-Depth-Estimation
6 https://github.com/lalithjets/SimCol3D_challenge_2022

https://github.com/SistaRaviteja/Colonoscopy-Depth-Estimation
https://github.com/lalithjets/SimCol3D_challenge_2022
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Fig. 4. Architecture overview for Task 2 (pose prediction from synthetic) and Task 3 (pose prediction from real) images of the participating teams. For Task 2, (I) Team EndoAI
utilized MonoDepthv2 (Godard et al., 2019), (II) Team MIVA utilized SC-SfMLearner (Bian et al., 2021), and (III) Team MMLab implemented curriculum learning with linear
regression. For Task 3, (IV) Team EndoAI and Team MIVA utilized the CycleGAN model for Sim2Real image generation.
Table 3
Summary of the participating teams of the SimCol3D Challenge — Task 2 and Task 3.
Team Task Algorithm Loss function Data augmentation

EndoAI 2 (Pose Syn.) MonoDepth2
(Godard et al.,
2019)

MSE None

3 (Pose Real) CycleGAN +
MonoDepth2

Same as Task 2 CycleGan real-to-syn
conversion

MIVA 2 (Pose Syn.) SC-sfMLearner (Bian
et al., 2021)

SC-sfMLearner + Densedepth Image normalization

3 (Pose Real) CycleGAN +
SC-sfMLearner

Same as Task 2 Crop, resize, CycleGAN
real-to-syn conversion

MMLab 2 (Pose Syn.) Curriculum learning,
linear regression

MSE None

3 (Pose Real) N/A N/A N/A
5.1. SC-SfMLearner adaptation by MIVA

For the pose estimation task, MIVA used a method based on SC-
SfMLearner as shown in Fig. 4(II), which includes two parts: a depth
estimation module and a pose estimation module. In addition, they
replaced the DispResNet depth estimation module in the original SC-
SfMLearner with a DenseDepth network. As ground truth depth for
synthetic data was known, MIVA made use of this information while
training the formerly self-supervised SC-SfMLearner. To supervise the
depth module, the loss of Densedepth was added to the original loss of
SC-SfMLearner. The modified loss function is

𝐿 = 𝐿𝑆𝐶−𝑠𝑓𝑚𝑓𝑜𝑟𝑚𝑒𝑟 + 𝜔 ⋅ 𝐿𝑑𝑒𝑛𝑠𝑒𝑑𝑒𝑝𝑡ℎ, (13)

where the weight 𝜔 was set to 1.
The team divided the dataset according to their split for Task 1 and

also normalized the input images. MIVA’s model was trained on an
8

NVIDIA GeForce RTX 3090 GPU with a batch size of 8, learning rate of
10−4 and Adam optimizer. The network was trained for 40 epochs.

For the Task 3, MIVA used CycleGAN, which consists of two gen-
erators and two discriminators as shown in Fig. 4(IV), where 𝐴 rep-
resents the real colonoscopy image domain, and 𝐵 represents the
virtual colonoscopy image domain. The input image A generates Fake_B
through Generator G, and Fake_B generates Rec_A through Generator
F. After two transformations, Rec_A is mapped back to the A domain.
The model is optimized by comparing the similarity between Input_A
and Rec_A. Input_B is processed in the same way. The generator in this
paper adopts a ResNet backbone (He et al., 2016), and the discriminator
uses a PatchGAN structure. The EndoMapper (Azagra et al., 2023)
dataset and the synthetic dataset (Rau et al., 2023a) provided by the
SimCol3D Challenge were used for training the CycleGAN. Since there
are black areas in the four corners of the EndoMapper dataset, MIVA
cropped the areas from (155, 0) to (1162, 1007) and reduced them
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Table 4
Task 1 results on the three test scenes. We report the mean over three sequences per test scene. Winners are indicated in
bold, the runner-up is underlined, and third-placed teams are shown in italics. All results are reported in cm.

SynCol Ia SynCol IIa SynCol III ∑

1 ↑
L1 ↓ Rel ↓ RMSE ↓ L1 ↓ Rel ↓ RMSE ↓ L1 ↓ Rel ↓ RMSE ↓

CVML 0.030 0.012 0.045 0.030 0.009 0.044 0.099 0.025 0.141 54
EndoAI 0.040 0.015 0.067 0.039 0.011 0.063 0.111 0.028 0.168 37
IntuitiveIL 0.050 0.017 0.091 0.059 0.016 0.103 0.167 0.047 0.233 26
KLIV 0.155 0.055 0.228 0.166 0.045 0.236 0.187 0.048 0.277 12
MIVA 0.038 0.014 0.065 0.038 0.010 0.065 0.107 0.025 0.163 44
MMLAB 0.109 0.037 0.185 0.201 0.047 0.330 0.171 0.040 0.277 16

a Indicate scenes that provided trajectories with groundtruth for training.
o a 480 × 480 square. During training, MIVA applied random hori-
zontal flipping and normalization to the data. Preliminary validation
results show that CycleGAN’s generator can map multiple inputs to the
same output. For example, a real colonoscopy image is converted to
generate a completely different virtual image. For this reason, MIVA
experimented with identity loss, self-regularization loss and SSIM loss
to guide the generator. Ultimately, the team used an identity loss in the
final submitted model. The experiments for Task 3 was carried out on
an NVIDIA GeForce RTX 2080ti.

5.2. MonoDepth2 adaptation by EndoAI

EndoAI’s camera pose estimation framework is based on the self-
supervised monocular depth estimation method called
MonoDepth2 (Godard et al., 2019) (as shown in Fig. 4(I-a)) but is
trained using supervision with the ground truth translations and ro-
tations. In addition to the original self-supervised loss, the team added
the supervised loss

𝐿(𝑃𝑝𝑟𝑒𝑑 , 𝑃𝐺𝑇 ) =
∑

𝑖,𝑗
‖𝑃𝑝𝑟𝑒𝑑 − 𝑃𝐺𝑇 ‖1, (14)

where 𝑃𝑝𝑟𝑒𝑑 and 𝑃𝐺𝑇 are the prediction and ground truth 4 × 4 ma-
trices, and (𝑖, 𝑗) represents row and column indices of the matrices,
respectively, such that (1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 4). The last row is not used.

Further, the depth network in Monodepth2 is replaced with
GLPDepth (Kim et al., 2022) (Fig. 4(I-b)) and the pose network employs
a ResNet18 encoder and a decoder (Fig. 4(I-c)). For Task 2, the depth
network is trained from scratch (weights from Task 1 are not used). The
team used the hyperparameters proposed in the original MonoDepth2.
At training time, as used in Monodepth2, both forward and backward
path trajectories are trained, simultaneously. The model is trained for
20 epochs, but the epoch with the best performance on the validation
set is submitted. The same model is used for Task 3, where additionally,
a CycleGAN was used to translate real images to synthetic images
before feeding into the Monodepth2 network.

5.3. Curriculum learning with linear regression by MMLab

For Task 2, MMlab employed ResNet18 (He et al., 2016) and a series
of linear layers as shown in Fig. 4(III). Furthermore, they employed
Laplacian of Gaussian (LoG) kernel-based filters to enforce attention to
contours and perform curriculum learning. Initially, the ResNet module
is loaded with the PyTorch ImageNet pre-trained weights. Then the
whole model is trained based on mean-square-error (MSE) loss using
Adam optimizer with a learning rate of 7.5×10−6 for 45 epochs. During
training, the values of the LOG kernel (with kernel size = 3) are updated
with a factor of 0.9 to allow more features to pass through the model
as the learning progresses and to enforce attention to contours. While
the relative ground truth pose has 16 values, the module regresses 12
values as the last four values are constant [0.0, 0.0, 0.0, 1.0].

6. Results and discussions

This section summarizes and discusses the submitted results of all
9

participating teams on the three tasks.
6.1. Task 1: Depth estimation

All teams that participated in Task 1 delivered impressive results on
the test scenes as presented in Table 4. The 𝐿1 error ranged between
0.03 cm and 0.201 cm across teams and scenes.

Among the three best-performing methods, one method was fully
convolutional (MIVA), and the other two were a combination of a
convolutional model and transformer (EndoAI, CVML). Achieving sub-
millimeter errors on all scenes, team CVML demonstrates that depth
prediction from synthetic data can be considered a robustly solvable
task. CVML outperformed all other teams on all metrics and all scenes.
Even on SynCol III, a scene that has not been seen during training,
the average 𝐿1 error of CVML is below one millimeter. The winning
team used a model that combines both a transformer-based and a CNN-
based branch in a single network. To develop their method, the team
performed detailed validation of their backbone model, which inspired
their modifications to FCBFormer. The team reported that the addition
of the 1 × 1 convolutional layers to the convolutional branch and
the inclusion of the fusion module was instrumental to their method’s
accuracy. Furthermore, the multi-head self-attention in both the U-Net
style architecture in the convolutional branch and the fusion module
boosted performance but necessitated replacing the Transformer branch
decoder and the prediction head with lightweight alternatives to reduce
computational complexity.

Maybe surprisingly, the runner-up method proposed by MIVA is
based on a convolutional neural network from 2018 and was applied
out of the box, without further adaptations to the method, or com-
plex augmentations or post-processing. The only changes the authors
made was replacing the original augmentations with less pronounced
endoscopy-suitable augmentations, namely flipping and normalizing
only, which might be a good strategy for synthetic colonoscopy frames
as their appearance does not vary.

EndoAI’s method ranked third and was also a direct adaptation
of an existing method, but, like the winner, the model is based on a
combination of a convolutional model and a Transformer.

Comparing all six methods, we find that all teams used distinctly
different baseline methods. Perhaps surprisingly, there was no consen-
sus on the best method for depth prediction during the time of the
challenge. Most teams used recent works from 2022 to build upon
except for two teams, one of which ranked second. All recent methods
were transformer-based, while the older methods are CNNs. Team
IntuitiveIL was the only team to develop new augmentation strategies
tailored towards colonoscopy applications. The team introducing most
changes to a baseline method is CVML which won the first task of the
challenge.

Interestingly, the winning method and the last and second-to-last
methods employed networks that were initially developed for medical
image segmentation. All other teams used networks that were devel-
oped for depth prediction. Given the discrepancy between the results,
it appears that in this challenge, segmentation models are neither better
nor worse than depth prediction networks.

Similarly, fully convolutional networks ranked both second, and

last, so that a method’s performance cannot be attributed to this design
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Fig. 5. Comparison of depth predictions generated by the participant teams. For Synthetic Colons I and II we show one example from one test trajectory each. For Synthetic Colon
III, we show an example for all three test trajectories. We show the average L1 error above each error map. The colorbar’s scale is in cm. Visually, the results of CVML, EndoAI,
IntuitiveIL, and MIVA are barely distinguishable from the ground truth. Though when observing the L1 error, CVML is found to be the best performing one, closely followed by
MIVA.
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Table 5
Task 2 results on the three test scenes. We report the mean over three sequences per test scene. Winners are indicated in bold, and the runner-up
is underlined. ATE is measured in dm, RTE in cm, and ROT in degrees.

SynCol Ia SynCol IIa SynCol III ∑

2
ATE ↓ RTE ↓ ROT ↓ ATE ↓ RTE ↓ ROT ↓ ATE ↓ RTE ↓ ROT ↓

EndoAI 0.574 0.081 0.144 0.336 0.084 0.148 0.325 0.247 0.367 0.165
MIVA 0.860 0.124 0.141 0.325 0.158 0.180 0.422 0.226 0.275 0.183
MMLAB 0.819 0.082 2.818 1.206 0.139 1.880 0.572 0.458 1.833 0.284

a Indicate scenes that provided trajectories with ground truth for training.
hoice alone. Transformer-only networks ranked fourth and fifth, sug-
esting, that perhaps, the transformers used in this challenge were not
quipped to capture the detailed geometry of the endoscopic scenes.
lthough Vision Transformers have greatly impacted the broad field
f computer vision, further investigations into their ability to predict
epth from endoscopic images are required. One design, that performed
ell throughout, is a combination of transformer and convolutional

ayers. As described by Sanderson and Matuszewski (2022), who also
articipated in this challenge as team CVML, the combination of trans-
ormer and convolutional layers helps leverage both global and local
eatures in endoscopic images.

Comparing quantitative results in Table 4, we can observe that three
est performing methods all lead to similar errors. For instance, on
ynCol I, CVML, EndoAI, and MIVA achieve L1 errors of 0.03–0.04 cm.
he other methods perform considerably worse (0.05–0.16). Further,
ll methods perform significantly worse on SynCol III, for which, as
pposed to SynCols I and II, there were no training sequences released.
onetheless, all methods achieve an L1 loss of less than 2 mm. This

peaks to the ability of these methods to accurately generalize to unseen
eometries.

A qualitative comparison of all methods on a few representative
mages from all three scenes is provided in Fig. 5 along with the L1 er-
or of individual predicted masks. We randomly sampled one frame for
isualization per trajectory. The results of CVML, EndoAI, IntuitiveIL,
nd MIVA are barely distinguishable from the ground truth. Only when
ssessing the individual L1 errors, we can observe that CVML performs
lightly better than MIVA, followed by EndoAI and IntuitiveIL. KLIV
nd MMLab show visible checkerboard artifacts, which is consistent
ith the quantitative results in Table 4, where KLIV and MMLab rank

ifth and sixth.

.2. Task 2: Camera pose estimation on simulated data

Three of the six teams participated in Task 2. The results of these
eams are summarized in Table 5. The challenge organizers were par-
icularly interested in the teams’ results on the third test scene, as no
raining trajectories of scene III were provided to the teams. We thus
eighted errors on SynCol III twice, while errors on SynCol I and II
ere weighted once, to reflect the importance of generalizability to
nseen scenes. Based on the mean ATE, Team EndoAI performs best
nd by a large margin on two out of three trajectories and takes first
lace. EndoAI also performs best on SynCol III, which is the only unseen
cene. Based on the RTE, EndoAI performs best on SynCol I and II, but
ven when weighting results on scene III twice, EndoAI outperforms
he other methods. MIVA performs best on all measures in at least one
cene, but ranks second overall, followed by MMLAB.

Qualitative results are shown in Fig. 6. We chose to show one
rajectory per scene only, as the differences between trajectories on
ne scene are small. It can be observed that EndoAI’s predictions most
losely follow the ground truth trajectories. All models show clear drift
n almost all scenes, which is consistent with the frame-wise approaches
ll teams chose to follow. Especially scene SynCol III, which was not
een during training, suffers from drift. Notably, the two more accurate
pproaches are both based on warping-based depth and pose networks
MonoDepth2 with updated backbones and SC-SfMLearner), while the
11

hird-placed method regresses pose from images directly. Although the
Table 6
Task 3 results. Winners are indicated in bold. The ROT error is reported in degrees.
The absolute scale of the ATE and RTE is unknown.

Sequence 1 2 3 4 5 6 7 ∑

3
#Frames/seq 76 144 119 69 127 86 56

ATE ↓ ATE ↓

EndoAI 3.34 10.19 7.70 1.17 1.47 11.58 14.69 7.16
MIVA 0.97 4.50 3.12 2.38 3.55 4.10 6.48 3.59

RTE ↓ RTE ↓

EndoAI 0.104 0.200 0.142 0.307 0.144 0.191 0.493 0.23
MIVA 0.065 0.104 0.130 0.174 0.116 0.300 0.625 0.22

ROT ↓ ROT ↓

EndoAI 0.709 0.960 0.836 0.643 0.776 0.823 1.310 0.87
MIVA 0.264 0.634 0.551 0.453 0.622 0.478 0.804 0.54

warping-based approaches are optimized for the auxiliary task novel-
view synthesis, the networks outperform the approach that minimized
the pose loss only. Moreover, the two teams employing warping-based
networks added supervised losses based on the provided labels in the
training to the respective self-supervision methods. Interestingly, MIVA
employed a supervised depth loss, while EndoAI used a supervised pose
loss, and neither team used both depth and pose labels. As all teams
use different backbones, a concluding comparison study remains to be
conducted. We can only speculate that EndoAI’s performance might
result from their more complex back-bone (Transformer-based depth
network) in comparison to MIVA who use a UNet-type depth net. It
could also result from their supervision with ground truth poses in
addition to the self-supervised losses of Monodepth2.

6.3. Task 3: Camera pose estimation on real-world data

Two teams participated in Task 3. Both teams used the same method
they also used for Task 2, but also applied a CycleGAN to translate
appearance between the real and synthetic domains before predicting
the camera pose. Results are summarized in Table 6. As methods are
compared to COLMAP, and overall scales are not known, the predicted
trajectories are scaled before the evaluation of the error metrics. For the
same reason, we are more interested in the ATE which better reflects
the global consistency than the RTE. MIVA outperforms EndoAI on five
out of seven scenes according to the ATE and is thus declared winner.
MIVA also yields the smallest RTE in five of seven scenes.

The methods are compared qualitatively in Fig. 7. While both
methods demonstrate extreme drift, the overall trajectories follow the
COLMAP trajectory in some scenes, such as in scene 2, where both
methods predict the sharp sideways movement in the first half of the
trajectory. Similarly, both models show the quick sideways slip of the
camera in the middle of the trajectory in scene 3. And in scene 5, both
models follow the ‘‘W’’ shape of the trajectory. We found that none
of the participating groups used the publicly available COLMAP poses
in the EndoMapper dataset for training. The power of their methods
is based entirely on their pose models pretrained on synthetic data.
We thus posit that the synthetic data in this challenge provided the
models with some understanding of camera pose movement in real
colonoscopy. Interestingly, the ranking of both teams is swapped in
comparison to Task 2, although both teams use the same pose networks
as before, and employ the same CycleGAN for domain adaptation.
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Fig. 6. Overview of Task 2 results showing predicted and ground truth trajectories. For each test scene, we show the first of three trajectories. Qualitatively, it can be observed
that Team EndoAI performed the best.
6.4. Data limitations and future directions

While synthetic data provides a useful playground to develop al-
gorithms, its applicability to real procedures remains to be elucidated.
While we strongly believe that synthetic datasets played a crucial role
in enabling early research in the field (Mahmood and Durr, 2018) and
in helping push the boundaries further (Rau et al., 2019; Mathew et al.,
2020; Itoh et al., 2021; Rodriguez-Puigvert et al., 2022), drawbacks
remain. First, the visual discrepancy between real images and our
synthetically generated frames is obvious. But visual differences alone
can usually be overcome with domain adaptation. More importantly,
our synthetic data also misses some physical properties of real colons.
For instance, colonoscopists often use water to clean the colon mucosa,
resulting in puddles. Specularities and air bubbles are also common in
real colonoscopies but are not reflected in our data. For the camera
pose dataset, one important difference is the lack of deformation in
the synthetic data. In the synthetic dataset, the movement of the colon
wall is always due to a camera movement. But in real colonoscopy, the
colon walls constantly move due to the colon’s own digestive motions,
or inflation with air.

So, while synthetic data is useful, the question of how we can move
past having to choose between unrealistic synthetic data or unlabeled
real data remains unanswered. One obvious approach is improving
the fidelity of synthetic data to replicate real colon mucosa more
closely (Dowrick et al., 2023). However, a domain gap is unavoidable,
12
especially with respect to the behavior of the camera and the relative
movement of the colon wall and haustral folds.

A different approach is method-based and focuses on combining
both modalities in a useful way (Rau et al., 2023b). But to evaluate
such methods, a real labeled dataset is indispensable.

COLMAP provided useful ground truth poses for this challenge,
but the method has serious limitations. It requires reliably matchable
features which are extremely sparse in the colon. The reconstruction
thus fails on many subsections of the colon. Even if it works, the
resulting depth maps are too sparse to be useful, and depths and poses
are biased towards a few visible features while ignoring most of the
remaining colon wall. Due to the high failure rate, the reconstructions
must be visually verified, further biasing the resulting test set towards
sub-scenes that are visually interpretable. However, when COLMAP
succeeds, it is accurate. We ran COLMAP on Synthetic Colon I and
found that it fails to reconstruct 93% of all frames but achieves an RTE
of 0.028 cm on the sections where it does not fail. For comparison, the
best submission achieved 0.081 cm on the entire Synthetic Colon I.

An alternative route for labeled real datasets could be new hard-
ware. Magnetically actuated soft capsule endoscopes can provide par-
tial ground truth pose, but not depth (Pittiglio et al., 2019). Some
capsule colonoscopes provide stereo vision, paving the door for more
accurate, but still sparse, depth prediction (Bianchi et al., 2017). Sim-
ilarly, full spectrum colonoscopy provides two additional lateral cam-
eras (Kurniawan and Keuchel, 2017). While these advances currently
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Fig. 7. Overview of Task 3 results showing predicted and ground truth (COLMAP) trajectories. For each test trajectory, we show three sampled frames in order of the video.
focus on improving the visualization of the colonoscopic scenes for the
operator in real-time, we hope that future advances incorporate other
sensors, such as for position or depth.

A last alternative to synthetic data is colon phantoms made of
synthetic materials, such as silicone. Phantoms are, perhaps, the most
flexible approach. They can, in theory, be produced in any size, allow-
ing the integration of mounted depth and pose sensors. One drawback
of phantoms is their material. Phantoms are either rigid, preventing a
13
colonoscope from moving through it, especially around corners. Or they
are non-rigid, rendering electromagnetic poses invalid as the sensor can
move relative to the magnetic field while staying in place relative to the
phantom. Further, the rubber-like surface looks unrealistic and prevents
the camera from replicating realistic camera movements due to friction.
As they are expensive to produce, a collection of many phantoms is
unrealistic, such that data availability and diversity are limited. Lastly,
hand-eye calibration between the camera and EM tracker and temporal
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synchronization introduces errors in the ground truth. Nonetheless, the
creation of cheap and realistic looking and feeling phantoms could be
a promising future direction.

7. Conclusions

This paper discusses the SimCol3D 2022 EndoVis Subchallenge and
the methods employed by participating teams. The primary objective
of this challenge was to promote research on 3D reconstruction during
colonoscopy. Six teams from various parts of the world participated in
the challenge and achieved impressive results. Particularly, the task
of depth prediction on synthetic data proved to be both interesting
and solvable. Achieving sub-millimeter accuracy on an unseen colon,
the winning team could predict local 3D geometry extremely accu-
rately. This robust generalization to a new scene within the same
domain is a promising step towards real-world applications. The gen-
eralizability to a new domain remains an open research question and
has not been addressed for the depth prediction task in this chal-
lenge. To test the applicability to real colonoscopy, new hardware
facilitating datasets consisting of real colonoscopy frames with corre-
sponding ground truth depth is required. While synthetic, phantom,
and Structure-from-Motion-based data sources all have their own lim-
itations, a thorough evaluation on all three modalities could paint a
more holistic picture of model performance in the meantime.

In comparison to depth prediction, predicting pose is a less well-
studied problem, and accordingly the task is not yet fully solved.
One main concern remains drift, which could be addressed by future
work. Interestingly, both depth loss (𝐿1) and pose loss (RTE) increase
roughly three-fold between the know scenes (I and II) versus the unseen
scene (III). Therefore, it is crucial for future work to delve deeper into
investigating the generalizability of models across different scenes, both
within the same domain and across domains. While this challenge was
the first one to evaluate generalizability from synthetic pose prediction
to real procedures, the evaluation is limited by the quality of the
COLMAP labels and their visual verification.

To have an impact on patient outcomes, accurate depth and pose
predictions are a first step. Future work should tackle the challenge
of achieving robust global reconstructions from local pose and depth
predictions based on which unscreened colon mucosa can be identified
and visualized. Such a framework will have to work in real-time and
should be seamlessly integrate into clinical practice.
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