000135769 001__ 135769
000135769 005__ 20250923084422.0
000135769 0247_ $$2doi$$a10.1016/j.fuel.2024.132001
000135769 0248_ $$2sideral$$a138756
000135769 037__ $$aART-2024-138756
000135769 041__ $$aeng
000135769 100__ $$0(orcid)0000-0002-2866-9035$$aLete, Alejandro$$uUniversidad de Zaragoza
000135769 245__ $$aSynthesis of ketones from glycerol and 1,2-propanediol using copper and nickel catalysts: Unraveling the impact of reaction phase and active metal
000135769 260__ $$c2024
000135769 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135769 5203_ $$aCatalysts based on nickel-aluminum and copper–aluminum were synthesized through the coprecipitation method with a Ni or Cu content of 28 mol%, expressed as Ni/(Ni + Al) or Cu/(Cu + Al). The catalysts were calcined at 675 °C and thoroughly analyzed using various characterization techniques (ICP-OES, N2 adsorption–desorption, NH3-TPD, CO2-TPD, XRD, H2-TPR and elemental analysis). The samples were tested in two different reaction systems, gas phase at atmospheric pressure and liquid phase at 34 absolute bar, to investigate the production of ketones from glycerol and 1,2-propanediol under reaction conditions of 227 °C and a mass of catalyst/reagent mass flow rate ratio (W/m) of 10 gCatalyst·min/gReagent. The characterization results revealed catalysts with high specific surface area and nickel and copper metallic particles, exhibiting good catalytic activity towards liquid products. Gas phase reactions favored the generation of acetol and carbon deposits, which were minimal in liquid phase reactions. The active metal played a crucial role, and it was demonstrated that copper, with a higher number of acidic sites, exhibited greater selectivity towards ketones than the nickel catalyst. The best performance was achieved by the CuAl catalyst in the gas phase reaction of glycerol, with a conversion of 67.0 ± 4.0 %, a carbon selectivity to acetol in the liquid products of 61.4 % and a yield to acetol of 119.8 mgAcetol/gGlycerol.
000135769 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2020-114985RB-I00
000135769 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135769 590__ $$a7.5$$b2024
000135769 592__ $$a1.614$$b2024
000135769 591__ $$aENGINEERING, CHEMICAL$$b22 / 175 = 0.126$$c2024$$dQ1$$eT1
000135769 591__ $$aENERGY & FUELS$$b45 / 182 = 0.247$$c2024$$dQ1$$eT1
000135769 593__ $$aEnergy Engineering and Power Technology$$c2024$$dQ1
000135769 593__ $$aOrganic Chemistry$$c2024$$dQ1
000135769 593__ $$aFuel Technology$$c2024$$dQ1
000135769 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000135769 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135769 700__ $$0(orcid)0000-0001-9626-3726$$aRaso, Raquel
000135769 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, Lucía$$uUniversidad de Zaragoza
000135769 700__ $$0(orcid)0000-0002-2924-3095$$aRuiz, Joaquín$$uUniversidad de Zaragoza
000135769 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, Jesús$$uUniversidad de Zaragoza
000135769 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000135769 773__ $$g371, Part A (2024), 132001 [15 p.]$$pFuel$$tFuel$$x0016-2361
000135769 8564_ $$s4378923$$uhttps://zaguan.unizar.es/record/135769/files/texto_completo.pdf$$yVersión publicada
000135769 8564_ $$s2570966$$uhttps://zaguan.unizar.es/record/135769/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135769 909CO $$ooai:zaguan.unizar.es:135769$$particulos$$pdriver
000135769 951__ $$a2025-09-22-14:37:03
000135769 980__ $$aARTICLE