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We present a finite element approach for diffusion problems with thermal fluctuations based on 
a fluctuating hydrodynamics model. The governing equations are stochastic partial differential 
equations with a fluctuating forcing term. We propose a discrete formulation of the fluctuating 
forcing term that has the correct covariance matrix up to a standard discretization error. 
Furthermore, we derive a linear mapping to transform the finite element solution into an 
equivalent discrete solution that is free of the artificial correlations introduced by the spatial 
discretization. The method is validated by applying it to two diffusion problems: a second-order 
diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution 
to the first case presents spatially decorrelated fluctuations, while the second case presents 
fluctuations correlated over a finite length. In both cases, the numerical solution presents a 
structure factor that approximates well the continuum one.

1. Introduction

With microfluidics technologies becoming increasingly widespread and multiple applications already reaching the market level 
[1], the great challenges of technology now shift towards the nanoscale, with potential for multiple breakthroughs and ground-

breaking innovations. In analogy with microfluidics, the rapidly growing field of research that studies the flow and transport 
phenomena in fluidic environments of nanoscopic dimensions has been termed “nanofluidics” [2]. The blooming of nanofluidics 
was enabled in the last decade by the improvements and development of new experimental and computational techniques and has 
shown multiple phenomena that have no counterparts at larger scales [3,4].

Fluid flow, solute transport and chemical reactions look very different at the nanoscale than they do at the macroscopic level. 
At the small scales, the thermal fluctuations of solvent and solute molecules are relevant and cannot be ignored. Even in situations 
where one can average over many molecules, quantities like mass, temperature and momentum fluctuate around their mean value 
[5]. These fluctuations are very well understood around equilibrium [5] but can lead to unexpected and highly nontrivial phenomena 
when they occur in systems driven out of equilibrium [6–8].

As most of the applications in energy harvesting, membrane technology and biomedicine involve systems driven out from equi-

librium, understanding the effects of thermal fluctuations in these instances is of utmost importance. Thermal fluctuations are also 
particularly large inside eukaryotic cells, where some molecules are present in very small numbers and need to be recruited in specific 
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locations to achieve their biological functions [9]. Deterministic models fail to predict many of the important consequences of thermal 
fluctuations, which calls for the development of efficient numerical tools that can include them within an efficient framework.

To do so, one possibility is to modify the deterministic partial differential equations (PDEs) that are typically used to model 
phenomena at larger scales to include stochasticity. One such approach to incorporate the effect of the thermal fluctuations in the 
transport equations was proposed by Landau and Lifschitz [10], and is based on adding a stochastic forcing term that satisfies the 
fluctuation-dissipation balance. The transport equations that result from adding a fluctuating forcing term are stochastic partial 
differential equations (SPDEs). This approach to include thermal fluctuations into deterministic PDEs has been called fluctuating 
hydrodynamics [5] and it has been used to study stochastic drift-diffusion equations (e.g. [6,11–14]), stochastic reaction-diffusion 
equations (e.g. [15–17]), the Brownian motion of colloidal particles (e.g. [18–23]), fluctuations of viscoelastic fluids [24,25], stochas-

tic thin-film equations (e.g. [26–28]), diffusion within membranes and liquid-liquid interfaces (e.g. [29,30]), and bubble nucleation 
and growth (e.g. [31,32]). The advantage of a fluctuating hydrodynamics approach compared to discrete particle methods is ap-

parent when one needs to study mesoscopic systems that involve a vast number of particles and long timescales compared to the 
characteristic diffusion time of individual particles.

In this work, we propose a finite element framework to solve diffusion equations using fluctuating hydrodynamics. The governing 
equations are SPDEs of the kind

𝜕𝑢

𝜕𝑡
−∇ ⋅ (𝐷∇𝐹 (𝑢)) = ∇ ⋅

(√
2𝐷𝑢𝜻

)
, (1)

where 𝑢 is the number density of a diffusing species, 𝐷 is its diffusion coefficient and 𝜻 represents white noise in space and time, 
with stochastic properties given by

⟨𝜁𝑖(𝐱, 𝑡)⟩ = 0 (2)

and ⟨
𝜁𝑖(𝐱, 𝑡)𝜁𝑗 (𝐱′, 𝑡′)

⟩
= 𝛿𝑖𝑗𝛿(𝐱 − 𝐱′)𝛿(𝑡− 𝑡′) . (3)

In the case of 𝐹 (𝑢) = 𝑢, Equation (1) can be formally derived from the motion of independent point-sized Brownian walkers using Ito 
calculus [33,34], and it is nothing more than a rewriting of the equations of motion of a collection of independent Brownian walkers 
in terms of their density, 𝑢. Stochastic equations of the form of Eq. (1) also arise in the context of Dynamic Density Functional Theory 
[34,35]. While an ensemble-average of the stochastic equations describing the trajectories of the Brownian walkers would lead to a 
deterministic PDE describing the time evolution of the particle distribution, an SPDE like Equation (1) describes the evolution of a 
coarse-grained density distribution instead. Detailed discussions on the derivation of deterministic and stochastic equations in this 
context and their different interpretations can be found in [35,34,36,37].

In Equation (1) we have abused notation to highlight its formal similarity to deterministic PDEs, but, in fact, neither the solution 
𝑢 nor the white-noise source term 𝜻 can be interpreted as differentiable point-wise functions. Still, as mentioned above, numerical 
solutions to equations based on fluctuating hydrodynamics such as Equation (1) are widely used to capture the physical effects from 
the effect of thermal fluctuations. Furthermore, recent advances in the theoretical analysis front seem to confirm that the truncation 
of the fluctuations for small wavelengths, including the natural truncation resulting from standard spatial discretization techniques, 
leads to well-posed fluctuating hydrodynamics equations [38].

When solving such equations, one is interested in the expected value of the solution, but also in its second-order statistical 
moments. For instance, the so-called structure factor, related to the spatial Fourier transform of the autocorrelation function of the 
solution, can be measured experimentally [5]. However, both the choice of spatial discretization and temporal integration schemes 
influence the fluctuation-dissipation balance and can introduce artificial spatial correlations in the solution, thus leading to non-

physical second-order statistical moments [39,40].

For this reason, the effect of time integrators on the solution of fluctuating-hydrodynamics equations has been investigated in 
depth [39,40]. As for the spatial discretization, finite volume methods (e.g. [40–42,17]) can be designed so as not to introduce 
additional artificial correlations, since each degree of freedom typically corresponds to a single finite volume, for which the solution 
can be integrated independently of the rest of finite volumes. This is not the case, however, for finite element methods in general, 
which yield solutions with artificial correlations that depend on the choice of shape functions [43]. This makes finite element 
solutions difficult to interpret physically and nonlinear terms in the equations difficult to handle mathematically. To overcome this 
limitation for general finite element methods, it has been suggested that specialized finite element discretization schemes should be 
used, which are designed based on physical considerations instead of just numerical analysis [43]. The rationale behind this strategy 
is based on the idea that discretization and physical coarse-graining are deeply connected.

In the present work, we start from a different perspective and propose an approach that yields a finite element solution to Equation 
(1) in which both the expected value of the solution and its second-order statistical moments are well approximated. In particular, we 
propose to first obtain a numerical solution using any suitable spatial discretization that is selected based on numerical analysis only 
and then apply a linear transformation that removes from the numerical solution the artificial correlations introduced by the chosen 
spatial discretization. With the proposed approach, the choice of spatial discretization techniques is not restricted anymore to those 
that produce any particular spatial correlations, and we can use the finite element method and its powerful mathematical framework 
to deal with complex geometries and boundary conditions without limitations. The resulting solution has a physical interpretation 
2

that is detached from the numerical discretization, just as numerical solutions to deterministic PDEs do.
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We work in a finite element framework with a standard Galerkin discretization. Nevertheless, our conclusions are generalizable 
to other numerical approaches that involve a spatial discretization. We apply our method to a second-order diffusion equation and to 
a fourth-order diffusion equation. The two test cases are complementary, since one presents only short-ranged fluctuations, while the 
other has a solution that is spatially correlated over a finite length. Both cases were already used in Ref. [43] to test a Petrov-Galerkin 
finite element implementation.

The outline of this paper is as follows: In Section 2 we describe the finite element discretization for a second-order fluctuating 
diffusion equation that has a solution with short-ranged correlations. We also propose an implementation for the fluctuating forcing 
term that has the correct covariance up to a normal discretization error. In Section 3, we present finite element results for a one-

dimensional boundary value problem of the second-order equation, and we discuss the presence of artificial spatial correlations in 
the solution due to the effects of the spatial discretization and temporal integration. In Section 4, we propose a linear mapping to 
remove from the numerical solution the artificial correlations introduced by the spatial discretization, and we apply it to the results 
of the same second-order diffusion equation. In Section 5, we apply the proposed method to a one-dimensional fourth-order diffusion 
equation, to test its performance in the case of a solution that is spatially correlated over a finite length. Finally, we summarize our 
conclusions in Section 6.

2. Numerical approximation

In this section, we describe the numerical schemes used to solve Equation (1) numerically. We focus here on the case 𝐹 (𝑢) = 𝑢, 
for which numerical results will be presented in Sections 3 and 4. Nevertheless, most of the discretization details presented in this 
section are also relevant for the case 𝐹 (𝑢) = 𝑢 +

(
𝓁0∕2𝜋

)2 ∇2𝑢, which will be discussed in Section 5.

2.1. Weak form and finite element discretization

We consider the second-order equation

𝜕𝑢

𝜕𝑡
−𝐷∇2𝑢 =∇ ⋅

(√
2𝐷𝑢𝜻

)
(4)

with constant diffusion coefficient 𝐷. This corresponds to Dean’s equation [33], which describes the fluctuations of the density in a 
system of particles undergoing independent Brownian motions. The concentration 𝑢 represents therefore a coarse-grained number of 
particles per unit volume.

A weak formulation of Equation (4) can be obtained by multiplying it by the conjugate of a test function 𝑣 and integrating over 
the domain Ω. After integration by parts, one obtains

∫
Ω

𝑣∗
𝜕𝑢

𝜕𝑡
𝑑3𝐱 + ∫

Ω

𝐷∇𝑣∗ ⋅∇𝑢𝑑3𝐱 = −∫
Ω

∇𝑣∗ ⋅
(√

2𝐷𝑢𝜻
)
𝑑3𝐱 +

+∫
𝜕Ω

𝑣∗
(√

2𝐷𝑢𝜻
)
⋅ 𝐧𝑑2𝐱 + ∫

𝜕Ω

𝐷𝑣∗∇𝑢 ⋅ 𝐧𝑑2𝐱 , (5)

where 𝜕Ω is the boundary of the domain and 𝐧 its normal unitary vector.

The domain Ω is discretized by dividing it into non-overlapping elements Ω𝑒, such that Ω = ∪𝑒Ω𝑒 with Ω𝑒 ∩ Ω𝑒′ = ∅ for 𝑒 ≠ 𝑒′. 
The solution space, as well as the test function space, are discretized using a given basis of shape functions. Here we use a standard 
Galerkin discretization with Lagrange polynomials as shape functions 𝜙𝑖 = 𝜙𝑖(𝐱) for both the test function 𝑣 and the solution 𝑢, such 
that

𝑢(𝐱, 𝑡) ≈
𝑁dof∑
𝑖=1

�̃�𝑖(𝑡)𝜙𝑖(𝐱) , (6)

and

𝑣(𝐱, 𝑡) ≈
𝑁dof∑
𝑖=1

𝑣𝑖(𝑡)𝜙𝑖(𝐱) , (7)

where 𝑁dof is the total number of degrees of freedom.

The goal of the finite element method is to find the values ̃𝑢𝑖(𝑡) that satisfy the discretized weak equation (5) for any values 𝑣𝑖(𝑡). 
Using Equations (5), (6) and (7), we can express this problem as a linear system of equations in matrix form

𝐌𝜕�̃�
𝜕𝑡

+𝐃�̃� = 𝐟 + 𝐟𝐵𝐶 , (8)

where 𝐌 is the so-called mass matrix

𝑀𝑖𝑗 = 𝜙𝑖𝜙𝑗𝑑
3𝐱 (9)
3

∫
Ω
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𝐃 is the diffusion matrix

𝐷𝑖𝑗 = ∫
Ω

𝐷∇𝜙𝑖 ⋅∇𝜙𝑗𝑑
3𝐱 , (10)

�̃� is an array that contains the coefficients ̃𝑢𝑖 for each degree of freedom, 𝐟𝐵𝐶 is an array that incorporates the effect of the boundary 
conditions in the system and 𝐟 is the random excitation term defined such that

𝑓𝑖(𝑡) = −∫
Ω

∇𝜙𝑖 ⋅
√
2𝐷𝑢𝜻(𝑡)𝑑3𝐱 . (11)

The covariance matrix of the components 𝑓𝑖(𝑡) can be expressed as⟨
𝑓𝑖(𝑡)𝑓𝑗 (𝑡′)

⟩
= 2𝐷𝛿(𝑡− 𝑡′)∫

Ω

𝑢(𝐱)∇𝜙𝑖(𝐱) ⋅∇𝜙𝑗 (𝐱)𝑑3𝐱 , (12)

where ⟨.⟩ indicates the expected value. The implementation of 𝐟 , which represents the effect of the thermal fluctuations, is discussed 
in Section 2.2, and the time integration schemes are presented in Section 2.3.

2.2. Finite element formulation for the thermal fluctuations

To find a discrete approximation of 𝐟 , we seek to postulate a formulation that satisfies Equation (12). Here we propose an approach 
inspired by previous work in the context of the Stokes equations with fluctuating hydrodynamics [21]. To this end, we make use of 
the same numerical integration schemes that are used in the finite element implementation, and that allow the integration of a given 
function 𝑔(𝐱) as

∫
Ω

𝑔(𝐱)𝑑3𝐱 ≈
𝑁𝑔∑
𝑘=1

𝑤𝑘𝑔(𝐱𝑘) , (13)

where 𝑁𝑔 is the number of integration points, 𝑔(𝐱𝑘) is the value of the function evaluated at the integration point and 𝑤𝑘 is the 
weight corresponding to integration point 𝑘. If an isoparametric formulation is used, 𝑤𝑘 would include both the weight corresponding 
to the integration rule in the reference element as well as the Jacobian for the mapping from the reference element to the physical 
element. We assume that 𝑤𝑘 ≥ 0. With this, we can postulate the following formulation for array 𝐟 before the time discretization, as 
defined by Equation (11):

𝑓𝑖 = −
√
2𝐷

𝑁𝑔∑
𝑘=1

√
𝑤𝑘𝑢(𝐱𝑘, 𝑡)𝜻𝑘(𝑡) ⋅∇𝜙𝑖(𝐱𝑘) , (14)

where the components of 𝜻𝑘 are stochastic Gaussian process with 
⟨
𝜁𝑘,𝑚

⟩
= 0 and 

⟨
𝜁𝑘,𝑚(𝑡)𝜁𝑙,𝑚(𝑡′)

⟩
= 𝛿(𝑡 − 𝑡′)𝛿𝑘𝑙 . The formulation 

given by Equation (14) leads to the following covariance matrix

⟨𝑓𝑖 (𝑡)𝑓𝑗 (𝑡′)⟩ =

= 2𝐷
3∑

𝑚=1

𝑁𝑔∑
𝑘=1

𝑁𝑔∑
𝑙=1

√
𝑤𝑘𝑤𝑙𝑢(𝐱𝑘, 𝑡)𝑢(𝐱𝑙 , 𝑡′)

𝜕𝜙𝑖(𝐱𝑘)
𝜕𝑥𝑚

𝜕𝜙𝑗 (𝐱𝑙)
𝜕𝑥𝑚

⟨
𝜁𝑘,𝑚(𝑡)𝜁𝑙,𝑚(𝑡′)

⟩
= 2𝐷𝛿(𝑡− 𝑡′)

𝑁𝑔∑
𝑘=1

𝑢(𝐱𝑘, 𝑡)∇𝜙𝑖(𝐱𝑘) ⋅∇𝜙𝑗 (𝐱𝑘)𝑤𝑘 .

(15)

This covariance matrix is identical to that of Equation (12) up to an error introduced by the numerical integration scheme, thus 
proving that the postulated formulation for 𝐟 in Equation (14) has the correct second-order statistical moments. To preserve the 
fluctuation-dissipation balance, the integration rule used to compute the diffusion matrix 𝐃 and the forcing term 𝐟 should be the 
same [21]. In the particular case that the value of the concentration 𝑢 is large enough to linearize the fluctuating forcing term, the 
co-variance of the stochastic noise term for degrees of freedom 𝑖 and 𝑗 becomes⟨

𝑓𝑖(𝑡)𝑓𝑗 (𝑡′)
⟩
= 2𝑢0 𝛿(𝑡− 𝑡′)𝐷𝑖𝑗 (16)

where 𝐷𝑖𝑗 is the (𝑖, 𝑗) component of the diffusion matrix 𝐃 and 𝑢0 represents the average concentration. In Appendix A, an alternative 
to Equation (14) to define the linearized 𝐟 is described, based on a decomposition of matrix 𝐃. This alternative implementation of 
the linearized forcing term has computational advantages and is equivalent to Equation (14) if the average concentration 𝑢0 in the 
4

domain is large enough.
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2.3. Time integration and fluctuation-dissipation balance

The effect of the temporal integrators for fluctuating-hydrodynamics equations has been explored extensively [40,39]. In this 
work, we use one-stage time integration schemes. For Equation (8), the result for each time iteration can be expressed as

�̃�𝑛+1 = [𝐌+ (1 − 𝛼)Δ𝑡𝐃]−1
[
(𝐌− 𝛼Δ𝑡𝐃) �̃�𝑛 +

√
Δ𝑡 𝐟𝑛 +Δ𝑡𝐟𝑛

𝐵𝐶

]
, (17)

where the superindex (.)𝑛 indicates that the term is evaluated at the time step 𝑛, and 𝛼 is a constant that indicates whether the time 
integration is explicit (𝛼 = 1), implicit (𝛼 = 0) or semi-implicit (𝛼 = 1∕2). Based on Equation (14) in time, the stochastic forcing term 
in Equation (17) can be expressed as

𝑓𝑛
𝑖
= −

√
2𝐷

𝑁𝑔∑
𝑘=1

√
𝑤𝑘𝑢(𝐱𝑘, 𝑡𝑛)𝒛𝑛𝑘 ⋅∇𝜙𝑖(𝐱𝑘) , (18)

where the components of 𝒛𝑘 are stochastic Gaussian process with 
⟨
𝑧𝑘,𝑚

⟩
= 0 and 

⟨
𝑧𝑘,𝑚(𝑡)𝑧𝑙,𝑚(𝑡′)

⟩
= 𝛿𝑘𝑙 . We note that the solution, 

𝑢(𝐱𝑘, 𝑡𝑛), at the integration point, 𝐱𝑘, has to be evaluated at time 𝑡𝑛 because the stochastic term has been derived using an Ito 
interpretation [33,34,44].

If the fluctuating term can be linearized, the alternative expression provided by Equation (A.2) can be used. The elements of the 
covariance matrix of the discrete forcing term given by Equation (18) can be expressed as

⟨
𝑓𝑛
𝑖 𝑓

𝑚
𝑗

⟩
= 2𝐷𝛿𝑛𝑚

𝑁𝑔∑
𝑘=1

𝑢(𝐱𝑘, 𝑡)∇𝜙𝑖(𝐱𝑘) ⋅∇𝜙𝑗 (𝐱𝑘)𝑤𝑘 . (19)

In Equation (17), the value 𝛼 = 1∕2 corresponds to the implicit midpoint method (Crank-Nicholson scheme). This scheme is not 
only stable regardless of the value of the time step, but it also produces a solution with static spatial correlations that are independent 
of the time step as well [40,39]. Indeed, if we consider for now an infinite domain, so that we can neglect the effect of the boundary 
conditions, and we take the covariance of Equation (17), we obtain

𝐃𝐂𝐌𝑇 +𝐌𝐂𝐃𝑇 +Δ𝑡(1 − 2𝛼)𝐃𝐂𝐃𝑇 =𝐂𝑓𝑓 , (20)

where 𝐂𝑓𝑓 is the covariance matrix of the forcing term 𝐟 , given by Equation (19), and 𝐂 is the covariance matrix of the discrete 
solution

𝐂 =
⟨(

�̃�−
⟨
�̃�
⟩)(

�̃�𝑇 −
⟨
�̃�𝑇
⟩)⟩

. (21)

Equation (20) expresses the fluctuation-dissipation balance at the discrete level. The term that depends on the time step vanishes if 
𝛼 = 1∕2. By contrast, any other value of 𝛼, including 𝛼 = 1 (fully explicit) and 𝛼 = 0 (fully implicit), will not make this term vanish 
and, as a result, will lead to a solution with spatial correlations that depend on the ratio

𝛽 = 𝐷Δ𝑡
Δ𝑥2

, (22)

where Δ𝑡 and Δ𝑥 are the time step and the reference cell size, respectively.

The choice of time integration scheme influences, therefore, the fluctuation-dissipation balance, and, therefore, the spatial cor-

relations of the solution. In this work, we use the Crank-Nicholson scheme (𝛼 = 1∕2) unless otherwise stated. With this scheme, 
Equation (20) becomes

𝐃𝐂𝐌𝑇 +𝐌𝐂𝐃𝑇 =𝐂𝑓𝑓 , (23)

which shows that the fluctuation-dissipation balance is independent of the time step. In the linearized case, Equation (23) becomes

𝐃𝐂𝐌𝑇 +𝐌𝐂𝐃𝑇 = 2𝑢0𝐃 . (24)

It is worth noting that in general, the fluctuation-dissipation balance is modified by the presence of boundary conditions, which we 
are not considering in this simplified analysis.

We see from Equation (24) that, even with a choice of a temporal integrator that does not introduce additional correlations in 
the solution, the covariance matrix of the solution will depend on the mass matrix 𝐌. As a result, the discrete solution may display 
spatial correlations that are not physical but induced by the spatial discretization. Indeed, if the diffusion and mass matrices are 
symmetric, the covariance matrix

𝐂 = 𝑢0𝐌−1 (25)

satisfies Equation (24). If 𝐌 is diagonal, 𝐂 will also be diagonal, and the solution for each degree of freedom will be uncorrelated 
with the solution for the rest of degrees of freedom; conversely, if 𝐌 is not diagonal, as is in general the case with finite-element 
methods because of the way the shape functions are defined in the elements, the solution for the different degrees of freedom 
5

will be correlated. It is worth noting that these artificial correlations do not represent a numerical error, but are instead a natural 
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consequence of the choice of shape functions. Still, even if these artificial correlations do not represent a numerical error, they make 
the solution difficult to interpret and to compare to experimental measurements, and they can make non-linear terms of fluctuating-

hydrodynamics equations difficult to treat. In Section 3, we show finite element results for a (bounded) 1D problem with periodic 
boundary conditions that present discretization-induced spatial correlations in the solution. Furthermore, in Section 4, we propose a 
change of basis to transform the discrete solution into an equivalent discrete solution that is free of these artificial correlations.

2.4. Coarse-graining and discretization

Stochastic diffusion equations such as the ones that we are considering in this work can be seen as coarse-grained descriptions of 
the underlying system of particles. In fact, the macroscopic diffusion equations can be obtained from a description of the microscopic 
system through a coarse-graining procedure [45,46]. In the case of diffusion equations such as Equation (1), the concentration 𝑢 is a 
statistical representation of the distribution of the particles moving in the domain. In particular, 𝑢 satisfies

∫
Ω

𝛾𝑖(𝐱)𝑢(𝐱, 𝑡)𝑑3𝐱 =
𝑁𝑝∑
𝑝=1

𝛾𝑖(𝐱𝑝(𝑡)) , (26)

where 𝑁𝑝 is the number of particles of the system, 𝐱𝑝 their positions and 𝛾𝑖 is a suitable coarse-graining function associated with the 
discrete coarse-graining volume 𝑖.

Using the approximation given by Equation (6), we obtain

∫
Ω

𝛾𝑖(𝐱)
∑
𝑗

𝜙𝑗 (𝐱)�̃�𝑗 (𝑡)𝑑3𝐱 =
𝑁𝑝∑
𝑝=1

𝛾𝑖(𝐱𝑝(𝑡)) = 𝑛𝑖 . (27)

In this work, we want to stress that, although the spatial correlations of the coarse-grained variable ̃𝐧 depend on the functions 𝛾𝑖, the 
spatial correlations of the discrete concentration ̃𝐮 depend on the choice of shape functions 𝜙𝑖 used to approximate 𝑢 as expressed by 
Equation (6), and not on the coarse-graining functions 𝛾𝑖. We will discuss this further in Section 4.1, where we propose an approach 
to find a discrete approximation of the continuum concentration 𝑢 that is free of discretization-induced spatial correlations.

3. Finite element results for a 1D diffusion problem

In this section, we present numerical results for a one-dimensional version of Equation (4), using the discretization schemes 
described in Section 2, and illustrate the effects of the spatiotemporal discretization on the spatial correlations of the discrete 
solution.

3.1. One-dimensional boundary value problem

We consider a one-dimensional diffusion problem with thermal fluctuations, governed by equation

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

−𝐷
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

= 𝜕

𝜕𝑥

(√
2𝐷𝑢𝜁(𝑥, 𝑡)

)
, (28)

where 𝐷 is the diffusion coefficient, which we assume to be constant, and 𝜁 is a Gaussian white noise with

⟨𝜁(𝑥, 𝑡)⟩ = 0 (29)

and ⟨
𝜁(𝑥, 𝑡)𝜁(𝑥′, 𝑡′)

⟩
= 𝛿(𝑥− 𝑥′)𝛿(𝑡− 𝑡′) . (30)

The results that will be presented here correspond to dimensionless variables, with a domain length 𝐿 = 1 and reference time 
𝑇 =𝐿2∕𝐷 = 1. Periodic boundary conditions

𝑢(𝑥 =𝐿, 𝑡) = 𝑢(𝑥 = 0, 𝑡) , (31)

are prescribed at the ends of the computational domain, and the initial conditions are defined as

𝑢(𝑥, 𝑡 = 0) = 𝑢0 . (32)

The periodic boundary conditions guarantee the conservation of mass (or, equivalently, of the number of particles) in the domain, 
so that the average concentration in the domain is always 𝑢0.

If we linearize the equation around a large value of the average concentration 𝑢0, the equal-time autocorrelation function of the 
fluctuations at points 𝑥 and 𝑥′ for an infinite domain can be expressed as [43]⟨ ⟩
6

𝑢′(𝑥, 𝑡)𝑢′(𝑥′, 𝑡) = 𝑢0𝛿(𝑥− 𝑥′) , (33)
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where 𝑢′ = 𝑢 − ⟨𝑢⟩ = 𝑢 − 𝑢0, and the so-called static structure factor, which is the Fourier transform of the equal-time correlation 
function [5], becomes

𝑆(𝑘) = ⟨U(𝑘, 𝑡)U(−𝑘, 𝑡)⟩ = 𝑢0 (34)

where 𝑘 is the wavenumber, and where the Fourier transform U(𝑘) of 𝑢(𝑥) is defined as

U(𝑘) =

∞

∫
−∞

𝑢(𝑥) exp (−𝑖𝑘𝑥)𝑑𝑥 . (35)

3.2. Discrete model, simulation setup and discrete structure factor

We apply the numerical approximation described in Section 2 to Equation (28). The one-dimensional domain of length 𝐿 is 
split into 𝑁𝑒 identical elements. Lagrange polynomials are used as shape functions, both linear (𝑝1-elements) and quadratic (𝑝2-

elements). When 𝑝1-elements are used, the total number of nodes is 𝑁𝑛 =𝑁𝑒 + 1; when 𝑝2-elements are used, the number of nodes 
is 𝑁𝑛 = 2𝑁𝑒 + 1. Since the nodes are always equidistant, the distance between two nodes regardless of the type of element is 
Δ𝑥 =𝐿∕(𝑁𝑛 − 1). The number of degrees of freedom is 𝑁dof ≡𝑁𝑛.

We use �̃�0
𝑖
= 𝑢0 for every 𝑖 = 1, .., 𝑁dof as the initial condition, where the value of the reference concentration 𝑢0 is selected to be 

high enough for the behavior of the problem to be approximately linear. We then simulate an initial number of time steps 𝐿2∕(𝐷Δ𝑡), 
so that the solution reaches an equilibrium state before starting to collect results, and, finally, we run the simulations for a number 
𝑁𝑡 of time steps, for which data are collected.

The periodic boundary conditions are implemented by adding Lagrange multipliers to the discrete finite element system (8), to 
force the solution at the extremes of the domain to be identical. These boundary conditions ensure that the total number of particles 
in the domain remains constant (up to a certain numerical error). This is verified in the computations by integrating the results 
for the concentration over the domain. For the computations presented in this work, the standard deviation of the total computed 
number of particles in the domain varies with the discretization parameters, but it is typically smaller or of the order of ∼ 1e −6 𝑢0𝐿.

As a consequence of the mass conservation in the domain, the structure factor for wavenumber 𝑘 = 0 is zero, unlike the structure 
factor of the case with an infinite domain given by Equation (34). For the rest of discrete wavenumbers 𝑘𝑚 = 2𝜋(𝑚 −1)∕𝐿, with 𝑚 > 1, 
and provided that the discretization does not introduce artificial correlations in the solution, the structure factor of the solution should 
approximate that of Equation (34), 𝑆 = 𝑢0. This is equivalent to saying that, although the solution for the continuum equation in 
an infinite domain has a Gaussian probability distribution, the theoretical discrete solution in our bounded one-dimensional domain 
follows a multinomial distribution corresponding to 𝑁𝑝 = 𝑢0𝐿 particles in 𝑁𝑛 − 1 bins. It is worth noting that, as the discretization 
is refined (i.e. as 𝑁𝑛 increases), the multinomial distribution becomes closer to a Gaussian distribution.

However, the discretization introduces artificial correlations in the solution, so the structure factor of the discrete FE results will 
not necessarily converge to the theoretical one. An analysis of the one-dimensional discretized equation with uniform linear (𝑝1) 
Lagrange elements shows instead that the numerical results with 𝑝1-elements will converge to a solution with a discrete structure 
factor that can be expressed as [43]

𝑆th, FE-p1(𝑘𝑚) =
9𝑢0[

2 + cos (𝑘𝑚Δ𝑥)
]2 ∑

𝑗∈ℤ

⎛⎜⎜⎜⎝
sin

(
𝑘𝑚Δ𝑥
2 − 𝜋𝑗

)
𝑘𝑚Δ𝑥
2 − 𝜋𝑗

⎞⎟⎟⎟⎠
4

, (36)

where ℤ represents the set of integer numbers. The structure factor given by Equation (36) only converges to the continuum structure 
factor given by Equation (34) in the limit 𝑘𝑚Δ𝑥 → 0.

To evaluate our numerical approach, we compare the theoretical structure factor with the structure factor of the numerical 
solution, computed as

𝑆(𝑘𝑚) =
⟨
Ũ(𝑘𝑚)Ũ∗(𝑘𝑚)

⟩
, (37)

where Ũ(𝑘𝑚) is the discrete Fourier transform of the normalized discrete concentration, defined as

Ũ(𝑘𝑚) =
1√
𝐿

𝑁𝑛−1∑
𝑛=1

�̃�𝑛Δ�̃�𝑛 exp
(
− 𝑖2𝜋(𝑚− 1)(𝑛− 1)

𝑁𝑛 − 1

)
, (38)

Ũ∗(𝑘𝑚) is its complex conjugate and Δ�̃�𝑛 is the equivalent volume (equivalent length in 1D) associated to node 𝑛,

Δ�̃�𝑛 = 𝜙𝑛(𝑥)𝑑𝑥 . (39)
7

∫
Ω
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Fig. 1. Left: Structure factor of the discrete solution; theoretical structure factor for the discrete equation (solid line) and computed with 𝑁𝑛 = 51 (dashed) and 
𝑁𝑛 = 101 (dotted). Right: error 𝑒𝐹𝐸 in the computed discrete structure factor vs the number of elements (◦). All computations have 𝑝1-elements, Δ𝑡 = 1e − 4, 
𝑁𝑡 = 1e6, 𝑢0 = 10000. It can be seen that the solution obtained from the FE computation converges to the theoretical solution of the discretized equation as the number 
of elements increases.

Fig. 2. Structure factor of the discrete solution as a function of 𝑘𝐿; computed with 𝑁𝑛 = 51 (dashed), 𝑁𝑛 = 101 (dotted) and 𝑁𝑛 = 201 (dash-dotted). All computations 
with 𝑝1-elements, Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e6, 𝑢0 = 10000.

3.3. Results with a semi-implicit time integrator

Fig. 1 shows the discrete structure factor based on the finite element results using linear Lagrange elements and a semi-implicit 
integration scheme. As explained in Section 2.3, a semi-implicit integration scheme has the advantage of making the spatial correla-

tions independent from the time step. As shown in the figure, the discrete structure factor converges towards the theoretical structure 
factor of the discrete weak equation, given by Equation (36). The error

𝑒FE = 1
𝑁𝑘

𝑁𝑘∑
𝑚=1

|||𝑆(𝑘𝑚) − 𝑆FE-p1(𝑘𝑚)
||||||𝑆FE-p1(𝑘𝑚)

||| , (40)

where 𝑘𝑚 = 2𝜋𝑚∕𝐿 (for 𝑚 = 1, 2, .., (𝑁𝑛 − 1)∕2) are the 𝑁𝑘 = (𝑁𝑛 − 1)∕2 discrete wavenumbers, is reduced with increasing number 
of elements 𝑁𝑒 following a power law 𝑒𝐹𝐸 ∝𝑁−1

𝑒 .

However, as explained in Section 3.2, this theoretical discrete structure factor towards which the finite element-solution converges 
is different from the continuum one, which is a constant (𝑆∕𝑢0 = 1). This is due to the fact that the spatial discretization introduces 
artificial correlations in the discrete solution; as a result, the structure factor only converges to that of the continuum in the low 
wavenumber limit. In Fig. 2, the same results are represented, but as a function of 𝑘𝐿 instead of 𝑘Δ𝑥. We see that, as the discretization 
is refined, the structure factor is close to the continuum one for a larger interval of wavenumbers. Nevertheless, artificial correlations 
are always present in the solution, and the resulting variance cannot be interpreted independently of the discretization. It is worth 
noting that the obtained results agree with the finite element solution obtained by de la Torre and co-workers [43], who use a 
Petrov-Galerkin discretization and also obtain a discrete structure factor that converges to that given by Equation (36). The reason 
for this is that the artificial correlations only depend on the shape functions used to approximate the solution 𝑢 in Equation (6), 
which are linear Lagrange polynomials in both works.

Fig. 3 shows results obtained with both linear and quadratic elements. It can be seen that increasing the order contributes to 
approximating better the structure factor towards the continuum one. Although the convergence is still limited to the low wavenum-

ber limit, the results obtained with quadratic elements present a larger interval of wavenumbers for which the error in the structure 
factor is below a given threshold. Fig. 4 shows the results obtained with quadratic elements and different mesh sizes. Like the results 
obtained with linear elements, the results computed with quadratic elements do not converge towards the continuum as the mesh is 
8

refined, indicating the presence of artificial correlations induced by the discretization in the solution.
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Fig. 3. Structure factor of the discrete solution computed with 𝑝1-elements (solid line) and 𝑝2-elements (dash-dotted). The computations have been run with 𝑁𝑛 = 101, 
Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e6, 𝑢0 = 10000.

Fig. 4. Structure factor of the discrete solution obtained with 𝑝2-elements, computed with 𝑁𝑛 = 51 (dashed), 𝑁𝑛 = 101 (dotted) and 𝑁𝑛 = 201 (dash-dotted). The 
computations have been run with Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e6, 𝑢0 = 10000.

The results presented in this section have been focused on the static structure factor because it serves the purpose of showing 
the presence of artificial spatial correlations (or eventual lack thereof) in the solution, which is the focus of this work. Nevertheless, 
in Appendix B, complementary results are presented showing the dynamic structure factor, which contains information on the time 
evolution of the solution as well.

3.4. Results with fully implicit and fully explicit time integrators

The results shown so far for the semi-implicit time integrator present artificial correlations that are related to the spatial dis-

cretization. However, as explained in Section 2.3, if instead of the semi-implicit integration scheme, one uses a fully explicit or a 
fully implicit scheme, additional spatial correlations dependent on the dimensionless time step 𝛽 =𝐷Δ𝑡∕Δ𝑥2 appear in the solution 
[40]. Figs. 5 and 6 show the results obtained for linear and quadratic elements, using fully explicit and fully implicit integration 
schemes. The results confirm that indeed the obtained structure factor is influenced by additional correlations that depend on the 
dimensionless time step 𝛽. It is worth noting that the influence of the time step on the stability is an independent issue altogether: 
the implicit method is unconditionally stable, while the explicit becomes unstable if the time step exceeds a certain threshold.

The results obtained with the fully explicit and fully implicit integration schemes are consistent with what other authors have 
shown before [40,39], and illustrate the advantage of the semi-implicit integration scheme, as it does not require decreasing the time 
step to yield the correct spatial structure. In the rest of this work, only results obtained with the semi-implicit scheme (𝛼 = 1∕2) are 
presented.

4. A linear mapping to remove artificial correlations

As explained in Sections 2.3 and 2.4, the spatial discretization can introduce artificial correlations in the numerical solution. 
These artificial correlations do not represent a numerical error; they are instead the natural consequence of the choice of shape 
functions for the spatial discretization, and they are thus part of a consistent solution in the context of that basis. In spite of this, 
these discretization-related correlations make the discrete solution difficult to interprete, and can also make non-linear terms in 
fluctuating-hydrodynamics equations difficult to handle. In this section, we propose a linear transformation between the numerical 
solution and an equivalent discrete solution free of these artificial correlations. The goal is to perform a change of basis to obtain an 
9

equivalent discrete solution ̃̃𝐮 that approximates the solution as
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Fig. 5. Structure factor of the discrete solution with 𝑝1-elements, computed with 𝑁𝑛 = 51 (dashed) and 𝑁𝑛 = 101 (dotted). Left: fully implicit time integration (𝛼 = 0). 
Right: fully explicit time integration (𝛼 = 1). All computations with Δ𝑡 = 1e − 5, 𝑁𝑡 = 1e6, 𝑢0 = 10000. As a reference, numerical results obtained with 𝛼 = 1∕2 are 
also displayed (solid line), which are equivalent to the case with 𝛽 = 0.

Fig. 6. Structure factor of the discrete solution with 𝑝2-elements, computed with 𝑁𝑛 = 51 (dashed) and 𝑁𝑛 = 101 (dotted). Left: fully implicit time integration (𝛼 = 0). 
Right: fully explicit time integration (𝛼 = 1). All computations with Δ𝑡 = 1e − 5, 𝑁𝑡 = 1e6, 𝑢0 = 10000. As a reference, numerical results obtained with 𝛼 = 1∕2 are 
also displayed (solid line), which are equivalent to the case with 𝛽 = 0.

𝑢(𝐱, 𝑡) ≈
𝑁dof∑
𝑖=1

̃̃𝑢𝑖(𝑡)𝜓𝑖(𝐱) , (41)

where 𝜓𝑖 are basis functions defined so as not to introduce artificial spatial correlations in the finite element solution, that is, so as 
to satisfy

∫
Ω

𝜓𝑖(𝐱)𝜓𝑗 (𝐱)𝑑3𝐱 = 0 , if 𝑖 ≠ 𝑗 . (42)

4.1. Spatial decorrelation matrix

In this section, we show that a linear relationship exists between the discrete solution ̃𝐮 and an equivalent discrete solution ̃̃𝐮 that 
is free of the artificial correlations introduced by the spatial discretization. We start by re-writing here Equation (6)

𝑢(𝐱, 𝑡) ≈
𝑁dof∑
𝑖=1

�̃�𝑖(𝑡)𝜙𝑖(𝐱) ,

where 𝜙𝑖(𝐱) are the basis functions used to approximate the solution, and Equation (41), which provides an alternative approximation 
using shape functions 𝜓𝑖,

𝑢(𝐱, 𝑡) ≈
𝑁dof∑
𝑖=1

̃̃𝑢𝑖(𝑡)𝜓𝑖(𝐱) .

In order to satisfy Equation (42) the shape functions 𝜓𝑖(𝐱) are defined such that matrix 𝐌𝜓𝜓

(𝑀𝜓𝜓 )𝑖𝑗 = ∫
Ω

𝜓𝑖𝜓𝑗𝑑
3𝐱 (43)
10

is diagonal, with
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(𝑀𝜓𝜓 )𝑖𝑖 = ∫
Ω

𝜓𝑖𝜓𝑖𝑑
3𝐱 =Δ ̃̃

𝑉 𝑖 , (44)

where Δ ̃̃
𝑉 𝑖 is an equivalent discrete volume associated with each degree of freedom 𝑖,

Δ ̃̃
𝑉 𝑖 = ∫

Ω

𝜓𝑖𝑑
3𝐱 . (45)

Note that we have not defined the shape functions 𝜓𝑖 beyond saying that they lead to a diagonal mass matrix, so Δ ̃̃
𝑉𝑖 is undefined so 

far. We will discuss later in this section which definition of Δ ̃̃
𝑉𝑖 is most advantageous (see Equation (64)).

Since the discrete solutions ̃𝐮 and ̃̃𝐮 both approximate the same continuum function, we require them to satisfy

𝑁dof∑
𝑗=1

�̃�𝑗 (𝑡)𝜙𝑗 (𝐱) =
𝑁dof∑
𝑗=1

̃̃𝑢𝑗 (𝑡)𝜓𝑗 (𝐱) . (46)

Multiplying by 𝜙𝑖 and integrating over the domain leads to

∫
Ω

𝜙𝑖

𝑁dof∑
𝑗=1

𝜙𝑗�̃�𝑗𝑑
3𝐱 = ∫

Ω

𝜙𝑖

𝑁dof∑
𝑗=1

𝜓𝑗
̃̃𝑢𝑗𝑑

3𝐱 , (47)

which is equivalent to the following equation in matrix form

𝐀𝑇
𝜙
�̃� =𝐀𝜓

̃̃𝐮 , (48)

where 𝐀𝜓 is a diagonal matrix satisfying

𝐌𝜓𝜓 =𝐀𝜓 𝐀𝜓 , (49)

and 𝐀𝑇
𝜙

is the transpose of 𝐀𝜙, satisfying

𝐌𝜙𝜙 =𝐀𝜙𝐀𝑇
𝜙
, (50)

with matrix 𝐌𝜙𝜙 defined as

(𝑀𝜙𝜙)𝑖𝑗 = ∫
Ω

𝜙𝑖𝜙𝑗𝑑
3𝐱 . (51)

It is worth pointing out that, since in Section 2 we have used a standard Galerkin discretization with the same shape functions for 
test function and solution, 𝐌𝜙𝜙 and the mass matrix 𝐌 of the finite element system are the same in our numerical setup. However, 
this is not necessarily the case for a general discretization, in which different shape functions may be used to approximate the test 
function. Therefore, 𝐌𝜙𝜙 is not necessarily equal to the mass matrix of the finite element system leading to the solution ̃𝐮.

Matrix 𝐀𝜙, resulting from the decomposition given by Equation (50), can be expressed as

𝐀𝜙 =𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
𝐔𝑇
∗ , (52)

where 𝐔∗ and 𝐔𝜙 are unitary matrices and 𝚺𝜙 is a diagonal matrix satisfying

𝐌𝜙𝜙 =𝐔𝜙𝚺𝜙𝐔𝑇
𝜙
. (53)

Equation (50) holds for any unitary matrix 𝐔∗; the decomposition (50) is therefore not unique. However, not every unitary matrix 
𝐔∗ will in addition guarantee that the mass is conserved. Mass conservation requires

𝑁dof∑
𝑗=1

∫
Ω

𝜙𝑗�̃�𝑗𝑑
3𝐱 =

𝑁dof∑
𝑗=1

∫
Ω

𝜓𝑗
̃̃𝑢𝑗𝑑

3𝐱 , (54)

which in matrix form can be written as

Δ�̃�𝑇 �̃� =Δ ̃̃𝐕
𝑇
̃̃𝐮 , (55)

where Δ ̃̃𝐕 and Δ�̃� are vectors with the corresponding equivalent volume associated with each degree of freedom, with Δ ̃̃𝐕 defined 
by Equation (45) and Δ�̃� defined by

Δ𝑉𝑖 = 𝜙𝑖𝑑
3𝐱 . (56)
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∫
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If we now use Equations (48) and (52) inside Equation (55), we obtain

Δ�̃�𝑇 �̃� =Δ ̃̃𝐕
𝑇

𝐀−1
𝜓 𝐔∗𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
�̃� . (57)

Given that this identity must be satisfied for any vector ̃𝐮, we obtain

𝐔∗ �̃� = ̃̃𝐲 , (58)

where ̃𝐲 and ̃̃𝐲 are vectors defined as

�̃� =𝐔𝜙

√
𝚺−1
𝜙

𝐔𝑇
𝜙
Δ�̃� , (59)

and

̃̃𝐲 =𝐀−1
𝜓 Δ ̃̃𝐕 . (60)

Therefore, matrix 𝐔∗ can be defined as the rotation matrix that transforms vector ̃𝐲 into ̃̃𝐲.

With these definitions, we can rewrite Equation (48) as

̃̃𝐮 =𝐀−1
𝜓 𝐀𝑇

𝜙
�̃� =𝐀−1

𝜓 𝐔∗𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
�̃� , (61)

which provides a mass-preserving linear relationship between the discrete solution �̃� and a discrete solution ̃̃𝐮 that does not have 
artificial spatial correlations introduced by the spatial discretization:

̃̃𝐮 =𝐐�̃� , (62)

where matrix 𝐐 is given by

𝐐 =𝐀−1
𝜓 𝐀𝑇

𝜙
=𝐀−1

𝜓 𝐔∗𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
(63)

and can be interpreted as a decorrelation matrix that removes the artificial spatial correlations from the discrete solution. This 
decorrelation matrix can be applied as a postprocessing step to remove the artificial spatial correlations from the numerical solution.

As mentioned above, Δ ̃̃𝐕 is undefined so far. A convenient definition is given by

Δ ̃̃𝐕𝑖 ≡ �̃�2𝑖 . (64)

This definition ensures that ̃𝐲 and ̃̃𝐲 are the same, and, therefore, 𝐔∗ becomes the identity matrix. As a result, 𝐀𝜙 becomes symmetric, 
and the decorrelation matrix becomes

𝐐 =𝐀−1
𝜓 𝐀𝑇

𝜙
=𝐀−1

𝜓 𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
. (65)

An advantage of this definition is that the decorrelation matrix can be approximated by a sparse matrix with a higher sparsity 
degree than what is obtained when the rotation matrix 𝐔∗ is a dense matrix. In Section 4.2, we discuss more details about the 
implementation and computational aspects of the mapping given by Equation (65).

So far, we have not considered any effect of the boundary conditions on the decorrelation matrix, and, in general, the analysis 
presented in this section is valid for any boundary condition. However, in some cases, it may be desirable to use a decorrelation 
matrix based on a matrix 𝐌𝜙𝜙 and vector Δ�̃� that have been modified to incorporate the effect of the boundary conditions. For 
instance, since here we are solving problems with periodic boundary conditions, in order to maintain the periodicity of the discrete 
solution, only 𝑁dof − 1 elements of ̃𝐮 are mapped, thereby excluding the solution of one of the extremes of the domain. Matrix 𝐌𝜙𝜙

and vector Δ�̃� become, respectively, an (𝑁dof − 1) × (𝑁dof − 1) matrix and a vector of length (𝑁dof − 1), and the elements in each 
eliminated row or column are added in suitable positions of the row or column corresponding to the other extreme of the domain, 
so as to reflect the periodicity of the domain in the arrays.

It is worth noting that the linear mapping given by Equation (62) depends only on the shape functions used to approximate the 
solution. This means that the choice of finite-element discretization does not need to be based on whether it produces the correct 
structure factor, because, once a discrete solution is obtained, an equivalent solution with a correct structure factor can be found 
through the proposed linear transformation. Moreover, this makes explicit that the coarse-graining and the spatial discretization used 
to solve the diffusion equation numerically are two separate things, and that the spatial discretization should therefore be designed 
on the basis of numerical analysis exclusively.

In Section 4.3, we present results for the one-dimensional boundary value problem discussed in Section 3, which are obtained by 
12

applying the linear mapping presented in this section to remove the artificial correlations introduced by the spatial discretization.
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Fig. 7. Structure factor of the discrete solution after mapping with the decorrelation matrix; computed with a dense decorrelation matrix (dotted line) and with a 
sparse decorrelated matrix with threshold 𝜖 = 1e − 5 (×). Left: 𝑝1-elements; right: 𝑝2-elements. All computations with semi-implicit time integration, 𝑁dof = 101, 
Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e6, 𝑢0 = 10000.

Fig. 8. Number 𝑁nz of non-zero elements as a function of the number of degrees of freedom 𝑁dof for mass matrix 𝐌 with 𝑝1-elements (△) and 𝑝2-elements (▴), 
truncated decorrelation matrix 𝐐 (𝜖 = 1e − 5) with 𝑝1-elements (◦) and 𝑝2-elements (∙).

4.2. Implementation and computational aspects

The decorrelation matrix proposed in Section 4.1 is in general a dense matrix. Although this is not an issue for the 1D problems 
solved in this work, the mapping can lead to a high computational cost for models with a large number of degrees of freedom. To 
preserve the computational advantages of the finite element method, the matrix should be sparse.

If we use the definition of the decorrelation matrix 𝐐 given by Equation (65), with the equivalent volumes Δ ̃̃
𝑉 𝑖 defined by 

Equation (64), the matrix can be approximated by a sparse matrix, by setting to zero the elements of the matrix that have an absolute 
value below a threshold 𝜖. This is a reasonable approximation in our case, because the matrix 𝐐 that we obtain already has many 
elements with small value, corresponding to degrees of freedom belonging to two different elements that are not contiguous and that 
are relatively far from each other. It is worth pointing out that the sparse matrix that we obtain in this way is still a full-rank matrix.

Fig. 7 shows the structure factor obtained with such truncated matrices with a threshold 𝜖 = 1e − 5. The truncated matrix gives 
results that are very close to those of the original dense matrix (with a maximum added relative error in the computed structure 
factor around 5e − 5, which is significantly smaller than the typical numerical error in the solution).

Fig. 8 shows the number of non-zero elements in the decorrelation matrix with both 𝑝1- and 𝑝2-elements, computed as well with 
threshold 𝜖 = 1e − 5. Although the number of non-zero elements in the decorrelation matrices is higher than in the respective mass 
matrices, they both increase linearly with the number of degrees-of-freedom 𝑁dof. This indicates that the computational complexity 
of the problem is not increased by the mapping, thus preserving the efficiency of the computational method.

An example of implementation of a finite-element method including a decorrelation step for the problems discussed in previous 
sections consists of the following steps:

1. Discretize the domain: define the elements and node connectivity, select the shape functions.

2. Assemble system matrices 𝐌 and 𝐃.

3. Implement the components of the boundary conditions (e.g. add Lagrange multipliers for periodic boundary conditions) and 
source terms (e.g. compute matrix 𝐀𝐃 for fluctuating source term) that are not time-dependent.

4. Compute the decorrelation matrix 𝐐:

(a) Compute 𝐔𝜙 and 𝚺𝜙 through a singular value decomposition of 𝐌𝜙𝜙 (note that, since 𝐌𝜙𝜙 is symmetric and positive 
definite, the eigenvalues and singular values are identical).
13

(b) Compute Δ ̃̃𝐕 using Equation (64).
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Fig. 9. Structure factor of the discrete solution after mapping with the decorrelation matrix computed with 𝑁𝑛 = 51 (dashed) and 𝑁𝑛 = 101 (dotted), and theoretical 
structure factor for the continuum equation (solid line). Top left: Δ𝑡 = 1e − 3, 𝑁𝑡 = 1e6; top right: Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e6; bottom left: Δ𝑡 = 1e − 5, 𝑁𝑡 = 1e7; bottom 
right: Δ𝑡 = 1e − 4, 𝑁𝑡 = 1e7. All computations with 𝑝1-elements, semi-implicit time integration, 𝑢0 = 10000.

(c) Compute 𝐀𝜓 as a diagonal matrix with diagonal elements given by 
√

Δ ̃̃𝐕𝑖.

(d) Compute the decorrelation matrix as 𝐐 =𝐀−1
𝜓 𝐔𝜙

√
𝚺𝜙𝐔𝑇

𝜙
.

(e) Make 𝐐 sparse by setting elements with absolute value below a given tolerance to zero.

5. Initialize the solution ̃𝐮0.

6. Start the time-dependent loop, for 𝑛 = 1 to 𝑛 =𝑁𝑡 do:

(a) Compute the fluctuating source term.

(b) Solve the linear system to obtain the finite-element solution array ̃𝐮𝑛 as a function of ̃𝐮𝑛−1 (see Section 2.3).

(c) Compute the mapped solution as ̃̃𝐮
𝑛
=𝐐 ̃𝐮𝑛 and store it.

4.3. Results using the spatial decorrelation matrix

Figs. (9) and (10) show the results obtained applying the linear mapping (61) given by Equation (62) to the finite element results 
presented in Section 3. Only the results obtained with the semi-implicit integration scheme have been used. The discrete structure 
factor for the decorrelated results is computed as

𝑆(𝑘𝑚) =
⟨

̃̃U(𝑘𝑚)
̃̃U
∗
(𝑘𝑚)

⟩
, (66)

with

̃̃U(𝑘𝑚) =
1√
𝐿

𝑁𝑛−1∑
𝑛=1

̃̃𝑢𝑛Δ
̃̃
𝐿𝑛 exp

(
− 𝑖2𝜋(𝑚− 1)(𝑛− 1)

𝑁𝑛 − 1

)
, (67)

where Δ ̃̃
𝐿𝑛 is the equivalent volume (equivalent length in 1D) related to shape function 𝜓 for node 𝑛, which can be computed using 

Equation (64).

The results presented in Figs. (9) have been computed for two different meshes (number of nodes 𝑁𝑛 = 51 and 𝑁𝑛 = 101) with 
linear shape functions, and for different values of the time step Δ𝑡 and of the number of time steps 𝑁𝑡 for which solution data 
are collected. It can be seen that the linear mapping succeeds in yielding a structure factor that closely approximates that of the 
continuum (𝑆∕𝑢0 = 1). Once the artificial correlations are removed, and since the solution is completely decorrelated in space, 
refining the mesh does not improve the solution significantly, and, for the largest time step Δ𝑡 = 1e − 3 (see top left plot), refining 
14

the mesh actually increases the error, since the dimensionless time step 𝛽 = Δ𝑡𝐷∕Δ𝑥2 becomes larger. For small-enough values of 
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Fig. 10. Structure factor of the discrete solution after mapping with the decorrelation matrix computed with 𝑁𝑛 = 51 (dashed) and 𝑁𝑛 = 101 (dotted), and theoretical 
structure factor for the continuum equation (solid line). Left: 𝑝1-elements; right: 𝑝2-elements. All computations with semi-implicit time integration, Δ𝑡 = 1e − 4, 
𝑁𝑡 = 1e6, 𝑢0 = 10000.

the time step, increasing the number of time steps 𝑁𝑡 and the total time of the simulations 𝑡tot =𝑁𝑡Δ𝑡 is what contributes most to 
decreasing the error.

Fig. (10) shows results obtained with both linear shape functions (𝑝1-elements) and quadratic shape functions (𝑝2-elements). Just 
like refining the mesh does not decrease the numerical error in this case, since the solution is white noise, increasing the order does 
not influence the accuracy of the results significantly.

In Appendix B, complementary results for the computed dynamic structure of the mapped solution are shown, which illustrate 
that the method not only succeeds in removing artificial spatial correlations from the solution, but is also able to capture the time 
evolution of the solution.

5. FE solution of a fourth-order 1D diffusion problem

Following [43], we consider next a stochastic diffusion equation of the form given by Equation (1) with

𝐹 (𝑢) = 𝑢+
(
𝓁0
2𝜋

)2
∇2𝑢 , (68)

which leads to the fourth-order equation

𝜕𝑢

𝜕𝑡
−𝐷∇2

(
𝑢+

(
𝓁0
2𝜋

)2
∇2𝑢

)
=∇ ⋅

(√
2𝐷𝑢𝜻

)
. (69)

Unlike Equation (4), the solution of which has only spatially decorrelated fluctuations, Equation (69) has a solution that exhibits 
spatial correlations with a finite correlation length defined by 𝓁0. This allows us to investigate the effect of the mapping for different 
ratios of cell size to correlation length Δ𝑥∕𝓁0.

5.1. One-dimensional boundary value problem

We consider the one-dimensional version of Equation (69)

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

−𝐷
𝜕2

𝜕𝑥2

(
𝑢(𝑥, 𝑡) +

(
𝓁0
2𝜋

)2
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

)
= 𝜕

𝜕𝑥

(√
2𝐷𝑢0𝜁(𝑥, 𝑡)

)
, (70)

where 𝑢0 and 𝓁0 are constants. The rest of the variables are defined in the same way as for the second-order problem discussed in 
Section 3.

Instead of solving Eq. (70) directly, we replace the fourth-order PDE with the coupled set of second-order equations

𝜕𝑢

𝜕𝑡
−𝐷

𝜕2

𝜕𝑥2

(
𝑢+

(
𝓁0
2𝜋

)2
𝑤

)
= 𝜕

𝜕𝑥

(√
2𝐷𝑢0𝜁

)
(71a)

𝑤− 𝜕2𝑢

𝜕𝑥2
= 0 . (71b)

This allows us to use the same kind of discretization described in Section 2. Periodic boundary conditions are prescribed at the 
boundaries of the domain,

𝑢(𝑥 =𝐿, 𝑡) = 𝑢(𝑥 = 0, 𝑡) , (72)
15

𝑤(𝑥 =𝐿, 𝑡) =𝑤(𝑥 = 0, 𝑡) , (73)
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Fig. 11. Structure factor of the FE results before (left) and after applying the decorrelation matrix (right): theoretical structure factor (solid line), Δ𝑥∕𝓁0 = 0.25
(dash-dotted), Δ𝑥∕𝓁0 = 0.5 (dotted) and Δ𝑥∕𝓁0 = 1 (dashed). The results have been computed with 𝑝1-elements, Δ𝑡 = 1e − 4, 𝑁𝑡 = 5e6, 𝑢0 = 10000.

and the initial conditions are defined as

𝑢(𝑥, 𝑡 = 0) = 𝑢0 , (74)

𝑤(𝑥, 𝑡 = 0) = 0 . (75)

The theoretical static structure factor of the solution to this problem is given by

𝑆(𝑘) = 𝑢0
1

1 + 𝑘2

𝑘20

, (76)

with the cutoff wavenumber defined as

𝑘0 =
2𝜋
𝓁0

. (77)

Unlike the case presented in Sec. 3, the covariance of the fluctuating solution to this equation for points 𝑥1 and 𝑥2 is not proportional 
to the delta function, but to an exponentially decaying function ∝ 𝑢0𝑘0𝑒

−𝑘0(𝑥1−𝑥2) with characteristic length 𝓁0 [43].

This problem has a limit case when Δ𝑥∕𝓁0 ≫ 1. In this case, the correlation length of the fluctuations is much smaller than the 
discretization length; this corresponds to the spatially decorrelated case described in Section 3, which needs the mapping proposed in 
Section 4 to remove the artificial correlations introduced by the discretization. The other limit case occurs when Δ𝑥∕𝓁0 → 0. In this 
case, the discretization captures the correlation length of the fluctuations completely, the variance of the fluctuations not resolved by 
the mesh tends to zero, and, therefore, the direct FE solution without mapping converges to the continuum solution. In the following 
section, we discuss the results for different ratios Δ𝑥∕𝓁0.

Like in Section 3, all the variables are made dimensionless variables, with the reference length 𝐿 = 1 and the reference time 
𝑇 =𝐿2∕𝐷 = 1.

5.2. Discretization and results

The simulation setup for this problem is based on the same discretization schemes and numerical procedures described in Sec-

tions 2 and 3.2 for the second-order boundary value problem. Figs. 11 and 12 show results for the computed structure factor 
based on the direct FE results and on the results after the linear mapping to remove artificial correlations, for three different ratios 
Δ𝑥∕𝓁0 =𝐿∕(𝑁𝑛−1)∕𝓁0 and for both 𝑝1-elements (Fig. 11) and 𝑝2-elements (Fig. 12). The numerical results are close to the theoreti-

cal curve given by Eq. (76) for all discretizations when the linear mapping provided by Equation (62) is applied. The direct FE results 
without the mapping step tend to converge to the theoretical curve too as the mesh is refined for both 𝑝1- and 𝑝2-elements, with the 
results obtained with quadratic elements approximating better the theoretical curve for the structure factor than those obtained with 
linear elements. However, if no mapping is applied, a finer discretization is needed, as the characteristic length of the mesh needs 
to be significantly smaller than the typical correlation length to avoid the presence of significant artificial correlations. Therefore, 
applying the decorrelation matrix seems to be advantageous even in the case where there are spatial correlations over a finite length 
𝓁0 > 0, and its effect is larger for increasing Δ𝑥∕𝓁0.

6. Discussion and conclusions

In this work, we have presented a numerical approach based on the finite element method to solve stochastic diffusion equations 
with thermal fluctuations. In particular, we have proposed a general formulation for the discrete fluctuating forcing term that is not 
restricted to any particular kind of element or shape function, and we have also derived a mass-conserving linear mapping to remove 
16

from the discrete solution the artificial correlations introduced by the spatial discretization.
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Fig. 12. Structure factor of the FE results before (left) and after applying the decorrelation matrix (right): theoretical structure factor (solid line), Δ𝑥∕𝓁0 = 0.25
(dash-dotted), Δ𝑥∕𝓁0 = 0.5 (dotted) and Δ𝑥∕𝓁0 = 1 (dashed). The results have been computed with 𝑝2-elements, Δ𝑡 = 1e − 4, 𝑁𝑡 = 5e6, 𝑢0 = 10000.

The proposed mapping provides a solution that has a straightforward physical interpretation regardless of the spatial discretiza-

tion, so it enables the use of finite element schemes without restrictions. Our analysis makes explicit the fact that the spatial 
discretization and the coarse-graining are two separate things, and that the artificial correlations due to the spatial discretization 
depend exclusively on the basis functions used to approximate the finite element solution. The mapping can be applied to any spatial 
discretization, including those defined on unstructured meshes. While the performance of the mapping has been demonstrated for 
linear equations, the approach is valid for nonlinear equations as well. In fact, the existence of an equivalent mapped solution that is 
free of artificial correlations can make treating non-linear terms in fluctuating-hydrodynamics equations easier.

In the case of problems for which the fluctuations are spatially correlated over a finite length, if the spatial discretization is 
refined enough with respect to the correlation length, the finite element method will eventually provide a solution with physically-

meaningful spatial correlations. Nevertheless, the mapping succeeds in removing the artificial correlations related to underresolved 
fluctuations, thus providing physically meaningful results for coarser meshes.
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Appendix A. Implementation of the linearized stochastic forcing term

Based on Equation (16), an implementation of the stochastic forcing term may be proposed through a decomposition of the 
diffusion matrix, which for our standard Galerkin discretization is symmetric, and can therefore always be decomposed into

𝐃 =𝐀𝐷𝐀𝑇
𝐷
, (A.1)

where matrix 𝐀𝑇
𝐷

is the transpose of matrix 𝐀𝐷 . After integrating in time (see also Section 2.3), we can compute the array 𝐟𝑛 at every 
time step 𝑛 as

𝑓𝑛
𝑖 =

√
2𝑢0 𝑎𝑛𝑖 , (A.2){ }
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with array 𝐚𝑛 = 𝑎𝑛
𝑖

𝑁dof

𝑖=1 defined as
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Fig. B.13. Dynamic structure factor of the finite-element solution (before applying the decorrelation matrix) as a function of the time lag for 𝑘 = 20 (2𝜋∕𝐿) (left) 
and 𝑘 = 30 (2𝜋∕𝐿) (right): computed with 𝑁𝑛 = 51 (dashed), 𝑁𝑛 = 101 (dotted) and 𝑁𝑛 = 201 (dash-dotted), and theoretical dynamic structure factor (solid line). All 
computations with 𝑝1-elements, Δ𝑡 = 1e − 5, 𝑁𝑡 = 1e6, 𝑢0 = 10000, 𝛼 = 1∕2.

Fig. B.14. Dynamic structure factor of the mapped solution (after applying the decorrelation matrix) as a function of the time lag for 𝑘 = 20 (2𝜋∕𝐿) (left) and 
𝑘 = 30 (2𝜋∕𝐿) (right): computed with 𝑁𝑛 = 51 (dashed), 𝑁𝑛 = 101 (dotted) and 𝑁𝑛 = 201 (dash-dotted), and theoretical dynamic structure factor (solid line). All 
computations with 𝑝1-elements, Δ𝑡 = 1e − 5, 𝑁𝑡 = 1e6, 𝑢0 = 10000, 𝛼 = 1∕2.

𝐚𝑛 =𝐀𝐷 𝐳𝑛 , (A.3)

where 𝐳(𝑡) is an array of random numbers of length 𝑁dof following a Gaussian distribution of expected value 0 and variance 1. 
Matrix 𝐀𝐷 can be computed once before the time-stepping starts, and then 𝐟𝑛 can be computed at each time step based on it. The 
decomposition given by Equation (A.1) is not unique, but a convenient definition is

𝐀𝐷 =𝐔𝐷

√
𝚺𝐷𝐔𝑇

𝐷
, (A.4)

where 𝐔𝐷 is a unitary matrix and 𝚺𝐷 is a diagonal matrix, satisfying

𝐃 =𝐔𝐷𝚺𝐷𝐔𝑇
𝐷
. (A.5)

The definition of 𝐀𝐷 provided by Equation (A.4) makes 𝐀𝐷 symmetric. Moreover, while in general a matrix 𝐀𝐷 satisfying Equation 
(A.1) will be a dense matrix, the definition provided by Equation (A.4) makes it possible to approximate it by a sparse matrix, which 
is important to preserve the computational efficiency of the finite element method.

Appendix B. Dynamic structure factor

In this appendix, we present complementary results to those presented in Sections 3 and 4.3. In particular, we present results for 
the dynamic structure factor, which, unlike the static structure factor discussed in previous sections, contains information about the 
time evolution of the solution. The dynamic structure factor is defined as the Fourier transform of the time-dependent correlation 
function. For the problem discussed in Section 3, the analytical expression for the dynamic structure factor is given by

𝑆dyn(𝑘, 𝜏) = ⟨U(𝑘, 𝑡)U(−𝑘, 𝑡− 𝜏)⟩ = 𝑢0𝑒
−𝐷𝑘2𝜏 . (B.1)

Fig. B.13 shows the dynamic structure factor corresponding to the finite element solution (before mapping) for two values of the 
wavenumber 𝑘 as a function of the time lag 𝜏 . As also explained in Section 3, for a given value of 𝑘, the results converge to their 
theoretical value as the mesh is refined.

Fig. B.14 displays the dynamic structure factor corresponding to the mapped finite element solution for the same two values of 
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𝑘. A key difference with respect to the finite element results before mapping (Fig. B.13) is that the mapped results present a good 
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Fig. B.15. Influence of the time step on the dynamic structure factor of the mapped solution for 𝑘 = 20 (2𝜋∕𝐿): computed with Δ𝑡 = 1e − 5 (dashed) and Δ𝑡 = 5e − 5
(dotted), and theoretical dynamic structure factor (solid line). All computations with 𝑝1-elements, 𝑁𝑛 = 201, 𝑁𝑡Δ𝑡 = 10𝐿2∕𝐷, 𝑢0 = 10000, 𝛼 = 1∕2.

Fig. B.16. Influence of the total simulation time on the dynamic structure factor of the mapped solution for 𝑘 = 20 (2𝜋∕𝐿): computed with 𝑁𝑡Δ𝑡 = 10𝐿2∕𝐷 (dashed) 
and 𝑁𝑡Δ𝑡 = 100𝐿2∕𝐷 (dotted), and theoretical dynamic structure factor (solid line). All computations with 𝑝1-elements, 𝑁𝑛 = 201, Δ𝑡 = 1e − 5, 𝑢0 = 10000, 𝛼 = 1∕2.

agreement with the theoretical value for 𝜏 values close to zero regardless of the size of the mesh. For larger values of 𝜏 , the dynamic 
structure factor of the mapped results converges as well towards the theoretical one as the mesh is refined.

Figs. B.15 and B.16 show the effect of the time step Δ𝑡 and of the total simulated time 𝑁𝑡Δ𝑡 on the computed structure factor 
based on the mapped solution, and illustrate the convergence of the numerical solution towards the theoretical one as the time 
step decreases and the total simulated time increases. For values of 𝜏 below a threshold, decreasing the time step leads to a better 
agreement with the theoretical solution, as seen in Fig. B.15. For values of 𝜏 above a certain threshold, the value of the dynamic 
structure factor is small, and the residual error due to the finite time 𝑁𝑡Δ𝑡 that is simulated dominates the solution. As shown in 
Fig. B.16, this error decreases as the total simulated time 𝑁𝑡Δ𝑡 increases.

These results show that the numerical approach based on applying the decorrelation matrix to the finite element results, as 
proposed in Section 4, can capture the time evolution of the solution.
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