000135776 001__ 135776
000135776 005__ 20250923084429.0
000135776 0247_ $$2doi$$a10.1016/j.chaos.2024.114928
000135776 0248_ $$2sideral$$a138779
000135776 037__ $$aART-2024-138779
000135776 041__ $$aeng
000135776 100__ $$0(orcid)0000-0002-5701-1670$$aSerrano, S.$$uUniversidad de Zaragoza
000135776 245__ $$aCoupling of neurons favors the bursting behavior and the predominance of the tripod gait
000135776 260__ $$c2024
000135776 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135776 5203_ $$aIn nature, it has been observed that the dominant locomotor pattern of hexapod insects is often the tripod gait. Our analysis of a Central Pattern Generator (CPG) of the insect movement gives reasons for this dominance: the mathematical CPG model presents the tripod pattern with bursting dynamics in a parametric region where an isolated neuron has a simpler behavior. That is, we show how the coupling of small networks of neurons makes the system to continue having bursting dynamics even when an isolated neuron would be spiking. Moreover, in parametric regions where a neuron shows chaotic dynamics, the CPG exhibits a chaotic synchronization phenomenon: the chaotic tripod gait. In other words, coupling loves bursting… and tripod gait. The hyperchaotic phenomenon is also present and we locate regions where up to four Lyapunov exponents are positive.
000135776 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2019-105674RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E22-23R$$9info:eu-repo/grantAgreement/ES/DGA/E24-23R$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-20R$$9info:eu-repo/grantAgreement/ES/DGA/LMP 94-21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-140556OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
000135776 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135776 590__ $$a5.6$$b2024
000135776 592__ $$a1.184$$b2024
000135776 591__ $$aPHYSICS, MATHEMATICAL$$b1 / 61 = 0.016$$c2024$$dQ1$$eT1
000135776 593__ $$aApplied Mathematics$$c2024$$dQ1
000135776 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b7 / 136 = 0.051$$c2024$$dQ1$$eT1
000135776 593__ $$aMathematical Physics$$c2024$$dQ1
000135776 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b17 / 114 = 0.149$$c2024$$dQ1$$eT1
000135776 593__ $$aStatistical and Nonlinear Physics$$c2024$$dQ1
000135776 593__ $$aPhysics and Astronomy (miscellaneous)$$c2024$$dQ1
000135776 593__ $$aMathematics (miscellaneous)$$c2024$$dQ1
000135776 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135776 700__ $$0(orcid)0000-0002-8089-343X$$aBarrio, R.$$uUniversidad de Zaragoza
000135776 700__ $$0(orcid)0000-0002-1184-5901$$aLozano, Á.$$uUniversidad de Zaragoza
000135776 700__ $$0(orcid)0000-0002-4802-2511$$aMayora-Cebollero, A.$$uUniversidad de Zaragoza
000135776 700__ $$0(orcid)0000-0001-7111-5022$$aVigara, R.$$uUniversidad de Zaragoza
000135776 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000135776 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000135776 773__ $$g184 (2024), 114928 [11 pp.]$$pChaos, solitons fractals$$tChaos, Solitons and Fractals$$x0960-0779
000135776 8564_ $$s6885027$$uhttps://zaguan.unizar.es/record/135776/files/texto_completo.pdf$$yVersión publicada
000135776 8564_ $$s2566859$$uhttps://zaguan.unizar.es/record/135776/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135776 909CO $$ooai:zaguan.unizar.es:135776$$particulos$$pdriver
000135776 951__ $$a2025-09-22-14:42:15
000135776 980__ $$aARTICLE