000135788 001__ 135788
000135788 005__ 20240614091948.0
000135788 0247_ $$2doi$$a10.1016/j.jpowsour.2024.234730
000135788 0248_ $$2sideral$$a138765
000135788 037__ $$aART-2024-138765
000135788 041__ $$aeng
000135788 100__ $$0(orcid)0000-0002-2866-9369$$aAina, Sergio$$uUniversidad de Zaragoza
000135788 245__ $$aSimple surface treatment improves performance of carbon materials for sodium ion battery anodes
000135788 260__ $$c2024
000135788 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135788 5203_ $$aHard carbons are the most extended anode materials for sodium-ion batteries (SIBs); however, they suffer from several limitations such as low stability, poor rate performance and low initial Coulombic efficiency (iCE). Herein, a simple, fast, and low-cost surface treatment at room temperature using short-chain organic molecules: 3-mercaptopropionic acid (MPA), 1,2-ethanedithiol (EDT) and oxalic acid (OxA) has been applied to a hard carbon (C1400). The carbons treated with sulfur containing molecules (MPA or EDT) exhibit higher capacity (12 % capacity enhancement after 100th cycles at C/10 and 18 % enhancement at 1C vs. C1400). The introduction of these ligands leads to improved micropore blockage, helping in the reversible insertion of Na ions. Moreover, ex-situ X-ray photoelectron spectroscopy (XPS) analyses demonstrate that thiol functional groups promote the formation of favorable NaF and Na2O-rich solid electrolyte interfaces (SEI) leading to and faster sodium diffusion in the plateau region. Additionally, MPA and EDT treatments have been applied to a soft carbon (Vulcan XC-72R) resulting in a substantial 30 % capacity improvement after 100 cycles at 1C. These results demonstrate the wide applicability of the method as a straightforward and efficient strategy for improving the electrochemical properties of carbon anodes used in SIBs.
000135788 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MINECO/PCI2019–10363
000135788 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000135788 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135788 700__ $$aTratnik, Blaz
000135788 700__ $$aVizintin, Alen
000135788 700__ $$aTchernychova, Elena
000135788 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M. Pilar$$uUniversidad de Zaragoza
000135788 700__ $$aDominko, Robert
000135788 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, María
000135788 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000135788 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000135788 773__ $$g610 (2024), 234730 [12 pp.]$$pJ. power sources$$tJOURNAL OF POWER SOURCES$$x0378-7753
000135788 8564_ $$s7214386$$uhttps://zaguan.unizar.es/record/135788/files/texto_completo.pdf$$yVersión publicada
000135788 8564_ $$s1988085$$uhttps://zaguan.unizar.es/record/135788/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135788 909CO $$ooai:zaguan.unizar.es:135788$$particulos$$pdriver
000135788 951__ $$a2024-06-14-09:00:25
000135788 980__ $$aARTICLE