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A B S T R A C T

In this paper the total positivity of the Gramian (mass) matrices of q-Bernstein bases is analyzed.
Furthermore, we provide an efficient method to obtain a bidiagonal decomposition of these mass
matrices allowing us to calculate their singular values and inverses to high relative accuracy.
Numerical examples are provided to illustrate the high accuracy of the performed computations
using the proposed decompositions.

1. Introduction

Quantum calculus (see [1]) uses 𝑞-integers, 𝑞-binomial coefficients, and other 𝑞-analogues of classical calculus. In particular, it
includes the 𝑞-Bernstein bases of polynomial spaces, for values 0 ≤ 𝑞 ≤ 1 (see [2]). The 𝑞-Bernstein bases have interesting applications
in several areas, such as Computer-Aided Geometric Design (see [3,4] and references in there) and Approximation Theory (see [5]).
When 𝑞 = 1, 𝑞-Bernstein bases coincide with Bernstein bases, which are the most often used bases in Computer-Aided Geometric
Design.

An important topic in Numerical Linear Algebra is the design and analysis of algorithms adapted to the structure of totally
positive matrices, that is, matrices whose minors are nonnegative, and allowing the resolution of related algebraic problems to high
relative accuracy (HRA). An algorithm is said to be performed to HRA if the relative error in the computations is of the order of the
unit round-off (or machine precision). It is well known that a sufficient condition so that an algorithm can be carried out to HRA
is the non-inaccurate cancellation condition, also called NIC condition, which holds if the algorithm only uses products, quotients,
and sums of numbers with the same sign (see page 52 in [6]). Moreover, if the floating-point arithmetic is well-implemented the
subtraction of initial data can also be allowed without losing HRA (see page 53 in [6]).

Algorithms to HRA have been achieved only for a few classes of matrices. Among these classes, we can mention the Hilbert
matrices, which are the Gramian matrices of the monomial bases (see [7]). Furthermore, computations to HRA for Gramian matrices

✩ This research was partially supported by Spanish research grants PID2022-138569NB-I00 (MCI/AEI) and RED2022-134176-T (MCI/AEI) and by Gobierno
de Aragón (E41_23R).
∗ Corresponding author.
E-mail addresses: esmemain@unizar.es (E. Mainar), jmpena@unizar.es (J.M. Peña), brubio@unizar.es (B. Rubio).
vailable online 1 June 2024
377-0427/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cam.2024.116034
Received 4 February 2023; Received in revised form 8 September 2023

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:esmemain@unizar.es
mailto:jmpena@unizar.es
mailto:brubio@unizar.es
https://doi.org/10.1016/j.cam.2024.116034
https://doi.org/10.1016/j.cam.2024.116034
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Computational and Applied Mathematics 451 (2024) 116034E. Mainar et al.

G
c

t

m
w
o
p

s

a
f

i

of other relevant polynomial bases, such as the geometric, Poisson and Bernstein bases, have been shown in [8,9], and for Gramian
matrices of non polynomial bases in [10]. In all these cases, the total positivity of the considered matrix has played a key role
because it leads to a bidiagonal factorization and, when this factorization can be performed to HRA, the algorithms of [11] (see
also [7,12]) can be applied to compute to HRA the remaining mentioned algebraic computations.

Bernstein bases on the interval [0, 1] are B-bases of the generated polynomial spaces. As a consequence, any polynomial totally
positive basis on this interval can be obtained as the product of a Bernstein basis and a totally positive matrix. In this paper, this
property is used to analyze the total positivity of the q-Bernstein mass matrices, that is, the Gramian matrices of 𝑞-Bernstein bases,
and to exploit it to obtain factorizations providing algebraic calculations to HRA when computing their singular values, which
coincide with their eigenvalues due to the symmetry, or their inverses.

This paper is organized as follows, in Section 2, we recall some notations, concepts and auxiliary results related to the theory
of Total Positivity, Neville elimination and the bidiagonal decomposition of totally positive matrices. In Section 3, we deduce and
analyze the change of basis matrix between Bernstein and 𝑞-Bernstein bases. The bidiagonal factorization of matrices of Section 3
is obtained in Section 4. This result is applied in Section 5 to prove that q-Bernstein mass matrices are totally positive and derive
accurate computations when solving algebraic problems with these matrices. Finally, numerical experiments confirming the accuracy
of the proposed algorithms are included in Section 6.

2. Notations and auxiliary results

Let us recall that a real matrix is said to be totally positive (TP) when all its minors are nonnegative and strictly totally positive
(STP) when all its minors are positive. Moreover, a system (𝑢0,… , 𝑢𝑛) of functions defined on 𝐼 ⊆ R is said to be totally positive
or TP if, for any sequence 𝑡1 < ⋯ < 𝑡𝑛+1 in the domain, the collocation matrix

(

𝑢𝑗−1(𝑡𝑖)
)

𝑖,𝑗=1,…,𝑛+1 is TP. On the other hand, if the
functions of a TP system sum up to one, that is,

𝑛
∑

𝑖=0
𝑢𝑖(𝑡) = 1, 𝑡 ∈ 𝐼,

the system (𝑢0,… , 𝑢𝑛) is said to be normalized totally positive (NTP). The class of NTP bases is very important in Computer-Aided
eometric Design (CAGD) because it provides shape preserving representations. This property means that the shape of the parametric
urves 𝛾(𝑡) =

∑𝑛
𝑖=0 𝑃𝑖𝑢𝑖(𝑡), 𝑡 ∈ 𝐼 , imitates the shape of their control polygon 𝑃0 ⋯𝑃𝑛. It is well known that, among all NTP bases of a

given space of functions with shape preserving representations, there exists a unique NTP basis, which has optimal shape preserving
properties (cf. [13]).

As a consequence of Corollary 3.10 and Proposition 3.11 of [13], B-bases can be characterized as follows.

Theorem 1. A TP basis (𝑢0,… , 𝑢𝑛) is a B-basis of a vector space of functions 𝑈 if and only if, for any other TP basis (𝑣0,… , 𝑣𝑛) of 𝑈 ,
he change of basis matrix 𝐴 such that (𝑣0,… , 𝑣𝑛) = (𝑢0,… , 𝑢𝑛)𝐴 is TP.

Nowadays, bidiagonal factorizations are very useful to achieve accurate algorithms for performing computations with TP
atrices. In fact, the parameterization of TP matrices leading to HRA algorithms is provided by their bidiagonal factorization,
hich is in turn closely related to the Neville elimination (cf [14–16]). The essence of this procedure is to make zeros in a column
f a given matrix 𝐴 by adding to each row an appropriate multiple of the previous one. In particular, it consists of 𝑛 major steps,
roviding the following sequence of matrices

𝐴(1) ∶= 𝐴 → 𝐴(2) → ⋯ → 𝐴(𝑛+1), (1)

uch that, 𝐴(𝑟) = (𝑎(𝑟)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1, 2 ≤ 𝑟 ≤ 𝑛 + 1, satisfies

𝑎(𝑟)𝑖,𝑗 = 0, 𝑗 = 1,… , 𝑟 − 1, 𝑖 = 𝑗 + 1,… , 𝑛 + 1, (2)

nd so, 𝐴(𝑛+1) is upper triangular. In more detail, the matrix 𝐴(𝑟+1) is computed from the matrix 𝐴(𝑟) according to the following
ormula

𝑎(𝑟+1)𝑖,𝑗 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎(𝑟)𝑖,𝑗 , if 1 ≤ 𝑖 ≤ 𝑟,

𝑎(𝑟)𝑖,𝑗 −
𝑎(𝑟)𝑖,𝑟
𝑎(𝑟)𝑖−1,𝑟

𝑎(𝑟)𝑖−1,𝑗 , if 𝑟 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1, and 𝑎(𝑟)𝑖−1,𝑗 ≠ 0,

𝑎(𝑟)𝑖,𝑗 , if 𝑟 + 1 ≤ 𝑖 ≤ 𝑛 + 1, and 𝑎(𝑟)𝑖−1,𝑟 = 0.

(3)

The entry

𝑝𝑖,𝑗 ∶= 𝑎(𝑗)𝑖,𝑗 , 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 + 1, (4)

s the (𝑖, 𝑗) pivot of the Neville elimination of the matrix 𝐴 and 𝑝𝑖,𝑖 is called the 𝑖th diagonal pivot.
The Neville elimination of 𝐴 can be done without row exchanges if all the pivots are nonzero. Then,

𝑚𝑖,𝑗 ∶=

⎧

⎪

⎨

⎪

𝑎(𝑗)𝑖,𝑗 ∕𝑎
(𝑗)
𝑖−1,𝑗 = 𝑝𝑖,𝑗∕𝑝𝑖−1,𝑗 , if 𝑎(𝑗)𝑖−1,𝑗 ≠ 0,

0, if 𝑎(𝑗) = 0,
1 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1. (5)
2

⎩

𝑖−1,𝑗
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is called the (𝑖, 𝑗) multiplier.
The complete Neville elimination of 𝐴 consists of performing the Neville elimination to obtain the upper triangular matrix

𝑈 = 𝐴(𝑛+1) (see (1) and (2)) and next, the Neville elimination of the lower triangular matrix 𝑈𝑇 . If in the complete process no row
exchanges are needed, we say that the complete Neville elimination can be performed with no row and column exchanges. In this
case, the multipliers of the complete Neville elimination of 𝐴 (resp., 𝐴𝑇 ) are the multipliers of the Neville elimination of 𝐴 (resp.
f 𝐴𝑇 ) if 𝑖 ≥ 𝑗 (resp., 𝑗 ≥ 𝑖) (see [16]).

The Neville elimination procedure of a nonsingular matrix is illustrated with the following example:

𝐴 = 𝐴(1) =
⎛

⎜

⎜

⎝

2 6 24
10 36 198
20 114 950

⎞

⎟

⎟

⎠

→ 𝐴(2) =
⎛

⎜

⎜

⎝

2 6 24
0 6 78
0 42 554

⎞

⎟

⎟

⎠

→ 𝐴(3) =
⎛

⎜

⎜

⎝

2 6 24
0 6 78
0 0 8

⎞

⎟

⎟

⎠

. (6)

he multipliers and the diagonal pivots are 𝑚2,1 = 5, 𝑚3,1 = 2, 𝑚3,2 = 7, 𝑝1,1 = 2, 𝑝2,2 = 6, and 𝑝3,3 = 8.
Neville elimination is a nice and efficient tool to analyze the total positivity of a given matrix. This fact, is shown in the following

haracterization, which can be derived from Theorem 4.1, Corollary 5.5 of [14] and the arguments of p. 116 of [16].

heorem 2. A given matrix 𝐴 is STP (resp. nonsingular TP) if and only if its complete Neville elimination can be performed without row
nd column exchanges, the multipliers of the Neville elimination of 𝐴 and 𝐴𝑇 are positive (resp. nonnegative), and the diagonal pivots of
he Neville elimination of 𝐴 are positive.

Furthermore, as a consequence of Theorem 4.2 and the arguments of p.116 of [16], we know that a nonsingular TP matrix 𝐴
dmits a decomposition of the form

𝐴 = 𝐹𝑛𝐹𝑛−1 ⋯𝐹1𝐷𝐺1𝐺2 ⋯𝐺𝑛, (7)

here 𝐹𝑖 (resp. 𝐺𝑖) is the TP, lower (resp. upper) triangular bidiagonal matrix given by

𝐹𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
⋱

1
𝑚𝑖+1,1 1

⋱ ⋱
𝑚𝑛+1,𝑛+1−𝑖 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐺𝑇
𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
⋱

1
𝑚̃𝑖+1,1 1

⋱ ⋱
𝑚̃𝑛+1,𝑛+1−𝑖 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

nd 𝐷 is the diagonal matrix whose diagonal elements are the diagonal pivots, 𝑝𝑖,𝑖 > 0, 𝑖 = 1,… , 𝑛 + 1, of the Neville elimination
of 𝐴 (see (4)). The elements 𝑚𝑖,𝑗 of the lower triangular bidiagonal matrix 𝐹𝑖 in (8) are the multipliers of the Neville elimination of
𝐴. Furthermore, the entries 𝑚̃𝑗,𝑖 of the upper triangular bidiagonal matrix 𝐺𝑖 in (8) are the multipliers of the Neville elimination of
𝐴𝑇 . If, in addition, the elements 𝑚𝑖𝑗 , 𝑚̃𝑖𝑗 satisfy the following properties,

𝑚𝑖𝑗 = 0 ⇒ 𝑚ℎ𝑗 = 0, ∀ℎ > 𝑖 and 𝑚̃𝑖𝑗 = 0 ⇒ 𝑚̃𝑖𝑘 = 0, ∀ 𝑘 > 𝑗, (9)

we can guarantee that the decomposition (7) of the matrix 𝐴 is unique.
The transpose of a TP matrix is another TP matrix and then we can write

𝐴𝑇 = 𝐺𝑇
𝑛 𝐺

𝑇
𝑛−1 ⋯𝐺𝑇

1 𝐷𝐹 𝑇
1 𝐹 𝑇

2 ⋯𝐹 𝑇
𝑛 ,

where 𝐹𝑖 (resp., 𝐺𝑖) is the lower (resp., upper) triangular bidiagonal matrix given in (8). If, in addition, 𝐴 is symmetric (𝐴 = 𝐴𝑇 ),
conditions (9) holds and then 𝐺𝑖 = 𝐹 𝑇

𝑖 . Then we have

𝐴 = 𝐹𝑛𝐹𝑛−1 ⋯𝐹1𝐷𝐹 𝑇
1 𝐹 𝑇

2 ⋯𝐹 𝑇
𝑛 . (10)

By defining the following matrix 𝐵𝐷(𝐴) = (𝐵𝐷(𝐴)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1, such that

𝐵𝐷(𝐴)𝑖,𝑗 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝑖,𝑗 , if 𝑖 > 𝑗,

𝑝𝑖,𝑖, if 𝑖 = 𝑗,

𝑚̃𝑗,𝑖, if 𝑖 < 𝑗,

(11)

the bidiagonal factorization (7) of a (𝑛 + 1) × (𝑛 + 1) nonsingular TP matrix 𝐴 can be represented (cf. [17]).
Let us observe that, for the matrix 𝐴 in (6), the bidiagonal decomposition (7) can be written as follows:

(

2 6 24
10 36 198
20 114 950

)

=

(

1 0 0
0 1 0
0 2 1

)(

1 0 0
5 1 0
0 7 1

)(

2 0 0
0 6 0
0 0 8

)(

1 3 0
0 1 9
0 0 1

)(

1 0 0
0 1 4
0 0 1

)

.

Moreover, since the diagonal pivots and multipliers of the Neville elimination of 𝐴 and 𝐴𝑇 are all positive, we conclude that 𝐴 is
strictly totally positive. The above factorization can be represented in the following matrix form:

𝐵𝐷(𝐴) =
⎛

⎜

⎜

2 3 4
5 6 9

⎞

⎟

⎟

.

3

⎝ 2 7 8 ⎠



Journal of Computational and Applied Mathematics 451 (2024) 116034E. Mainar et al.

C
i
B

Let us recall that if the entries of 𝐵𝐷(𝐴) can be computed to HRA, using the algorithms raised in [7], problems such as the
computation of 𝐴−1, of the singular values of 𝐴, as well as the resolution of linear systems of equations 𝐴𝑥 = 𝑏, for vectors 𝑏 whose
entries have alternating signs, can be performed to HRA. One can find the implementation of those algorithms through the link [11].
The name of the corresponding functions is TNSingularValues, TNInverseExpand (applying the algorithm proposed in [12])
and TNSolve, respectively. All these functions require the matrix 𝐵𝐷(𝐴) as input argument.

3. Matrix conversion between q-Bernstein and Bernstein bases

The Bernstein polynomials of degree 𝑛 on [0, 1] are defined by

𝐵𝑛
𝑘(𝑡) ∶=

(

𝑛
𝑘

)

𝑡𝑘 (1 − 𝑡)𝑛−𝑘, 𝑘 = 0,… , 𝑛. (12)

Bernstein bases are the polynomial bases most used in CAGD because they have optimal shape preserving and stability properties
(see [18,19]). These nice properties are related to the fact that (𝐵𝑛

0 ,… , 𝐵𝑛
𝑛 ) is the normalized B-basis of the space 𝐏𝑛[0, 1] of

polynomials of degree no greater than 𝑛 (cf. [13,20]) and then, any TP basis (𝑝𝑛0,… , 𝑝𝑛𝑛) of 𝐏𝑛[0, 1] can be written in terms of the
B-basis as follows,

(𝑝𝑛0,… , 𝑝𝑛𝑛) = (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 )𝐴𝑛, (13)

where 𝐴𝑛 is nonsingular and TP (see Theorem 1). Moreover, if (𝑝𝑛0,… , 𝑝𝑛𝑛) is normalized then 𝐴𝑛 is stochastic (see Theorem 4.3
of [13]).

The q-Bernstein polynomials of degree 𝑛 on [0, 1] are defined as

𝑄𝑛
𝑘(𝑡) ∶=

[

𝑛
𝑘

]

𝑞
𝑡𝑘

𝑛−𝑘−1
∏

𝑟=0
(1 − 𝑞𝑟 𝑡), 𝑘 = 0,… , 𝑛, (14)

where, for 𝑞 > 0, the 𝑞-binomial coefficients
[𝑛
𝑘

]

𝑞
, 𝑘 = 0,… , 𝑛, are given by

[

𝑛
𝑘

]

𝑞
∶=

[𝑛]𝑞!
[𝑘]𝑞! [𝑛 − 𝑘]𝑞!

and, for any non-negative integer 𝑛, the 𝑞-factorial [𝑛]𝑞! is defined by

[𝑛]𝑞! ∶= [𝑛]𝑞 [𝑛 − 1]𝑞 ⋯ [1]𝑞 ,

and the 𝑞-integer [𝑛]𝑞 by

[𝑛]𝑞 ∶=

⎧

⎪

⎨

⎪

⎩

1 + 𝑞 +⋯ + 𝑞𝑛−1 =
1 − 𝑞𝑛

1 − 𝑞
, if 𝑞 ≠ 1

𝑛, if 𝑞 = 1.
(15)

learly, [𝑛]𝑞 is a polynomial in 𝑞 and, less obviously, the 𝑞-binomial coefficients
[𝑛
𝑘

]

𝑞
, 𝑘 = 0,… , 𝑛 are also polynomials in 𝑞 with

nteger polynomials, known as Gaussian polynomials. For the particular case 𝑞 = 1, the q-Bernstein basis (14) coincides with the
ernstein basis (12).

By Corollary 3.3 of [13], for any 𝑞 ∈ (0, 1], the basis (𝑄𝑛
0,… , 𝑄𝑛

𝑛) is TP on the interval [0, 1] and STP on (0, 1). Moreover, the
partition of unity property satisfied by (𝑄𝑛

0,… , 𝑄𝑛
𝑛) can be deduced using Proposition 5.2 of [21]. Then we can guarantee that the

change of basis matrix 𝐴𝑛 such that

(𝑄𝑛
0,… , 𝑄𝑛

𝑛) = (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 )𝐴𝑛, (16)

is nonsingular, stochastic and TP. This section is devoted to deriving the explicit expression of the elements of 𝐴𝑛 = (𝑎𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1.
First, let us define

𝑞𝑛𝑘(𝑡) ∶= 𝑄𝑛
𝑘(𝑡)∕

[

𝑛
𝑘

]

𝑞
, 𝑏𝑛𝑘(𝑡) ∶= 𝐵𝑛

𝑘(𝑡)∕
(

𝑛
𝑘

)

, 𝑘 = 0,… , 𝑛,

and the (𝑛 + 1) × (𝑛 + 1) matrix 𝐴𝑛 = (𝑎𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 such that

(𝑞𝑛0 ,… , 𝑞𝑛𝑛 ) = (𝑏𝑛0,… , 𝑏𝑛𝑛)𝐴𝑛. (17)

Clearly,

𝐴𝑛 = 𝐷̃−1
𝑛 𝐴𝑛𝐷𝑛, (18)

where 𝐷𝑛 ∶= diag
(

[ 𝑛
𝑘−1

]

𝑞

)

1≤𝑘≤𝑛+1
, 𝐷̃𝑛 ∶= diag

(

( 𝑛
𝑘−1

)

)

1≤𝑘≤𝑛+1
and then

𝑎𝑖,𝑗 =

[ 𝑛
𝑗−1

]

𝑞
( 𝑛
𝑖−1

) 𝑎𝑖,𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1. (19)
4

The following result provides a recursive formula satisfied by the entries of 𝐴𝑛, 𝑛 > 1.
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Proposition 3. Let 𝐴𝑛 = (𝑎(𝑛)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1, 𝑛 ≥ 1, be the matrices satisfying (17). Then 𝐴1 = 𝐼2, where 𝐼2 denotes the 2 × 2 identity matrix.
Moreover, for 𝑛 > 1,

𝑎(𝑛)𝑖,𝑗 = 𝑎(𝑛−1)𝑖,𝑗 + [𝑛 − 𝑗]𝑞(1 − 𝑞) 𝑎(𝑛−1)𝑖−1,𝑗 , 1 ≤ 𝑖 ≤ 𝑛 + 1, 1 ≤ 𝑗 ≤ 𝑛,

𝑎(𝑛)𝑖,𝑛+1 = 𝛿𝑖,𝑛+1, 1 ≤ 𝑖 ≤ 𝑛 + 1, (20)

with the convention 𝑎(𝑛−1)0,𝑗 ∶= 0 and 𝑎(𝑛−1)𝑛+1,𝑗 ∶= 0.

Proof. For 𝑛 = 1, 𝑞1𝑖 (𝑡) = 𝑏1𝑖 (𝑡), 𝑖 = 0, 1, and then 𝐴1 = 𝐼2. For 𝑛 > 1, by (14), we can write

𝑞𝑛𝑗 (𝑡) = 𝑡𝑗
𝑛−𝑗−1
∏

𝑟=0
(1 − 𝑞𝑟𝑡) = (1 − 𝑞𝑛−𝑗−1𝑡) 𝑞𝑛−1𝑗 (𝑡)

= (1 − 𝑡 + (1 − 𝑞𝑛−𝑗−1)𝑡)
𝑛−1
∑

𝑖=0
𝑎(𝑛−1)𝑖+1,𝑗+1𝑏

𝑛−1
𝑖 (𝑡), 0 ≤ 𝑗 ≤ 𝑛 − 1,

here 𝐴𝑛−1 =
(

𝑎(𝑛−1)𝑖,𝑗

)

1≤𝑖,𝑗≤𝑛
is the matrix such that

(𝑞𝑛−10 ,… , 𝑞𝑛−1𝑛 ) = (𝑏𝑛−10 ,… , 𝑏𝑛−1𝑛 )𝐴𝑛−1.

hen we have
𝑛
∑

𝑖=0
𝑎(𝑛)𝑖+1,𝑗+1𝑏

𝑛
𝑖 (𝑡) =

𝑛−1
∑

𝑖=0
𝑎(𝑛−1)𝑖+1,𝑗+1

(

𝑏𝑛𝑖 (𝑡) + (1 − 𝑞𝑛−𝑗−1)𝑏𝑛𝑖+1(𝑡)
)

=
𝑛
∑

𝑖=0

(

𝑎(𝑛−1)𝑖+1,𝑗+1 + (1 − 𝑞𝑛−𝑗−1)𝑎(𝑛−1)𝑖,𝑗+1

)

𝑏𝑛𝑖 (𝑡),

nd deduce the following identities

𝑎(𝑛)𝑖,𝑗 = 𝑎(𝑛−1)𝑖,𝑗 + (1 − 𝑞𝑛−𝑗 )𝑎(𝑛−1)𝑖−1,𝑗 , 1 ≤ 𝑖 ≤ 𝑛 + 1, 1 ≤ 𝑗 ≤ 𝑛.

oreover, since 𝑞𝑛𝑛 (𝑡) = 𝑏𝑛𝑛(𝑡) = 𝑡𝑛, we have

𝑎(𝑛)𝑖,𝑛+1 = 𝛿𝑖,𝑛+1, 1 ≤ 𝑖 ≤ 𝑛 + 1.

inally, using formula (15), we can write

1 − 𝑞𝑛−𝑗 = [𝑛 − 𝑗]𝑞(1 − 𝑞),

nd the result follows. □

The recursion provided by Proposition 3 allows us to deduce the explicit expression of the entries of the matrix (17), as it is
hown in the following result.

heorem 4. The matrix 𝐴𝑛 = (𝑎(𝑛)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 satisfying (17) is lower triangular and

𝑎(𝑛)𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑛−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 , if 1 ≤ 𝑗 < 𝑖 ≤ 𝑛,

1, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,

0, elsewhere,

(21)

here 𝑘 ∶= {1,… , 𝑘} for 𝑘 ∈ N.

roof. Identities (21) are going to be proved using induction on 𝑛 ∈ N. By Proposition 3, 𝐴1 = 𝐼2, where 𝐼2 denotes the 2 × 2
dentity matrix and so, (21) holds for 𝑛 = 1. Now, let us suppose that (21) holds for 𝑛 ∈ N. Using the recursion (20), we immediately
educe that 𝑎(𝑛+1)𝑖,𝑗 = 0, for 𝑖 < 𝑗, and 𝑎(𝑛+1)𝑖,𝑖 = 1, 𝑖 = 1,… , 𝑛 + 2. Moreover, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1 we can write

𝑎(𝑛+1)𝑖,𝑗 = 𝑎(𝑛)𝑖,𝑗 + [𝑛 + 1 − 𝑗]𝑞(1 − 𝑞) 𝑎(𝑛)𝑖−1,𝑗

= (1 − 𝑞)𝑖−𝑗
⎛

⎜

⎜

⎝

∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑛−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 +

∑

𝛼1<⋯<𝛼𝑖−𝑗−1⊂𝑛−𝑗

[𝑛 + 1 − 𝑗]𝑞
𝑖−𝑗−1
∏

𝑘=1
[𝛼𝑘]𝑞

⎞

⎟

⎟

⎠

= (1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑛+1−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 .
5

o, we conclude that formula (21) is also satisfied for 𝑛 + 1. □
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Now, using (19) and Theorem 4, the matrix 𝐴𝑛 = (𝑎(𝑛)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 satisfying (16) can be described by

𝑎(𝑛)𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[ 𝑛
𝑗−1]𝑞
( 𝑛
𝑖−1)

(1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑛−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 , if 1 ≤ 𝑗 < 𝑖 ≤ 𝑛,

[ 𝑛
𝑖−1]𝑞
( 𝑛
𝑖−1)

, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,

0, elsewhere,

(22)

ith the previous notation 𝑘 ∶= {1,… , 𝑘}, for 𝑘 ∈ N (see also Section 2 of [22]). The entries (22) are illustrated with the following
example.

Example 1. The matrix 𝐴4 such that (𝑄4
0,… , 𝑄4

4) = (𝐵4
0 ,… , 𝐵4

4 )𝐴4 is

𝐴4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
1
4 (1 − 𝑞)

(

[1]𝑞 + [2]𝑞 + [3]𝑞
)

1
4 [4]𝑞 0 0 0

1
6 (1 − 𝑞)2

(

[1]𝑞[2]𝑞 + [1]𝑞[3]𝑞 + [2]𝑞[3]𝑞
)

1
6 [4]𝑞(1 − 𝑞)

(

[1]𝑞 + [2]𝑞
)

1
6 [6]𝑞 0 0

1
4 (1 − 𝑞)3[1]𝑞[2]𝑞[3]𝑞

1
4 [4]𝑞(1 − 𝑞)2[1]𝑞[2]𝑞

1
4 [6]𝑞(1 − 𝑞)[1]𝑞

1
4 [4]𝑞 0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

4. Factorizations of the change of basis matrix between Bernstein and q-Bernstein bases

First, let us recall that the converse of a matrix 𝐴 = (𝑎𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 is defined as

𝐴# = (𝑎#𝑖,𝑗 )1≤𝑖,𝑗≤𝑛 ∶= (𝑎𝑛+1−𝑖,𝑛+1−𝑗 )1≤𝑖,𝑗≤𝑛. (23)

Clearly, the converse 𝐴# can be written as 𝐴# = 𝑅𝐴𝑅, where 𝑅 is the 𝑛 × 𝑛 matrix obtained by reversing the order of the rows of
the identity 𝑛 × 𝑛 matrix.

In order to achieve a suitable factorization of the matrix 𝐴𝑛 satisfying

(𝑄𝑛
0,… , 𝑄𝑛

𝑛) = (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 )𝐴𝑛,

let us define the matrix 𝑀𝑛 ∶= 𝐴#
𝑛, that can be considered as the change of basis matrix such that (𝑄𝑛

𝑛,… , 𝑄𝑛
0) = (𝐵𝑛

𝑛 ,… , 𝐵𝑛
0 )𝑀𝑛. We

also define the matrix 𝑀𝑛 ∶= 𝐴#
𝑛, where 𝐴𝑛 is the matrix satisfying

(𝑞𝑛0 ,… , 𝑞𝑛𝑛 ) = (𝑏𝑛0,… , 𝑏𝑛𝑛)𝐴𝑛,

with 𝑞𝑛𝑘(𝑡) ∶= 𝑄𝑛
𝑘(𝑡)∕

[𝑛
𝑘

]

𝑞
and 𝑏𝑛𝑘(𝑡) ∶= 𝐵𝑛

𝑘(𝑡)∕
(𝑛
𝑘

)

, for 𝑘 = 0,… , 𝑛 (see (17)). Clearly,

𝑀𝑛 = 𝐷̃−1
𝑛 𝑀𝑛𝐷𝑛, (24)

with 𝐷𝑛 = diag
(

[ 𝑛
𝑛−𝑘+1

]

𝑞

)

1≤𝑘≤𝑛+1
and 𝐷̃𝑛 = diag

(

( 𝑛
𝑛−𝑘+1

)

)

1≤𝑘≤𝑛+1
and so,

𝑚̃𝑖,𝑗 =

[ 𝑛
𝑛−𝑗+1

]

𝑞
( 𝑛
𝑛−𝑖+1

) 𝑚𝑖,𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1, (25)

where 𝑀𝑛 = (𝑚(𝑛)
𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 and 𝑀𝑛 = (𝑚̃(𝑛)

𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1.
From (23) and Theorem 4, we can deduce that 𝑀𝑛 = (𝑚(𝑛)

𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 is an upper triangular matrix such that

𝑚(𝑛)
𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝑞)𝑗−𝑖
∑

𝛼1<⋯<𝛼𝑗−𝑖⊂𝑗−2

𝑗−𝑖
∏

𝑘=1
[𝛼𝑘]𝑞 , if 2 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1,

1, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,

0, elsewhere,

(26)

where 𝑘 ∶= {1,… , 𝑘} for 𝑘 ∈ N. Moreover, using (24) and (26), we deduce the following identities

𝑚̃(𝑛)
𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

[ 𝑛
𝑛−𝑗+1]𝑞
( 𝑛
𝑛−𝑖+1)

(1 − 𝑞)𝑗−𝑖
∑

𝛼1<⋯<𝛼𝑗−𝑖⊂𝑗−2

𝑗−𝑖
∏

𝑘=1
[𝛼𝑘]𝑞 , if 2 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1,

[ 𝑛
𝑛−𝑖+1]𝑞
( 𝑛
𝑛−𝑖+1)

, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,
(27)
6

⎩

0, elsewhere,
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where 𝑘 ∶= {1,… , 𝑘} for 𝑘 ∈ N.
The following result obtains the pivots and the multipliers of the Neville elimination of 𝑀𝑛, providing its bidiagonal factorization

(7).

Theorem 5. For 𝑞 ∈ (0, 1], the matrix 𝑀𝑛 = (𝑚(𝑛)
𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 satisfying (26) is TP and

𝑀𝑛 = 𝐺1 ⋯𝐺𝑛, (28)

here 𝐺𝑖, 𝑖 = 1,… , 𝑛, are upper triangular bidiagonal matrices whose structure is given in (8), that can be computed to HRA. Their
ff-diagonal entries 𝑚̃𝑖,𝑗 , 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1, are given by

𝑚̃𝑖,𝑗 = (1 − 𝑞)[𝑖 − 𝑗]𝑞 = 1 − 𝑞𝑖−𝑗 , 1 < 𝑗 < 𝑖 ≤ 𝑛 + 1, 𝑚̃𝑖,1 = 0, 2 ≤ 𝑖 ≤ 𝑛 + 1. (29)

roof. First, let us notice that the matrix 𝑀𝑛 is upper triangular and define 𝐿𝑛 ∶= 𝑀𝑇
𝑛 such that 𝐿𝑛 = (𝑙(𝑛)𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1, with

𝑙(𝑛)𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑖−2

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 , if 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1,

1, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,

0, elsewhere,

(30)

here 𝑘 ∶= {1,… , 𝑘} for 𝑘 ∈ N.
Since 𝑙(𝑛)𝑖,1 = 0 for 𝑖 = 2,… , 𝑛+1, we can deduce that the multipliers of the Neville elimination of 𝐿𝑛 satisfy 𝑚𝑖,1 = 0 for 𝑖 = 2,… , 𝑛+1.
Let 𝐿(1) ∶= 𝐿𝑛 and 𝐿(𝑟) = (𝑙(𝑟)𝑖𝑗 )1≤𝑖,𝑗≤𝑛+1, 𝑟 = 2,… , 𝑛, be the matrices obtained after 𝑟 − 1 steps of the Neville elimination of 𝐿𝑛.

ow, by induction on 𝑟 ∈ {1,… , 𝑛 + 1}, we shall deduce the following identities

𝑙(𝑟)𝑖,𝑗 = (1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑖−𝑟

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 , 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1. (31)

Taking into account (30), identities (31) are obtained for 𝑟 = 1. On the other hand, if (31) holds for some 𝑟 ∈ {1,… , 𝑛}, we can
rite

𝑙(𝑟)𝑖,𝑟

𝑙(𝑟)𝑖−1,𝑟

= (1 − 𝑞)

∑

𝛼1<⋯<𝛼𝑖−𝑟⊂𝑖−𝑟
∏𝑖−𝑟

𝑘=1[𝛼𝑘]𝑞
∑

𝛼1<⋯<𝛼𝑖−𝑟−1⊂𝑖−𝑟−1
∏𝑖−𝑟−1

𝑘=1 [𝛼𝑘]𝑞
= (1 − 𝑞)

∏𝑖−𝑟
𝑘=1[𝛼𝑘]𝑞

∏𝑖−𝑟−1
𝑘=1 [𝛼𝑘]𝑞

= (1 − 𝑞)[𝑖 − 𝑟]𝑞 . (32)

Since 𝑙(𝑟+1)𝑖,𝑗 = 𝑙(𝑟)𝑖,𝑗 −
(

𝑙(𝑟)𝑖,𝑟 ∕𝑙
(𝑟)
𝑖−1,𝑟

)

𝑙(𝑟)𝑙−1,𝑗 , from (31) and (32), we obtain

𝑙(𝑟+1)𝑖,𝑗 = (1 − 𝑞)𝑖−𝑗
⎛

⎜

⎜

⎝

∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑖−𝑟

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 −

∑

𝛼1<⋯<𝛼𝑖−𝑗−1⊂𝑖−𝑟−1

[𝑖 − 𝑟]𝑞
𝑖−𝑗−1
∏

𝑘=1
[𝛼𝑘]𝑞

⎞

⎟

⎟

⎠

=
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑖−𝑟−1

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 .

By considering identities (4) and (31), we can deduce that the pivots 𝑝𝑖,𝑗 of the Neville elimination of 𝐿𝑛 satisfy

𝑝𝑖,𝑗 = 𝑙(𝑗)𝑖,𝑗 = (1 − 𝑞)𝑖−𝑗
∑

𝛼1<⋯<𝛼𝑖−𝑗⊂𝑖−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 = (1 − 𝑞)𝑖−𝑗

𝑖−𝑗
∏

𝑘=1
[𝛼𝑘]𝑞 , (33)

and, for 𝑖 = 𝑗, the diagonal pivots are 𝑝𝑖,𝑖 = 1 for 𝑖 = 1,… , 𝑛+1. Furthermore, the multipliers of the Neville elimination of 𝐿𝑛 satisfy

𝑚𝑖,𝑗 =
𝑝𝑖,𝑗
𝑝𝑖−1,𝑗

= (1 − 𝑞) [𝑖 − 𝑗]𝑞 , 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1. (34)

Then, the bidiagonal factorization (7) of 𝐿𝑛 = 𝑀𝑇
𝑛 can be written as follows

𝐿𝑛 = 𝐹𝑛 ⋯𝐹1, (35)

and the off-diagonal entries 𝑚𝑖,𝑗 of the bidiagonal matrices are given by 𝑚𝑖,1 = 0 for 𝑖 = 2,… , 𝑛 + 1 and (34) when 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1.
aking into account that 𝑀𝑛 = 𝐿𝑇

𝑛 , we have

𝑀𝑛 = 𝐹 𝑇
1 ⋯𝐹 𝑇

𝑛 ,

nd defining 𝐺𝑖 ∶= 𝐹 𝑇
𝑖 , 𝑖 = 1,… , 𝑛, the factorization (28) for 𝑀𝑛 is obtained. Taking into account (34), formula (29) for the off

diagonal entries 𝑚̃𝑖,𝑗 is deduced.
Finally, we can deduce that 𝑀𝑛 is TP for 𝑞 ∈ (0, 1], since the multipliers 𝑚̃𝑖,𝑗 in (29) are not negative. Furthermore, 𝑚̃𝑖,𝑗 can be
7

clearly computed to HRA. □
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Taking into account (24), Theorem 1 of [23] and the bidiagonal decomposition (7) of 𝑀𝑛, the bidiagonal factorization
corresponding to 𝑀𝑛 can be deduced, as it is illustrated in the following result.

Corollary 6. For 𝑞 ∈ (0, 1], the matrix 𝑀𝑛 = (𝑚̃(𝑛)
𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1 satisfying (27) is TP and

𝑀𝑛 = 𝐷𝐺1 ⋯𝐺𝑛, (36)

here 𝐺𝑖, 𝑖 = 1,… , 𝑛, are upper triangular bidiagonal matrices whose structure is given in (8) and 𝐷 is the diagonal matrix 𝐷 =
iag

(

[ 𝑛
𝑛−𝑖+1

]

𝑞
∕
( 𝑛
𝑛−𝑖+1

)

)

1≤𝑖≤𝑛+1
. The off-diagonal elements 𝑚̃𝑖,𝑗 , 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1, are given by

𝑚̃𝑖,𝑗 =

[ 𝑛
𝑛−𝑖+1

]

𝑞
[ 𝑛
𝑛−𝑖+2

]

𝑞

(1 − 𝑞)[𝑖 − 𝑗]𝑞 =
[𝑛 − 𝑖 + 2]𝑞
[𝑖 − 1]𝑞

(1 − 𝑞𝑖−𝑗 ), 2 ≤ 𝑗 < 𝑖 ≤ 𝑛 + 1,

𝑚̃𝑖,1 = 0, 2 ≤ 𝑖 ≤ 𝑛 + 1.

his factorization can be computed to HRA.

The bidiagonal decomposition in (7) for the change of basis matrix 𝑀𝑛, described by (36), can be represented through 𝐵𝐷(𝑀𝑛) =
(

𝐵𝐷(𝑀𝑛)𝑖,𝑗
)

1≤𝑖,𝑗≤𝑛+1
, with

𝐵𝐷(𝑀𝑛)𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑛−𝑗+2]𝑞
[𝑗−1]𝑞

(1 − 𝑞𝑗−𝑖), if 2 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1,

[ 𝑛
𝑛−𝑖+1]𝑞
( 𝑛
𝑛−𝑖+1)

, if 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 + 1,

0, elsewhere.

(37)

This matrix form of the bidiagonal factorization of 𝑀𝑛 is illustrated with the following example.

Example 2. Taking into account (37), the bidiagonal factorization (7) of 𝑀4 can be represented by means of the following matrix

𝐵𝐷(𝑀4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0

0 [4]𝑞
4

[3]𝑞
[2]𝑞

(1 − 𝑞) [2]𝑞
[3]𝑞

(1 − 𝑞2) [1]𝑞
[4]𝑞

(1 − 𝑞3)

0 0 [6]𝑞
6

[2]𝑞
[3]𝑞

(1 − 𝑞) [1]𝑞
[4]𝑞

(1 − 𝑞2)

0 0 0 [4]𝑞
4

[1]𝑞
[4]𝑞

(1 − 𝑞)

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In order to encourage the understanding of the numerical experimentation carried out in Section 6, we present the pseudocode
f an algorithm for the computation of 𝐵𝐷(𝑀𝑛) (see (37)). We can observe that Algorithm 1 has a computational cost of 𝑂(𝑛2)
rithmetic operations.

. HRA computations with 𝒒-Bernstein mass matrices

Bernstein polynomials are square integrable functions under the following inner product

⟨𝑓, 𝑔⟩𝛼,𝛽 ∶= ∫

1

0
𝑡𝛼(1 − 𝑡)𝛽𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡, 𝛼, 𝛽 > −1. (38)

The Bernstein basis (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) is not orthogonal and then it is often transformed into another orthogonal basis of 𝐏𝑛[0, 1] by means
of a Gramian matrix.

The Gramian (mass) matrix of (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) with respect to the inner product (38) is a symmetric matrix 𝐺𝛼,𝛽 = (𝑔𝛼,𝛽𝑖,𝑗 )1≤𝑖.𝑗≤𝑛+1
where

𝑔𝛼,𝛽𝑖,𝑗 ∶=
⟨

𝐵𝑛
𝑖−1, 𝐵

𝑛
𝑗−1

⟩

𝛼,𝛽
=
(

𝑛
𝑖 − 1

)(

𝑛
𝑗 − 1

)

𝛤 (𝑖 + 𝑗 + 𝛼 − 1)𝛤 (2𝑛 − 𝑖 − 𝑗 + 𝛽 + 3)
𝛤 (2𝑛 + 𝛼 + 𝛽 + 2)

, (39)

or 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1, and 𝛤 (𝑥) is the Gamma function (see [8]).
If 𝛼 = 0 and 𝛽 = 0, the Gramian matrix (39) is known as Bernstein mass matrix. Many nice properties and applications of

ernstein mass matrices can be seen in [24–26].
The following result proves that q-Bernstein mass matrices are also TP matrices.

orollary 7. The Gramian matrix 𝐺𝛼,𝛽 , 𝛼, 𝛽 > −1, with respect to the inner product (38), of the q-Bernstein basis given in (14) is TP.
8
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Algorithm 1 Computation to HRA of the matrix 𝐵𝐷(𝑀𝑛), for 𝑀𝑛 given by (27)
Require: 𝑞, 𝑛 (𝑞 ∈ (0, 1])
Ensure: 𝐵𝐷𝑀 bidiagonal decomposition (11) of 𝑀𝑛 to HRA
𝑞1 = zeros(1, 𝑛); 𝑞2 = zeros(1, 𝑛); 𝑞3 = zeros(1, 𝑛);
𝐵𝐷𝑀 = zeros(𝑛 + 1)
𝑞1(1) = 1; 𝑞2(1) = 1; 𝑞3(1) = 1;
𝐵𝐷𝑀(1, 1) = 1;
𝐵𝐷𝑀(𝑛 + 1, 𝑛 + 1) = 1
for 𝑖 = 2 ∶ 𝑛
𝑞1(𝑖) = 𝑞1(𝑖 − 1)𝑞
𝑞2(𝑖) = 𝑞2(𝑖 − 1) + 𝑞1(𝑖)
𝑞3(𝑖) = 𝑞2(𝑖)𝑞3(𝑖 − 1)

end
for 𝑖 = 2 ∶ 𝑛 + 1
for 𝑗 = 𝑖 + 1 ∶ 𝑛 + 1
𝐵𝐷𝑀(𝑖, 𝑗) = 𝑞2(𝑛−𝑗+2)

𝑞2(𝑗−1) (1 − 𝑞1(𝑗 − 𝑖 + 1))
end

end
for 𝑖 = 2 ∶ 𝑐𝑒𝑖𝑙((𝑛 + 1)∕2)
𝐵𝐷𝑀(𝑖, 𝑖) = 𝑞3(𝑛)

𝑞3(𝑛−𝑖+1)𝑞3(𝑖−1)( 𝑛
𝑛−𝑖+1)

𝐵𝐷𝑀(𝑛 + 2 − 𝑖, 𝑛 + 2 − 𝑖) = 𝑞3(𝑛)
𝑞3(𝑛−𝑖+1)𝑞3(𝑖−1)( 𝑛

𝑛−𝑖+1)
end

Proof. Clearly,

𝐺𝛼,𝛽 = 𝐴𝑛𝐺
𝛼,𝛽𝐴𝑇

𝑛 ,

here 𝐴𝑛 is the change of basis matrix such that (𝑄𝑛
0,… , 𝑄𝑛

𝑛) = (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 )𝐴𝑛. Since the Bernstein basis (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) is the normalized
B-basis of 𝐏𝑛[0, 1], we deduce that 𝐴𝑛 is nonsingular, stochastic and TP. Hence 𝐴𝑇

𝑛 is also TP. On the other hand, Theorem 2 of [8]
proves that 𝐺𝛼,𝛽 is STP for any 𝛼, 𝛽 > −1. So, we can deduce that 𝐺𝛼,𝛽 is a TP matrix because it is obtained as the product of TP
matrices (see Theorem 3.1 of [27]). □

The following auxiliary result relates q-Bernstein mass matrices and their converses and will be used to derive accurate
computations.

Lemma 8. Let 𝐵𝑛
𝑖 , 𝑖 = 0,… , 𝑛, be the Bernstein polynomials of degree 𝑛 on the interval [0, 1] and 𝐺𝛼,𝛽

0,𝑛 , 𝐺
𝛼,𝛽
𝑛,0 the Gramian matrix of the

basis (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) and (𝐵𝑛
𝑛 ,… , 𝐵𝑛

0 ), respectively, with respect to the inner product (38). Then,

𝐺𝛼,𝛽
0,𝑛 = 𝐺 𝛽,𝛼

𝑛,0 . (40)

Proof. Taking into account (38), (12) and using the change of variable 𝜏 = 1 − 𝑡, we can write
⟨

𝐵𝑛
𝑖 , 𝐵

𝑛
𝑗

⟩

𝛼,𝛽
=

(

𝑛
𝑖

)(

𝑛
𝑗

)

∫

1

0
𝑡𝛼+𝑖+𝑗 (1 − 𝑡)𝛽+2𝑛−𝑖−𝑗 𝑑𝑡

=
(

𝑛
𝑛 − 𝑖

)(

𝑛
𝑛 − 𝑗

)

∫

1

0
(1 − 𝜏)𝛼+𝑖+𝑗𝜏𝛽+2𝑛−𝑖−𝑗 𝑑𝜏 =

⟨

𝐵𝑛
𝑛−𝑖, 𝐵

𝑛
𝑛−𝑗

⟩

𝛽,𝛼
.

From the previous identity, (40) follows. □

Using of the previous results, we shall derive a procedure to achieve computations to HRA when considering q-Bernstein mass
matrices.

Theorem 9. Let 𝑄𝑛
𝑖 , 𝑖 = 0,… , 𝑛, be the q-Bernstein polynomials of degree 𝑛 on the interval [0, 1] in (14) and 𝐺𝛼,𝛽

0,𝑛 , 𝐺
𝛼,𝛽
𝑛,0 the Gramian

matrix of (𝑄𝑛
0,… , 𝑄𝑛

𝑛) and (𝑄𝑛
𝑛,… , 𝑄𝑛

0), respectively, with respect to the inner product (38). Then, for any 𝛼, 𝛽 > −1 such that 𝛤 (𝛼), 𝛤 (𝛽)
and 𝛤 (𝛼 + 𝛽) can be computed to HRA, the matrix 𝐺𝛼,𝛽

0,𝑛 can be computed to HRA. Furthermore, 𝐺
𝛼,𝛽
𝑛,0 and its bidiagonal decomposition (7)

can be computed to HRA.

Proof. First, let 𝑅𝑛 be the matrix obtained by reversing the order of the rows of the (𝑛 + 1) × (𝑛 + 1) identity matrix. Clearly,

̃𝛼,𝛽 ̃𝛼,𝛽
9

𝐺0,𝑛 = 𝑅𝑛 𝐺𝑛,0 𝑅𝑛.
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Now, let 𝑀𝑛 be the change of basis matrix such that

(𝑄𝑛
𝑛,… , 𝑄𝑛

0) = (𝐵𝑛
𝑛 ,… , 𝐵𝑛

0 )𝑀𝑛.

sing Lemma 8, we can write

𝐺𝛼,𝛽
𝑛,0 = 𝑀𝑇

𝑛 𝐺𝛼,𝛽
𝑛,0 𝑀𝑛 = 𝑀𝑇

𝑛 𝐺𝛽,𝛼
0,𝑛 𝑀𝑛, (41)

here 𝐺𝛼,𝛽
0,𝑛 and 𝐺𝛼,𝛽

𝑛,0 denote the Gramian matrix of the Bernstein bases (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) and (𝐵𝑛
𝑛 ,… , 𝐵𝑛

0 ), respectively, with respect to the
inner product (38).

Let us notice that, by Corollary 6, the bidiagonal factorization (7) of 𝑀𝑛 can be computed to HRA (see (37) providing 𝐵𝐷(𝑀𝑛)).
Clearly, the bidiagonal factorization (7) of 𝑀𝑇

𝑛 can also be computed to HRA. In fact, 𝐵𝐷(𝑀𝑇
𝑛 ) = 𝐵𝐷(𝑀𝑛)𝑇 .

On the other hand, taking into account Theorem 2 of [8], we can deduce that 𝐺𝛽,𝛼
0,𝑛 is STP and 𝐵𝐷(𝐺𝛽,𝛼

0,𝑛 ) = (𝐵𝐷(𝐺𝛽,𝛼
0,𝑛 )𝑖,𝑗 )1≤𝑖,𝑗≤𝑛+1

is described by

𝐵𝐷(𝐺𝛽,𝛼
0,𝑛 )𝑖,𝑗 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑛 − 𝑖 + 2)(𝑖 + 𝛽 − 1)(2𝑛 − 𝑖 + 𝛼 + 3)
(𝑖 − 1)(2𝑛 − 𝑖 − 𝑗 + 𝛼 + 3)(2𝑛 − 𝑖 − 𝑗 + 𝛼 + 4)

, if 𝑖 > 𝑗,
(

𝑛
𝑖 − 1

)2 𝛤 (𝑖 + 𝛽)𝛤 (2𝑛 − 2𝑖 + 𝛼 + 3)

𝛤 (2𝑛 − 𝑖 + 𝛼 + 𝛽 + 3)
(2𝑛−𝑖+𝛼+2

𝑖−1

)

, if 𝑖 = 𝑗,

(𝑛 − 𝑗 + 2)(𝑗 + 𝛽 − 1)(2𝑛 − 𝑗 + 𝛼 + 3)
(𝑗 − 1)(2𝑛 − 𝑖 − 𝑗 + 𝛼 + 3)(2𝑛 − 𝑖 − 𝑗 + 𝛼 + 4)

, if 𝑖 < 𝑗.

(42)

Let us observe that, since 𝛼, 𝛽 > −1, the off-diagonal entries of 𝐵𝐷(𝐺𝛽,𝛼
0,𝑛 ) are positive and can be computed to HRA. Moreover, if

𝛤 (𝛼), 𝛤 (𝛽) and 𝛤 (𝛼 + 𝛽) can be computed to HRA, taking into account that for 𝑛 ∈ N, 𝛤 (𝑥 + 𝑛) = 𝛤 (𝑥)
∏𝑛−1

𝑘=0(𝑥 + 𝑘), we deduce that
𝐵𝐷(𝐺𝛽,𝛼

0,𝑛 )𝑖,𝑖 can also be computed to HRA.
Finally, let us recall that if the bidiagonal decomposition (7) of two nonsingular TP matrices is provided to HRA, Algorithm 5.1

f [7] obtains to HRA the bidiagonal decomposition (7) of the product. Consequently, 𝐺𝛼,𝛽
𝑛,0 and its bidiagonal factorization (7) can

also be computed to HRA. Finally, 𝑅𝐺𝛼,𝛽
𝑛,0 𝑅 can be computed to HRA by an appropriated change of the position of the entries of

𝐺𝛼,𝛽
𝑛,0 . □

Let us observe that the diagonal entries 𝐵𝐷(𝐺𝛼,𝛽 )𝑖,𝑖, 1 ≤ 𝑖 ≤ 𝑛 + 1, can be easily computed since they satisfy

𝐵𝐷(𝐺𝛼,𝛽 )1,1 =
𝛤 (𝛼 + 1)𝛤 (2𝑛 + 𝛽 + 1)
𝛤 (2𝑛 + 𝛼 + 𝛽 + 2)

,

𝐵𝐷(𝐺𝛼,𝛽 )𝑖+1,𝑖+1 =
(𝑛 − 𝑖 + 1)2(𝑖 + 𝛼)(2𝑛 − 𝑖 + 𝛼 + 𝛽 + 2)(2𝑛 − 𝑖 + 𝛽 + 2)
𝑖(2𝑛 − 2𝑖 + 𝛽 + 1)(2𝑛 − 2𝑖 + 𝛽 + 2)2(2𝑛 − 2𝑖 + 𝛽 + 3)

𝐵𝐷(𝐺𝛼,𝛽 )𝑖,𝑖, (43)

or 1 ≤ 𝑖 ≤ 𝑛.
Now, we provide the pseudocode of Algorithm 2 to get the bidiagonal decomposition (7), in the matrix form (11), of the Gramian

atrix of the Bernstein basis (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 ) to HRA, whenever 𝛤 (𝛼), 𝛤 (𝛽) and 𝛤 (𝛼 + 𝛽) can be evaluated to HRA. We can observe that
lgorithm 2 has a computational cost of 𝑂(𝑛2) arithmetic operations. Then, Algorithm 3 computes the bidiagonal decomposition

11) of the Gramian matrix 𝐺𝛼,𝛽
𝑛,0 = 𝑀𝑇

𝑛 𝐺𝛽,𝛼
0,𝑛 𝑀𝑛 to HRA.

Finally, let us notice that, given 𝛼, 𝛽 > −1 such that 𝛤 (𝛼), 𝛤 (𝛽) and 𝛤 (𝛼 + 𝛽) can be evaluated to HRA, using 𝐵𝐷(𝐺𝛼,𝛽
𝑛,0 ) as input

rgument, the Matlab functions in Koev’s routines available in [11] compute the solution of several fundamental problems in Linear
lgebra related to 𝐺𝛼,𝛽

𝑛,0 to HRA. Let us see that, taking into account that 𝐺𝛼,𝛽
0,𝑛 = 𝑅𝐺𝛼,𝛽

𝑛,0 𝑅, these problems can be also solved to HRA
hen considering the q-Bernstein mass matrices 𝐺𝛼,𝛽

0,𝑛 .
− Given 𝐵 ∶= 𝐵𝐷(𝐴), computed to HRA, the Matlab function TNSingularValues(B) computes the singular values of a

atrix 𝐴 to HRA. The computational cost of this function is 𝑂(𝑛3) (see [17]). Since 𝑅 a unitary matrix, that is, 𝑅−1 = 𝑅, the singular
alues of 𝐺𝛼,𝛽

0,𝑛 and 𝐺𝛼,𝛽
𝑛,0 coincide.

− Given 𝐵 ∶= 𝐵𝐷(𝐴), computed to HRA, the Matlab function TNInverseExpand(𝐵) returns 𝐴−1 to HRA. In this case, the
omputational cost of the functions is 𝑂(𝑛2) arithmetic operations (see [12]). The inverse matrix (𝐺𝛼,𝛽

0,𝑛 )
−1 = 𝑅(𝐺𝛼,𝛽

𝑛,0 )
−1𝑅 can be

btained to HRA by reversing the order of the entries of (𝐺𝛼,𝛽
𝑛,0 )

−1, obtained to HRA.
− Given 𝐵 ∶= 𝐵𝐷(𝐴), computed to HRA, for a vector 𝑑 with alternating signs, the Matlab function TNSolve(𝐵, 𝑑) returns the

olution of the linear system 𝐴𝑐 = 𝑑 to HRA. It requires 𝑂(𝑛2) arithmetic operations (see [11]). The linear system of equations
̃𝛼,𝛽
0,𝑛 𝑥 = 𝑏 is clearly equivalent to 𝐺𝛼,𝛽

𝑛,0 𝑥 = 𝑏̃, with 𝑥 ∶= 𝑅𝑥 and 𝑏̃ = 𝑅𝑏. If the vector 𝑏 has alternating sings, then so has the vector 𝑏̃.
herefore 𝑥 can be computed to HRA and 𝑥 obtained reversing the order of the entries of 𝑥.

Section 6 illustrates the accurate results obtained using the proposed algorithms.

. Numerical experiments

To test our algorithms, we have solved the above mentioned algebraic problems when considering q-Bernstein mass matrices
ith dimension 𝑛 + 1 = 4, 5,… , 20. We have taken several 𝑞 ∈ (0, 1] and real values 𝛼, 𝛽 satisfying conditions given in Theorem 9
10
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Algorithm 2 Computation of 𝐵𝐷(𝐺𝛼,𝛽 ) for the Gramian matrix 𝐺𝛼,𝛽 of the Bernstein basis (𝐵𝑛
0 ,… , 𝐵𝑛

𝑛 )

Require: 𝛼, 𝛽, 𝑛 (such that 𝛼, 𝛽 > −1)
Ensure: 𝐵𝐷𝐺𝐵 bidiagonal decomposition (11) of 𝐺𝛼,𝛽

𝐵𝐷𝐺𝐵 = zeros(𝑛 + 1)
𝑐1 = zeros(1, 𝑛 + 1); 𝑐2 = zeros(1, 𝑛 + 1); 𝑐3 = zeros(1, 𝑛 + 1); 𝑐4 = zeros(1, 𝑛 + 1)
𝐵𝐷𝐺𝐵(1, 1) = 𝛤 (𝛼+1)𝛤 (2𝑛+𝛽+1)

𝛤 (2𝑛+𝛼+𝛽+2)
𝑐2(1) = 2𝑛 − 1 + 𝛽 + 3
for 𝑖 = 2 ∶ 𝑛 + 1
𝑐1(𝑖) = 𝑖 − 1
𝑐2(𝑖) = 𝑐2(𝑖 − 1) − 1
𝑐3(𝑖) = 𝑐2(𝑖) + 1
𝑐4(𝑖) = (𝑛 − 𝑖 + 2)(𝑖 + 𝛼 − 1)𝑐2(𝑖)
𝐵𝐷𝐺𝐵(𝑖, 𝑖) = 𝑐4(𝑖)(𝑛−𝑖+2)(𝑐2(𝑖)+𝛼)

𝑐1(𝑖)(𝑐2(𝑖)−𝑖)(𝑐3(𝑖)−𝑖)2(𝑐3(𝑖)−𝑖+1)𝐵𝐷𝐺𝐵(𝑖 − 1, 𝑖 − 1)
for 𝑗 = 1 ∶ 𝑖 − 1
𝑟𝑒𝑠 = 𝑐4(𝑖)

𝑐1(𝑖)(𝑐2(𝑖)−𝑗)(𝑐3(𝑖)−𝑗)
𝐵𝐷𝐺𝐵(𝑖, 𝑗) = 𝑟𝑒𝑠
𝐵𝐷𝐺𝐵(𝑗, 𝑖) = 𝑟𝑒𝑠

end
end

Algorithm 3 Computation of 𝐵𝐷(𝐺𝛼,𝛽
𝑛,0 ) for the Gramian matrix 𝐺𝛼,𝛽

𝑛,0 of the basis (𝑄𝑛
𝑛,… , 𝑄𝑛

0)

Require: 𝛼, 𝛽, 𝑞, 𝑛 (such that 𝛼, 𝛽 > −1 and 𝑞 ∈ (0, 1))
Ensure: 𝐵𝐷𝐺𝑄𝐵 bidiagonal decomposition (11) of 𝐺𝛼,𝛽

𝑛,0 to HRA
𝐵𝐷𝑀 = 𝑧𝑒𝑟𝑜𝑠(𝑛 + 1)
𝐵𝐷𝐺𝐵 = 𝑧𝑒𝑟𝑜𝑠(𝑛 + 1)
𝐵𝐷𝐺𝑄𝐵 = 𝑧𝑒𝑟𝑜𝑠(𝑛 + 1)
𝐵1 = 𝑧𝑒𝑟𝑜𝑠(𝑛 + 1)
𝐵𝐷𝑀 = BDM(𝑞, 𝑛)
𝐵𝐷𝐺𝐵 = BDGB(𝛽, 𝛼, 𝑛)
𝐵1 = TNProduct((𝐵𝐷𝑀)𝑇 , 𝐵𝐷𝐺𝐵)
𝐵𝐷𝐺𝑄𝐵 = TNProduct(𝐵1, (𝐵𝐷𝑀))

to guarantee that their bidiagonal decomposition can be computed to HRA. To calculate the relative errors, we have obtained all
the solutions in Mathematica using a 100-digit arithmetic and we have considered these computations as the exact solutions of the
proposed algebraic problems.

We have also obtained the 2-norm condition number of all considered matrices, 𝐺 = 𝐺𝛼,𝛽
𝑛,0 . For this purpose we have used the

Mathematica command Norm[G,2]⋅ Norm[Inverse[G],2]. In Fig. 1 this conditioning is depicted. It can be easily observed
that the conditioning drastically increases with the size of the matrices, indicating that they are nearly singular. Consequently,
standard routines implementing best numerical methods fail to solve accurately usual algebraic problems. In contrast, the accurate
algorithms that we have developed in this paper exploit the structure of the considered matrices obtaining, as we will see, numerical
results to HRA.
Computation of the singular values of q-Bernstein mass matrices. Algorithm 4 uses the bidiagonal decomposition of the Gramian
matrix 𝐺𝛼,𝛽

𝑛,0 , provided by Algorithm 3, to compute its singular values to HRA.
We have compared the lowest singular value obtained using Algorithm 4 and the Matlab command svd for all considered

matrices. The relative error of the approximations is illustrated in Fig. 2. Looking at the results, we notice that our approach
computes accurately the lowest singular value regardless of the ill-conditioning of the considered Gramian matrices. In contrast,
the Matlab command svd returns results that become not accurate when the dimension of the Gramian matrices increases.

Algorithm 4 Computation of the singular values of q-Bernstein mass matrices to HRA
Require: 𝛼, 𝛽, 𝑞, 𝑛 (𝛼, 𝛽 > −1 and 𝑞 ∈ (0, 1])
Ensure: 𝐯 ∈ R𝑛+1 containing the singular values of 𝐺𝛼,𝛽

0,𝑛
𝐵𝐷𝐺𝑄𝐵 = zeros(𝑛 + 1)
𝐵𝐷𝐺𝑄𝐵 = BDGQB(𝛼, 𝛽, 𝑞, 𝑛)
𝐯 = TNSingularValues(𝐵𝐷𝐺𝑄𝐵)
11
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Fig. 1. The 2-norm conditioning of the of q-Bernstein mass matrices 𝐺𝛼,𝛽
0,𝑛 .

Fig. 2. Relative error in the approximations to the lowest singular value of q-Bernstein mass matrices.
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Fig. 3. Relative error in the computation of the inverse of q-Bernstein mass matrices.

Computation of the inverse of q-Bernstein mass matrices. Algorithm 5 uses the bidiagonal decomposition of the Gramian matrix
𝐺𝛼,𝛽
𝑛,0 , provided by Algorithm 3, to compute the inverse of the q-Bernstein mass matrix 𝐺𝛼,𝛽

0,𝑛 to HRA.
For all considered Gramian matrices, we have compared the inverses obtained using Algorithm 5 and the Matlab command inv.

The achieved relative errors are shown in Fig. 3. We observe that our algorithm provides very accurate results in contrast to the
inaccurate results obtained when using the Matlab command inv.

Algorithm 5 Computation of the inverse of q-Bernstein mass matrices to HRA
Require: 𝛼, 𝛽, 𝑞, 𝑛 (𝛼, 𝛽 > −1 and 𝑞 ∈ (0, 1])
Ensure: A matrix 𝐼𝑛𝑣𝐺𝑄𝐵 which is the inverse of 𝐺𝛼,𝛽

0,𝑛
𝐵𝐷𝐺𝑄𝐵 = zeros(𝑛 + 1)
𝐼𝑛𝑣𝐺𝑄𝐵 = zeros(𝑛 + 1)
𝑅 = zeros(n+1)
for 𝑖 = 1 ∶ 𝑛 + 1
𝑅(𝑖, 𝑛 + 2 − 𝑖) = 1

end
𝐵𝐷𝐺𝑄𝐵 = BDGQB(𝛼, 𝛽, 𝑞, 𝑛)
𝐼𝑛𝑣𝐺𝑄𝐵 = 𝑅 ⋅ TNInverseExpand(𝐵𝐷𝐺𝑄𝐵) ⋅ 𝑅

Resolution of linear systems with q-Bernstein mass matrices. Algorithm 6 takes the bidiagonal decomposition of the Gramian
matrix 𝐺𝛼,𝛽

𝑛,0 , provided by Algorithm 3, to compute the solution of 𝐺𝛼,𝛽
0,𝑛 𝑐 = 𝑑 to HRA.

For all considered Gramian matrices, we have compared the solution obtained using Algorithm 6 and the Matlab command ⧵. In
Fig. 4 we show the relative errors. We clearly see that, in spite of the dimension of the problem, the proposed algorithm preserves
the accuracy as opposed to the results obtained with the Matlab command ⧵.
13
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Algorithm 6 Resolution of linear systems of equations 𝐺𝛼,𝛽
0,𝑛 𝑐 = 𝑑 to HRA

Require: 𝛼, 𝛽, 𝑞, 𝑛 (𝛼, 𝛽 > −1 and 𝑞 ∈ (0, 1])
Ensure: 𝑐 ∈ R𝑛+1 containing the solution of the linear system 𝐺𝛼,𝛽

0,𝑛 𝑐 = 𝑑
𝑅 = zeros(𝑛 + 1)
𝐵𝐷𝐺𝑄𝐵 = zeros(𝑛 + 1)
𝑐 = zeros(𝑛 + 1, 1)
for 𝑖 = 1 ∶ 𝑛 + 1
𝑅(𝑖, 𝑛 + 2 − 𝑖) = 1

end
𝐵𝐷𝐺𝑄𝐵 = BDGQB(𝛼, 𝛽, 𝑞, 𝑛)
𝑐 = 𝑅 ⋅ TNSolve(𝐵𝐷𝐺𝑄𝐵,𝑅 ⋅ 𝑑)

Fig. 4. Relative error of the approximations to the solution of the linear systems 𝐺𝛼,𝛽
0,𝑛 𝑐 = 𝑑, where 𝑑 is a vector of random values with alternating signs.

Data availability

Data will be made available on request.
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