000135832 001__ 135832
000135832 005__ 20240619140701.0
000135832 0247_ $$2doi$$a10.1039/d4sc01069h
000135832 0248_ $$2sideral$$a138839
000135832 037__ $$aART-2024-138839
000135832 041__ $$aeng
000135832 100__ $$aHerraiz, Aitor
000135832 245__ $$aPeriodic table screening for enhanced positive contrast in MRI and <i>in vivo</i> uptake in glioblastoma
000135832 260__ $$c2024
000135832 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135832 5203_ $$aThe quest for nanomaterial-based imaging probes that can provide positive contrast in MRI is fueled by the necessity of developing novel diagnostic applications with potential for clinical translation that current gold standard probes cannot provide. Although interest in nanomaterials for positive contrast has increased in recent years, their study is less developed than that of traditional negative contrast probes in MRI. In our search for new magnetic materials with enhanced features as positive contrast probes for MRI, we decided to explore the chemical space to comprehensively analyze the effects of different metals on the performance of iron oxide nanomaterials already able to provide positive contrast in MRI. To this end, we synthesized 30 different iron oxide-based nanomaterials. Thorough characterization was performed, including multivariate analysis, to study the effect of different variables on their relaxometric properties. Based on these results, we identified the best combination of metals for in vivo imaging and tested them in different experiments. First, we tested its performance on magnetic resonance angiography using a concentration ten times lower than that clinically approved for Gd. Finally, we studied the capability of these nanomaterials to cross the affected blood–brain barrier in a glioblastoma model. The results showed that the selected nanomaterials provided excellent positive contrast at large magnetic field and were able to accumulate at the tumor site, highlighting the affected tissue
000135832 536__ $$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2019-104059RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2021-123238OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133493-I00$$9info:eu-repo/grantAgreement/ES/MICINN PRE2020-091870$$9info:eu-repo/grantAgreement/ES/MICINN/RED2022-134299-T
000135832 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000135832 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135832 700__ $$aMorales, M. Puerto
000135832 700__ $$aMartínez-Parra, Lydia
000135832 700__ $$aArias-Ramos, Nuria
000135832 700__ $$aLópez-Larrubia, Pilar
000135832 700__ $$0(orcid)0000-0003-2366-3598$$aGutiérrez, Lucía
000135832 700__ $$aMejías, Jesús
000135832 700__ $$aDíaz-Ufano, Carlos
000135832 700__ $$aRuiz-Cabello, Jesús
000135832 700__ $$aHerranz, Fernando
000135832 773__ $$g15, 22 (2024), 8578-8590$$pChem. sci.$$tCHEMICAL SCIENCE$$x2041-6520
000135832 8564_ $$s12301393$$uhttps://zaguan.unizar.es/record/135832/files/texto_completo.pdf$$yVersión publicada
000135832 8564_ $$s2159084$$uhttps://zaguan.unizar.es/record/135832/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135832 909CO $$ooai:zaguan.unizar.es:135832$$particulos$$pdriver
000135832 951__ $$a2024-06-19-13:22:43
000135832 980__ $$aARTICLE