000135833 001__ 135833
000135833 005__ 20260112133322.0
000135833 0247_ $$2doi$$a10.1016/j.ijleo.2024.171900
000135833 0248_ $$2sideral$$a138841
000135833 037__ $$aART-2024-138841
000135833 041__ $$aeng
000135833 100__ $$aSanchez-Brea, Luis Miguel
000135833 245__ $$aValidity of Thin Element Approximation in diffractometry of opaque thick objects
000135833 260__ $$c2024
000135833 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135833 5203_ $$aThe Thin Element Approximation (TEA) is widely used in diffraction analyses since it can be applied in efficient plane-to-plane propagation algorithms. While refinements have been developed for dielectric objects to obtain more accurate results, TEA is assumed precise for opaque objects. However, through numerical simulations presented in this work, based on Wave Propagation Method, we analyze the tendency of TEA to overestimate the dimensions of opaque objects in diffractometry. This effect was acknowledged in the case of cylinders, and we obtain similar results for the case of rectangular thick strips. On the other hand, TEA demonstrates a high level of accuracy when applied to objects with thickness concentrated at the center and thin edges, such as the isosceles triangular obstacle. Finally, we analyze objects whose shape is defined using the superellipse function, which is chosen for its versatility in generating objects of equivalent width and maximum thickness but with different shapes just changing a single parameter. Our results highlight the importance of considering the object geometry when employing this approximation in diffraction studies of opaque three-dimensional objects
000135833 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-138071OB-I00$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105918GB-I00
000135833 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000135833 592__ $$a0.505$$b2024
000135833 593__ $$aAtomic and Molecular Physics, and Optics$$c2024$$dQ2
000135833 593__ $$aElectronic, Optical and Magnetic Materials$$c2024$$dQ2
000135833 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ2
000135833 594__ $$a8.3$$b2024
000135833 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135833 700__ $$aSoria-Garcia, Angela
000135833 700__ $$aAndres-Porras, Joaquin
000135833 700__ $$adel Hoyo, Jesus
000135833 700__ $$0(orcid)0000-0003-3178-5253$$aTorcal-Milla, Francisco Jose$$uUniversidad de Zaragoza
000135833 700__ $$aElshorbagy, Mahmoud Hamdy
000135833 700__ $$aPastor-Villarrubia, Veronica
000135833 700__ $$aAlda, Javier
000135833 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000135833 773__ $$g311, 7 pp. (2024), 171900$$pOptik$$tOptik$$x0030-4026
000135833 8564_ $$s1059124$$uhttps://zaguan.unizar.es/record/135833/files/texto_completo.pdf$$yVersión publicada
000135833 8564_ $$s2081957$$uhttps://zaguan.unizar.es/record/135833/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135833 909CO $$ooai:zaguan.unizar.es:135833$$particulos$$pdriver
000135833 951__ $$a2026-01-12-13:07:32
000135833 980__ $$aARTICLE