000135841 001__ 135841
000135841 005__ 20240619140701.0
000135841 0247_ $$2doi$$a10.1016/j.ndteint.2024.103156
000135841 0248_ $$2sideral$$a138840
000135841 037__ $$aART-2024-138840
000135841 041__ $$aeng
000135841 100__ $$aSalazar, A.
000135841 245__ $$aResolution of multiple semi-infinite delaminations using lock-in infrared thermography
000135841 260__ $$c2024
000135841 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135841 5203_ $$aDelaminations are flat subsurface defects parallel to the sample surface. Recently we have demonstrated that lock-in infrared thermography, with optical excitation, allows sizing the geometrical parameters (length, depth and thickness) of a semi-infinite delamination. Here, we analyse the ability of this technique to resolve several parallel and semi-infinite delaminations. First, we develop an analytical method (based on the thermal quadrupoles) together with a numerical formulation to calculate the surface temperature of a sample containing several semi-infinite parallel delaminations. We verify that both methods provide the same temperature values, indicating their consistency. Then, we study the ability of lock-in infrared thermography to resolve two close delaminations. In particular we focus on two main configurations: two non-overshadowed delaminations and two superimposed delaminations. Next, after analysing the inverse problem in terms of residual function minimization, we develop a dedicated parametric estimation procedure able to retrieve the geometry of the studied defects. Finally, we test this procedure with synthetic temperature amplitude and phase data to retrieve the geometrical parameters of both delaminations.
000135841 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000135841 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135841 700__ $$aSagarduy-Marcos, D.
000135841 700__ $$aRodríguez-Aseguinolaza, J.
000135841 700__ $$aMendioroz, A.
000135841 700__ $$0(orcid)0000-0002-0048-3036$$aCiria, J.C.$$uUniversidad de Zaragoza
000135841 700__ $$0(orcid)0000-0003-2183-2159$$aCelorrio, R.$$uUniversidad de Zaragoza
000135841 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000135841 7102_ $$15007$$2075$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ciencia Comput.Intelig.Ar
000135841 773__ $$g146 (2024), 103156 [9 pp.]$$pNDT E int.$$tNDT and E International$$x0963-8695
000135841 8564_ $$s2422863$$uhttps://zaguan.unizar.es/record/135841/files/texto_completo.pdf$$yVersión publicada
000135841 8564_ $$s2321789$$uhttps://zaguan.unizar.es/record/135841/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135841 909CO $$ooai:zaguan.unizar.es:135841$$particulos$$pdriver
000135841 951__ $$a2024-06-19-13:22:53
000135841 980__ $$aARTICLE