
2024 251

Julio Alberto Placed Perales

Beyond the Frontiers of
Active SLAM: New

Methods for Fast and
Optimal Decision-Making

Director/es
Castellanos Gómez, José Ángel

Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Julio Alberto Placed Perales

BEYOND THE FRONTIERS OF ACTIVE SLAM: NEW
METHODS FOR FAST AND OPTIMAL DECISION-

MAKING

Director/es

Castellanos Gómez, José Ángel

Tesis Doctoral

Autor

2024

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Programa de Doctorado en Ingeniería de Sistemas e Informática

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Tesis Doctoral

Beyond the Frontiers of Active SLAM: New

Methods for Fast and Optimal Decision-Making

Autor

Julio Alberto Placed Perales

Director/es

José Ángel Castellanos Gómez

Escuela de Ingeniería y Arquitectura

2023

University of Zaragoza
School of Engineering and Architecture

Department of Computer Science and Systems Engineering
Robotics, Perception and Real Time Group

Beyond the Frontiers of Active SLAM:
New Methods for Fast and Optimal

Decision-Making

by
Julio Alberto Placed Perales

M. Sc. in Industrial Engineering, University of Zaragoza

Supervisor: Prof. José Ángel Castellanos Gómez

A thesis for the degree of
Doctor of Philosophy

December, 2023

i

To my family.
To my father.

iii

Acknowledgements

Prof. José A. Castellanos deserves the first recognition in this page. Thank you
for guiding me during all these years, since we first met in the once abstract Systems
Engineering lectures, back in 2014. On the academic side, thank you for sharing your
passion for robotics research with me and introducing me to it, for always finding the
time to have valuable discussions, and for letting me shape the direction of my research.
On the personal side, thank you for your constant support and advice, for inspiring me,
and for the warm relationship that we have created.

Thanks to all the labmates I have met over these years, who I have worked with but
also shared good times with outside the office —even those from L1.01. Coffee time chat
is still the best part of many work days.

Also thanks to the colleagues from SPARK Lab, and specially to Prof. Luca Carlone
for inviting me to MIT and allowing me to contribute to cutting-edge robotics with you.

A special thanks to Alberto Sancho-Pina, the first undergrad student I had, and who
exemplified effort and overcoming. You will always be in José’s and my memories.

Gracias a mi familia por compartir y disfrutar conmigo los buenos momentos durante
estos años, pero también por apoyarme en aquellos más dif́ıciles. Especialmente a mi
madre, mi hermana y a Maŕıa. Gracias por viajar conmigo, por escucharme practicar
cada presentación, por vuestro interés y reconocimiento, y por todos los consejos que
me habeis dado.

Gracias a mis amigos, especialmente a Adrián, Alejandro y David, por escucharme,
por apoyarme en las decisiones que he tomado, y por celebrar cada éxito conmigo.

v

Abstract

Mobile robotics has undergone major advances in recent years, with the ultimate goal
of deploying fully autonomous robots in the real world capable of performing complex
missions, such as disaster relief search and rescue, deep-sea and planetary exploration,
and service robotics. However, in order to operate effectively in such environments,
robots must first build a model of the environment over which they can reason. Simul-
taneous localization and mapping (SLAM) allows a robot to build such a model (usually
in the form of a map) while simultaneously determining its own location on it. Yet, these
are passive approaches in which the robot either follows a predetermined trajectory or is
tele-operated while forming the model of the environment; hence limiting its autonomy.

Active SLAM incorporates the navigation aspect into the problem, therefore playing
a fundamental role in the deployment of autonomous agents in the real world. Compared
to SLAM, the objective has now shifted to having the robot decide its own future
movements while performing SLAM in order to build the best possible representation of
the environment. To do this, the robot must weigh the costs and benefits (i.e., utility) of
executing different actions and find those that reduce the uncertainty of its localization
and the map representation.

This thesis aims to advance the frontiers of active SLAM, by presenting new methods
for effective, fast, and optimal decision-making. The main contributions of this thesis
can be divided into four main parts, each of which is associated with a major challenge
in the field.

Active SLAM has been studied in different forms across multiple communities, re-
sulting in numerous approaches based on different concepts and theories that have made
the field thrive, but also created a lack of unification that hinders the problem under-
standing, and a disconnect between lines of research that could mutually benefit from
each other. By presenting a comprehensive survey, we address the need for a unified
problem formulation and provide a guide for both researchers and practitioners. We
offer a new perspective of the problem and outline a number of open challenges and
promising research directions.

Regardless of the theoretical background or the approach taken, the evaluation of
the utility of performing a given set of actions prevails in most active SLAM methods;
and this boils down to estimating the uncertainty of future states. This is a complex
and time-consuming step that often constitutes the main bottleneck. To alleviate this,
we explore the opportunities that spectral graph theory offers and how it can be lever-
aged to speed up uncertainty quantification during active graph-SLAM. We derive a
theoretical relationship between the well-established optimality criteria and the graph

vi

connectivity indices that allows uncertainty quantification in just a fraction of the time
required by classical methods. This lays the foundation for topological active SLAM, or
spectral active SLAM. Besides, we demonstrate the usefulness of these novel techniques
by presenting three applications: two open-source end-to-end systems that make optimal
decisions online using the graph topology, and a novel stopping criterion. We show that
these methods in particular, and topological utility functions in general, yield decisions
equivalent to using classical utility functions in a fraction of the time.

Advances in deep learning have also opened a new avenue for rapid decision-making.
They offer the opportunity to move the costly uncertainty quantification to an offline
training phase, reducing real-time operation to a forward pass on the network. We
present a novel end-to-end approach to active SLAM based on uncertainty-aware deep
reinforcement learning. Unlike most existing approaches, we go beyond neural obstacle
avoidance and train agents capable of making uncertainty-informed decisions in real-
time by embedding classical utility functions in the reward design. Thus, we provide
a link between estimation-theoretic and data-driven approaches. We demonstrate the
feasibility of uncertainty-aware learning and show that uncertainty quantification can
be learned during active SLAM.

Finally, we investigate reasoning over high-level representations in active SLAM. Hu-
mans perceive and represent the environment in a very different way than traditional
robots have traditionally done. Of course, we have a geometric level of understanding of
it, but reasoning usually goes beyond that: semantics, abstract high-level entities and
the relationships between them are crucial. Very recent work has gone into incorpo-
rating these abstract concepts into models of the environment, thus endowing robots
with spatial perception. As with SLAM, this has raised the question of how to build
such models autonomously by reasoning about their uncertainty, that is, active spatial
perception. We present a general formulation to quantify uncertainty over these novel
representations and a first approach to tackle this challenge, leveraging the structure
and hierarchy of the model.

In summary, this thesis addresses several of the current major challenges in the field
of active SLAM. We contribute a comprehensive survey of the problem and solutions to
achieve fast decision-making and reasoning over high-level representations. In addition,
we make a great effort towards reproducible and comparable research by open-sourcing
the code for all of the aforementioned methods.

vii

Resumen

La robótica móvil ha experimentado grandes avances en los últimos años, con la
ambición de desplegar robots autónomos en el mundo real capaces de realizar misiones
complejas, por ejemplo, en la búsqueda y rescate de supervivientes en catástrofes, la
exploración planetaria y maŕıtima, o la robótica de servicio. Sin embargo, para operar
en cualquiera de estos entornos, un robot debe construir primero un modelo del entorno
sobre el que razonar. La localización y el mapeado simultáneos (SLAM, por sus siglas
en inglés) permiten construir dicho modelo (habitualmente en la forma de un mapa) y
determinar al mismo tiempo su posición en él. Sin embargo, estos métodos representan
un enfoque pasivo, donde el robot sigue una trayectoria predeterminada o es teleoperado
mientras forma el modelo del entorno; limitando por tanto su autonomı́a.

El SLAM activo incorpora la navegación al problema anterior, jugando por tanto un
papel fundamental en el despliegue de agentes autónomos en el mundo real. El objetivo
de este nuevo problema es que el robot decida sus propios movimientos mientras realiza
SLAM, con el fin de construir la mejor representación posible del entorno, o, en otras
palabras, reducir la incertidumbre de su posición y del mapa.

Esta tesis busca ampliar las fronteras del SLAM activo, presentando nuevos métodos
para una toma de decisiones eficaz, rápida y óptima. Las principales contribuciones de
esta tesis pueden dividirse en cuatro partes principales.

El SLAM activo se ha estudiado de muchas formas en diferentes comunidades, dando
lugar a numerosos enfoques basados en distintos conceptos y teoŕıas. Esto ha hecho he-
cho prosperar el campo, pero también ha creado una falta de unificación que dificulta la
comprensión del problema, y una desconexión entre ĺıneas de investigación que podŕıan
beneficiarse mutuamente. Mediante una revisión exhaustiva del estado del arte, abor-
damos la necesidad de una formulación unificada, y proporcionamos una gúıa completa
tanto para investigadores como para profesionales. Ofrecemos una nueva perspectiva
del problema de SLAM activo y esbozamos una serie de retos abiertos y direcciones de
investigación prometedoras.

Independientemente del marco teórico o del enfoque adoptado, evaluar la utilidad
de realizar un cierto conjunto de acciones prevalece en todos los métodos SLAM activo;
y esto se reduce a estimar la incertidumbre de estados futuros. Se trata de un pro-
ceso complejo y laborioso, y a menudo constituye el principal cuello de botella. Para
mitigarlo, estudiamos las oportunidades que ofrece la teoŕıa espectral de grafos y cómo
puede aprovecharse para acelerar la cuantificación de incertidumbre durante SLAM ac-
tivo; basándonos en la idea de que esta incertidumbre está estrechamente relacionada

viii

con la estructura del grafo subyacente. Derivamos una relación teórica entre los cono-
cidos criterios de optimalidad y los ı́ndices de conectividad, posibilitando cuantificar la
incertidumbre en una fracción del tiempo que requeriŕıan los métodos clásicos. Sen-
tamos aśı las bases del SLAM activo topológico, o SLAM activo espectral. Además,
demostramos la utilidad de estas novedosas técnicas presentando tres aplicaciones: dos
sistemas completos y de código abierto que emplean la topoloǵıa del grafo para tomar
decisiones óptimas, y un novedoso criterio de parada. Mostramos que estos métodos
en particular, y las funciones de utilidad espectrales en general, producen decisiones
equivalentes a usar funciones de utilidad clásicas, en una fracción del tiempo.

Los últimos avances en aprendizaje profundo también han abierto una nueva v́ıa
para la toma rápida de decisiones. Estos métodos ofrecen la oportunidad de trasladar
la costosa cuantificación de incertidumbre a la fase de entrenamiento, reduciendo aśı la
operación en tiempo real a evaluar la red neuronal. Presentamos un novedoso método de
SLAM activo basado en aprendizaje por refuerzo profundo basado en la incertidumbre.
A diferencia de la mayoŕıa de trabajos existentes, vamos más allá de la evitación de
obstáculos y entrenamos agentes capaces de tomar decisiones en tiempo real que tienen
en cuenta la incertidumbre, mediante la incorporación de funciones de utilidad clásicas
en el diseño de la recompensa. De este modo, establecemos un v́ınculo entre los enfoques
de aprendizaje profundo y aquellos basados en la teoŕıa de estimación. Demostramos la
viabilidad del aprendizaje basado en la incertidumbre y, por tanto, que la cuantificación
de incertidumbre puede aprenderse durante el SLAM activo.

Finalmente, investigamos el SLAM activo usando representaciones de alto nivel. Los
seres humanos percibimos y representamos el entorno de una forma muy distinta a como
tradicionalmente lo han hecho los robots. Por supuesto, tenemos una cierta comprensión
geométrica del entorno, pero el razonamiento suele ir mucho más allá: la semántica, las
entidades abstractas de alto nivel y las relaciones entre ellas son cruciales. Muy recien-
temente, se han incorporado conceptos abstractos en los modelos del entorno, dotando
aśı a los robots de percepción espacial. Al igual que con el SLAM, esto ha planteado
la cuestión de cómo construir tales modelos de forma autónoma razonando sobre su in-
certidumbre, es decir, percepción espacial activa. Presentamos una formulación genérica
para cuantificar la incertidumbre en estas nuevas representaciones, y una primera aprox-
imación para abordar este reto que aprovecha la estructura y jerarqúıa de estos modelos
del entorno.

En resumen, esta tesis aborda varios de los principales retos actuales en el campo
del SLAM activo. Presentamos un estudio exhaustivo del problema y soluciones para
lograr una toma de decisiones rápida y para razonar sobre representaciones de alto
nivel. Además, hacemos un gran esfuerzo para que la investigación en este campo
sea reproducible y comparable, publicando en abierto el código de todos los métodos
mencionados.

ix

Contents

Acknowledgements iii

Abstract v

Resumen vii

Contents ix

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Contributions . 2

1.1.1 A Unified Problem Formulation 2
1.1.2 Fast Utility Estimation . 3
1.1.3 Meaningful Stopping Conditions 3
1.1.4 Learning Uncertainty-aware Decision-making Policies 4
1.1.5 Reasoning Beyond Geometric Representations: Abstract High-

level Concepts . 4
1.2 Thesis Outcomes . 5

1.2.1 Research Stay . 5
1.2.2 Publications . 5
1.2.3 Open-source Repositories . 6
1.2.4 Participation in Robotics Conferences 6
1.2.5 Teaching and Peer-Review . 7

1.3 Funding . 8
1.4 Thesis Structure . 8

2 Background 11
2.1 Representing Robot Locations . 11

2.1.1 On the Uncertain Poses . 13
2.1.2 Compounding Relative Poses . 16

2.2 Representing the Environment . 17
2.2.1 Topological Maps . 18
2.2.2 Metric Maps . 19
2.2.3 Metric-semantic Maps . 20
2.2.4 Hybrid and Hierarchical Maps 20

x CONTENTS

2.3 Robot Navigation . 21
2.4 Simultaneous Localization and Mapping (SLAM) 22

2.4.1 Graph-SLAM . 23
2.5 Passive and Active Behaviors . 25

3 Active SLAM: Problem Definition and State-of-the-art 27
3.1 Historical Review . 27
3.2 The Active SLAM Paradigm . 29
3.3 Modular Approaches . 33

3.3.1 Identification of Potential Destinations 34
3.3.2 Utility Computation . 35

3.3.2.1 Naive Cost Functions 36
3.3.2.2 Information Theory (IT) 36
3.3.2.3 Theory of Optimal Experimental Design (TOED) . . . 39
3.3.2.4 The Graphical Structure of the Problem 41

3.3.3 Action Selection and Execution 42
3.4 Learning-based Methods . 42

3.4.1 Deep Reinforcement Learning (DRL) 43
3.4.2 On the Reward Function Design and the Action Set 44
3.4.3 Partial Observability and Generalization 45
3.4.4 Training Environments . 46

3.5 Summary and Discussion . 47

4 Spectral Uncertainty Quantification for Active Graph-SLAM 49
4.1 Introduction . 49
4.2 Preliminaries on Graph Theory . 51

4.2.1 Spectral Graph Theory . 53
4.3 A General Relationship between the Graph Laplacian and the FIM . . . 54
4.4 Transfer to the Spectral Domain: Optimality Criteria 58
4.5 Experimental Validation . 61

4.5.1 Constant Uncertainty Case . 61
4.5.2 Variable Uncertainty Case . 63

4.6 Summary and Discussion . 68

5 Online Spectral Active SLAM 71
5.1 Spectral Active SLAM Using Occupancy Grids 71

5.1.1 Method . 72
5.1.1.1 SLAM Backbone . 72
5.1.1.2 Stage I: Identification of Goal Candidates 73
5.1.1.3 Stage II: Computing the Posteriors and their Utility . . 73
5.1.1.4 Stage III: Action Selection and Execution 76

5.1.2 Experiments . 76
5.2 Spectral Active Visual SLAM Using 3D Sparse Maps 82

5.2.1 Method . 83
5.2.1.1 SLAM Backbone . 83
5.2.1.2 Stage I: Identification of Goal Candidates 86
5.2.1.3 Stage II: Estimating the Posteriors and their Utility . . 87

CONTENTS xi

5.2.1.4 Stage III: Action Selection and Execution 89
5.2.2 Experiments . 89

5.3 Spectral Identification of Task Completion 91
5.3.1 Limitations of Existing Metrics 91
5.3.2 Towards Meaningful Task-Driven Stopping Criteria 94
5.3.3 Experiments . 96

5.4 Summary and Discussion . 99

6 Learning Policies for D-optimal Decision-making 101
6.1 Introduction . 101
6.2 Preliminaries on (Deep) Reinforcement Learning 105
6.3 Method . 108

6.3.1 SLAM Backbone . 109
6.3.2 Decision-making using Q-networks 109

6.4 Experiments . 110
6.4.1 On the Validity of Uncertainty-aware Policies 112
6.4.2 Deep RL Policies . 113

6.5 Summary and Discussion . 118

7 Towards Active Spatial Perception 121
7.1 Introduction . 121
7.2 Preliminaries on Hierarchical Representations 123
7.3 Quantifying the Utility of a DSG . 125

7.3.1 Geometric Entropy . 126
7.3.2 Semantic Entropy . 129
7.3.3 Summary . 131

7.4 Method . 132
7.4.1 On the Identification of Candidate Destinations 133
7.4.2 Utility Computation . 134
7.4.3 Hierarchical Optimization and Planning 136

7.5 Preliminary Results . 139
7.5.1 Experimental Results . 140

7.6 Summary and Discussion . 144

8 Open Problems in Active SLAM 147
8.1 Reasoning in Dynamic and Deformable Scenes 147
8.2 Robust Online Belief Space Planning and Active SLAM 149
8.3 From Active SLAM to Active Spatial Perception 149
8.4 Prediction Beyond Line-of-sight . 150
8.5 Optimal Decision-making in Real Time 151
8.6 Towards Meaningful and Autonomous Stopping Criteria 152
8.7 Reproducible Research in Active SLAM 152
8.8 Practical Applications . 153
8.9 Summary and Discussion . 154

9 Conclusions and Future Work 155
9.1 Conclusiones y Trabajo Futuro . 157

xii CONTENTS

Appendix A Lie Groups Theory Fundamentals 161

Appendix B Relationship between Optimality Criteria of Σ and Y 165

Appendix C Notions on the Kronecker Product 167

References 169

xiii

List of Figures

2.1 Lie group action SE(3) on the Euclidean space R3. The identity element
of the manifold can be thought of as the origin frame, and any other point
on it defines a particular local frame, i.e., a robot pose. 12

2.2 Two ways of defining a noisy pose over SE(n). In the first case, the
perturbation is wrapped over the manifold at the tangent space around
the group element Twi, thus directly revealing a PDF over the group,
with mean Twi and covariance Σ i

wi defined in the Lie algebra; see Equa-
tion (2.9). In the second case, the covariance ellipse is wrapped over
the manifold at the identity element, which, ultimately, will also induce
a PDF over the group. Note that the probability ellipses will be high-
dimensional, as they express the covariance on the tangent vector space
R`. 15

2.3 Compounding two relative poses into a single estimate. The colored el-
lipsoids represent the perturbation’s covariance, see Equation (2.11). . . 16

2.4 Example of a topological 2-dimensional map from [18]. In this case, the
red dots (graph nodes) represent different spaces of the environment (se-
mantically identified) and the green lines (edges) are the possible connec-
tions between them. 18

2.5 Examples of metric sparse (a) and dense (b–c) representations. 19
2.6 Example of a semantically annotated Octomap (a) and 3D mesh (b) of a

living room in the uHumans dataset [37]. 20
2.7 Example of a 3D DSG, obtained evaluating Hydra [36] in the uHumans

dataset [37]. The right part of the mesh corresponds to the maps shown
in Figure 2.6. 21

2.8 Workflow of classic motion planning methods. 22
2.9 Workflow of graph-SLAM algorithms. 24

3.1 Problems involved in active SLAM (uneven region in the center). 28
3.2 Workflow in modular active SLAM. 33
3.3 Workflow in DRL-based active SLAM. 43

4.1 For an example 2D pose-graph (a), sparsity patterns of two of the FIM
generators (b–c), the full FIM (d), and the graph Laplacian (e). The
pose-graph contains one loop closure and n = m = 10. Non-zero matrix
elements are depicted with black dots. 57

4.2 Complete (black) and reduced (red) trajectories of the FRH dataset,
where loop closures are depicted with blue dots. The starting point is
denoted with a star, and arrows indicate the direction of the path. . . . 62

4.3 Sparsity pattern of the full FIM in the FRH dataset. 62

xiv LIST OF FIGURES

4.4 Optimality criteria of the information/covariance matrix (blue) and the
Laplacian (red), in the reduced FRH sequence with constant uncertainty. 63

4.5 Time consumed at each step (in seconds) to compute optimality criteria
of the FIM (blue) and the Laplacian (red), in the reduced FRH sequence
with constant uncertainty. 64

4.6 Optimality criteria of the full FIM (blue) and the Laplacian (red) weighted
with ‖Φj‖∞ (a), and ‖Φj‖p (b–d); for different datasets. 65

4.7 Trajectory of the Garage dataset, where loop closures are depicted with
blue dots. The starting point is denoted with a star. 65

4.8 Sparsity pattern of the full FIM in the Garage dataset. 66
4.9 Optimality criteria of the full FIM (blue) and the Laplacian (red) in the

Garage 3D dataset. Also, the time required per step to compute them. . 66

5.1 Overview of the proposed active SLAM system. 72
5.2 Example of the graph hallucination process towards two different frontiers

(a,c), and the sparsity patterns of the expected graph Laplacians, (b,d).
In images (a) and (c), nodes and edges of the SLAM pose-graph are
shown in red and blue, while those of the hallucinated graph are depicted
in yellow and green; respectively. Also, frontiers are shown as magenta
stars. Images (b) and (d) contain the sparsity patterns of the Laplacians
of the SLAM graph (red) and the hallucinated pose-graph (blue). Note
that red elements are overlapped and belong to both Laplacians. 75

5.3 Maps and pose-graphs generated by each agent after 30 minutes of au-
tonomous exploration (first and third rows). The complete unknown map
of the environment is depicted in the background for the ease of compar-
ison. Also, circular representations of the respective pose-graphs (second
and fourth rows). The edges in the circular graphs are colored by weight
(normalized); darker edge colors depict less informative constraints. . . . 81

5.4 Evolution of T-, D- and E-opt of the FIM during the exploration process
of (RRT), in orange, (SH-RE), in green, (DOPT), in blue, and (S-DOPT),
in red. For all optimality criteria, higher is better. 82

5.5 Overview of ExplORB-SLAM. 83
5.6 Sparsity patterns of the Hessian and Laplacian matrices in a toy example

with 6 poses and 25 map points. From top left to bottom right: SLAM
full Hessian (HSLAM), reduced Hessian before (Hred

c) and after (Hprun
c)

pruning connections with less than 3 observations in common, Laplacian
matrix and resulting weighted pose-graph. 85

5.7 Visualization of the SLAM input image and the matched landmarks pro-
jected onto it (a). Also, visualization of the Octomap and OG map built
from these sparse landmarks (b). 86

5.8 Example of the graph hallucination process towards frontier fi, consid-
ering np,min = 3 and np,max = 6. A loop closure edge with probability
P(lc) = 1 has been created between vertices “fi” and “1”. 87

5.9 Visualization of two different examples of the graph hallucination process
during exploration. 88

5.10 View of the AWS Bookstore (a) and House (b) scenarios in Gazebo. . . 90
5.11 Maps and pose-graphs generated by ExplORB-SLAM after exploring the

house scenario. 90

LIST OF FIGURES xv

5.12 Maps and pose-graphs generated by ExplORB-SLAM after exploring the
bookstore scenario. 90

5.13 Simple active SLAM experiment with several sequential loop closures (a),
demonstrating the typical evolution of the explored area over time and
the information about the robot locations (b). 95

5.14 Occupancy grid maps and pose-graphs (nodes in red, edges in blue) at
the moment of fulfillment of the different stopping criteria, in the book-
store (a-b) and house (c-e) scenarios. The final location of the robot is
marked with a black dot. Results for the criteria that were never met
(i.e., coverage) are omitted. 98

6.1 A learning cycle in RL. 106
6.2 Equivalence between Q-learning and deep Q-learning. 107
6.3 Dueling architecture for a deep Q-network. The network is divided into

two streams that encode the value and the advantage functions, and they
are aggregated at the output to produce the Q-values. 108

6.4 Training (left) and testing (right) processes. During training, a sample
from the prioritized experience replay buffer is drawn and the policy is
updated. Then, the updated policy is evaluated to select the next-best-
action. During testing, the policy is only evaluated. 112

6.5 Logarithmic occurrence of entropy along episodes in the second scenario.
Results are shown for traditional (a) and uncertainty-aware (b) reward
functions. Darker colors denote lower occurrence. 113

6.6 Cumulative reward during training in the first environment for DQN
(blue), DDQN (red) and D3QN (green) agents, using an extrinsic re-
ward. Light-colored curves correspond to raw reward values while bold
ones correspond to outlier-filtered moving averages. 114

6.7 Evolution of the cumulative reward (mean and standard deviation) over
the retraining episodes (orange curve). Also, for comparison, the reward
values of DQN (blue), DDQN (red) and D3QN (green) agents in the
second environment. 116

6.8 Evolution of D-opt of the covariance matrix during evaluations of the
agents trained with rnav (D3QN, red) and runc (D3QN‡, blue). 118

6.9 Maps generated by D3QN (a–c) and D3QN‡ (d–f) agents in the three
environments during testing. Red circles indicate the start position, red
arrows indicate the trajectory followed, black stars indicate a resample of
algorithm particles (loop closures), and yellow ellipses illustrate a mea-
surement of the uncertainty of the robot’s 2D position. 119

7.1 Figure 2.7 revisited. Visualization of the layers in a 3D DSG, obtained
evaluating Hydra [36] in the uHumans dataset [37]. From top to bottom:
rooms (colored cubes), places (red spheres), objects (centroids as spheres
colored by semantic class and bounding boxes in the mesh), robot pose-
graph (yellow), and metric-semantic mesh. Edges within and across layers
are included, and the building layer is omitted. 124

xvi LIST OF FIGURES

7.2 Visualization of the voxels of interest for two places (black dots). The
colored circles represent the regions of the space that can influence the
places (i.e., the distance to their supporting points). Unobserved voxels
within the sphere and also along the ray connecting two nearby places are
considered of interest (orange squares), while those outside these regions
are not (purple squares). In this example, a 2-dimensional visualization is
presented, voxels are considered either observed or unobserved, and only
the latter are displayed. 128

7.3 Illustration of the geometric regions of interest in two examples. Places
are represented by red dots, accompanied by red dotted circumferences
indicating the regions of the space that influence them. Existing and po-
tential connections between places are depicted as black solid and dotted
lines, respectively. The green polygon illustrates an incomplete object.
Obstacles in the environment are represented by thick black solid lines,
while unobserved regions are denoted by thick blue solid lines. Addition-
ally, orange areas are unobserved regions of interest (i.e., voxels with high
utility). 128

7.4 Functional blocks of the proposed method for active spatial perception. 133
7.5 Example of frontier search over a metric-semantic mesh (a) and a common

error case (b). Frontier nodes of the mesh are shown as green dots (limited
to 1.5 m height), and Euclidean clustered frontiers are shown as red spheres.133

7.6 A traditional frontier search method over the reconstructed mesh of an
indoor environment (a), and the pattern of unobserved voxels contained
in the spheres associated with each place in the DSG (b). In the first case,
frontier points are represented in blue. In the second case, unobserved
voxels are depicted as colored cubes, with lighter colors indicating voxels
that belong to more than one sphere (reflecting the previously mentioned
importance weighting). For visualization purposes, the voxel map has
been cropped to a height of 1.8 m. 134

7.7 Example of the aggregation of the places’ utility (shown in the lower
part of the figure) in the room layer (upper part). Also, visualization of
the created virtual rooms (black cubes). The numerical values displayed
above each entity indicate the count of unobserved voxels associated with
it. In this particular example, room 0 emerges as the preferred destination
based on utility, followed by virtual room 0 and room 4. 135

7.8 Example of the process of computing a candidate viewpoint to observe
a particular place (black circle), where the surrounding space has been
divided into four sectors. 137

7.9 Traversability (a) and visibility (b) verification examples. In the first
case, a viewpoint has been discarded (marked in red) because it falls
outside the free observed space. A second candidate (green) has been
sampled and selected as it satisfies the requirement of lying within the
sphere of influence of another place in the DSG. In the second case, after
visiting a candidate viewpoint (red), it is observed that the corresponding
place still holds utility, so a second candidate viewpoint (green) is sampled
within the next sector. 137

LIST OF FIGURES xvii

7.10 Visualization of the candidate viewpoints (depicted as magenta arrows)
and the optimal traversal paths (green lines) in an example corridor scene.
The figure also showcases the reconstructed metric-semantic mesh and
the places in the DSG (blue spheres). The intensity of the place nodes
indicates their utility, with darker colors indicating higher utility values. 138

7.11 Visualization of the Matterport3D indoor scene. 139
7.12 DSG obtained after the exhaustive exploration. For visualization pur-

poses, only the metric-semantic mesh, the rooms layer, and the object
bounding boxes are displayed. 141

7.13 DSGs constructed by each agent. For visualization purposes, only the
metric-semantic mesh and the rooms layer are displayed. For further
understanding of the coverage, compare to Figure 7.11 and Figure 7.12. 143

8.1 Open challenges in active SLAM. 148

xix

List of Tables

3.1 A comparison between representative active SLAM approaches, ordered
chronologically. 30

4.1 Percentage error (median) in estimation of optimality criteria using the
graph Laplacian instead of the full FIM. Also, the accumulated time
required to compute both approaches (in minutes) and the time reduction
achieved. 67

5.1 Comparison of different map and graph metrics after 30 minutes of explo-
ration for the six agents. Results include the mean and standard deviation
over four trials. The best results among the four main agents are in bold. 78

5.2 Comparison of the various existing stopping criteria: relevant works, for-
mulation basis and limitations. 93

5.3 Results of exploration in AWS scenarios with agents with different SC. For
each environment, they are listed in order of fulfillment. The superscript
† denotes values are explicitly fixed by the criterion, and the dashed lines
indicate a criterion was never met during the experiments. 97

6.1 Comparison between related works. For each of the tasks, the works are
ordered chronologically. 104

6.2 Learning and simulation main hyper-parameters. 114
6.3 Evaluation results in all environments for DQN, DDQN and D3QN agents

trained with an extrinsic reward. Also, results for a DQN agent that was
allowed to train on the second environment shortly before its evaluation
(denoted as DQN†). The best results in each environment are shown in
bold. 115

6.4 Evaluation results in all environments for D3QN agents using both extrin-
sic and uncertainty-aware rewards (denoted as D3QN‡). The best results
in each environment are shown in bold. 117

7.1 Quantitative results of exploration. The best results among the three
methods compared are highlighted in bold. 145

1

Chapter 1

Introduction

Decision-making is one of the core cognitive processes in nature. From the simplest
single-cell organisms guided by chemical gradients to humans reasoning over high-level
and abstract concepts, we all make countless decisions every day to interact with the
environment that surrounds us. In fact, it is the ability to change the course of events
that allows us to be autonomous, to exercise agency and to pursue our goals.

From a cognitive science perspective, decision-making necessarily involves perceiving
information from the surrounding environment and transforming it to create a set of
alternative actions that can be evaluated to ultimately lead to a choice. Nature pro-
vides countless different examples of how information can be perceived, and the long
evolutionary history of exteroceptive receptors demonstrates their key role in interacting
with the environment. For example, birds use visual cues to navigate during migration,
and bees sense color to decide which flowers will provide the most rewarding nectar.
Human-level decision-making often requires the integration of more abstract concepts
and processes, such as spatial perception, attention, motivation or emotions. Regard-
less of its complexity, every decision-making process is rooted in the perception and
understanding of the environment and one’s own state. Then, the alternatives can be
compared according to some criteria, e.g., in the form of an expected reward. Mem-
ory plays a critical role in this, as both past experiences and the understanding of the
environment can inform the current decisions.

Ever since the first mobile robots were built in the late 1940s, the ambition that
they could operate autonomously and make decisions like humans has been a major
focus of robotics research. This is a key capability in a number of tasks, e.g., in search
and rescue missions, autonomous space and deep-sea exploration, inspection, healthcare
and service robotics. Indeed, to perform virtually any task, a robot needs to first form
a model of the environment. This is arguably the most fundamental decision-making
problem in mobile robotics one can imagine, and requires a robot to have the abilities to
create a consistent representation of the environment (typically in the form of a map),

2 Chapter 1. Introduction

localize itself within it, and control its own motion. The joint resolution of these three
core problems is known as active simultaneous localization and mapping (SLAM); with
the ultimate goal of creating the most accurate and complete model of an unknown
environment in order to later interact with it.

Therefore, active SLAM is the decision-making problem in which the robot has to
choose its own future motion, balancing between two opposing principles: exploring new
areas to increase the breadth of the model, and exploiting those already seen to improve
the accuracy of the resulting model. The complexity of this task is gigantic. First, it
must be accomplished online, as the robot moves and perceives information incremen-
tally. This, and the fact that the environment is unknown, imply that the amount of
information available to make decisions is limited and dependent on the actions taken.
Moreover, the information perceived may not always be accurate, inducing errors in the
formed model. Accommodating this uncertainty, regardless of its source, is key in active
SLAM. Finally, the models must be spatially consistent (i.e., compensate for the drift
that naturally occurs in incremental approaches) and temporally consistent (both in the
short and long term).

In the last decades, active SLAM has received increasing attention and has been
studied in different forms across multiple communities with the goal of deploying au-
tonomous robots in the real world. This divergence has broadened the scope of the
problem and provided a wider context, yielding numerous approaches based on different
concepts and theories that have made the field flourish; but it also created a disconnect
between research lines that could mutually benefit from each other. Currently, active
SLAM is at a decisive point, driven by new opportunities in spatial perception and ar-
tificial intelligence. These include applying breakthroughs in deep learning to predict
future costs and gains, reasoning over abstract human-like representations, or achieving
real-time decision-making.

In this context, this dissertation aims to explore all these possibilities, to offer a new
perspective on this long-studied problem and to push the boundaries of active SLAM;
with the ultimate goal of deploying autonomous robots in unknown environments that do
not require human supervision. To this end, we have made the following contributions.

1.1 Contributions

1.1.1 A Unified Problem Formulation

The active SLAM problem has been a topic of interest in the robotics community for
more than three decades, and is now receiving renewed attention —also thanks to the
novel opportunities offered by learning-based methods. Despite the role of active SLAM
in many applications, the disparity and lack of unification in the literature has prevented

1.1. Contributions 3

the research community from providing a cohesive framework, bringing algorithms to
maturity, and transitioning them to real applications. We take a step toward this goal
by taking a fresh look at the problem and creating a complete survey to serve as a guide
for researchers and practitioners. Besides discussing the historical evolution and current
trends in active SLAM, we also identify the most relevant open challenges in this field
and outline promising research directions. These include prediction beyond line-of-sight,
the design of meaningful stopping criteria, and active spatial perception, among others.
We also emphasize the need to address reproducibility and benchmarking for this field
to mature and achieve real-world impact.

1.1.2 Fast Utility Estimation

Quantifying uncertainty is a key stage in most active SLAM methods, as it provides a
means of estimating the utility of performing a given set of actions, and therefore select-
ing the most rewarding ones. Theory of optimal experimental design (TOED) provides a
framework for such quantification with optimality guarantees, via the so-called optimal-
ity criteria. However, evaluating optimality criteria is a complex and time demanding
step, and often constitutes a bottleneck and prevents active SLAM from being used in
real-time (and thus real-world) applications. To mitigate this issue, we explore the pos-
sibilities of spectral graph theory and how it can be leveraged to accelerate uncertainty
quantification during active graph-SLAM; based on the idea of this uncertainty being
closely related to the structure of the underlying graph. We contribute a theoretical
relationship between the well-established optimality criteria and the graph connectivity
indices. We prove that TOED-based uncertainty quantification in active graph-SLAM
formulated over SE(n) can be efficiently done by analyzing the topology of the under-
lying pose-graph; thereby laying the foundations of topological active SLAM, or spectral
active SLAM. Moreover, we present two online active SLAM approaches that leverage
these relationships to enable fast, informed decision-making. The first one is based on
a lidar-based SLAM algorithm that builds 2D occupancy occupancy maps, while the
second one is based on a state-of-the-art visual SLAM algorithm that builds sparse
landmark maps. Both systems address active SLAM comprehensively, operate in real
time, and are open-source to facilitate reproducibility and benchmarking.

1.1.3 Meaningful Stopping Conditions

Identifying when the task of active SLAM has been completed is crucial, particularly
due to the computational resources it requires. Beyond the unnecessary wast of time and
energy, repeatedly acquiring the same information could lead to unrecoverable states.
Task-completion awareness is an overlooked topic in the literature, but it is actually
a barrier that prevents the deployment of autonomous robots. We promote the use of

4 Chapter 1. Introduction

meaningful stopping criteria by presenting a novel task-driven metric that also builds
upon the advantageous spectral relationships above-mentioned, and that does not re-
quire any prior knowledge of the environment, unlike the widespread temporal or geo-
metric criteria. This criterion successfully captures when a certain exploration strategy
is no longer adding information to the system: robots are able to explore all relevant
regions of the environment and decide to stop when the returns are repeatedly low
(i.e., avoiding both under-exploration and over-exploitation).

1.1.4 Learning Uncertainty-aware Decision-making Policies

Deep learning models have the potential to provide an alternative approach to decision-
making under uncertainty, and therefore to active SLAM. Given the attention that
data-driven models have received in recent years and the numerous breakthroughs that
have been achieved, the application of these advances to active SLAM is a promising
direction. Neural decision-making opens the possibility of confining the intensive com-
putations in active SLAM to a training phase, reducing real-time operation to a forward
pass on the network. However, every opportunity comes with its own set of challenges.
Properly framing the learning process to actually tackle the task of active SLAM is not
straightforward, and transferring learned policies to real-world scenarios is uncharted
territory. We address the former core question, and provide a novel approach to active
SLAM based on deep reinforcement learning, by embedding the classical estimation-
theoretic utility functions in the reward design. Contrary to most approaches in the
literature, we go beyond neural obstacle avoidance and train agents capable of per-
forming uncertainty-informed decision-making in real time. This groundbreaking work
demonstrates the feasibility of uncertainty-aware learning approaches and proves that
uncertainty quantification during active SLAM can be learned.

1.1.5 Reasoning Beyond Geometric Representations: Abstract High-
level Concepts

Recent advancements in representing the environment for mobile robotics have primar-
ily focused on the development of hierarchical models capable of capturing high-level
concepts, such as rooms or buildings. The main objective behind these representations
is to enhance robots’ interaction with the environment, enabling them to perform com-
plex tasks more effectively and exhibit human-like reasoning capabilities. However, au-
tonomously generating such abstract representations poses a significant challenge, push-
ing the problem of active SLAM into uncharted territory. This new problem, known as
active spatial perception, involves reasoning over vast amounts of data and the intricate
task of quantifying its uncertainty. We address the problem of active spatial perception
by presenting a comprehensive utility formulation for high-level representations, specifi-
cally dynamic scene graphs, based on the concept of weighted entropy. This formulation

1.2. Thesis Outcomes 5

allows us to bias the exploration process towards specific objectives, e.g., object search,
and tailor it to the requirements of the task at hand. Furthermore, we contribute a
novel algorithm that exploits the structure and hierarchy of these representations in
conjunction with the aforementioned formulation. Our method not only demonstrates
the ability to make efficient decisions but also builds more accurate models of the en-
vironment compared to classical approaches and state-of-the-art techniques. This work
opens up possibilities for reasoning beyond geometric maps.

1.2 Thesis Outcomes

1.2.1 Research Stay

During the course of this thesis, I have done the following research stay:

• Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
Supervised by Prof. Luca Carlone at SPARK (Sensing, Perception, Autonomy, and
Robot Kinetics) Lab, Department of Aeronautics and Astronautics (AeroAstro).
From January 3 to April 30, 2023.

1.2.2 Publications

The research carried out during this thesis has resulted in the following publications.

In preparation

[1] Placed, J. A., Ray, A., Strader, J., Schmidt, L., Carlone, L. and Castellanos, J.
A. “Active SLAM in High-level Representations,” in preparation.

Journal Publications

[2] Placed, J. A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone,
L. and Castellanos, J. A., “A Survey on Active Simultaneous Localization and
Mapping: State of the Art and New Frontiers,” IEEE Transactions on Robotics
(T-RO), early access, 2023. doi: 10.1109/TRO.2023.3248510.
Journal Ranking: Q1 (JCR, SJR).

[3] Placed, J. A., and Castellanos, J. A., “A General Relationship between Opti-
mality Criteria and Connectivity Indices for Active Graph-SLAM,” IEEE Robotics
and Automation Letters (RA-L), vol. 8, no. 2, pp. 816–823, 2023. doi:
10.1109/LRA.2022.3233230.
Journal Ranking: Q1 (JCR, SJR).

http://dx.doi.org/10.1109/TRO.2023.3248510
http://dx.doi.org/10.1109/LRA.2022.3233230
http://dx.doi.org/10.1109/LRA.2022.3233230

6 Chapter 1. Introduction

[4] Placed, J. A., and Castellanos, J. A., “A Deep Reinforcement Learning Approach
for Active SLAM,” Applied Sciences (Special Issue on Mobile Robots Navigation
II), vol. 10, no. 23, p. 8386, 2020. doi: 10.3390/app10238386.
Journal Ranking: Q2 (JCR, SJR).

International Peer-reviewed Conferences

[5] Placed, J. A., Gómez-Rodŕıguez, J. J., Tardós, J. D. and Castellanos, J. A.
“ExplORB-SLAM: Active Visual SLAM Exploiting the Pose-graph Topology,” in
5th Iberian Robotics Conference (ROBOT). Lecture Notes in Networks and Sys-
tems, vol. 589, pp. 199–210. Springer, Cham, 2022. doi: 10.1007/978-3-031-
21065-5 17.

[6] Placed, J. A., and Castellanos, J. A. “Enough is Enough: Towards Autonomous
Uncertainty-driven Stopping Criteria,” in 11th IFAC Symposium on Intelligent and
Autonomous Vehicles (IAV). IFAC Papers Online, vol. 55, no. 14, pp. 126–132,
2022. doi: 10.1016/j.ifacol.2022.07.594.

[7] Placed, J. A., and Castellanos, J. A. “Fast Autonomous Robotic Exploration
Using the Underlying Graph Structure,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 6672–6679, 2021. doi:
10.1109/IROS51168.2021.9636148.

[8] Placed, J. A., and Castellanos, J. A. “Active SLAM via Deep Reinforcement
Learning,” in Workshop on Fast Neural Perception and Learning for Intelligent
Vehicles and Robotics in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019. Best Poster Award.

1.2.3 Open-source Repositories

We have also released the following public repositories:

• Active graph-SLAM.

• ExplORB-SLAM.

1.2.4 Participation in Robotics Conferences

I have participated in the following international scientific forums to learn from research
conducted in other groups and to disseminate the results of our own research:

http://dx.doi.org/10.3390/app10238386
http://dx.doi.org/10.1007/978-3-031-21065-5_17
http://dx.doi.org/10.1007/978-3-031-21065-5_17
http://dx.doi.org/10.1016/j.ifacol.2022.07.594
http://dx.doi.org/10.1109/IROS51168.2021.9636148
http://dx.doi.org/10.1109/IROS51168.2021.9636148
https://github.com/JulioPlaced/active_graph_slam
https://github.com/JulioPlaced/ExplORB-SLAM

1.2. Thesis Outcomes 7

• Invited speaker to the Workshop on Spectral Graph-Theoretic Methods for Es-
timation and Control in Robotics: Science and Systems Conference (RSS). July,
2023, Daegu, Republic of Korea.

• Oral presentation in the 5th Iberian Robotics Conference (ROBOT). Zaragoza,
Spain. November, 2022.

• Oral presentation in the 11th IFAC Symposium on Intelligent and Autonomous
Vehicles (IAV). July, 2022, Prague, Czech Republic.

• Oral presentation in the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). September, 2021, held virtually.

• Attendance to the European Conference on Mobile Robotics (ECMR). September,
2021, held virtually.

• Attendance to the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). September, 2020, held virtually.

• Attendance to the IEEE International Conference on Robotics and Automation
(ICRA). May, 2020, held virtually.

• Poster presentation in the Workshop on Fast Neural Perception and Learning
for Intelligent Vehicles and Robotics in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). November, 2019, Macau, China.

• Attendance to the Robotics: Science and Systems (RSS) Conference. June, 2019,
Freiburg, Germany.

1.2.5 Teaching and Peer-Review

In addition to the effort devoted to research during this thesis, I have also contributed
to the supervision of student projects at the University of Zaragoza, as well as to the
review of several scientific articles for IEEE Robotics and Automation Letters (RA-L),
IEEE Intelligent Transportation Systems Transactions (ITS), IJCAI Artificial Intelli-
gence Journal (AIJ), RSJ Advanced Robotics, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE International Conference on Robotics
and Automation (ICRA), European Conference on Mobile Robots (ECMR), and IFAC
Symposium Intelligent Autonomous Vehicles (IAV).

Supervised Bachelor Theses

• Sancho Pina, Alberto. Optimal Traversal Strategies in Partially Observable Graphs.
September 2021, Industrial Eng., University of Zaragoza. Grade A (Sobresaliente).

8 Chapter 1. Introduction

• Rubio Cotelo, Ana. Evaluation of Robotic Exploration Strategies in Active SLAM.
February 2022, Industrial Eng., University of Zaragoza. Grade A (Sobresaliente).

1.3 Funding

This work was supported in part by the Spanish Government under Grants DPI2015-
68905-P and PID2019-108398GB-I00, in part by the Aragón Government under Grant
DGA FSE T45 20R, and in part by MIT Spark Lab.

1.4 Thesis Structure

This chapter has presented the motivation, contributions and outcomes of this disserta-
tion. The remainder of this document is organized as follows.

• Chapter 2 provides the background necessary to follow the rest of the document
by briefly describing the three core problems in mobile robotics: localization,
mapping and navigation. In addition, this chapter discusses the importance of
active behaviors, which motivates the forthcoming chapters.

• Chapter 3 introduces and formulates the problem of active SLAM, and provides a
comprehensive review of the state-of-the-art.

• Chapter 4 contributes a theoretical relation between the well-known optimality
criteria in active graph-SLAM and the connectivity of the underlying pose-graph,
via the spectral graph theory.

• Chapter 5 presents three applications of the relationships derived in Chapter 4.
The fast computations provided by spectral utility functions are leveraged to build
two online active SLAM systems (the first one based on a dense 2D occupancy
map, and the second one based on a sparse 3D landmark map), and to design a
novel stopping criterion.

• Chapter 6 is dedicated to learning-based methods, and presents a novel end-to-end
approach to active SLAM based on deep reinforcement learning with uncertainty-
aware rewards.

• Chapter 7 considers the problem of active SLAM when the environment is repre-
sented as a hierarchical graph with high-level abstract concepts.

• Chapter 8 outlines a number of open research questions in active SLAM.

• Finally, Chapter 9 concludes the manuscript by summarizing the contributions
and outlining future work.

1.4. Thesis Structure 9

A special effort has been made to keep the notation consistent throughout the docu-
ment for ease of understanding. Most of the general variables are introduced in Chapter 2
and revisited later, while those specific to certain chapters are described there. The same
holds true for acronyms and abbreviations.

11

Chapter 2

Background

This chapter introduces the basic notions upon which the active SLAM paradigm is
based. First, the core problems of robot localization and mapping are presented, de-
scribing how a robot location and a map model can be effectively represented for robotics
tasks. Then, we introduce the third key problem in mobile robotics: navigation. This
chapter concludes with a formulation of SLAM, placing special emphasis on graph-based
approaches —the backbone of this thesis. We also discuss the passiveness of SLAM and
its limitations to autonomy and real-world deployments; hence motivating active SLAM.
Let this chapter also serve as a basis for the notation to be used in the rest of the doc-
ument.

2.1 Representing Robot Locations

Estimating the pose of a robot (i.e., its position and orientation) with respect to some
global coordinate system or reference frame (i.e., a map) constitutes the most basic
perceptual problem in mobile robotics [9]. The accuracy of the robot pose estimation
will determine the success of subsequent key tasks such as expressing the position of
objects in the environment w.r.t. the robot frame and thus safe navigation, mapping,
planning, etc. Robot localization can simply be cast as the problem of transforming
the robot pose from its own frame of reference to that of the map. However, for most
robotic configurations, robot poses can not be sensed directly from the environment
—hence the localization problem—, and its estimation entails associating the different
uncertain observations gathered over time. This results in equally uncertain robot states
that must be adequately represented. In the rest of this section, we will focus on how
to correctly do so using Lie group theory.

Consider xwi ∈ R` the state vector to be estimated that contains both the robot
position and its orientation with respect to a global frame (w), at time i; where `

12 Chapter 2. Background

X

Z
Y

Origin/world frame

i-th frame/pose

Identity

Manifold of

Figure 2.1: Lie group action SE(3) on the Euclidean space R3. The identity element
of the manifold can be thought of as the origin frame, and any other point on it defines

a particular local frame, i.e., a robot pose.

denotes the number of degrees of freedom of the n-dimensional Euclidean space; that is,
` = n(n+ 1)/2. For the 2D case, the state vector will encode the robot position in the
XY plane and its orientation,

xwi =
(
x y θ

)T
wi
∈ R3 , for n = 2 , (2.1)

whereas for 3D it will account for the translation and orientation in the three axes:

xwi =
(
x y z φ θ ψ

)T
wi
∈ R6 , for n = 3 . (2.2)

In general, the estimated transformation between two coordinate frames (and thus
the pose of a robot) can be defined over a manifold belonging to the n-dimensional
special Euclidean Lie group SE(n) (see Figure 2.1). This group defines a matrix space
(although not a subspace of R(n+1)×(n+1)) that contains no singularities. We refer the
reader to Appendix A for more details on the notation and formulation of the Lie
groups. The rigid motion of a robot between two points is defined by the homogeneous
transformation between the robot (i) and world (w) frames:

Twi =

(
Rwi pwi

0 1

)
∈ SE(n) , (2.3)

where Rwi ∈ SO(n) is the rotation matrix that belongs to the n-dimensional special
orthogonal group (see Appendix A) and pwi ∈ Rn the translation vector of the transfor-
mation between both frames. For the simpler 2D case, the rotational and translational
parts of Equation (2.3) will particularize to the following:

Rwi =

(
cos θwi − sin θwi
sin θwi cos θwi

)
∈ SO(2), pwi =

(
xwi

ywi

)
∈ R2 , (2.4)

2.1. Representing Robot Locations 13

which makes Twi a 3× 3 homogeneous matrix. For the 3D case, Twi will be a 4× 4
matrix instead.

2.1.1 On the Uncertain Poses

In order to successfully operate in real conditions, robots must take into account the
uncertainty intrinsic to the real environments and which comes from a number of sources
(e.g., sensors, the environment itself). Hence the need to explicitly represent and ac-
commodate this uncertainty in the location estimates.

Usually, the robot location is considered as a Gaussian random variable, which allows
to express the state vector as:

x ∼ N (x, Σ) , (2.5)

or, equivalently, in the form:

x = x+ ε, with ε ∼ N (0, Σ) , (2.6)

where x ∈ R`, x is a large noise-free nominal (or mean) value, and ε is a small noisy
perturbation with zero mean and covariance Σ. As shown in the previous section, Lie
groups are useful spaces over which to represent poses, since they have no singularities
and allow to impose certain constraints (e.g., orthogonality). However, they are not
suitable to represent random variables in the form of Equation (2.6), since they are not
closed under the addition operation (unlike the vector space R`), that is,

T 1,T 2 ∈ SE(n) ; T 1 + T 2 ∈ SE(n) . (2.7)

Within the framework of Lie group theory, the Lie algebras shape the optimal spaces
over which to represent random variables. Generally, any Lie group, M, gives rise
to a Lie algebra, m, which can be formally defined as the tangent space around the
identity element of the group [10].1 Lie algebras can also be defined locally to elements
of the group other than the identity, thus representing tangent spaces around them. In
addition, Lie algebras are characterized by the following:

• They are isomorphic to the vector space R`, with ` again the number of degrees of
freedom of the group. Therefore, any element of the Lie algebra can be represented
by a vector in R`. This is a key fact, since it allows to define random variables in
the form of Equation (2.6), and R` is also the space in which the state vector lives.
The wedge operator defines the linear mapping (or isomorphism), ∧ : R` 7→ m.

1The tangent space of a manifold can be seen as a generalization of the more familiar concept of
tangent plane of a surface in R3. Note that any tangent space will represent an hyperplane having the
same dimension as the original manifold. For example, any element belonging to the Lie algebra of
SE(3) will represent a matrix contained in R4×4 (or a vector in R6, alternatively).

14 Chapter 2. Background

• Elements of the tangent space at one element of the group (T) can be transformed
to the tangent space at another using the adjoint action, AdT : m 7→ m.

• Elements of the Lie algebra can be mapped to elements of the group using the
exponential map, exp : m 7→ M.

The Lie algebra of SE(n) is denoted as se(n), and is a collection of (n+ 1)× (n+ 1)
matrices. We refer the reader to Appendix A for more details on the notation and
formulation of the Lie groups and their associated algebras.

Following all the above notions, the noisy location of a robot can be defined as a
random variable in SE(n) as:

Twi , Twi ⊕ d iwi (2.8)

= Twi exp
(
d iwi
∧) ∈ SE(n) , (2.9)

where Twi ∈ SE(n) is the large and noise-free estimation, and d iwi ∈ R` is a random
vector normally distributed around zero and that fully encodes the estimation error of
the transformation; expressed in i. This small Gaussian perturbation is defined by:

d iwi ∼N (0, Σ i
wi) , with (2.10)

Σ i
wi = E[(d iwi − d iwi)(d iwi − d iwi)T] , (2.11)

where E[·] denotes expectation. Note that defining Equation (2.10) in the Lie algebra
has induced a probability density function (PDF) on the manifold. This allows us to
think of Twi as the mean pose and Σ i

wi its associated uncertainty. This can be also seen
as a way of ‘injecting’ noise onto the group. See the first case in Figure 2.2 for a pictorial
representation.

The right-plus (⊕) operator in Equation (2.8) allows to correctly associate the per-
turbation and estimation variables, while keeping the form of Equation (2.6). That is,
to introduce increments expressed in the flat tangent space into the curved manifold
(see Figure 2.2). It involves using first the wedge and exponential operators, and then
a composition in SE(n). On the one hand, the wedge operator of se(n) is defined as:

·∧ : R` 7→ se(n) , (2.12)

d∧ ,

(
bωc× υ

0 1

)
. (2.13)

with υ and ω the translational and rotational parts of d, respectively; and b·c× the
wedge operator of so(n) (see Appendix A). On the other hand, the exponential map
relates SE(3) to its algebra,

exp(·) : se(n) 7→ SE(n) , (2.14)

2.1. Representing Robot Locations 15

Tangent space at origin

Identity

Manifold of

Probability ellipse of

Probability concentration region of the
origin on the manifoldexp

Probability concentration region of
on the manifold

Identity

Tangent space arround

Probability ellipse of

Probability concentration region of
on the manifoldManifold of

exp

Figure 2.2: Two ways of defining a noisy pose over SE(n). In the first case, the per-
turbation is wrapped over the manifold at the tangent space around the group element
Twi, thus directly revealing a PDF over the group, with mean Twi and covariance Σ i

wi
defined in the Lie algebra; see Equation (2.9). In the second case, the covariance ellipse
is wrapped over the manifold at the identity element, which, ultimately, will also induce
a PDF over the group. Note that the probability ellipses will be high-dimensional, as

they express the covariance on the tangent vector space R`.

exp(d∧) ,

 exp (bωc×) V υ

0 1

 . (2.15)

where exp (bωc×) is the exponential map from so(n) to SO(n) —which has a closed-form
solution, known as the Rodrigues formula (see Equation (A.10))—, and V is defined in
Equation (A.12).

Alternatively to Equation (2.9), just like in differential representations [11], the per-
turbation may be expressed in the global frame (w), i.e., in the tangent space at the
identity element (see the second case in Figure 2.2). Now, the composition (which does
not fulfill the commutative property) will be done via the left-plus operator (⊕L); hence
the exponential map will precede the estimate:

Twi , dwwi ⊕L Twi (2.16)

= exp
(
dwwi
∧) Twi . (2.17)

16 Chapter 2. Background

X

Z

Y

World frame

i-th frame/pose

k-th frame/pose

Figure 2.3: Compounding two relative poses into a single estimate. The colored
ellipsoids represent the perturbation’s covariance, see Equation (2.11).

2.1.2 Compounding Relative Poses

Despite in the previous page we have introduced a global frame on which to reference
all robot poses, in practice, most localization algorithms compute that poses locally to
restrain complexity. That is, in the form of increments with respect to the immediately
preceding one (e.g., via odometry). Thus, the problem of compounding these relative
poses (and their associated uncertainty) into global estimates is of special interest in
mobile robotics.

Consider two noisy robot poses, Twi and T ik, defined to follow the perturbation
scheme (2.9). Then, the compound pose will be given by simple propagation as:

Twk = Twi T ik = Twi exp
(
d iwi
∧)
T ik exp

(
d kik
∧) . (2.18)

However, note that each of the perturbations is referenced to a different frame. Fig-
ure 2.3 contains a graphical representation of the pose (and uncertainty) compounding
problem. The covariance of the perturbations has been represented by colored ellipsoids
for visualization, although for the 3D case they would be 6-dimensional hyper-ellipsoids.

The above expression can be simplified by leveraging the adjoint action of the Lie
group. This operator relates two different Lie algebras, i.e., it defines the transformation
between the tangent spaces around two different elements. Therefore, it can be used to
express the first of the perturbations in the k-th frame:

d iwi = AdT 91
ik
d kwi , (2.19)

2.2. Representing the Environment 17

being the adjoint action defined as follows for SE(2, 3):

AdT 91
ik
=

RT
ik RT

ik

−yik
xik

0 1

 , for n = 2

 RT
ik RT

ik bpkic×
0 RT

ik

 , for n = 3

. (2.20)

In addition, the adjoint action satisfies the following property regarding exponential
maps:

exp (AdA B) , A exp (B) A91 , (2.21)

exp (B) = A91 exp (AdA B) A , (2.22)

with A ∈ SE(n) and B ∈ se(n).

After inserting Equation (2.22) into Equation (2.18) with A = T 91
ik and B = d iwi

∧,
the latter becomes:

Twk = Twi T ik exp
(
AdT 91

ik
d kwi
∧) exp

(
d kik
∧) . (2.23)

Finally, using the first-order approximation [12] of the Baker-Campbell-Haussdorf for-
mula for the product of exponential maps, the compound pose results in:

Twk = Twi T ik exp
(
AdT 91

ik
d kwi
∧
+ d kik

∧) (2.24)

= Twk exp
(
d kwk

∧) . (2.25)

Note that, again, d kwk is referenced to the k-th frame, as the mean transformation is
perturbed on the right. The uncertainty that d kwk encodes can be expressed in terms of
the uncertainties associated to the original pose estimates (Twi and T ik), as:

Σ k
wk = AdT 91

ik
Σ i
wi Ad

T
T 91
ik

+ Σ k
ik , (2.26)

assuming the perturbations uncorrelated with each other [13].

2.2 Representing the Environment

Robot localization, as well as many other tasks in mobile robotics, builds upon having
access to the perceived portion of the environment (e.g., the distance to obstacles). To
do so, a model of the physical environment —or map, m— is required. In general, maps
are not known a priori and need to be built incrementally by extracting information

18 Chapter 2. Background

Figure 2.4: Example of a topological 2-dimensional map from [18]. In this case,
the red dots (graph nodes) represent different spaces of the environment (semantically

identified) and the green lines (edges) are the possible connections between them.

from the observations and establishing correspondences. Robotic mapping can be seen
as the process of storing spatial information of the environment in some data structure
(i.e., a long-term memory). As occurred with robot poses, maps are characterized by
uncertainty and sensor noise [14]; hence their probabilistic nature. At this point, it is
worth noting that the localization and mapping tasks will be intrinsically linked, as the
uncertainty in the robot location will come into play when expressing the observations in
the map frame. Thus motivating the problem of simultaneous localization and mapping
(SLAM).

The design of adequate data structures to represent the environment is an ongoing
research problem in robotics, key for deploying truly autonomous agents. Despite the
significant progress made and the number of methods proposed in recent years, mapping
still poses significant challenges to the robotics community. In the following pages,
we review four different widespread types of map representations: topological, metric,
semantic, and hierarchical maps.

2.2.1 Topological Maps

Topological maps are high-level representations that use lightweight, sparse graphs to de-
scribe the structure, or topology, of the environment. Historically, vertices in this graph
represent convex regions in the free space, while edges model connections between them
(see Figure 2.4). The construction of these graphs is therefore a segmentation problem,
usually done over an occupancy grid, that can be solved using, e.g., Voronoi decompo-
sition, morphological, distance or feature-based segmentation (see [15] for a survey on
these methods). Topological maps allow leveraging graph theory for mapping, which
has long been studying the problem of unknown graph exploration [16] and provides
powerful tools transferable to robotic exploration. Nevertheless, they are not frequently
used alone [17, 18], perhaps because of the limited information they encode or because
the complexity of segmenting outdoor and unstructured environments.

2.2. Representing the Environment 19

(a) Landmark map, from [19]. (b) Occupancy grid map.

(c) Octomap, from [20].

Figure 2.5: Examples of metric sparse (a) and dense (b–c) representations.

2.2.2 Metric Maps

Metric maps are the most used representations in mobile robotics to encode information
about the environment. They can be further divided into two categories: sparse and
dense maps. Sparse metric maps rely on a set of interest points (also known as landmarks
or features) to represent a scene, see Figure 2.5(a). The method to identify those points
will mainly depend on the sensors equipped, although in any case it will target the
detection of features that exhibit distinctive properties; either at low-level (e.g., points,
corners, lines) or at high-level (e.g., objects). Typically, landmarks are defined by their
position in the Euclidean space and assumed Gaussian, just like the robot poses [21–23].
The main inconvenient of landmark-based maps is that they do not explicitly represent
the free space in the environment, thus complicating navigation. Dense maps can be
based on point clouds, meshes or, more typically, a discretization of the environment
into cells that encode some metric (e.g., occupancy, distance to obstacles). Occupancy
grid (OG) maps, first proposed for perception and navigation in the late eighties by
Elfes [24] and Moravec [25], assign to each cell its probability of being occupied. See
Figure 2.5(b). Their extension to 3D include OctoMaps [20], Supereight [26] and voxel
maps [27]. See Figure 2.5(c). In most cases, the discretized cells are treated as binary
(free, occupied) or ternary (free, occupied, unknown) variables for simplification. Also,
to keep inference tractable over the map, all cells are commonly assumed independent
from each other, that is,

P(m) =
∏

P(ci) , (2.27)

20 Chapter 2. Background

(a) Semantic Octomap, obtained evaluating [31]. (b) Semantic mesh, obtained evaluating [36].

Figure 2.6: Example of a semantically annotated Octomap (a) and 3D mesh (b) of
a living room in the uHumans dataset [37].

where P(·) denotes probability, and ci represents the i-th cell in the map. There exist
many other dense maps that encode more sophisticated metrics, such as those based
on signed distance fields (SDFs). For mapping purposes, each cell might contain the
distance to the closest obstacle along the sensor ray, while for navigation, each cell
might represent the Euclidean distance to the closest obstacle. Jadidi et al. [28] propose
a continuous version of occupancy maps (COMs) based on Gaussian processes, yielding
a continuous model of uncertainty over the map and allowing the use of continuous
optimization methods on it.

2.2.3 Metric-semantic Maps

Metric-semantic maps go beyond geometric modeling and associate semantic information
to classical metric maps. Instead of geometric features, a sparse metric-semantic map
can capture objects, described by their semantic category, pose, and shape [29, 30]. In
dense maps, the semantic information can be attached to the dense metric representation
of the environment, such as cells in a voxel map or triangles in a mesh (see Figure 2.6
(a) and (b), respectively). Examples of dense metric-semantic mapping frameworks
include [31], Kimera [32], Voxblox++ [33], [34], and Fusion++ [35].

2.2.4 Hybrid and Hierarchical Maps

Finally, very recent representations have combined some of the previous to include the
highest possible amount of environment information in a hierarchical and structured
manner, with the objective of allowing for high-level reasoning. Early works in this di-
rection trace back to [38] and [39] where metric and topological maps were merged. In a
similar vein, Gómez et al. [40] combine information from semantic and topological repre-
sentations. Rosinol et al. [37] combine metric, semantic, and topological representations
into a single model, a 3D dynamic scene graph (DSG). This hierarchical representa-
tions break down metric-semantic maps into interconnected high-level spatial entities,

2.3. Robot Navigation 21

Topological map

Metric-semantic map

Rooms

Free space

Objects

Figure 2.7: Example of a 3D DSG, obtained evaluating Hydra [36] in the uHumans
dataset [37]. The right part of the mesh corresponds to the maps shown in Figure 2.6.

paving the way for high-level reasoning. See Figure 2.7. Hughes et al. [36] contribute
an algorithm to build them in real-time.

2.3 Robot Navigation

Navigation lays out the third base problem in mobile robotics, along with localization
and mapping. It relies, at least, on having access to the robot’s location, and the
most important problem deals with creating and following an obstacle-free trajectory
between the robot’s location and a goal destination. A map of the environment provides
an excellent tool for this, especially if it defines the portions of free (i.e., traversable)
and occupied space.

There exist numerous approaches to motion or trajectory planning [41, 42], and its
choice will mainly depend on the underlying representation of the environment. A
widespread pipeline is to separate the problem into two: a global and a local planner.
See Figure 2.8. The first is responsible for finding a feasible, obstacle-free and discrete
path towards the goal, e.g., by creating a set of way-points that lie in the free space
the robot can safely move in —also referred to as the configuration space, or C-space.
At this stage, the planner does not care about at which time these way-points will be
reached, the robot’s velocity or other high-order derivatives. Way-point generation can
be done by sampling the C-space or using graph-based techniques. Sampling-based ap-
proaches include the probabilistic roadmap (PRM) [43], rapidly exploring random trees
(RRT) [44] and their optimal variants [45]. Graph-search-based techniques include Di-
jkstra, A?, D?, jump point search (JPS) and their variants [42,46,47]. In any case, these

22 Chapter 2. Background

Global Planner

Trajectory tracking
Trajectory generation

Trajectory optimization
Discrete path searchMap &

Local planner

Goal

Control
commands

Figure 2.8: Workflow of classic motion planning methods.

way-points only account for geometric constraints, usually making the final trajectories
not executable by the robot. A trajectory generation and optimization process that
considers, e.g., kino-dynamic and safety constraints, is required. Curve interpolation
methods [48] are the most common. Once a feasible trajectory has been generated, it
all comes down to following it (i.e., a control problem). The local planner, on the other
hand, provides the robot with the ability to re-plan the trajectory, that is, to react
to unexpected situations typical of the real world (such as avoiding dynamic obstacles).
Popular local planners include the artificial potential fields (APF) [49], dynamic window
approach (DWA) [50], time elastic band (TEB) [51], etc.

Reinforcement learning (RL) and deep reinforcement learning (DRL) techniques rep-
resent an alternative to the above motion planning methods [52]. They have been used
to overcome the limitations of both global and local planners. For example, Faust et
al. [53] combine PRM and RL to achieve long-distance navigation that obeys robot dy-
namics and task constraints, and Chang et al. [54] use RL to autonomously tune the
multiple parameters of DWA. In contrast, end-to-end (D)RL approaches unify global
and local planners into one learnable process. Map-less navigation from raw sensor
measurements is done in [55–57], among others.

In order for this chapter to be of reasonable length, we refer the reader to the
aforementioned works and to the surveys conducted in [41, 42, 52, 58–62] for a detailed
description of popular and state-of-the-art motion planning strategies for mobile robots.

2.4 Simultaneous Localization and Mapping (SLAM)

Localization and mapping were treated deterministically and solved independently until
probabilistic approaches went mainstream in the 1990s, when researchers realized that
both tasks were correlated and dependent of one another. SLAM refers, thereby, to the
problem of incrementally building the map of an environment while at the same time
locating the robot within it [9]. This problem has attracted significant attention from
the robotics community in the last decades; see [63–65] and the references therein.

2.4. Simultaneous Localization and Mapping (SLAM) 23

Under a probabilistic formulation, the SLAM problem involves estimating the fol-
lowing distribution for all times t:

P(st|a1:t91, z1:t, s0) = P(x1:t,mt|a1:t91, z1:t,x0) (2.28)

where the joint state st is conformed by the set of robot poses over time (i.e., a trajec-
tory), x1:t, and the map, mt. Also, a1:t91 are the past control commands and z1:t are
the measurements gathered by the robot. Assuming the robot motion Markovian, i.e.,

P(xt|xt91,at91) , (2.29)

and the measurements independent, i.e.,

P(zt|xt,mt) , (2.30)

the SLAM posterior can be written as:

P(xt,mt|a1:t91, z1:t,x0) =
P(zt|xt,mt)P(xt,mt|a1:t91, z1:t91,x0)

P(zt|a1:t91, z1:t91)
, (2.31)

with

P(xt,mt|a1:t91, z1:t91,x0) =
∫

P(xt|xt91,at91)P(xt91,mt|a1:t91, z1:t91,x0)dxt91 .
(2.32)

The above two equations allow to recursively compute the joint posterior as a function
of the motion and measurement models (2.29) and (2.30).

2.4.1 Graph-SLAM

Graph-based SLAM approaches employ a graph representation to solve the SLAM es-
timation problem. Nodes in the graph represent random variables of interest (i.e., the
robot location and the sparse map points), while edges represent constraints between
pairs of nodes (e.g., and odometry measurement). The process of generating constraints
between nodes in the graph from the measurements is known as data association and
is usually bounded to the most likely topology in order to restrain complexity. In prac-
tice, edges encode the probability distribution over the relative pose between a pair of
nodes. After solving the data association problem and building the graph, it all comes
down to computing the (Gaussian-approximated) posteriors over the variables of interest
(i.e., finding their mean and covariance); see Figure 2.9. Or, in other words, to find the
nodal configuration that maximizes the likelihood of all the observations. See [9,63–65]
and the references therein.

The graph-SLAM problem can be cast as a maximum likelihood (ML)/maximum a
posteriori (MAP) estimation problem, where the joint state is estimated by computing

24 Chapter 2. Background

Front-end

GraphSensor

data

Localization and
mapping estimates

Back-end

Short-term data

association (odometry)

Long-term data

association (loop closing)

Construction
Graph

Optimization

Figure 2.9: Workflow of graph-SLAM algorithms.

the variables s? that attain the maximum of the posterior distribution:

s?t = arg max
s

P(st|a1:t91, z1:t91,x0) (2.33)

= arg min
s

− log (P(x1:t,mt|a1:t91, z1:t91,x0)) . (2.34)

Given the conditional independence assumption between measurements and Equation (2.31),
the optimization problem becomes:

s?t = arg min
s

− log
(
P(x0)

t∏
τ=1

[
P(xτ |xτ91,aτ91)

∏
q

P(zqτ |xτ ,mτ)

])
(2.35)

= arg min
s

− logP(x0) +
t∑

τ=1
logP(xτ |xτ91,aτ91) +

t∑
τ=1

∑
q

logP(zqτ |xτ ,mτ) ,

(2.36)

where zqτ is the q-th measurement at time τ and P(x0) is a prior probability over x.

The probabilistic motion and measurement models, assumed Gaussian, are defined
by:

xt = g(xt91,at91) + σ
x
t ⇔ P(xt|xt91,at91) ∝ exp ‖xt − g(xt91,at91)︸ ︷︷ ︸

εmotion

‖2Σxt , (2.37)

zt = h(xt,mt) + σ
z
t ⇔ P(zt|xt,mt) ∝ exp ‖ zt − h(xt,mt)︸ ︷︷ ︸

εmeasurement

‖2Σzt , (2.38)

being g(·) and h(·) the motion and measurement functions, ε the error terms, and σ{x,z}
t

the process noises with zero mean and covariances Σ
{x,z}
t . Also, ‖e‖2Σ , εT Σ91 ε denotes

the squared Mahalanobis distance with covariance matrix Σ.

Now, Equation (2.36) has become a non-linear least-squares optimization problem
via (2.37) and (2.38):

s?t = arg min
s

t∑
τ=1
‖xτ − g(xτ91,aτ91)‖2Σxτ +

t∑
τ=1

∑
q

‖zqτ − h(xτ ,mτ)‖2Σzτ . (2.39)

2.5. Passive and Active Behaviors 25

Recalling the notation from previous sections, and specifically Equation (2.25), the
robot state can be expressed over Lie groups:

s?t = arg min
s

t∑
τ=1
‖ log

(
(T 91

τ91T τ)
91T τ91,τ

)∨
‖2Σxτ +

t∑
τ=1

∑
q

‖zqτ − h(T τ ,mτ)‖2Σzτ , (2.40)

where T are the robot poses to optimize and T the measurements. Note that h(·) could
be, for example, a projection model for the case of visual SLAM.

Pose-graph representations marginalize the map state in Equation (2.34) and encode
only the robot poses in vertices. This variant builds on the insight that the map rep-
resentation can be retrieved once the robot states have been properly estimated [64],
and allows to work with map representations difficult to encode as graph nodes (e.g., a
grid map). In this case, we have odometry constraints between consecutive vertices (as
in the previous case) but also loop closure constraints (i.e., relative pose measurements
between the current pose and a previous one when they observe the same place):

T ?1:t = arg min
T 1:t

t∑
τ=1
‖ log

(
(T 91

τ91T τ)
91T τ91,τ

)∨
‖2Στ

+
∑

(i,k)∈Elc

‖ log
(
(T 91

i T k)
91T i,k

)∨
‖2Σ(i,j)

(2.41)

= arg min
T 1:t

t∑
τ=1
‖ετ91,τ‖2Στ +

∑
(i,k)∈Elc

‖εi,k‖2Σ(i,j)
, (2.42)

where Elc is the set of pairs of graph vertices (i, k) that have a loop closure. The similar
structure in the addends above allow to generalize the optimization problem to both
odometry and loop closure edges in the graph as:

x? = arg min
x

F (x) (2.43)

s.t. F (x) =
m∑
j=1

F j(x) =
m∑
j=1

εTj (x)Φjεj(x) ,

where F is the cost function (negative log-likelihood) of all observations and Φj , Σ91
j

the Fisher information matrix (FIM) of the j-th edge. Given a decent initial guess,
convergence towards the optimal value may be achieved using, e.g., Gauss-Newton or
Levenberg-Marquardt techniques that solve a succession of linear approximations [64,
66–68].

2.5 Passive and Active Behaviors

The SLAM problem, while crucial for providing robots with a consistent model of the
environment, is a passive method not concerned with guiding the navigation process.

26 Chapter 2. Background

As a result, human interaction is required to deploy robots for real-world applications
that involve SLAM. This is a key limiting factor in the autonomy of robotic systems,
and it restricts the range of tasks that they can perform.

Certainly, autonomous operation in robotics applications requires that robots have
access to a consistent and accurate model of the surrounding environment, for example,
to support safe planning and decision-making. Any robotic system that aspires to per-
form high-level reasoning or tasks autonomously must be first concerned with actively
exploring and modeling the environment. Therefore, there is a growing need for active
methods that integrate the navigation aspects of the problem into SLAM.

Bajcsy [69], Cowan and Kovesi [70], and Aloimonos et al. [71] were the first to study
and analyze the problem of active perception (also referred to as active information
acquisition [72]) in the late nineties. Bajcsy [73] would later formally define it as the
problem of actively acquiring data in order to achieve a certain goal, necessarily involving
a decision-making process. See [74] for further discussion. For the cases in which the
objective is to improve localization, mapping, or both, the problems are respectively
referred to as active localization, active mapping, and active SLAM; and the next chapter
will be devoted to studying them.

27

Chapter 3

Active SLAM: Problem
Definition and State-of-the-art

During the last decades, active SLAM has been studied in different forms across multiple
communities, with the ambition of deploying autonomous agents in real-world applica-
tions (e.g., search and rescue in hazardous environments, underground or planetary
exploration). This divergence has broadened the scope of the problem and provided a
wider context, yielding numerous approaches based on different concepts and theories
that have made the field flourish. However, it has also created a lack of unification that
hinders the problem understanding, and a disconnect between research lines that could
mutually benefit from each other. Hence the need of this chapter.

After providing a historical context, we present a unified problem formulation and
review the well-established modular scheme, which decouples the problem into three
stages that identify potential navigation actions, and select and execute the optimal
ones. We go beyond the classical entropy computation over discretized grids, giving a
fresher picture of the problem and discussing alternative deep reinforcement learning
(DRL) techniques. This chapter is primarily based on [2].

3.1 Historical Review

Ever since the first mobile robots were built in the late 1940s, the ambition that they
could perform autonomous tasks has been one of the major focuses of robotics research.
To operate autonomously, a robot needs to form a model of the surrounding environment
—including localization and mapping— and perform safe navigation [75]. While the for-
mer involves estimating the position of the robot and creating a symbolic representation
of the environment, the latter refers to planning and controlling the movements of the
robot to safely achieve a goal location. Localization, mapping, and planning have been

28 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

SLAM

Navigation

Mapping

Active Localization Active Mapping

Localization

Figure 3.1: Problems involved in active SLAM (uneven region in the center).

often investigated in combination, resulting in multiple research areas such as SLAM,
active localization, active mapping, and active SLAM. See Figure 3.1.

Active mapping was the first problem to be addressed, dating back to the work of
Connolly [76] in 1985. Better known since then as the next best view problem, active
mapping tackles the search of the optimal movements to create the best possible rep-
resentation of an environment. Subsequent examples date to the 1990s [77–79], always
under the assumption of perfectly known sensor localization. This problem has been pri-
marily addressed in the computer vision community to reconstruct objects and scenes
from multiple viewpoints, since the nature of the projective geometry for monocular
cameras, occlusions, and limited field of view often make impossible to do it from just
one viewpoint; see [80] and the references therein.

In a similar vein, active localization aims to improve the estimation of the robot’s
pose by determining how it should move, assuming the map of the environment is
known. First relevant works can be traced back to 1998, when Fox et al. [81] and Borgi
and Caglioti [82] formulated it as the problem of determining the robot motion so as to
minimize its future expected (i.e., a posteriori) uncertainty. In particular, it is in [81]
where the foundations of the current workflow were laid: (i) goal identification, (ii) utility
computation, and (iii) action selection (we will extensively review these stages later in
this chapter). Other relevant subsequent work can be found in [83–86], but also in the
related literature of perception-aware planning [87] and planning under uncertainty [88].

Finally, active SLAM unifies the previous problems, and allows a robot to operate
autonomously in an initially unknown environment. It refers to the application of active
perception to SLAM and can be defined as the problem of controlling a robot which
is performing SLAM in order to reduce the uncertainty of its localization and the map
representation [89]. It can be seen as a decision-making process in which the robot has
to choose its own future control actions, balancing between exploring new areas and
exploiting those already seen to improve the accuracy of the resulting map model.

3.2. The Active SLAM Paradigm 29

Historically, active SLAM has been referred to with different terminology, which has
significantly hindered knowledge sharing and dissemination within the robotics commu-
nity. Relevant seminal works can be found under the names of active exploration [90],
adaptive exploration [91, 92], integrated exploration [93, 94], autonomous SLAM [95],
simultaneous planning, localization and mapping [96], belief-space planning (BSP) [97],
or simply robotic exploration [98, 99]. It was not until 2002 —when Davison and Mur-
ray [100] coined the term active SLAM— that the robotics community started adopting
this nomenclature. Thrun and Möller [90] demonstrate that in order to solve robotic
exploration, agents have to switch between two opposite principles depending on the
expected costs and gains: revisiting already seen areas to reduce the state uncertainty,
and exploring new areas, risking an increase in uncertainty but creating an opportunity
for a new loop closure that reduces uncertainty globally; i.e., the so-called exploration-
exploitation dilemma. The first approach in which a robot chooses actions that maximize
the knowledge of the two variables of interest is attributed to Feder et al. [91], who also
separate the procedure in three major stages as in [81]. Table 3.1 contains a subset of
relevant works that have followed [91]. This table differentiates the main aspects of each
approach, including the type of sensors, the state representation, and the theoretical
foundations. Throughout this chapter, reference will be made to all of these works,
serving this table as a reference point and to depict the evolution of the state-of-the-art
in active SLAM on its various dimensions.

3.2 The Active SLAM Paradigm

Active SLAM can be formulated as the decision-making problem of finding the optimal
control actions so as to improve the quality of the SLAM estimates. It can be framed
within the wider mathematical framework of partially observable Markov decision pro-
cesses (POMDPs), after some particularization. POMDPs model decision-making prob-
lems under both action and observation uncertainties and can be formally defined as
the 7-tuple (S,A,Z, ξs, ξz, r, γ). In particular, a POMDP consists of the agent’s state
space S, a set of actions A, a transition function between states ξs : S ×A 7→ Π(S)
where Π(S) is the space of probability density functions (PDFs) over S, an observation
space Z, the conditional likelihood of making any of those observations ξz : S 7→ Π(Z),
where Π(Z) is the space of PDFs over Z, a reward scalar mapping r : S ×A → R, and
the discount factor γ ∈ (0, 1) ∈ R which allows to work with finite rewards even when
planning over infinite time horizons.

Contrary to the fully observable case, agents in a POMDP cannot reliably determine
their own true state, s. Instead, they maintain an internal belief or information state,
bt(st), which represents the posterior probability over states at time t, given the available

30 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

T
able

3.1:
A

com
parison

between
representative

active
SLA

M
approaches,ordered

chronologically.

R
eferen

ce
S

L
A

M
A

p
p

ro
ach

S
en

so
rs

E
n

v
.

R
ep

re-
sen

tatio
n

F
o

rm
u

la-
tio

n
C

an
d

id
ate

G
o

al
L

o
catio

n
s

U
tility

F
u

n
ctio

n
V

alid
atio

n
S

to
p

p
in

g
C

riterio
n

P
u

b
licly

availab
le

F
eder

et
al.

[91]
E

K
F

Sonar
L

andm
ark

m
ap

M
odular

L
ocal

vicinity
D

-opt
Sim

.
&

real
-

B
ourgault

et
al.

[92]
E

K
F

L
idar

O
G

m
ap

M
odular

L
ocal

vicinity
M

I
R

eal
-

Stachniss
et

al.
[94]

F
astSL

A
M

[101]
L

idar
O

G
m

ap
M

odular
F
rontiers

&
re-visiting

P
article’s

volum
e

&
distance

Sim
.

&
real

P
article’s
volum

e

Stachniss
et

al.
[102]

R
B

P
F

L
idar

O
G

m
ap

M
odular

F
rontiers

&
re-visiting

M
I

&
distance

Sim
.

&
real

-

L
eung

et
al.

[21]
E

K
F

L
idar

L
andm

ark
m

ap
M

P
C

U
nknow

n
space

&
re-visiting

T
-o
p
t

Sim
ulation

-

V
alencia

et
al.

[103]
P

ose
SL

A
M

[104]
L

idar
O

G
m

ap
M

odular
F
rontiers

&
revisiting

E
ntropy

Sim
ulation

-

C
arlone

et
al.

[105]
R

B
P

F
L

idar
O

G
m

ap
M

odular
F
rontiers

&
re-visiting

K
L

D
Sim

ulation
-

Indelm
an

et
al.

[22]
G

T
SA

M
C

am
era

L
andm

ark
m

ap
B

SP
-

R
ob

ot’s
T

-o
p
t

&
distance

Sim
ulation

-

Z
hu

et
al.

[106]
R

G
B

D
SL

A
M

[107]
R

G
B

-D
O

ctom
ap

M
odular

F
rontiers

C
overage

&
distance

Sim
ulation

-

B
ircher

et
al.

[108]
R

O
V

IO
[109]

&
m

apping
Stereo

&
IM

U
O

ctom
ap

M
P

C
R

R
T

paths
C

overage
&

distance
Sim

.
&

real
C

overage
3

P
apachristos

et
al.

[110]
R

O
V

IO
[109]

&
dense

m
apping

Stereo
&

IM
U

O
ctom

ap
M

P
C

R
R

T
paths

D
-opt

Sim
.

&
real

M
in.

utility
3

U
m

ari
et

al.
[111]

G
m

apping
[112]

L
idar

O
G

m
ap

M
odular

F
rontiers

M
ap’s

M
I

&
distance

Sim
.

&
real

-
3

C
arrillo

et
al.

[113]
IC

P
&

iSA
M

[67]
L

idar
O

G
m

ap
M

odular
F
rontiers

Shannon-R
ényi

entropy
Sim

.
&

real
T

im
e

3

Jadidi
et

al.
[28]

P
ose

SL
A

M
[104]

L
idar

C
O

M
M

odular
F
rontiers

M
I

&
distance

Sim
ulation

C
overage

3

P
alom

eras
et

al.
[114]

IC
P

&
g2o

[66]
L

idar
O

ctom
ap

M
odular

R
andom

C
overage

Sim
.

&
real

C
overage

C
haplot

et
al.

[115]
N

eural
N

etw
orks

R
G

B
O

G
m

ap
D

R
L

L
ocal

vicinity
C

overage
Sim

.
&

real
-

3

N
iroui

et
al.

[116]
G

m
apping

[112]
L

idar
O

G
m

ap
D

R
L

F
rontiers

M
ap’s

M
I

&
distance

Sim
.

&
real

-

C
hen

et
al.

[117]
G

T
SA

M
R

ange
V

irtual
landm

ark
m

ap
D

R
L

F
rontiers

V
irtual

landm
ark’s

T
-o
p
t

Sim
ulation

-
3

L
i

et
al.

[118]
K

arto
[119]

&
g2o

[66]
L

idar
O

G
m

ap
D

R
L

Sam
pled

from
the

O
G

m
ap

M
ap’s

M
I

&
distance

Sim
.

&
real

C
overage

Suresh
et

al.
[120]

IC
P

&
iSA

M
[67]

Sonar
O

ctom
ap

M
P

C
R

R
T

paths
&

re-visiting
R

ob
ot’s

D
-opt

&
coverage

Sim
.

&
real

-

D
ai

et
al.

[121]
G

T
p

ose
&

m
apping

R
G

B
D

Sup
ereight

IT
F
rontiers

M
ap

entropy
&

tim
e

D
iscrete

Sim
.

&
real

3

C
hen

et
al.

[23]
L

inear
SL

A
M

[122]
C

am
era

L
andm

ark
m

ap
M

P
C

L
ocal

vicinity
G

raph’s
D

-opt
Sim

.
&

real
C

overage

B
atinovic

et
al.

[123]
C

artographer
[124]

L
idar

&
IM

U
O

ctom
ap

M
odular

F
rontiers

M
ap’s

M
I

&
distance

Sim
.

&
real

C
overage

3

P
laced

et
al.

[5]
O

R
B

-SL
A

M
2

[125]
L

idar
&

R
G

B
-D

O
ctom

ap
M

odular
F
rontiers

G
raph’s

D
-opt

Sim
ulation

T
im

e
3

B
onetto

et
al.

[126]
R

T
A

B
-M

ap
[127]

L
idar,

R
G

B
-D

&
IM

U
O

ctom
ap

M
odular

&
M

P
C

F
rontiers

M
ap’s

M
I,

distance
&

visual
features

Sim
.

&
real

T
im

e
3

3.2. The Active SLAM Paradigm 31

data collected up to that time [9, 128,129]. Recalling the notation from Section 2.1:

bt(st) , P(st|a1:t91, z1:t︸ ︷︷ ︸
history, h

) . (3.1)

The space where these PDFs over the set S live is the so-called belief space, B(S), and
is defined as:

B(S) , {b : S 7→ R |
∫
b(s)ds = 1, b(s) ≥ 0} . (3.2)

In order to evaluate the effect of future actions, agents must be capable of predicting
posterior belief distributions, that is, the PDF over S after performing a certain action,
at, and taking a future observation zt+1:

bt+1(st+1) , P(st+1|zt+1,at, bt(st)) . (3.3)

Since the future measurements are unknown for the agent, their expected value has to be
studied instead. Consider that an agent in the state defined by bt(st) executes a certain
action at, and transitions to another state with PDF P(st+1). Then, the likelihood of
making an observation will be given by [129]:

P(zt+1|bt(st),at) =
∫ ∫

ξz(st+1) ξs(st,at) bt(st) dst dst+1 , (3.4)

where ξs(st,at) = P(st+1|st,at) is the motion model and ξz(st+1) = P(zt+1|st+1) is
the observation model (cf. Equations (2.37) and (2.38), respectively).

Since the belief is a sufficient statistic, optimal policies for the original POMDP
may be found by solving an equivalent continuous-space MDP over B(S) [128, 130].
Such MDP is defined by the 5-tuple (B,A, ξb, ρ, γ), where the transition and reward
functions are ξb : B ×A 7→ Π(B) and ρ : B ×A 7→ R. To preserve consistency, this
belief-dependent reward function must build on the expected rewards of the original
POMDP:

ρ(bt,at) =
∫
S
bt(st) r(st,at) dst . (3.5)

Then, the decision at time t will be provided by the (control/action) policy πt, which
maps elements from the space of PDFs over S to the action space:

πt : B(S) 7→ A . (3.6)

The optimal policy, π?, that yields the highest expected rewards for every belief state
can be found via:

π?(b) = arg max
π

∞∑
t=0

E
[
γtρ(bt,π(bt))

]
, (3.7)

32 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

where E(·) denotes expectation and, in this case, is taken w.r.t. P(zt+1|bt(st),at). In
general, computing the optimal policy for MDPs with continuous state spaces is hard
and most works resort to approximate solutions or problem simplifications [128,131].

The active SLAM problem requires, however, some variation and particularization
of the above general POMDP formulation. Let us consider a robot capable of moving
in an unknown environment while performing SLAM. Then, as we already explained in
Chapter 2, at every time step, the robot can change its own linear and angular velocities;
moreover, the robot is able to process the sensor data into a map representation, mt ∈
M, and an estimate of its own state (e.g., pose), Thus, the state space can be defined
as the joint space S , X ×M.

The evolution of both the state and the measurements in SLAM is governed by prob-
abilistic laws [9], as expressed in Equations (3.1) and (3.4). However, two assumptions
are worth mentioning in the context of active SLAM regarding each of the equations,
that further simplify its resolution. First, the robot’s state is commonly assumed Gaus-
sian with a PDF b(x) having mean x̂ and covariance Σr (see, e.g., [22, 103]). Second,
despite less prevalent than the former, some works (e.g., [97]) also assume maximum
likelihood (ML) observations, i.e., that executing a certain action in a given belief state
will always produce the same, most probable observation. This allows to rewrite the
expected measurements as:

zML
t+1 = arg max

z∈Z
P(zt+1|bt(st),at) . (3.8)

In addition, in active SLAM the reward typically reflects the agent’s knowledge of the
system (i.e., it involves the uncertainty in the belief rather than focusing on reaching
specific states). These reward functions are known as utility functions and reflect the
usefulness of making a certain decision when the robot is at a given belief state. Utility
functions may be defined mathematically as the scalar mapping ρ : B(S) ×A 7→ R.
This reward mapping, however, is inconsistent with both POMDPs (where the reward
is dependent on s and a) and belief MDPs (where the reward is restricted to the form in
Equation (3.5)). To circumvent this limitation, ρ-POMDP [131] extends the POMDP
formulation to allow the inclusion of beliefs’ uncertainty in the objective. This enables
the use of information-oriented criteria rather than control-oriented, without losing basic
properties such as Markovianity.

Finally, considering a finite-horizon and ML observations, the discount factor and
expectation over future measurements in Equation (3.7) can be dropped, and active
SLAM can be reduced to the following optimization for open-loop planning settings:

a?t:t+k = arg max
at:t+k∈Ak

t+k∑
τ=t

ρ (b(sτ),aτ) , (3.9)

3.3. Modular Approaches 33

SLAM

Sensor

data

Environment & Robot

Motion planning

Goal identi cation

Decision-making

Estimates Goal
Utility computation

Goal selection
Control

commands

Figure 3.2: Workflow in modular active SLAM.

where a?t:t+k is the optimal sequence of actions to execute over the future planning
horizon (k look-ahead steps) and Ak , A×A× ...×A is the space of sequences of
actions over k.

3.3 Modular Approaches

For computational convenience, active SLAM has been traditionally decoupled into three
sub-problems (or stages) [81,91,93], which will be briefly described hereafter and covered
in detail in Sections 3.3.1 to 3.3.3:

i) Identification of the potential actions: solely to reduce the computational burden,
the first stage aims to determine a reduced subset of possible actions to execute.

ii) Utility computation: the expected cost and gain of performing each candidate
action has to be estimated.

iii) Action selection and execution: finally, the last stage involves finding and executing
the optimal action(s).

The entire process should be iteratively repeated until the whole environment is accu-
rately modeled, although in practice it is done until some stopping criteria are met. The
workflow of modular active SLAM is illustrated in Figure 3.2.

Despite computationally beneficial, note that this decoupling can produce sub-optimal
results and lead to undesired behaviors. Performing the three stages simultaneously is
certainly advantageous, e.g., when optimizing over a continuous action space, or when
a control policy is optimized or learned under the umbrella of POMDPs. Despite we
present some of these alternative approaches in Section 3.4, we refer the reader to [2]
for a deeper analysis of control-theoretic and belief-space planning methods.

34 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

3.3.1 Identification of Potential Destinations

The identification of all possible destinations the robot could travel to easily proves to
be intractable because of the dimensions of the map and the action sets [132]. In prac-
tice, a finite subset of them is identified, allowing for computational tractability despite
not guaranteeing global optimality [22]. The simplest approach consists of randomly
selecting the goal destinations [133, 134]. Random exploration requires low computa-
tional resources and works under the assumption that every spot in the environment
has the same information associated. Over (unrealistic) infinite-time horizons random
approaches are optimal.

In 1997, Yamauchi [135] revolutionized the field by introducing the concept of fron-
tiers, i.e., the areas that lie between known and unknown regions. Since its proposal,
frontier-based exploration has been the most used by far and has been tailored to dif-
ferent map representations. For example, frontiers have been effectively identified for
topological maps as nodes with no neighbors in certain directions [17]. However, most
methods focus on identifying frontiers in metric maps. For 2D occupancy grid (OG)
maps, a plethora of geometric frontier-detection methods have been developed to cir-
cumvent the computational cost of searching the entire space, which is intractable for
large environments [136]. Keidar and Kaminka [137] propose the wavefront frontier de-
tector (WFD) and fast frontier detector (FFD). WFD starts the search from the robot’s
location and restricts it to the free space; FFD performs the search after each scan is
collected, following the intuition that frontiers are bound to appear in recently scanned
regions. Following this idea, the same authors present the incremental WFD [138], that
restricts the search to recently scanned areas. Quin et al. [136] improve the performance
of the previous algorithms by only evaluating a subset of the observed free space. Refer
to [136,139] for further discussion. Umari and Mukhopadhyay [111] first present a fron-
tier search method over a 2D OG based on rapidly-exploring random trees (RRTs) that
grow both globally and locally to sample recently scanned regions. This strategy, often
combined with computer vision algorithms has been widely used [7, 140]. The sample-
based frontier detector algorithm [141] reduces the computational load of the previous
methods by only storing the nodes of the search tree. Frontier identification in 3D maps
is less frequent, since 3D maps are more expensive to store and analyze, and are often
incomplete due to the sensed volume. Apart from simple search techniques [121, 142],
most methods evaluate map portions incrementally [106, 123] or along surfaces [143].
Alternatively, in [144], authors propose a method that disperse random particles over
the 3D known space. No matter the method used, after detecting frontiers, a cluster-
ing step is frequently required to prevent the frontier set from being high-dimensional
(e.g., using K-means [145] or mean-shift [111]).

Shortly after the concept of frontiers was proposed, Newman et al. [95] and Stachniss
et al. [94] realized that, for a robot with high uncertainty, potential loop closure areas

3.3. Modular Approaches 35

encode more information than frontiers; the ultimate goal of active SLAM goes beyond
simply covering the workspace: to improve the accuracy of localization and mapping.
Similarly, Grabowski et al. [146] observe that regions of interest where sensor readings
overlap may be more informative than new frontiers. In other words, these works explic-
itly account for the exploration-exploitation dilemma in the frontier detection step. It
is a common practice in active SLAM to include potential loop closure regions —along
with frontiers— in the set of goal candidates [103, 114], or to switch between exploring
new frontiers and revisiting known places modes [94, 120, 147]. Notwithstanding, place
revisiting occurs naturally when assuming the frontiers are located sparse enough in the
environment.

In contrast to frontier-based approaches, some active SLAM formulations allow the
identification of goal locations locally in the robot’s vicinity. However, note that de-
cisions will be optimal only locally and a short decision-making horizon may induce
wrong behaviors [91, 148]. This strategy is typical in DRL approaches [4, 55, 149], for
which local optimality is alleviated by network memorization. Following the idea that
evaluating larger neighborhoods would lead to more robust decisions, in [103] authors
use RRT-based paths to several configurations over the free space as the action set; and
in [22] the entire environment is considered under the umbrella of continuous-domain
optimization.

3.3.2 Utility Computation

The second and primary stage in modular active SLAM approaches focuses on evaluating
of each potential destination, in order to estimate the impact of executing the set of
actions required to reach it.

Functions to assess utility in literature range from simple distance cost functions to
complex multi-objective cost-utility functions. Naive utility formulations using just ge-
ometric or time-dependent functions often result in non-desirable behaviors [7,103,150],
since they do not properly capture the uncertainty in the belief. The exploration-
exploitation dilemma can be more effectively solved by quantifying the expected uncer-
tainty of the two target random variables: the robot location and the map. Typically,
the different objectives (e.g., traveling cost, mapping and localization uncertainty) are
aggregated into a single utility function, although there are multi-objective approaches
in which they are kept separate and Pareto optimal solutions are sought [151–153].
There is a plethora of metrics and the choice of which one to use mainly depends on the
selected way to represent the variables of interest. Metrics based on information theory
usually aim at OG maps, while those based on the theory of optimal design are more
suitable for Gaussian distributions. We review each choice below.

36 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

3.3.2.1 Naive Cost Functions

The simplest and first-broadly-used metrics are naive geometric functions, such as the
Euclidean distance to the goal location [135], the time required to reach it [121], or the
expected size of the are to visit [111, 133, 134]. In fact, the latter can be seen as an
approximation of the map’s entropy, which is strongly related to the number of known
cells in an OG map [93]. Since these metrics are computed over Euclidean or tempo-
ral spaces, they can be used regardless of the map representation chosen. Application
examples in literature include the combination of multiple geometric functions [40] or
their use in voxel maps [114, 123]. In semantic maps, geometric functions have been
successfully applied in order to avoid corridors in a building [40, 154] or to coordinate
multi-robot exploration limiting each robot’s working area [155]. Stachniss et al. [102]
show that combining distance and information-based functions results in better explo-
ration strategies, and this has since been a common approach, especially for multi-robot
configurations [156]. However, manual tuning to overcome discrepancies between the
multiple terms involved is needed [111,157].

3.3.2.2 Information Theory (IT)

The most common approach to assess utility in active SLAM uses information theory
(IT) to quantify the uncertainty in the joint belief state. Within it, there exist differ-
ent metrics that allow for such quantification, although all of them build on the same
concept: entropy. The notion of entropy was introduced by Shannon [158] and can be
defined as a measure of a variable’s uncertainty, randomness, or surprise; this is in fact
strongly related to its associated information [159]. The entropy of a random variable,
X, is defined as:

H (X) , E [− logP(X)] = −
∫
X
P(X) logP(X)dX , (3.10)

with E[·] taken w.r.t. X. Shannon’s entropy would later be generalized by Rényi [160],
although the latter is less frequent in active SLAM.

Early exploration strategies used only the map representation as the variable of
interest [121, 135, 161], thereby assuming no error in the robot localization. However,
soon after the first of these works emerged, it was observed that high uncertainty in the
robot state estimation leads to wrong expected map uncertainties [92]. The entropy of
the SLAM posterior after executing a candidate action can be computed as [102]:

H [P(x,m|h, ẑ,a)] , H [P(x|h, ẑ,a)]︸ ︷︷ ︸
robot’s H

+
∫
x
P(x|h, ẑ,a)H [P(m|x,h, ẑ,a)] dx︸ ︷︷ ︸

expected conditional map’s H

, (3.11)

3.3. Modular Approaches 37

where ẑ are the expected (ML) future measurements, which may be estimated using,
e.g., ray-casting techniques [89]. The above equation shows the dependence of the IT-
based utility functions on the beliefs. Therefore, contrary to naive cost functions, which
are formulated on temporal or Euclidean spaces, they are formulated over B.

The computation of the previous joint entropy is known to be intractable in gen-
eral [102]. To overcome this, most approaches resort to entropy approximations that
first compute utility of the two variables independently, and then combine them heuris-
tically [92,102,120,162]. Let us first consider the case of graph-based SLAM. The joint
entropy in Equation (3.11) can be now approximated by [103]:

H [P(x,m|h, ẑ,a)] ≈ H [P(x|h, ẑ,a)] +H [P(m|h, ẑ,a)] . (3.12)

The mismatch between the magnitudes of the addends above is the main drawback of
such approximation, calling for the addition of weighting parameters to balance the con-
tributions of the two terms [105,163]. Carrillo et al. [113] circumvent this by embedding
a metric of the robot’s uncertainty in a combined Shannon-Rényi utility function; a pop-
ular approach that also appears in [164]. Similarly, the expectation-maximization (EM)
algorithm [165] embeds the impact of robot’s uncertainty directly in a virtual map.

A similar approximation can be done for particle-filter SLAM, which represents the
belief over robot trajectories as a set of particles [9, 63, 101]. Now, the integral in
Equation (3.11) can be approximated by the mean of all possible solutions [102]:

H [P(x,m)] ≈ H [P(x|h, ẑ,a)] +
∑
i

wi H [P(mi|xi,h, ẑ,a)] . (3.13)

The first term in both Equation (3.11) and Equation (3.13) refers to the robot’s
state entropy, which can be computed as a function of the posterior covariance log-
determinant, assuming that it is an `-dimensional Gaussian distribution with covariance
Σr ∈ R`×`,

H [P(x|h, ẑ,a)] = 1
2 ln

(
(2πe)` det (Σr)

)
. (3.14)

On the other hand, the second term is the expected map’s entropy, and its computa-
tion depends on the representation chosen. For instance, in landmark-based maps it can
be computed in the same way as the robot’s entropy, under the same assumption [166].
For discrete metric maps, and assuming cells independent from each other, it can be
defined as [96]:

H [P(m|x,h, ẑ,a)] = −
∑
c∈m

θc log θc , (3.15)

38 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

with θc = P(c) being the occupancy probability of cell c. This entropy measure has been
used in both 2D [93, 162] and 3D OG maps [121, 145, 167]. Computation of the above
equation involves evaluating the entire map, and weighting parameters are required if
the grid resolution varies during exploration [102, 103]. More efficient approaches that
make entropy independent of the map’s size and resolution and that only require to
evaluate cells in the robot’s vicinity have been proposed in the context of particle-filter
SLAM [105, 163, 168]. Also, in semantic maps, the entropy can be computed as in
Equation (3.15), but considering the sum over the probabilities of a cell being of class c.

The most common metric to assess utility in active SLAM is not Shannon’s entropy
of the SLAM posterior, but its expected reduction. This utility function is known as
mutual information (MI) [92,98] and is defined as the difference between the entropy of
the actual state and the expected entropy after executing an action, i.e., the information
gain:

I(a) , H [P (x,m|h)]︸ ︷︷ ︸
current H

−E [H[P(x,m|h, ẑ,a)]]︸ ︷︷ ︸
expected H for candidate a

, (3.16)

where expectation is taken w.r.t. ẑ.

Kullback-Leibler divergence (KLD) or relative entropy [169] has also been used as
utility function. KLD measures the change in the form of a PDF (as MI), but also how
much its mean has translated [170]. It is defined as follows:

DKL (P1|P2) , E
[
log P1(x)

P2(x)

]
=
∑
x

P1(x) log P1(x)

P2(x)
, (3.17)

with P1(x) and P2(x) the prior and posterior distributions (as in MI) [171], or the
estimated and true posteriors assuming the latter can be somehow approximated [105,
172,173].

For OG maps, the three metrics described (entropy, MI, and KLD) ultimately rely on
counting the number of cells in a map, being thus discrete and ill-suited for optimization
techniques. To mitigate this issue, Deng et al. [174, 175] propose a differentiable cost-
utility function for both 2D OG and voxel maps that can be used with continuous
optimization methods (albeit the approach still assumes perfect robot localization).

In the context of information-theoretic planning, there exists a problem variation
in which the uncertainty of only a subset of variables is optimized. The motivation
comes from the fact that maximizing information of all variables does not always im-
ply maximizing that of the subset of interest. This problem variation has been re-
ferred to as focused active inference [176]. In general, focused active inference is more
computationally intensive than the standard case, since it requires marginalizing the
(posterior) Fisher information matrix via, e.g., Schur complement. Kopitkov and In-
delman [177, 178] present a method based on the matrix determinant lemma that does

3.3. Modular Approaches 39

not require the posterior covariance to calculate entropy considering both the unfocused
(entropy over all variables) and focused (entropy over a subset of variables) cases.

3.3.2.3 Theory of Optimal Experimental Design (TOED)

There exists a second group of utility functions built upon optimal design theory (TOED)
that tries to quantify uncertainty directly in the task space (i.e., from the variance
of the variables of interest). Unlike information-theoretic metrics that target binary
probabilities in the grid map, task-driven metrics apply to Gaussian variables. Following
TOED, a set of actions to execute in active SLAM will be preferred over another if the
covariance of the joint posterior is smaller, i.e., the posterior covariance matrix, Σ,
has to be minimized. In order to compare matrices associated to different candidates,
several functions —known as optimality criteria— have been proposed, such as the
trace (originally known as A-optimality) [179], its maximum/minimum eigenvalue (E-
optimality) [180], or its determinant (D-optimality) [181]. The latter is capable of
capturing the variance in all directions, and can be geometrically seen as the volume
of the uncertainty hyper-ellipsoid, assuming Gaussianity [182]. However, it was often
disregarded in active SLAM because its traditional formulation did not allow for checking
task completion and generated precision errors (det(Σ)→ 0 rapidly when there are low-
variance terms) [99, 170]. However, Carrillo et al. [89] show these problems can be
solved using Kiefer’s formulation of D-optimality [183], thus re-establishing the latter
as an effective measure of uncertainty for active SLAM. Furthermore, D-optimality is
the only criterion capable of capturing global uncertainty, i.e., all components of the
system can contribute equally to the measure of uncertainty. Other criteria are just
approximations of the above in which a single component has the potential to drive the
entire uncertainty measure [89,183,184].

On the basis of TOED, Kiefer [183] proposes a family of mappings ‖Σ‖p : R`×` → R,
parametrized by a scalar p:

‖Σ‖p ,
(1
`

trace(Σp)
) 1
p

, (3.18)

which can be particularized for the different values of p and expressed in terms of the
eigenvalues of Σ, (λ1, . . . ,λ`), by leveraging the properties of the matrix power:

‖Σ‖p =

(
1
`

∑̀
k=1

λpk

) 1
p

, if 0 < |p| <∞

exp
(

1
`

∑̀
k=1

log(λk)
)

, if p = 0
. (3.19)

40 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

In essence, utility functions are functionals of the eigenvalues of Σ. Kiefer’s infor-
mation function may be particularized for the boundary cases p = {0,±∞} and for
p = ±1, yielding four modern optimality criteria [184]:

• T -optimality criterion (p = 1): captures the average variance, computed as the
normalized trace of the covariance matrix (hence its name). Its computation is
fast, but a single element may drive the whole metric and thus perform similar to
Ẽ-opt [89]:

T -opt , 1
`

∑̀
k=1

λk . (3.20)

• D-optimality criterion (p = 0): measures the volume of the covariance hyper
ellipsoid. Its name comes from its classical formulation in which the covariance
determinant was used. Only this criterion captures global uncertainty and holds
the monotonicity property under absolute and differential representations [13]:

D-opt , exp
(

1
`

∑̀
k=1

log(λk)
)

. (3.21)

• A-optimality criterion (p = −1): captures the harmonic mean variance. It is
sensitive to outliers with values much smaller than the rest of the data, in contrast
to T -opt which just neglects them; and insensitive to extremely large ones.

A-opt ,
(

1
`

∑̀
k=1

λ91
k

)91

. (3.22)

• E-optimality criterion (p → ±∞): captures the radii of the covariance (hyper)
ellipsoid, approximating the uncertainty using a single eigenvalue. Despite its
computation is fast, this criterion tends to be too optimistic by underestimating
the covariance (for the case of the minimum eigenvalue).

E-opt , min(λk : k = 1, ..., `) , (3.23)

Ẽ-opt , max(λk : k = 1, ..., `) . (3.24)

Optimality criteria were first used in active SLAM by Feder et al. [91], where utility
was computed as the area of the covariance ellipses describing the uncertainty in the joint
posterior. Since then, many active SLAM methods based on TOED have been proposed,
mostly based on T -opt [21,99] and, recently, D-opt [4,120]. Even so, TOED criteria are
not as popular as IT approaches. Note that both the map and robot uncertainties must
be described by a covariance matrix Σ ∈ Rn×n, either by using a full covariance matrix
in landmark-based representations (i.e., n � `) or by including the effect of the map’s
uncertainty in Σr (and thus n = `) [185].

3.3. Modular Approaches 41

One of the most important assumptions in active SLAM is that uncertainty increases
as exploration takes place. However, the seminal work in [186] notes how monotonicity is
lost for some utility functions under certain conditions, concluding that only D-opt guar-
antees this property and is thereby the only appropriate utility function for this task.
Kim and Kim [187] and Rodŕıguez-Arévalo et al. [13] demonstrate, however, that rather
than on the utility function chosen, monotonicity depends on how the error and uncer-
tainty are represented. In [13], the authors prove that only differential representations
guarantee monotonicity for all utility functions. Under absolute representations, only
D-opt (and Shannon’s entropy, equivalently) retains this property, and only if rotation
is expressed using unit quaternions. In summary, representation of uncertainty is a key
issue in active SLAM, since certain representations do not guarantee its monotonicity
property during exploration, and thus may lead to incorrect decisions.

3.3.2.4 The Graphical Structure of the Problem

Quantification of uncertainty via scalar mappings of the covariance matrix may be a
computationally intensive task, mostly due to the fact that the covariance is a large and
dense matrix. Therefore, most works resort to reasoning over the Fisher information
matrix (FIM), i.e., the inverse of the covariance, which is generally sparser. Still, their
evaluation is expensive, especially for large state spaces. To circumvent this issue,
some works have proved that analyzing the connectivity of the underlying pose-graph
in active graph-SLAM is equivalent to computing optimality criteria. The link between
graph and optimum design theories can be traced back to Cheng [188], who related
the number of spanning trees of concurrence graphs with D-optimal incomplete block
designs. Khosoussi et al. [189] take this line of research further, showing that classical
D- and E-opt are related to the number of spanning trees of the SLAM pose-graph and
its algebraic connectivity, respectively, for the case of 2D graph-SLAM with constant
uncertainty along the trajectory. In [190] and [191], these results are extended to the
Rn × SO(n) synchronization problem, and T -opt is related to the average node degree
of the graph. Part of the work of this thesis is devoted to studying the general active
graph-SLAM problem formulated over the Lie group SE(n). In Chapter 4, we will show
the existing relationship between modern optimality criteria of the FIM and connectivity
indices.

The link between TOED and graph theory has been applied to coverage problems [23]
and multi-robot exploration [156]. In addition, forthcoming chapters of this thesis will
show applications to active visual SLAM, and to develop a stopping criterion (Chap-
ter 5).

The graph structure of the problem has also been recently exploited in conjunction
with IT utility functions. Kitanov and Indelman [192] relate the number of spanning
trees of the graph to Shannon’s entropy (which ultimately depends on the covariance

42 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

determinant) and its node degree to Von Neumann entropy. The latter has been also ap-
plied to the focused case, thus relating the graph topology to the marginalized FIM [193].

3.3.3 Action Selection and Execution

Once every possible destination has an associated utility value, the last stage of active
SLAM involves the selection of the optimal destination. This can be formulated as an
optimization problem w.r.t. the set of actions to reach every possible goal location,
cf. Equation (3.9). When the set of candidate destinations is discrete (and typically
consists in a handful of options), the solution of the optimization can be obtained via
enumeration [111, 135, 142]. For the case of TOED-based utility functions, it will be a
minimization or maximization problem depending on whether the covariance (Σ) or the
FIM (Φ) is analyzed. Since Σ , Φ91 and ‖Σ‖p = (‖Φ‖q)91 ∀p with q = −p (see proof
in Appendix B), the optimization problem can be defined as:

a? = arg min
a∈A

‖Σ‖p = arg max
a∈A

‖Φ‖q . (3.25)

where ‖ · ‖p refers to Kiefer’s optimality criteria, see Equation (3.18).

Information-based utility functions will seek to minimize entropy (or, equivalently,
to maximize MI). Following [103], the optimal set of discrete actions can be found as:

a? = arg max
a∈A

IG = arg min
a∈A

H [P(x,m|h, ẑ,a)] . (3.26)

In any case, after selecting the most informative destination, it all comes down to
navigating to it using, e.g., sampling-based planning methods as RRT [194], probabilistic
road maps (PRM) [43], or their asymptotically optimal variants [45]. Note that despite
selecting the optimal destination among a discrete set of candidates, the executed path
to reach it rarely represents an optimal solution for the original problem (3.9); this sub-
optimality is caused by the fact that the approaches we have seen so far decouple the
problem into first computing and evaluating a set of goal locations, and then computing
a path to one of these goals.

3.4 Learning-based Methods

Advances in deep learning have created new opportunities in using neural networks to
solve active SLAM; these techniques follow a completely different scheme, circumventing
the split into three stages that characterizes modular approaches. Usually, goal identifi-
cation is not required due to the chosen action set, and utility computation and selection
of the best action are both embedded in the network. In this section, we particularly

3.4. Learning-based Methods 43

SLAM

Sensor

data

Environment & Robot

Motion planning
Reward Goal

DRL decision-making

Control

commands

Training

Sensor

data

State

Figure 3.3: Workflow in DRL-based active SLAM.

focus on DRL methods for autonomous robotic exploration and discuss the design of
the state, action, and reward spaces, as well as the problems of partial observability,
generalization, and the necessity for training environments.

3.4.1 Deep Reinforcement Learning (DRL)

The first question that arose in the early work on learning-based active SLAM was
which type of learning was suitable for this decision-making problem, in which (i) agents
must directly learn from the interaction with the environment, (ii) the state may not
be fully observable, and (iii) policies have to generalize to other scenarios in which a
priori knowledge is nonexistent. Such premises soon led the community to explore DRL,
building on existing methods that attacked active SLAM with RL [195] and using neural
networks to represent policies or value functions. Within DRL, model-free techniques
have been the center of attention, although isolated approaches that combine them
with model-based learning in an end-to-end fashion do exist [196]. Methods based on
supervised learning can also be found in the literature [197,198], although they currently
represent a minority.

In contrast to model-based approaches, path planning is usually not required, decision-
making is embedded in the network, and the SLAM module only affects the agent during
training. Still, note that SLAM will be required during testing if the system is expected
to build a map of the environment and for some DRL configurations (e.g., if the net-
work requires the robot’s pose [199] or the map [116] as inputs, or for navigation [118])
See Figure 3.3. The computational effort in DRL approaches is mostly confined to the
training phase, while the testing phase reduces to a forward pass on the network. On
the downside, the behavior depends entirely on the model learned from training data,
thus limiting its generalization to novel operational conditions..

The great success of the work from Mnih et al. [200] boosted the research in model-
free DRL and several value- and policy-based methods emerged shortly after. The

44 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

behavior of deep Q-networks (DQN) [200] improves using the double [201] and double-
dueling [202] architectures. Instead of using a value function approximator, proximal
policy optimization (PPO) [203] directly maximizes the future expected rewards. Actor-
critic techniques combine both value-iteration and policy gradient methods, e.g., deep
deterministic policy gradient (DDPG) [204], asynchronous advantage actor-critic (A3C)
[205], and soft actor-critic (SAC) [206]. We refer the reader to [207, 208] and [209]
for a survey on the methods. Despite all these strategies were initially proposed for
different decision-making problems (e.g., video-games), they have been applied to robotic
exploration.

3.4.2 On the Reward Function Design and the Action Set

Tai and Liu [210] are among the first to employ DRL for robotic exploration in simple
simulation environments, extracting the next best actions to execute from raw sensory
observations using a 2-layer Q-network. Convergence towards policies valid in more
complex and previously unseen scenarios is achieved in [55, 211] with parallel architec-
tures. In any case, the works mentioned above use purely extrinsic reward functions
(i.e., by instrumenting the environment) that primarily address the obstacle avoidance
problem rather than active SLAM [4]. As a response, the notions of motivation and cu-
riosity [212] were exploited to design intrinsic rewards, giving origin to curiosity-driven
methods that motivate agents to visit unknown configurations [213]. Chen et al. [214]
and Chaplot et al. [115] propose holistic, open-source approaches that use a coverage
reward to explore complex 3D simulation environments. The detailed study in [214]
shows the benefits of pre-training and combining inputs from different sources.

Similarly, the idea of uncertainty minimization led to uncertainty-aware approaches.
This is the case of [56] that encourage the visit of high-covariance states, and [85, 149]
where the reward encodes the belief accuracy.Many of the DRL-based methods, including
all of the above, aim to directly generate optimal control commands, either discrete [214]
or not [199]. They represent end-to-end solutions in which the safe navigation task
is embedded into the network and therefore do not require planning and the SLAM
estimates.

True uncertainty metrics inherited from classic theories have also been introduced
in the reward function design, seeking more robust foundations. The T -opt of virtual
landmarks is used in [117] and the map’s MI is used in [116,118]. This thesis contributes
to incorporating the robot’s D-opt instead (Chapter 6). Agents trained under this new
perspective perform active SLAM in complex scenes, albeit only targeting location or
mapping uncertainties. Designing effective reward functions that account for both is
still an open problem. In addition, this new family of methods has promoted the use of
learning as a part of the solution rather than end-to-end, without deprecating, e.g., well-
established planning algorithms. Consequently, policies are easier to learn, generalize

3.4. Learning-based Methods 45

better and are transferable across platforms. In this vein, Niroui et al. [116] and Chen et
al. [117] employ DRL to extract the best candidate among previously-detected frontiers,
thereby creating a link with modular approaches. Li et al. [118] and Lodel et al. [215]
use nearby sampled locations instead, but they also leave the motion planning task
out of the scope of learning. Chaplot et al. [115] use different policies to infer long-
term (i.e.., frontiers) and short-term (i.e., control commands) goals, linked through a
model-based trajectory planner.

3.4.3 Partial Observability and Generalization

Partial observability and generalization are two inherent but often-forgotten concepts in
active SLAM. First of all, the uncertainty about the observations and actions taken, and
the limited observations make the problem not fully observable. Consequently, agents
are unable to distinguish their own true state based on single observations, and learned
policies are bound to be sub-optimal [209]. Mirowski et al. [211] alleviate this by ex-
panding the network inputs with previous observations and rewards. Hausknecht and
Stone [216] demonstrate that recurrent architectures can also handle partial observabil-
ity, teaching agents to learn about previous data on their own. Long short-term memory
units are used for robotic exploration in [116, 211, 214], and Karkus et al. [196] embed
the computation structure of the belief (and thus the history) in a recurrent neural
network. In general, networks directly use raw sensor data as input in both training
and testing phases [4, 55, 210], although some architectures assume the availability of
ground-truth information in training [115] (thus circumventing partial observability),
or require more complex inputs (e.g., the poses of the robot and frontiers [117], the
map [118], or both [116]).

The second element inherent to active SLAM is the lack of prior knowledge about
the environment. Learning policies that can be generalized to unseen scenarios is there-
fore crucial, and currently represents a major limiting factor of learning-based methods.
Over-fitting can be mitigated by expanding the sample space (e.g., using random start-
ing locations [56, 116], considering noise in the observations [217]) or by using sparser
network inputs, although the former significantly increases training time [209]. For ex-
ample, agents trained in [55,218] learn policies generalizable to real environments after
reducing sensory data to a sparse range input. Similarly, Shi et al. [57] specifically use
sparse range measurements to reduce the simulation-to-reality (sim-2-real) gap. Lodel
et al. [215] improve generalization by feeding the network with egocentric, limited obser-
vations; following [214]. Chen et al. [117] leverage graph neural networks, in which the
inputs are already compressed representations. The task of transferring trained agents
to real scenarios is still an open research problem, and few efforts have been made in
this direction [55,57,118].

46 Chapter 3. Active SLAM: Problem Definition and State-of-the-art

3.4.4 Training Environments

The use of DRL introduced a major challenge during training: the need of a simulation
environment to acquire data online. Unlike supervised methods, training with offline
data is not possible and real-world training seems infeasible. To overcome this problem,
some works use their own simplified simulation scenarios, thus limiting the network
inputs to ground-truth data or range perfect observations. To use more realistic data
that bridge the gap from simulation to physical robots, more complex simulators need
to be used.

Stage [219] is one of the simplest engines used in the literature [116], although it re-
stricts perception to two-dimensional bit-mapped environments. Gazebo [220] is a much
more complete simulator which allows for 3D simulations, realistic rendering, visual
sensors, noise modeling, etc. In addition, it is tightly integrated into the widespread
Robotic Operating System (ROS), which makes its use commonplace [4, 55, 210, 221].
CoppeliaSim/V-REP [222] also allows for online mesh manipulation, but it is not an
open-source solution and is less integrated into ROS, limiting its adoption. Combina-
tion of a physics engine (i.e., robot motion and sensor models) with a DRL framework
is not always straightforward. Zamora et al. [223] present a powerful framework by
integrating the RL toolkit OpenAI Gym [224] with ROS and Gazebo.

In contrast to the above platforms, initially designed for robotics simulations and
later adapted to DRL, there is a second family of simulators born in the age of AI. They
tend to prioritize training speed over the breadth of simulation capabilities. DeepMind
Lab [225] allows agents to move discretely in low-textured, game-like scenarios, and
provides access to a visual sensor and velocity. Habitat-Sim [226] takes a leap forward
by supporting physics simulation and different robot and visual sensor models. More
interestingly, it has the powerful capability of rendering simulation environments from
image datasets, e.g., Replica [227], Gibson [228] or MatterPort [229]. iGibson [230] also
provides fast visual rendering and physics simulation, and includes simulation of lidar
and optical flow sensors. AI2Thor [231] and ProcThor [232] provide a tool for rendering
and simulation of indoor houses in Unity, allowing to use of visual sensors too. Contrary
to the platforms mentioned in the previous paragraph, there is now a need to bridge the
gap between the simulators and robotics applications. The ROS ecosystem is already
integrated in [230], whereas [226] and [231] require the use of external libraries. Despite
their potential, none of these platforms has yet been used for DRL in the context of
active SLAM.

3.5. Summary and Discussion 47

3.5 Summary and Discussion

Active SLAM consists in actively controlling a robot such that it can estimate the most
accurate and complete model of the environment. This problem has been a topic of
interest in the robotics community for more than three decades, and is now receiving
renewed attention —also thanks to the novel opportunities offered by learning-based
methods. Despite the crucial role that active SLAM plays in many applications, the
disparity and lack of unification in the literature has prevented the research community
from providing a cohesive framework, bringing algorithms to maturity, and transitioning
them to real-world applications. In this chapter, we have taken a step toward this goal
by taking a fresh look at the problem and creating a complete survey to serve as a guide
for researchers and practitioners.

In particular, we have presented a unified active SLAM formulation under the um-
brella of POMDPs, highlighting the most common assumptions in the literature. Then,
we have discussed the modular resolution scheme, which decouples the problem into goal
identification, utility computation, and action selection. We have delved into each stage,
reviewing the most important theories and presenting state-of-the-art techniques. We
have also reviewed learning-based alternative approaches that have drawn great interest
and have undergone major advances in recent years.

May this chapter also serve as a prelude and motivation for the forthcoming chapters,
in which we will propose new state-of-the-art methods to solve active SLAM based
on novel techniques, such as spectral graph theory (Chapter 4) or deep reinforcement
learning (Chapter 6).

49

Chapter 4

Spectral Uncertainty
Quantification for Active
Graph-SLAM

Despite the existence of numerous and diverse active SLAM approaches, utility com-
putation through uncertainty quantification prevails in all of them. This is a complex
and time demanding step that often constitutes the bottleneck of modular approaches.
Throughout this chapter, we will study the opportunities that spectral graph theory
offer and how it can be leveraged to speed up uncertainty quantification during active
graph-SLAM; based on the idea of this uncertainty being closely related to the struc-
ture, or topology, of the underlying pose-graph. More specifically, we derive a theoretical
relationship between the well-established optimality criteria and the graph connectivity
indices, making it possible to quantify uncertainty in just a fraction of the time that
classical methods would require. This chapter is based on [3] and the theoretical results
of [7].

4.1 Introduction

Utility functions based on theory of optimal experimental design (TOED), or optimality
criteria, quantify uncertainty in the task space, i.e., directly mapping the expected co-
variance matrices to the real scalar space through their eigenvalues (see Section 3.3.2.3).
However, the manipulation (i.e., propagation, store and analysis) of these dense matrices
quickly becomes intractable in online active SLAM. For example, approaches that require
computing the determinant of the a posteriori covariance matrix are O(n3) complex in
general, with n the dimension of the full state. In an effort to lessen the computational
load, most works resort to the sparser Fisher information matrices (FIMs) [22] or use

50 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

sparsified representations [113,233]; but, even so, the use of TOED metrics is costly and
thus often disregarded in the literature in favor of faster information-theoretic metrics.

In active graph-SLAM, a different insight can be leveraged to quantify the estimates’
uncertainty. It can be intuitively linked to the amount and quality of the connections
in the underlying graph, i.e., its topology: a model of the environment with low un-
certainty necessarily implies a well-connected graph. In this chapter, we demonstrate
that, in active graph-SLAM, the expensive evaluation over the expected FIMs can be
approximated by analyzing the topology of the posterior pose-graphs. This approach re-
quires significantly fewer resources and facilitates the use of optimality criteria in online
methods and multi-robot configurations.

The idea of the topology of a graph being closely related to its optimality was already
noticed four decades ago, when Cheng [188] realized that, for incomplete block designs,
a graph with the maximum number of spanning trees is D-optimal; and thus related
two problems (from graph theory and TOED) that had always been viewed differently.
More recently, Khosoussi et al. [189] observed that certain classical optimality criteria in
active graph-SLAM are closely related to the connectivity of the underlying pose-graph.
In particular, they show the existing relationship between the number of spanning trees
of the pose-graph and the determinant of the covariance matrix of the SLAM system
(traditionally known as D-optimality), and that between its algebraic connectivity and
the covariance’s maximum eigenvalue; for 2D and assuming constant and isotropic vari-
ance through measurements. In [190], the authors extend the above relationships to the
case in which uncertainty evolves as the trajectory does. Given block-isotropic Gaus-
sian noise in the measurements, they relate the determinant of the covariance to the
determinants of the Laplacians of two pose-graphs, each weighted by the decoupled
rotational/translational inverse variance. Chen et al. [191] study graph-SLAM as the
synchronization problem over Rn × SO(n). They propose an approximation relation-
ship for the FIM’s trace (T -optimality) and two bounds on its determinant that, once
again, depend on the Laplacians of two weighted pose-graphs. In contrast to [190], they
assume isotropic Langevin noise for orientation and block-isotropic Gaussian noise for
translation.

Fast exploitation of the graph structure has been also recently transferred to the do-
main of information-theoretic belief-space planning. Kitanov and Indelman [192] prove
that the number of spanning trees is also a good approximation of the posterior entropy
—a reasonable fact since it ultimately depends on the covariance determinant as classi-
cal D-optimality. They also present a relationship between the graph’s node degree and
the Von Neumann entropy. Despite being faster, it fails to select the optimal actions in
some cases (just as T -optimality would).

Following all the above, instead of maximizing optimality criteria of the FIM, the
optimal set of actions in active graph-SLAM can be found more efficiently through

4.2. Preliminaries on Graph Theory 51

maximizing graph connectivity indices. Chen et al. [156] build a 2D multi-robot ac-
tive SLAM algorithm that achieves uncertainty minimization and information sharing
between agents thanks to the fast evaluation of the underlying pose-graphs topology.

However, all the aforementioned works have related specific classical optimality cri-
teria to certain connectivity indices in an isolated manner, also for specific/restrictive
SLAM configurations. In this chapter, on the basis of graph theory, differential models
and [189], we derive a general theoretical relationship between the FIM of a graph-SLAM
problem formulated over the Lie group SE(n), and the Laplacian matrix of the underly-
ing pose-graph. On top of that, we establish a strong link between the spectrum of both
matrices and relate optimality criteria of the FIM to graph connectivity indices. Con-
trarily to previous works, measurement noises are not restricted to be (block-)isotropic
nor constant, formulation is done over SE(n), and modern optimality criteria are used.
Note that these differences are key for active SLAM applications, since:

i) covariance is usually non-isotropic (i.e., variances may not be the same in all
directions for rotation/translation and may be cross-correlated), and it varies along
exploration;

ii) only differential representations maintain the monotonicity of the decision-making
criteria (see [13]); and

iii) the use of traditional criteria is not suitable for active SLAM.1

We validate the proposed relationships and analyze time complexity in several 2D and
3D datasets. On average, our method requires 10% of the time traditional computations
would, and the estimation error is only 2%. Besides, graph-based approximations always
maintain the trend of optimality criteria over time, making their use appropriate for
active SLAM.

4.2 Preliminaries on Graph Theory

A strict undirected graph is defined by the ordered pair of sets G , (V, E), where V =

{v0, ...,vn} is the set of vertices and E = {e1, ..., em} ⊂ { {vi,vk} | vi,vk ∈ V,vi 6= vk}
the set of edges. Their dimensions will be |V| = n and |E| = m. The adjacency matrix
of the graph, A ∈ {0, 1}n×n, indicate whether pairs of vertices are connected or not.
Each element aik will be 1 if the pair (vi,vk) is connected and 0 otherwise —note that
the diagonal will be zero. The degree matrix, D ∈ Nn×n, is a diagonal matrix in which

1The best known example is the possibility of a single element driving classical D-optimality to zero.
Also, the size of the FIM grows over time, so comparison of raw determinants of matrices with different
sizes is unfair [170].

52 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

each element is given by:

di,k ,

 deg(vi) if i = k

0 otherwise
, (4.1)

where deg(vi) is the degree of the i-th vertex, i.e., the number of other nodes it is
connected to. The incidence matrix, Q, shows the connections between vertices and
edges and can be defined as a concatenation ofm column vectors, each of them associated
to an edge:

Q = [q1, q2, ..., qm] ∈ {91, 0, 1}n×m. (4.2)

The column block associated to the edge eik ≡ ej , that connects vi and vk, will be
denoted as qj . All elements of qj will be zero except those associated to the vertices
incident upon ej which will be [qj]i = 9[qj]k = 1. The Laplacian matrix of G is a matrix
representation of the whole graph, and may be read as a particular case of the discrete
Laplace operator. It can be expressed in terms of Q as:

L , QQT = q1q
T
1 + q2q

T
2 + ... + qmqTm ∈ Zn×n. (4.3)

Or, more compactly, as:

L , QQT =
m∑
j=1

qjq
T
j =

m∑
j=1

Ej , (4.4)

where each generator Ej ∈ {91, 0, 1}n×n symbolize the connection between the pair
(vi,vk) through the edge ej . An element of the matrix diagonal will be 1 if it is
associated to the vertices, i.e., [Ej]i,i and [Ej]k,k; and 0 otherwise. Off-diagonal elements
will be 91 if the nodes are related, i.e., [Ej]ik and [Ej]k,i; and 0 otherwise.

For a weighted graph Gγ in which ẽj , (vi,vk, γik) with γj ≡ γik ∈ R, generalization
is straight-forward. The weighted Laplacian will be now given by:

Lγ ,
m∑
j=1

Ejγj =

9γik , if i 6= k, aik = 1

0 , if i 6= k, aik = 0∑n
q=1 γiq , if i = k

. (4.5)

Note that Equation (4.5) yields to (4.4) when γj = 1 ∀j. Also, Lγ is positive semi-
definite and singular, since Lγ1T = 0T .

4.2. Preliminaries on Graph Theory 53

4.2.1 Spectral Graph Theory

Most important graph connectivity indices come from the analysis of the Laplacian
spectrum, since it reflects how a graph is connected. Consider µ = (µ1,µ2, ...,µn) the
ordered set of eigenvalues of L and µ̃ = (µ̃1, µ̃2, ..., µ̃n) that of Lγ ; both ranked in
increasing order. In connected graphs, the Laplacian matrix has one zero eigenvalue
with unit eigenvector, i.e., µ1 = µ̃1 = 0 holds.

The simplest metric broadly studied in the literature is the sum of the Laplacian
eigenvalues [234–236]. The sum of the q-highest eigenvalues, Sq, is known to be bounded
by:

Sq ≤ |E|+
{
q+ 1

2

}
(4.6)

where
{a
b

}
, a!

b!(a−b)! . Equation (4.6) may be particularized for all the non-zero Laplacian
eigenvalues as [234,236]:

S =
n∑
k=2

µk = trace(L) =
∑
k

lkk = 2|E| = 2m (4.7)

being lkk the diagonal elements of L.

Since the traces of L and Lγ are proportional, as shown hereafter, the previous
metric can be easily generalized for a weighted graph.

Proof.

trace(Lγ) =
n∑
k=1

µ̃k =
n∑
k=1

l̃kk =
n∑
j=1

n∑
k=1

γjlkk

=
1
n

n∑
j=1

γj

n∑
k=1

lkk = γ̄
n∑
k=1

lkk

∝ trace(L)

where l̃kk are the diagonal elements of Lγ . QED

A second important index is the number of spanning trees, t(G), i.e., the number
of sub-graphs that are also trees with minimum number of edges and which set of
vertices equals that of the original graph. This index that measures the global reliability
of a network. Following Kirchhoff’s matrix-tree theorem (MTT), it is given by the
determinant of the reduced Laplacian matrix (after anchoring an arbitrary vertex), equal

54 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

to any cofactor of L:

t(G) , det(Lreduced) = cof(L) = 1
n

n∏
k=2

µk . (4.8)

The weighted MTT allows to compute the weighted number of spanning trees as:

t(Gγ) , cof(Lγ) =
1
n

n∏
k=2

µ̃k . (4.9)

The second smallest eigenvalue of L is also a crucial index, since its value reflects
whether it is disconnected [237]. It is also known as the algebraic connectivity and is
greater than zero only for connected graphs:

α(G) , min(µk : k = 2, ...,n) = µ2. (4.10)

Its generalization for weighted graphs is straight-forward.

Finally, the Kirchhoff index, K(G), measures the resistance between each pair of
vertices under the assumption that edges are unit resistors, and is defined by [238,239]:

K(G) , n
n∑
k=2

µ91
k . (4.11)

4.3 A General Relationship between the Graph Laplacian
and the Fisher Information Matrices

Consider a typical SLAM pose-graph (see Section 2.4.1) in which nodes encode robot
poses and edges the relative transformation between node pairs and its uncertainty, usu-
ally in the form of a FIM. Revisiting Section 2.1, each node will encode a transformation
in the form of:

Twi = exp (dwi
∧) Twi , (2.17 revisited)

where the perturbation is expressed w.r.t. the global frame, w. Taking the above as
starting point and following the formulation of Section 2.1.2, the relative transformation
of the j-th edge in the graph can be expressed as:

T ik = T 91
wi Twk = exp (dik

∧)T ik , (4.12)

4.3. A General Relationship between the Graph Laplacian and the FIM 55

assuming that measurements are Gaussian on SE(n),2 i.e., dik ∼ N (0, Σ̃ik) with Σ̃j ≡
Σ̃ik ∈ R`×` the measurement covariance matrix. Note that dik (and its associated
covariance) will be referenced to the i-th frame, as the mean transformation is perturbed
on the left.

The error term of each measurement can be defined from Equation (4.12) as the
difference between that single measurement, T ik, and the optimal estimate, T ik:

εj(x) ≡ εik(x) = ln
(
T 91
wiTwkT ik

91)∨ , (4.13)

with x = (Tw1, ...,Twn) the variables of interest. Inserting Equation (2.17) into the
above,

εj(x) = ln
(
T 91
wi exp (9dwi∧) exp (dwk

∧)TwkT ik
91)∨ . (4.14)

Using now the adjoint (see, e.g., [10]) to transform vectors from the tangent space around
one element to that of another, and the definition exp (AdAB) , A exp (B)A91, the
term inside the logarithm in Equation (4.14) becomes:

exp
(
9AdT 91

wi
dwi
∧
)

exp
(
AdT 91

wi
dwk

∧
)

exp (εj(x)
∧) , (4.15)

with ej(x) = ln(T 91
wiTwkT ik

91
)∨, and (T 91

wiTwkT ik
91
) small.

Finally, using the first-order approximation [12] of the Baker-Campbell-Haussdorf
formula for the product of exponential maps, the linearized error can be expressed as:

εj(x) ≈ AdT 91
wi
(dwk 9 dwi) + εj(x) . (4.16)

Or, equivalently, in matrix form,

εj(x) ≈ εj(x) 9AdT 91
wi

[
III` 9III`

]
δxj , (4.17)

with δxj = [dwi dwk]
T and III` the identity matrix of size `.

Recall now the pose-graph optimization problem posed in Section 2.4.1 and the
objective cost function to minimize:

F (x) =
m∑
j=1

εTj (x)Σ
91
j εj(x) . (2.43 revisited)

Inserting the linearized error function into the above and generalizing δxj to δx =

[dw1 ... dwn]T to account for all measurements, the maximum likelihood (quadratic)

2Note that here, n does not refer to the dimension of the set of graph vertices, as in the rest of
this chapter, but to the dimension of the Euclidean space in which the random variables of interests
(i.e., the robot poses) live; see Section 2.1. The same variable has been used momentarily for the sake
of readability and to remain consistent with related literature.

56 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

cost function will be:

F (x) ≈ F (x) 9
∑
j

εj(x)
T Σ̃

91
j AdT 91

wi
Ijδx+ 1

2
∑
j

δxTIj
TAdTT 91

wi
Σ̃
91
j AdT 91

wi
Ijδx (4.18)

= F (x) 9Zδx+ 1
2δx

TY δx , (4.19)

with Ij the 1-by-n selection block matrix, populated with zero blocks everywhere but
in the i-th and k-th columns, where [Ij]1,i = 9[Ij]1,k = III`.

The Fisher information matrix —or Hessian— of the entire system can be directly
extracted from Equation (4.18) and expressed as:

Y =
m∑
j=1

Y j =
m∑
j=1

Ij
TΣ91

j Ij , (4.20)

where the inverse covariance matrix of the relative movement, expressed in w, is Σ91
j =

AdT
T 91
wi

Σ̃
91
j AdT 91

wi
. Since we kept the perturbations δx in the global frame from Equa-

tion (4.17) on, the need arises to express their covariance in that frame as well. This
formulation over Lie groups is analogous to the differential one (see, e.g., [64]), but
embedding the equivalent measurement Jacobian in the covariance rather than in Ij .

At this point, we can leverage graph theory and write the selection matrix as:

Ij = qTj ⊗ III` , (4.21)

where ⊗ denotes the Kronecker product and qj is the column vector that identifies the
vertices incident upon the j-th edge (see Section 4.2). Then, using the transpose and
mixed-product properties of the Kronecker product (see Appendix C), the full FIM can
be expressed in terms of the pose-graph topology,

∴ Y =
m∑
j=1

Y j =
m∑
j=1

Ej ⊗ Σ91
j , (4.22)

where the generator Y j ∈ Rn`×n` is the information matrix of the entire system associ-
ated to the j-th edge; and Ej = qjq

T
j are the Laplacian generators, see Equation (4.4).

The left- and right-multiplication of the covariance matrices of the measurements
by Ij confers Y a very special block-sparsity pattern that, in fact, conveys that of the
Laplacian of the underlying pose-graph. Figure 4.1 contains a pose-graph toy example,
for which the information matrix, two of their generators and its Laplacian are shown.
Figures 4.1(d) and 4.1(e) illustrate the equivalence between the block-sparsity patterns
of Y and the Laplacian matrix, L.

Two special cases of Equation (4.22) arise, in which it is possible to directly link
the full information matrix to the (weighted) Laplacian rather than to its generators;

4.3. A General Relationship between the Graph Laplacian and the FIM 57

v1
v2

v3

v6

v7

v8

e9
v10

v5

v4v9
e8

e1
e2

e3

e4

e5e6

e7

e10

(a) Example graph.

3 6 9 12 15 18 21 24 27 30

nz = 36

3

6

9

12

15

18

21

24

27

30

(b) Y 1 (odometry edge).

3 6 9 12 15 18 21 24 27 30

nz = 36

3

6

9

12

15

18

21

24

27

30

(c) Y 10 (loop closure).

3 6 9 12 15 18 21 24 27 30

nz = 270

3

6

9

12

15

18

21

24

27

30

(d) Full FIM, Y .

1 2 3 4 5 6 7 8 9 10

nz = 30

1

2

3

4

5

6

7

8

9

10

(e) Graph Laplacian, L.

Figure 4.1: For an example 2D pose-graph (a), sparsity patterns of two of the FIM
generators (b–c), the full FIM (d), and the graph Laplacian (e). The pose-graph
contains one loop closure and n = m = 10. Non-zero matrix elements are depicted

with black dots.

cf. Equation (4.4). The first one corresponds to the situation of constant uncertainty
through measurements (i.e., a constant covariance matrix or FIM, Φ∀j); a common
assumption in related literature [189], albeit unrealistic except for some exploratory tra-
jectories. Under this hypothesis, by leveraging the associative property of the Kronecker
product, Equation (4.22) becomes:

Y =
m∑
j=1

Ej ⊗Φ = L⊗Φ , if Φj = Φ ∀j . (4.23)

The second case considers variable uncertainty along exploration. Since any positive
semi-definite matrix can be considered trivially upper-bounded by a diagonal matrix
with its largest eigenvalue as diagonal terms, it holds:

Σj � λj1 III` ⇔ Φj � ρj` III` = (λj1)
91 III` , (4.24)

with (λj1, ...,λj`) the ordered set of eigenvalues of Σj and (ρj1, ..., ρj`) that of the FIM
Φj , Σ91

j ; ranked in increasing order.

58 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

Using the previous bound, the associative property of the Kronecker product, and
Kiefer’s optimality criteria, Equation (4.22) particularizes to:

Y �
m∑
j=1

(‖Φj‖∞ Ej)⊗ III` = Lγ ⊗ III` , if Φj � ‖Φj‖∞ III` ∀j , (4.25)

where Lγ is the Laplacian of the pose-graph in which each edge is weighted with Ẽ-
optimality, i.e., γj = ‖Φj‖∞. As with the weighted Laplacian, Equation (4.25) yields
to (4.23) for the case that γj = 1 ∀j.

4.4 Transfer to the Spectral Domain: Optimality Criteria

Consider now (ρ1, ..., ρ`) to be the ordered set of eigenvalues of Φ, and (0 = µ1,µ2, ...,µn)
that of the Laplacian matrix L, again ranked in increasing order. According to the spec-
tral properties of the Kronecker product (see Appendix C):

eig
(
L⊗Φ

)
= µk ρb , with k = 1, ...,n

b = 1, ..., ` . (4.26)

Thus, under the assumption of constant uncertainty, optimality criteria applied to
Y can be obtained by applying it separately to the reduced Laplacian and Φ. For the
different p-values, it will be:

‖Y ‖p =

‖L‖p ‖Φ‖p , if 0 < |p| <∞

‖L‖p ‖Φ‖p ‖Φ‖
9 1
n
p , if p = 0

. (4.27)

Proof. For 0 < |p| <∞,

‖Y ‖p =
(

1
n`

n∑
k=2

∑̀
b=1

(µkρ̄b)
p

) 1
p

=

(
1
n`

n∑
k=2

µpk
∑̀
b=1

ρ̄pb

) 1
p

=

(
1
n

n∑
k=2

µpk

) 1
p
(

1
`

∑̀
b=1

ρ̄pb

) 1
p

= ‖L‖p‖Φ̄‖p ,

and for p = 0,

‖Y ‖p = exp
[

1
n`

n∑
k=2

∑̀
b=1

log(µkρ̄b)
]
= exp

[
1
n`

(
`

n∑
k=2

log(µk) + (n 9 1)
∑̀
b=1

log(ρ̄b)
)]

= exp
[

1
n

n∑
k=2

log(µk) +
n 9 1
n`

∑̀
b=1

log(ρ̄b)
]

4.4. Transfer to the Spectral Domain: Optimality Criteria 59

= exp
[

1
n

n∑
k=2

log(µk)
]

exp
[

1
`

∑̀
b=1

log(ρ̄b)
]19 1

n

= ‖L‖p‖Φ̄‖p‖Φ̄‖
9 1
n
p .

Note that in all cases the zero eigenvalue of the Laplacian has been removed, equivalent
to anchoring an arbitrary vertex. QED

Equation (4.27) leads to the following proportionality relationship,

∴ ‖Y ‖p ∝ ‖L‖p ∀p . (4.28)

The above equation allows to shift the traditional approach of computing optimality
criteria over Y , to a new strategy where they are computed over L. Given that new
optimality criteria will be functionals of the reduced Laplacian eigenvalues, the spectral
graph theory presented in Section 4.2.1 can be leveraged. Hence, under the assumption
that every measurement has the same covariance, optimality criteria of Y (or Σ) can be
expressed in terms of the pose-graph topology as:

T -opt(Y) = A-opt(Σ)91 ∝ T -opt(L) = d , (4.29)

D-opt(Y) = D-opt(Σ)91 ∝ D-opt(L) = (nt(G))
1
n , (4.30)

A-opt(Y) = T -opt(Σ)91 ∝ A-opt(L) = n2/K(G) , (4.31)

E-opt(Y) = Ẽ-opt(Σ)91 ∝ E-opt(L) = α(G) , (4.32)

with d , 2m/n the average degree of the graph, n the number of nodes and m the
number of edges. Note that Equation (4.30) is consistent with the results presented
in [189] for the particular case they studied in which ` = {2, 3} and D-opt is defined in
a traditional way [181].

On the other hand, the following inequality is satisfied for the case of variable un-
certainty, as expressed in Equation (4.25):

∴ ‖Y ‖p ≤ ‖Lγ‖p , if γj = ‖Φj‖∞ ∀p . (4.33)

Proof. Since Y and Lγ are symmetric, positive semi-definite and Y � Lγ ⊗ III`×` (Equa-
tion (4.25)), then (Weyl’s Monotonicity Theorem [240, p. 26]):

‖Y ‖p ≤ ‖Lγ ⊗ III`×`‖p .

For 0 < |p| <∞,

‖Y ‖p ≤
(

1
n`

n∑
k=2

∑̀
b=1

(µ̃k1)p
) 1
p

=

(
1
n

n∑
k=2

µ̃pk

) 1
p

= ‖Lγ‖p ,

60 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

and for p = 0,

‖Y ‖p ≤ exp
[

1
n`

n∑
k=2

∑̀
b=1

log(µ̃k1)
]
= exp

[
1
n`
`

n∑
k=2

log(µ̃k)
]
= ‖Lγ‖p ,

where (µ̃1, µ̃2, . . . , µ̃n) are the eigenvalues of Lγ . QED

Thus, we are first weighting the graph edges individually with Ẽ-opt and then com-
puting the desired optimality criteria over the weighted graph Laplacian. The bound in
Equation (4.24) and the fact that Ẽ-opt ≥ T -opt ≥ D-opt ≥ A-opt ≥ E-opt make Equa-
tion (4.33) hold for all p. If we consider isotropic noise, the bound in Equation (4.24)
turns into equality and so does (4.33). However, for non-isotropic (nor diagonal) co-
variance matrices, (4.33) represents an extremely conservative bound for criteria other
than the one used as weight. Interestingly, for p = ∞ the bound indeed particularizes
to Ẽ-opt(Y) . Ẽ-opt(Lγ) because (i) the highest eigenvalue is weakly affected by off-
diagonal elements and (ii) absolute values of the off-diagonal terms in SLAM FIMs are
generally smaller than those on the main diagonal.3

Instead of the loose upper-bound that Equation (4.33) offers in general, an ap-
proximation relationship can be obtained by following the strategy of weighting the
pose-graph with the same optimality criterion to be estimated:

∴ ‖Y ‖p ≈ ‖Lγ‖p , if γj = ‖Φj‖p ∀p . (4.34)

The goodness of approximation, in general, will depend on:

i) the number of off-diagonal elements in both the FIMs of the edges, Φj (i.e., cross-
correlations) and the full FIM, Y (i.e., loop closures);

ii) the values of the off-diagonal terms in Φj , relative to those in the main diagonal;
and

iii) how every criterion accounts for the off-diagonal values. In this sense, equality will
emerge for T -opt as it neglects off-diagonal terms, and E-opt(Lγ) will represent a
lower-bound, unlike Ẽ-opt(Lγ), although more affected by off-diagonal terms.

Finally, particularizing Equation (4.34) for the different p-values,

Ẽ-opt(Y) . Ẽ-opt(Lγ) , (4.35)

T -opt(Y) = T -opt(Lγ) = d γ , (4.36)

D-opt(Y) ≈ D-opt(Lγ) = (n t(Gγ))
1
n , (4.37)

3The inequality a . b denotes a tight bound between a and b. It fulfills the bound condition a < b
and the approximation relationship a ≈ b.

4.5. Experimental Validation 61

E-opt(Y) & E-opt(Lγ) = α(Gγ) , (4.38)

where Gγ now denotes the pose-graph weighted with the same criterion to be computed,
γ its average weight and Lγ its weighted Laplacian. A-opt was not presented since the
complexity of the weighted Kirchhoff index makes its use worthless. Also, computation
of the Laplacian determinant to evaluate the number of spanning trees quickly becomes
intractable for large graphs, as well as it generates low precision for small values. The
logarithmic determinant avoids under/overflow and allows to compute Equation (4.37)
efficiently via:

D-opt(Y) ≈ n
1
n exp [log(t(Gγ))/n] . (4.39)

4.5 Experimental Validation

In this section, we conduct several experiments to validate the theoretical relationships in
Equations (4.29) to (4.32) and Equations (4.35) to (4.38). Pose-graph datasets from [241]
and [242], which are publicly available,4 have been used for 2D and 3D experiments,
respectively. Each sequence in the datasets includes a pose-graph, in either g2o or
toro format. They have been optimized using Ceres [243] as if it were a global bundle
adjustment at the end of the sequence. Each of them contains the following information
after preprocessing:

• Nodes: index, absolute pose (i.e., transformation w.r.t. w).

• Edges: index 1, index 2, type of constraint (odometry, loop closure), relative
transformation, FIM associated to it.

To compare traditional and graph-based approaches, we simulate the construction of
the pose-graph as if the robot were performing active SLAM. That is, at each time step,
a new node and its corresponding constraints are added to the graph and optimality
criteria is computed using both Y and L. Experiments were performed on an Intel Core
i9 CPU. For reproducibility, the code used in the experiments has been published in the
following repository.

4.5.1 Constant Uncertainty Case

First, we consider the uncertainty to be constant along the trajectory like in the first
hypothesis of the previous section. Suppose the standard deviations of the linear move-
ment to be σx = 0.1 m and σy = 0.2 m, and that of the orientation σθ = 0.063 rad.5 If

4https://lucacarlone.mit.edu/datasets/
5These values have been selected to be realistic and consistent with the configuration of the datasets

used, but they are only an example. Different variances would yield equivalent qualitative results.

https://github.com/JulioPlaced/active_graph_slam

62 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

Figure 4.2: Complete (black) and reduced (red) trajectories of the FRH dataset,
where loop closures are depicted with blue dots. The starting point is denoted with a

star, and arrows indicate the direction of the path.

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

Figure 4.3: Sparsity pattern of the full FIM in the FRH dataset.

we only consider X and Y cross-correlated with Pearson coefficient 0.36, the information
matrix of any edge will be:

Φj = Φ =

100 918 0
918 25 0
0 0 250

 ∀j . (4.40)

We used a reduced trajectory of the Freiburg University Hospital (FRH) 2D dataset,
assigning the previous information matrix to each edge (which is non-isotropic and in
which the translational variances are correlated). Figure 4.2 shows the complete (black)
and reduced (red) trajectories of this sequence, which consists of 1316 nodes and 1485
constraints (thus 170 corresponding to loop closures). The reduced trajectory is purely
exploratory and contains the path before the first loop closure occurs. Also, this figure
contains the loop closure constraints (blue dots), which can be also spotted in the
sparsity pattern of the full FIM that Figure 4.3 illustrates.

Figure 4.4(a) shows the evolution of T -,D-,A- and E-opt as the pose-graph grows;
using the estimation-theoretic (blue) and graphical (red) facets of the problem. Curves
overlap for every criterion, proving that the relationships in Equations (4.29) to (4.32)

4.5. Experimental Validation 63

(a) Constant information matrix.

0 50 100 150 200 250 300 350 400
0

1000 Ẽ-opt(Σ)

E-opt(L)−1Ẽ-opt(Σ̄)

0 50 100 150 200 250 300 350 400
0

2

4

T-opt(Σ)

A-opt(L)−1 T-opt(Σ̄)

0 50 100 150 200 250 300 350 400

0.05

0.10 D-opt(Σ)

D-opt(L)−1 D-opt(Σ̄)(n−1)/n

0 50 100 150 200 250 300 350 400

0.0075

0.0100 A-opt(Σ)

T-opt(L)−1 A-opt(Σ̄)

No. of nodes

O
p
ti
m
al
it
y
cr
it
er
ia

(b) Constant covariance matrix.

Figure 4.4: Optimality criteria of the information/covariance matrix (blue) and the
Laplacian (red), in the reduced FRH sequence with constant uncertainty.

hold and, moreover, that the proportionality constants derived in Equation (4.27) are
consistent —despite not necessary for active SLAM.

The time consumed per step by both approaches appears in Figure 4.5; light colors
represent the raw values while dark ones are the moving average. This figure clearly
shows the advantage of computing ‖L‖p‖Φ‖p (red) over ‖Y ‖p (blue), especially as the
size of the pose-graph grows. For very small n, computing ‖Y ‖p can be faster than
analyzing the four different weighted graphs, but the difference in these cases is on
the order of milliseconds. Studying computational complexity, computing optimality
criteria for L requires O(n3) +O(`3) while for Y it requires O(`3n3), omitting lower
order terms, being O(·) a lower bound, n the number of nodes in the graph and ` the
dimension of the state vector (3 in this dataset). Notably, as the FIM dimension grows,
building Y requires considerably more resources compared to creating G.

An equivalent analysis can be done when edges share a constant covariance matrix,
Σj = Σ̄ = Φ̄

−1 ∀j, with the subtle difference that Equation (4.28) now becomes (see
proof in Appendix B):

‖Σ‖p = ‖Y −1‖p ∝ ‖L−1‖p = (‖L‖−p)−1 . (4.41)

Figure 4.4(b) contains the results for Ẽ-,T -,D- and A-opt criteria of Σ computed with
both methods.

4.5.2 Variable Uncertainty Case

Consider now the case in which the FIMs of the edges are no longer constant. Revisiting
Equation (4.33), one first needs to construct a graph weighted with γj = ‖Φj‖∞ and then

64 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

Figure 4.5: Time consumed at each step (in seconds) to compute optimality criteria
of the FIM (blue) and the Laplacian (red), in the reduced FRH sequence with constant

uncertainty.

evaluate the desired criterion over the graph Laplacian. In this experiment, the whole
trajectory and the original FIMs contained in FRH dataset have been used, inasmuch
as it is tractable despite being computationally intensive. Also, note that the sparsity
structure of the FIMs is similar to Equation (4.40). Figure 4.6(a) contains the resulting
Ẽ-,T -,D- and E-opt for the full information matrix (blue) and the weighted Laplacian
(red). The selected bound indeed limits ‖Y ‖p ∀p, though it is an extremely conservative
one for p other than ∞, for which Equation (4.35) holds during the entire sequence.

Figure 4.6(b) shows the results in the same dataset using the approximation from
Equation (4.34) instead. Blue and red curves are now much closer to each other; over-
lapping for T-opt, and also during certain parts of the trajectory for the other criteria.
Besides, the trend of the two curves is the same (i.e., either both increase or decrease);
a property that holds in all studied datasets and key for active SLAM —otherwise we
could be wrongly detecting an information gain/loss. Further experiments have been
carried out using the MIT Killian Court and Intel Research Lab 2D datasets. Analo-
gous results to those seen in FRH dataset have been obtained, and they are presented
in Figures 4.6(c) and 4.6(d), respectively.

In order to prove the proposed relationships hold and that are not dependent on the
dimension of the estimation vector, we have evaluated both methods in the 3D Parking
Garage dataset. The original dataset contains 1661 nodes and 6275 constraints. How-
ever, the amount of loop closure edges has been arbitrarily reduced for this experiment,
making Y more sparse and simplifying the computational complexity to compute its
optimality criteria. The trajectory is depicted in Figure 4.7. The sparsity pattern of Y
appears in Figure 4.8, showing the existence of numerous loop closures. Analogously to
the previous experiments, the comparison between computing ‖Lγ‖p and ‖Y ‖p is shown

4.5. Experimental Validation 65

(a) FRH, γj = ‖Φj‖∞. (b) FRH, γj = ‖Φj‖p.

(c) MIT, γj = ‖Φj‖p.

0 200 400 600 800 1000 1200
0

5
×1012

Ẽ-opt(FIM)

Ẽ-opt(Lw)

0 200 400 600 800 1000 1200
0

1

×1010

T-opt(FIM)

T-opt(Lw)

0 200 400 600 800 1000 1200

500

1000 D-opt(FIM)

D-opt(Lw)

0 200 400 600 800 1000 1200

0.025

0.050 E-opt(FIM)

E-opt(Lw)

No. of nodes

O
p
ti
m
al
it
y
cr
it
er
ia

(d) Intel, γj = ‖Φj‖p.

Figure 4.6: Optimality criteria of the full FIM (blue) and the Laplacian (red) weighted
with ‖Φj‖∞ (a), and ‖Φj‖p (b–d); for different datasets.

Figure 4.7: Trajectory of the Garage dataset, where loop closures are depicted with
blue dots. The starting point is denoted with a star.

in Figure 4.9(a). Once again, the curves are approximately equal during the entire tra-
jectory despite evaluating a 3D pose-graph. Figure 4.9(b) shows the time difference in
the 3D dataset. Behavior is equivalent to that seen in Figure 4.5, although now appears
in a log-linear plot and the difference grows up to 102 seconds in the end of the sequence.
Within the context of active SLAM this would imply a difference of more than one and
a half minutes for each decision made.

Since it is hard to visually capture the exact difference between the curves presented
given their similarity, we also present quantitative results and their analysis. Table 4.1

66 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

Figure 4.8: Sparsity pattern of the full FIM in the Garage dataset.

(a) Optimality criteria. (b) Time (s).

Figure 4.9: Optimality criteria of the full FIM (blue) and the Laplacian (red) in the
Garage 3D dataset. Also, the time required per step to compute them.

contains the median percentage errors (∆) between computing optimality criteria over
Y and using the spectral approximations. In addition, we include some descriptive
attributes of each of the datasets (e.g., the number of nodes, the average node degree).
This table contains the results for all the previously mentioned datasets, but also for
Freiburg building 079 and MIT CSAIL datasets (2D) and for some EuRoC sequences
(3D) [244]. In order to extract the pose-graphs in the latter, they have been processed
with ORB-SLAM3 [245]: MH01 and V101 in monocular mode, V202 in stereo inertial,
and V101 to V103 in stereo multi-map.

The results denote that differences between computing ‖Lγ‖p and ‖Y ‖p following
Equation (4.34) are indeed very low, and even indistinguishable in some cases. It is worth
to mention one more time that, regardless of the absolute error values, the uncertainty
trend is always maintained; a key aspect for the use of this approach in active SLAM.
T -optimality is perfectly computed in all cases, showing numerical errors only (in the
order of 1096 or less) and proving that equality in Equation (4.36) holds. Error in the
case of Ẽ-optimality is akin (0.3% on average and being nearly zero in most datasets);
this criterion is insensitive to elements outside the main diagonal when they are lower
than those on it. However, for MIT, FR079 and CSAIL the error is not negligible: we
attribute it to certain isolated measurements in these datasets with FIMs several orders

4.5. Experimental Validation 67

T
ab

le
4.

1:
Pe

rc
en

ta
ge

er
ro

r(
m

ed
ia

n)
in

es
tim

at
io

n
of

op
tim

al
ity

cr
ite

ria
us

in
g

th
e

gr
ap

h
La

pl
ac

ia
n

in
st

ea
d

of
th

e
fu

ll
FI

M
.A

lso
,t

he
ac

cu
m

ul
at

ed
tim

e
re

qu
ire

d
to

co
m

pu
te

bo
th

ap
pr

oa
ch

es
(in

m
in

ut
es

)
an

d
th

e
tim

e
re

du
ct

io
n

ac
hi

ev
ed

.

D
at

as
et

A
pp

ro
xi

m
at

io
n

E
rr

or
T

im
e

(m
in

)

n
m

d
∆
Ẽ

-o
pt

∆
T

-o
pt

∆
D

-o
pt

∆
E

-o
pt

t
(‖
Y
‖ p
)

t
(‖
L
γ
‖ p
)

∆
t

M
IT

80
7

82
7

2.
1

2.
76

%
∼

0%
0.

16
%

3.
53

%
13

.7
5

1.
96

85
.7

%

FR
07

9
98

9
12

17
2.

4
0.

43
%

∼
0%

7.
15

%
5.

33
%

26
.5

0
3.

07
88

.4
%

C
SA

IL
10

45
11

71
2.

2
0.

11
%

∼
0%

1.
68

%
1.

05
%

33
.9

0
2.

73
91

.9
%

In
te

l
12

27
14

81
2.

4
∼

0%
∼

0%
5.

85
%

7.
19

%
63

.2
9

7.
46

88
.2

%

FR
H

13
16

14
85

2.
2

∼
0%

∼
0%

0.
76

%
0.

49
%

12
1.

77
5.

42
95

.6
%

M
H

01
(m

on
oc

ul
ar

)
37

6
54

4
2.

9
∼

0%
∼

0%
0.

74
%

1.
49

%
4.

22
0.

56
86

.6
%

V
10

1
(m

on
oc

ul
ar

)
26

4
41

5
3.

1
∼

0%
∼

0%
0.

13
%

3.
27

%
1.

01
0.

14
84

.9
%

V
10

1-
10

3
(s

te
re

o-
m

ul
ti)

32
2

36
9

2.
3

∼
0%

∼
0%

0.
40

%
3.

65
%

2.
21

0.
30

86
.1

%

V
20

1
(s

te
re

o-
in

er
tia

l)
33

7
59

8
3.

5
∼

0%
∼

0%
0.

79
%

0.
05

%
2.

65
0.

16
94

.0
%

G
ar

ag
e

16
61

26
15

3.
1

0.
01

%
∼

0%
6.

21
%

7.
55

%
15

49
.9

11
.7

0
99

.2
%

M
ea

n
-

-
-

0.
34

%
∼

0%
2.

38
%

3.
36

%
-

-
90

.1
%

68 Chapter 4. Spectral Uncertainty Quantification for Active Graph-SLAM

of magnitude larger than the rest, and with extremely high off-diagonal elements (also
orders of magnitude); perhaps due to incorrect behaviors of the SLAM algorithm. In
any case, when these measurements are corrected, or when we use a modern SLAM
system as in the EuRoC sequences, errors drop to zero. Besides, the upper-bound in
Equation (4.35) is satisfied whenever the error is non-zero. Unlike the above two, the
smallest eigenvalue is much more sensitive to off-diagonal terms (both cross-correlations
and loop closures), even when they are small. The estimation error of E-optimality is
the highest (3.4%), also due to the numerical complexity of precisely computing the
smallest eigenvalue of high-dimensional matrices. Contrary to Ẽ-optimality, a lower-
bound is now satisfied; see Equation (4.38). D-optimality subtly inherits the same
behavior since it takes into account all eigenvalues, showing an average approximation
error of 2.4%.

In order to better understand the variations in the goodness of the approximations
(see Section 4.4), we have conducted a brief ablation study on the variation of the
eigenvalues. Put in other words, we have tried to answer the following question: How do
cross-correlations in the constraints and the number of loop closures affect the results?
The study demonstrates that the approximation errors for Ẽ-, D- and E-optimality
(i.e., ∆Ẽ-opt, ∆D-opt and ∆E-opt) increase only slightly as the amount of loop closures
does. On the other hand, density of the FIMs of the edges slightly affects Ẽ- and D-
optimality but strongly alters ∆E-opt. This can be in fact observed in some sequences
where Φj are dense and absolute values of the off-diagonal terms are close to those in
the main diagonal. As an example, see the results of ∆E-opt for the Intel dataset in
Table 4.1 and Figure 4.6(d). Even in these unusual (or unrealistic) cases, the error levels
remain moderately low and make the use of spectral computations worthwhile.

In addition, Table 4.1 contains the total time required to compute modern optimality
criteria with both approaches and the reduction achieved using the Laplacian. These
computations require, in one case: building the full FIM and computing its optimality
criteria; and in the other case: building 4 different weighted graphs (one for each crite-
rion), analyzing their connectivity and computing optimality criteria equivalences. To
make a fair comparison, both methods are evaluated under the same conditions, and
eigenvalue computations leverage fast decomposition techniques. On average, in just
10% of the time that traditional computations over the FIM would require, optimality
criteria of the weighted Laplacian yield approximations that maintain the same trend
and have 2% error.

4.6 Summary and Discussion

This chapter has demonstrated that TOED-based uncertainty quantification in active
graph-SLAM formulated over SE(n) can be efficiently accomplished by analyzing the

4.6. Summary and Discussion 69

topology of the underlying pose-graph.

First, we have derived a theoretical relationship between the Fisher information
matrix, commonly used to reason in active graph-SLAM, and the Laplacian matrix of
the underlying pose-graph. Then, we have transferred this relationship to the spectral
domain, linking modern optimality criteria to graph connectivity indices. Thereby laying
the foundations of topological active SLAM, or spectral active SLAM. Furthermore, we
have validated these relationships using several pose-graph datasets and shown that
results equivalent to classical methods can be obtained in just a fraction of the time.
On average, approximations with 2% error can be computed in only 10% of the time by
exploiting the graphical structure of the problem.

The work in this chapter raises a number of new research questions, such as how to
expand the relationships to complete SLAM graphs or to information-theoretic metrics.
Transferring this theoretical knowledge to practical applications is also a promising field,
given the potential benefits. And that is the main motivation for the next chapter. Based
on the fast computation of optimality criteria, Chapter 5 addresses online topological
active SLAM and the (often-overlooked) problem of identifying task completion.

71

Chapter 5

Online Spectral Active SLAM

Currently, existing works that study topological active SLAM, or spectral active SLAM,
are predominantly theoretical and usually restricted to particular configurations or sim-
pler subproblems (e.g., active localization, measurement selection). This could be at-
tributed to their novelty, or conceivably due to the entrenched nature of classical methods
in the robotics research community. This chapter goes a step further towards demon-
strating the usefulness of these novel techniques (and, specifically, the relationships
derived in Chapter 4) by presenting two open-source, end-to-end systems that employ
the connectivity of the posterior pose-graphs to make optimal decisions online. We em-
phasize the comprehensive scope and public availability of these algorithms, in order to
widespread their use, allow benchmarking and further development. The first method
reasons over dense 2D map representations, whereas the second system uses sparse 3D
landmark-based maps. A thorough experimental evaluation demonstrates that not only
these methods, but topological utility functions in general, yield decisions equivalent to
using classical optimality criteria in a fraction of the time. This part of the chapter is
based on [5] and [7].

Furthermore, we present a third application of spectral techniques in the field of
active SLAM. We propose a novel stopping criterion following the insight of monitor-
ing the evolution of optimality criteria over time and leveraging the fast computation
that spectral methods provide. We seek to stimulate this (often-overlooked) field of
research and aim to stress the importance of task-driven stopping criteria toward fully
autonomous robotic exploration. This last section of the chapter is based on [6].

5.1 Spectral Active SLAM Using Occupancy Grids

This section presents a novel lidar-based active SLAM system that achieves fast decision-
making using the connectivity of the a posteriori pose-graphs as utility function. This

72 Chapter 5. Online Spectral Active SLAM

SLAM

Gazebo / Real World Robot

Lidar

Robot TF Tree

OG Map

Lidar

Graph Decision Maker

ROS
NavigationVelocity

Commands

Navigation
Goal

Hallucinate
Pose-graph

Pose-graph with
FIMs Estimate

FIMs
Build weighted

Pose-graph

Select
D-optimal
Frontier

Detect Frontier
Points

Cluster &
Filter

Frontier detector

Compute
path

Figure 5.1: Overview of the proposed active SLAM system.

is an end-to-end approach that encompasses, among others, SLAM, path planning and
decision-making. Simulation experiments demonstrate, first, that the proposed approach
for predicting the expected pose-graphs and quantifying their utility outperforms other
state-of-the-art open source methods; and second, that exploiting the graph topology
leads to actions equivalent to evaluating optimality criteria in a much more efficient
manner. This complete framework for autonomous exploration has been released in the
Active graph-SLAM repository.

5.1.1 Method

The approach consists of four main modules, the first of which deals with the estimation
of the robot location and the construction of a map of the environment from raw laser
measurements (SLAM). The next three modules correspond to the three stages of mod-
ular approaches (see Section 3.3). Figure 5.1 shows the four modules of this approach
and illustrates the interaction between them and the simulation environment.

5.1.1.1 SLAM Backbone

The association of lidar measurements and the construction of the pose-graph (i.e., front-
end) is handled by Open Karto [119], and the graph optimization (i.e., back-end) by
g2o [66]. Therefore, this subsystem outputs a graph representation of the robot states,
in which nodes encode robot poses and edges their relative transformation and the
associated Fisher information matrix (FIM). The Karto-SLAM algorithm also builds an
occupancy grid (OG) map representation and periodically updates it to maintain its

https://github.com/JulioPlaced/active_graph_slam

5.1. Spectral Active SLAM Using Occupancy Grids 73

consistency. The resolution of the grid is 5 cm and the graph optimization uses Gauss-
Newton algorithm. Other relevant parameters of the SLAM algorithm are: minimum
travel distance 0.2 m, minimum travel heading 0.17 rad, loop search distance 8 m.

5.1.1.2 Stage I: Identification of Goal Candidates

First of all, potential locations to visit are recognized using frontier detector algorithms
over the OG (i.e., points that lie between known and unknown regions). Similarly
to [111], two frontier detectors based on rapidly-exploring random trees (RRT) are used,
acting on the local and global maps respectively. These frontier points are then fused
with those detected by the Canny edge detection algorithm, which are usually more
stable. After discarding old candidates, the remaining points are clustered using the
mean shift algorithm (bandwidth of 1.5 m), storing the cluster centroids only to restrain
complexity. In addition, candidate frontiers are also discarded if: (i) they lie in occupied
cells of the map, (ii) they are very close to the robot (Euclidean distance below 0.25 m),
or (iii) the map information in the frontier’s neighborhood is extremely low. The latter
aims at deleting isolated unknown cells in the OG that could be wrongly detected as
frontiers, and builds upon the fact that entropy can be efficiently approximated by the
number of unknown cells in an OG map [96]. Thus, if the unknown cells within a 1 m
radius represent less than 15% of the total amount of cells, the frontier is discarded.

5.1.1.3 Stage II: Computing the Posteriors and their Utility

Given a finite set of candidate locations, the utility of each of them can be computed
using spectral graph theory (see Section 4.4). For ease of understanding, the process
has been further broken down into the following steps:

i) Compute a feasible path to every candidate.

ii) Hallucinate the existing pose-graph along each path, thus creating a number of
graphs equal to the number of frontiers.

iii) Weight the edges of each candidate graph edges according to the desired criterion.

iv) Evaluate the connectivity of each candidate weighted graph.

Therefore, for every frontier, we first compute the path to reach it using a global
planner (Dijkstra’s algorithm). Then, the existing pose-graph the SLAM algorithm gen-
erates is expanded to include the effect of such path. To do so, we add nodes randomly
distributed along the predicted trajectory (the longer the path the greater number of
nodes) and one final node at the frontier’s location. This procedure evaluates one single
hypothesis per frontier, although it has not been considered a critical issue. Future work

74 Chapter 5. Online Spectral Active SLAM

will aim to study the effect of predicting multiple hypothesis of the posterior graph. All
these new graph vertices are connected sequentially through odometry constraints, as-
suming they are affected by a constant transition Gaussian noise defined by the following
covariance matrix,

Σodom =

 0.04 0.001 0
0.001 0.04 0

0 0 0.008

 . (5.1)

Figure 5.2(a) contains an example of the above procedure for a given frontier, f1. The
SLAM graph (nodes depicted as red dots and edges as blue lines) is expanded towards
f1 (magenta star). In this case, two new nodes (yellow dots) are added to the graph,
connected by two odometry factors (green lines). In addition, Figure 5.2(b) contains
the sparsity patterns of the graph Laplacian before (red) and after (blue) augmenting
the graph. In this case, only diagonal and near-diagonal blocks have been added. Note
that the red blocks overlap the blue blocks.

Nevertheless, the covariance in Equation (5.1) only accounts for the uncertainty in
the robot state posterior. To later allow a balance between exploration and exploitation,
we leverage the insight of discounting information from Carrillo et al. [113]. We adapt
this concept to operate in the task space (i.e., uncertainty) rather than in the infor-
mation space (i.e., entropy). Besides, instead of discounting from the map’s entropy
the information value of visiting a region with high localization uncertainty as in [113],
our approach builds upon the idea of penalizing the uncertainty in the robot location
if no new areas are visited. The information matrix of the j-th edge of the augmented
pose-graph will have the form:

Φodom
j = Φodom 9

(1
1 9 α

)
Φodom , (5.2)

where Φodom = (Σodom)91 and α = 1 + 1
σ , being σ is a parameter that encodes the

novelty of the regions to visit. More specifically, it is computed as the percentage
of unseen area expected to be observed in the OG map in the node’s vicinity (1.5 m
radius). In practice, it will hold that Φodom ≤ Φodom

j < 2 Φodom. In contrast to [113],
our approach to predict uncertainty takes into account the whole pose-graph instead
of just the action pose-graph, thanks to the fast computation that graph connectivity
indices will provide, and makes Φj neither block-isotropic nor constant. In fact, it will
depend on the candidate actions, the future expected measurements and the map.

In addition to odometry constraints, we consider the occurrence of loop closures. If
any of the predicted nodes is located near other vertices of the SLAM graph (Euclidean
distance less than 2 m), we consider the possibility of a loop closure between them.

Let nk denote the node that represents the last known position of the robot, nc a
loop closure candidate (both from the SLAM graph) and np a node in the hallucinated

5.1. Spectral Active SLAM Using Occupancy Grids 75

f1

(a) Hallucinated graph G1.

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(b) Laplacian of G1.

f2

(c) Hallucinated graph G2.

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

(d) Laplacian of G2.

Figure 5.2: Example of the graph hallucination process towards two different frontiers
(a,c), and the sparsity patterns of the expected graph Laplacians, (b,d). In images (a)
and (c), nodes and edges of the SLAM pose-graph are shown in red and blue, while
those of the hallucinated graph are depicted in yellow and green; respectively. Also,
frontiers are shown as magenta stars. Images (b) and (d) contain the sparsity patterns
of the Laplacians of the SLAM graph (red) and the hallucinated pose-graph (blue).

Note that red elements are overlapped and belong to both Laplacians.

graph. If there is a minimum overlap of 15% between the area previously sensed from nc

and that expected to be sensed from np, we add a loop closure constraint between them.
This check avoids adding reobservation constraints, e.g., between oppositely oriented
node pairs that satisfy the distance constraint but would not close a loop. The FIM
associated to these edges will have the form:

Φlc
j = P(lc) · ∆Φnk,nc ·ψ , (5.3)

76 Chapter 5. Online Spectral Active SLAM

where P(lc) ∈ [0, 1] is the loop closing probability, dependent on the amount of struc-
tured space around the overlapped region (i.e., occupied cells in the OG in the same
neighborhood in which σ was evaluated). Also, ∆Φnk,nc is the absolute information
difference between the last known node and the candidate’s, and ψ ∈ (0, 1] is the nor-
malized number of nodes included in the loop. Thus, Equation (5.3) will motivate
revisiting areas with much higher (or lower) information, and will discourage reobserva-
tions between nearly consecutive nodes. Figures 5.2(c) and 5.2(d) show an example of
loop closure prediction, and the consequent effect on the Laplacian of the hallucinated
graph.

Finally, we compute the utility for all candidate locations using D-optimality crite-
rion; the fact that it captures uncertainty in all directions (see Section 3.3.2.3) motivates
the choice. Since the relative FIMs of every edge in the posterior graphs have been al-
ready estimated, weighting the edges with γj = ‖Φj‖0 is straight-forward. At this point,
the utility of each graph will be simply given by (4.37). The comparison among can-
didates will reveal the optimal weighted pose-graph and thus the optimal future robot
state. Although the utility function renders simple, i.e., U = D-opt(Lw), it is worth
noting that it implicitly accounts for:

i) the uncertainty in the robot state, including the expected information loss due to
odometry noise (exploration) and the expected gain after closing a loop (exploita-
tion);

ii) the uncertainty in the map representation, measured as the expected surface to
be sensed; and

iii) the expected cost of traveling to each destination and the complexity of the path.

5.1.1.4 Stage III: Action Selection and Execution

Last stage deals with selecting the optimal destination via enumeration, and the execu-
tion of the planned path towards it. The optimal frontier, f?, will be given by:

f? = arg max
f

D-opt(Lγ(f)) , (5.4)

where Lγ(f) is the weighted Laplacian of the posterior pose-graph for frontier f . More
information and configuration specifics for this module can be found in the project
repository.

5.1.2 Experiments

The proposed method has been tested in a ROS-Gazebo simulation framework. The
robot used is an omnidirectional ground platform equipped with a laser sensor with 180°

5.1. Spectral Active SLAM Using Occupancy Grids 77

field of view, 5 m range and 1500 beams in each scan. The maximum linear and angular
velocities of the robot are 0.2 m/s and 0.8 rad/s, respectively. Additional configuration
parameters can be found in the project repository. The robot has been deployed on a
slightly modified version of Willow Garage office environment, which is about 2550 m2

(≈ 56× 45 m). Relevant changes on this scenario include converting the scenario into
an enclosed environment and adapting its corridors to the robot’s size to make them
accessible

The experiment consisted of autonomously exploring as much of the environment
as possible in 30 minutes, and was run on an Intel Core i9-10900K CPU @ 3.70GHz
and a Nvidia GeForce RTX 3070 GPU. The CPU handled most of the calculations
(e.g., Gazebo physics simulation and SLAM) and the GPU was used for visualization
purposes and for the most expensive and repetitive computations (e.g., laser sensor
simulation and neighborhood evaluation).

In order to benchmark our method, we used five other agents representing some tra-
ditional and some state-of-the-art publicly available approaches. For a fair comparison,
all agents share SLAM, frontier detection and navigation modules, and differ only in the
decision-making approach:

(RND-F) Only for comparison purposes, we greedily select random goals among the
candidates. The results of this agent are highly variable and strongly depend on
the behavior of the frontier detector.

(CLS-F) Closest frontier selection based on the total Euclidean distance of the path.

(RRT) RRT exploration [111] is the simplest agent that reasons about the optimal
frontier; it employs a cost-utility function in which utility encodes an approximate
measure of the expected map entropy.

(SH-RE) Exploration based on Shannon-Rényi entropy [113]: this method combines the
expected uncertainties in the map and the robot pose posteriors via the Shannon-
Rényi entropy. First, it computes the Shannon entropy of the map and then
corrects it using the uncertainty in the robot’s location (via D-optimality criterion).

(DOPT) Analogous to the method described in Section 5.1.1, but naively computing
D-optimality by evaluating the full FIM instead of the weighted Laplacian.

(S-DOPT) The method described in Section 5.1.1 and which calculates D-opt using
spectral graph theory.

Table 5.1 contains a quantitative comparison between all agents. Experiments were
repeated four times to obtain statistically consistent results, so the table shows the mean
and, where appropriate, standard deviation. We present relevant metrics to compare

78 Chapter 5. Online Spectral Active SLAM

T
able

5.1:
C

om
parison

of
different

m
ap

and
graph

m
etrics

after
30

m
inutes

of
exploration

for
the

six
agents.

R
esults

include
the

m
ean

and
standard

deviation
over

four
trials.

T
he

best
results

am
ong

the
four

m
ain

agents
are

in
bold.

M
etric

A
gent

R
andom

C
losest

R
R

T
[111]

SH
-R

E
[113]

D
-opt

Spectral
D

-opt

M
ap

Size
(m

)
36
×

33
45
×

28
36
×

25
35
×

20
26
×

28
30
×

30

A
rea

(m
2)

1143
±

82
1245

±
347

843
±

65
695
±

39
704
±

60
840
±

75

C
overage

(%
)

23.5
±

1.7
27.6
±

2.6
22.3

±
2.2

16.1
±

0.8
14.4
±

0.7
20.0
±

1.7

R
M

SE
(m

)
0.53
±

0.17
1.41
±

0.30
0.37
±

0.07
0.22

±
0.07

0.26
±

0.05
0.30
±

0.09

G
raph

optim
.

11
1

9
11

11
18

G
raph

n
1477

±
146

1346
±

46
1307

±
45

1044
±

23
1067

±
70

1527
±

38

d
2.54
±

0.13
2.77
±

0.03
2.56
±

0.05
2.40
±

0.03
2.60

±
0.05

2.54
±

0.03

log
tγ
(G

)·10 −
4

1.16
±

0.10
1.20
±

0.09
1.03
±

0.04
0.81
±

0.02
0.85
±

0.06
1.22

±
0.02

τ
(G

)·10 2
5.57
±

0.85
7.66
±

0.31
6.05
±

0.41
4.76
±

0.34
6.59

±
0.39

5.73
±

0.19

λ
2 ·10 4

0.74
±

0.35
0.17
±

0.06
0.61
±

0.11
1.64
±

0.57
1.34
±

0.45
2.07

±
0.88

T
im

e
T
d
m
(%

)
−

−
5.2
±

0.7
33.7
±

2.8
28.3
±

1.5
3.2
±

0.8

5.1. Spectral Active SLAM Using Occupancy Grids 79

their performance, both in terms of the map and the pose-graph built during explo-
ration. Most of the metrics are common in the related literature, but others represent
a novel form of evaluation. On the one hand, this table shows results for the map size,
the area explored, the coverage (defined as the percentage of explored area), the max-
imum root mean squared error (RMSE) found in the map, and the number of graph
optimizations performed due to loop closures. On the other hand, we provide several
metrics that assess the quality of the pose-graph, namely: the number of nodes (n) and
the average node degree (d), the weighted tree connectivity, log tγ(G), the normalized
tree connectivity [190], τ (G) , log (t(G)) / ((n− 2) log(n)), and the normalized Fiedler
value (λ2). Besides, this table includes the percentage of time spent on decision-making
(Tdm). For every metric described except RMSE and time, higher is better.

Predictably, selecting the closest candidates results in building the largest maps and
high coverage; at the cost of the highest RMSE. The (CLS-F) agent is not concerned with
exploiting the known parts of the environment, which is reflected in the absence of loop
closures. The low normalized Fiedler value demonstrates the existence of isolated areas
that make the graph nearly disconnected. This fact can also be seen in the absence
of inner edges in Figure 5.3(e). (RRT) performs significantly better than (CLS-F).
The exploration strategy of this agent leads to more accurate maps and slightly better
connected graphs, thanks to the exploitation of known spaces. However, this exploitation
is not controlled; it occurs naturally as the robot travels across widely spaced frontiers
in the map. Besides, the heuristic nature of (RRT) speeds up the decision-making
process, taking only 5% of the total time. In contrast, (SH-RE) expends one-third of
the available time on decision-making; which leads to the exploration of much smaller
areas in the same time horizon —almost half that of any other agent. The map is
extremely accurate and the pose-graph is well connected, although these results should
be considered carefully, as it is easier to maintain better estimates (and connectivity)
when the region explored is small.

Naively computing D-opt results in a similar behavior, demonstrating that combining
map and location uncertainties directly in the FIM (see Section 5.1.1) can perform just
as well as doing so in utility [113]. In addition, while (SH-RE) appears to focus mainly
on map refinement, our decision-making module strikes a balance between the map
and the pose-graph (note how the best graph metrics in Table 5.1 are in the last two
columns). Finally, our method reports a map almost as accurate as that of (SH-RE) and
(DOPT), but 1.4 times larger thanks to the small amount of time spent on decision-
making. In fact, there is an order of magnitude reduction in time over the previous
agents (consistent with the results reported in Chapter 4), and it is even faster than the
heuristic method (RRT). Furthermore, the graph is better connected than in any other
method; even (SH-RE) and (DOPT), which are evaluated on a smaller area. The node
density, the Fiedler value and the weighted tree connectivity are by far the highest in
(S-DOPT). Note that d and τ (G) are higher in other methods, e.g., (RRT), but these

80 Chapter 5. Online Spectral Active SLAM

metrics only reflect the presence of many uninformative edges between contiguous nodes
rather than a good connectivity throughout the graph; as will be shown in Figure 5.3.
Overall, (S-DOPT) strikes balance between exploring the most of the environment and
maintaining low uncertainty estimates, outperforming all other approaches evaluated.

Figure 5.3 contains, on the one hand, examples of the maps and pose-graphs gen-
erated during the experiment by the different agents, plotted on top of a complete
map of the environment for visualization purposes (first and third rows); and, on the
other hand, circular representations of the pose-graphs (second and fourth rows). These
circular plots place all the pose-graph nodes and their odometry constraints on a cir-
cumference, so that the loop closure edges to traverse it. All edges are colored according
to their weight, after normalization across agents: darker colors correspond to lower
information values and thus higher uncertainty. These plots reinforce the numerical
findings in Table 5.1. However, it is important to note note that they only represent one
of the most indicative experiments performed by each agent. Therefore, they should
be interpreted with caution, especially for the random agent, where there is greater
variability.

The map produced by (CLS-F) is indeed broad (see Figure 5.3(b)), although the er-
ror in the estimates and the drift soon accumulate due to the lack of exploitation. This is
also reflected in the absence of inner connections in Figure 5.3(e). (RRT) outperformed
the previous, building a better structured graph and a more precise map. Still, certain
regions remained weakly connected, e.g., bottom of Figure 5.3(c), and the few connec-
tions between distant nodes in the graph carried little information (i.e., dark colors).
Maps and pose-graphs built by (SH-RE) and (DOPT) are considerably more accurate
and dense, albeit limited to an extremely small part of the environment. Consequently,
most nodes and edges are clustered near the robot’s starting point. These are the first
two methods that demonstrate a high density of inner and informative connections. Our
approach strikes a balance between all the previous, offering a large and consistent map
while maintaining a well-distributed and dense set of graph connections. Figure 5.3(l)
shows how edges are widely distributed throughout the graph and connect distant nodes
with high information values (i.e., brighter colors). Figure 5.3 also serves as evidence
that the high values of d and τ (G) in (RRT) correspond to almost consecutive and low
information edges (cf. Table 5.1).

Figure 5.4 presents the evolution over time of T-, D- and E-opt, for the same ex-
periment as in Figure 5.3. Only the results for the following four agents are shown in
this figure: (RRT), in orange, (SH-RE), in green, (DOPT), in blue, and (S-DOPT), in
red. The plots in the first two subfigures confirm that (DOPT) and (S-DOPT) perform
similarly, as do (SH-RE) and (RRT). Additionally, (RRT) reaches a permanent regime
(especially in D-opt). The third subfigure shows that (DOPT) and (S-DOPT) signifi-
cantly outperform (SH-RE) and (RRT). And this is a key fact, since the main difference
between the two pairs is that the former relies on the method proposed in Section 5.1.1

5.1. Spectral Active SLAM Using Occupancy Grids 81

(a) (RND-F) map. (b) (CLS-F) map. (c) (RRT) map.

(d) (RND-F) pose-graph. (e) (CLS-F) pose-graph. (f) (RRT) pose-graph.

(g) (SH-RE) map. (h) (DOPT) map. (i) (S-DOPT) map.

(j) (SH-RE) pose-graph. (k) (DOPT) pose-graph. (l) (S-DOPT) pose-graph.

Figure 5.3: Maps and pose-graphs generated by each agent after 30 minutes of au-
tonomous exploration (first and third rows). The complete unknown map of the en-
vironment is depicted in the background for the ease of comparison. Also, circular
representations of the respective pose-graphs (second and fourth rows). The edges in
the circular graphs are colored by weight (normalized); darker edge colors depict less

informative constraints.

82 Chapter 5. Online Spectral Active SLAM

0 200 400 600 800 1000 1200 1400 1600

1

2

3

T
-o
p
t

×103

0 200 400 600 800 1000 1200 1400 1600

0.8

1.0

1.2

D
-o
p
t

×104

0 200 400 600 800 1000 1200 1400 1600

No. of nodes

0.0

0.1

0.2

0.3

0.4

E
-o
p
t

RRT

SHRE

Naive D

Graph D

Figure 5.4: Evolution of T-, D- and E-opt of the FIM during the exploration process
of (RRT), in orange, (SH-RE), in green, (DOPT), in blue, and (S-DOPT), in red. For

all optimality criteria, higher is better.

to predict the pose-graph and its weights. Combining the map and location uncertain-
ties directly in the task space (i.e., the edge FIMs) performs better than the heuristic
rules of (RRT) and the Shannon-Rényi entropy formulation. The last plot shows the
evolution of E-opt, a metric strongly linked to λ2. The highest and lowest values are
obtained with (S-DOPT) and (RRT), respectively; which is consistent with the results
in Table 5.1.

We performed a final experiment to demonstrate that using the pose-graph topology
to estimate D-opt is equivalent to the traditional computations. To this end, in the same
experiment (i.e., same frontier candidates, SLAM estimates, etc.), we simultaneously
evaluated D-opt using (DOPT) and (S-DOPT) and found that the errors in estimating
D-opt ranged from 1 to 4%, with an average of 2.55% over the entire 30-minute episode.
Despite this error, both methods selected the same optimal goal candidate in all cases.

5.2 Spectral Active Visual SLAM Using 3D Sparse Maps

Given the excellent performance of the method presented in the previous section, it has
been extended to use a state-of-the-art visual SLAM algorithm. This section contributes
an active visual SLAM system that exploits the topology of the underlying pose-graph to
identify D-optimal actions over affordable time horizons. From the accurate sparse map

5.2. Spectral Active Visual SLAM Using 3D Sparse Maps 83

ORB-SLAM2

Gazebo / Real World Robot

RGB-D Images

Robot TF Tree

Sparse Map

Lidar

Tracking
Status

Graph Decision Maker

ROS
NavigationVelocity

Commands

Navigation
Goal

Hallucinate
Pose-graph

Pose-graph with
Hessians

Recovery
Module

Estimate
Hessians

Build weighted
Pose-graph

Select
D-optimal
Frontier

SLAM

Build
Octo Map

Detect
Frontiers

Project
Grid Map

Frontier detector

Figure 5.5: Overview of ExplORB-SLAM.

and trajectory estimation provided by ORB-SLAM2 [125], we design a decision-making
mechanism that balances between exploration and exploitation principles. Again, this
framework has been made publicly available in the ExplORB-SLAM repository, aiming
to pave the way for reproducible research in this area.

5.2.1 Method

ExplORB-SLAM consists of several modules, which are shown in Figure 5.1 and de-
scribed in detail below. The whole system is built within a ROS framework, which fa-
cilitates the communication between the modules and allows the connection to Gazebo
and real platforms.

5.2.1.1 SLAM Backbone

This fundamental module builds on ORB-SLAM2 [125], one of the state-of-the-art al-
gorithms in visual SLAM. It leverages the use of ORB [246] features within an accurate
bundle adjustment (BA) optimization framework that minimizes the reprojection error
of the estimated landmarks in order to refine their 3D position and the pose of the
agent. BA is a well-known technique in the SLAM community due to its accuracy, and
modern hardware has accelerated its execution time. However for large map sizes, BA
is still a prohibitively expensive algorithm to run at video frequency. For this reason,
ORB-SLAM only performs BA at a lower rate than the video frequency using a subset of
the received images, so called keyframes, that have high visual innovation with respect
to the rest of the map.

An interesting property of BA is its sparsity pattern. With a simple study of its
structure and its Hessian layout, one can realize that it has a sparse block-structure,

https://github.com/JulioPlaced/ExplORB-SLAM

84 Chapter 5. Online Spectral Active SLAM

which can be also considered as a graph connecting keyframes to the observed land-
marks. To enhance the computational efficiency of the algorithm, the landmarks can
be marginalized out using the Schur complement, thus obtaining the reduced camera
system whose Hessian only connects keyframes that have common observations. The
corresponding graph is also simplified, forming the so called pose-graph, in which the
vertices represent only keyframes and the edges represent the relative pose between pairs
of connected keyframes. However, ORB-SLAM only builds this simplified graph when
it needs to correct a loop. To reduce the computational burden, it uses an even sparser
version of the pose-graph, the essential graph. The peculiarity of this graph lies in the
fact that it only connects keyframes if they share a minimum number of observations.
Thus, keyframes with few landmarks in common will not be connected, making the
graph sparse.

In order to perform decision-making later on, it was necessary to implement some
changes to ORB-SLAM. The most important one is to extract the pose-graph and the
FIMs1 associated to the relative transformation between vertices (i.e., keyframes), in
order to build the required weighted pose-graph.

In a separate thread, we construct the camera-point Hessian of the SLAM system
using the Gauss-Newton approximation to the least squares problem, i.e., the Jacobians
of the reprojection error as in a BA [247]. This Hessian matrix will have the following
form:

HSLAM =

Hc Hcp

HT
cp Hp

 , (5.5)

where Hc and Hp are the blocks that define the information about the robot poses and
the map points, respectively; and Hcp the correlation between them. Since we want to
reason over pose-graphs, the map points have to be marginalized. The reduced Hessian
matrix can be computed using the Schur complement as:

Hred
SLAM =Hc 9Hcp H

91
p HT

cp . (5.6)

The Figures 5.6(a) and 5.6(b) show the sparsity patterns of the Hessian before and after
the marginalization, for an example case with 6 poses and 25 map points. To further
sparse the Hessian, and thus the pose-graph, edges whose connected vertices do not
share a minimum number of observations are pruned —just as in the essential graph.
Figure 5.6(c) shows the sparsity pattern of the Hessian after this operation. This matrix
is labeled as Hprun

SLAM .

Conveniently, the pruned reduced Hessian is sufficient to define the pose-graph topol-
ogy and the constraints, i.e.,Hprun

SLAM itself contains enough information to construct the

1Throughout this section, we will use the terms FIM and Hessian matrix interchangeably, since they
are equivalent when evaluating the latter at the maximum likelihood estimate.

5.2. Spectral Active Visual SLAM Using 3D Sparse Maps 85

(a) Full Hessian. (b) Reduced camera Hessian. (c) Pruned reduced camera Hes-
sian.

(d) Pose-graph Laplacian. (e) Pose-graph.

Figure 5.6: Sparsity patterns of the Hessian and Laplacian matrices in a toy example
with 6 poses and 25 map points. From top left to bottom right: SLAM full Hessian
(HSLAM), reduced Hessian before (Hred

c) and after (Hprun
c) pruning connections with

less than 3 observations in common, Laplacian matrix and resulting weighted pose-
graph.

weighted pose-graph needed to compute Equation (4.37). On the one hand, the block-
sparsity pattern of Hprun

SLAM defines the structure of the graph, and will therefore define
the block-sparsity pattern of the Laplacian matrix. Compare Figure 5.6(d) with Fig-
ure 5.6(c). On the other hand, the FIMs of the relative transformations between nodes
(needed to compute the edge weights) will be given by the diagonal blocks of Hprun

SLAM .
These blocks, however, describe uncertainty in the global reference frame, e.g., the k-th
diagonal block, [Hprun

SLAM]k, denotes the uncertainty of the transformation between the
first reference frame and the k-th. An edge in the pose-graph should encode the uncer-
tainty in the relative transformation between the pair of nodes that edge connects. The
relative uncertainty between a pair of nodes can be computed from the global uncer-
tainty in a recursive fashion. Consider the FIM of the relative transformation between
two vertices in the graph to be:

Φj ≡ Φi,k = Σ91
j , (5.7)

Revisiting the notation from Chapter 4, j ∈ (1,m) refers to the edge that connects the
nodes i and k and Σ is the covariance matrix. Then, following [13] and, equivalently,

86 Chapter 5. Online Spectral Active SLAM

(a) ORB-SLAM input image and
landmarks.

(b) Octomap and OG map visualization.

Figure 5.7: Visualization of the SLAM input image and the matched landmarks
projected onto it (a). Also, visualization of the Octomap and OG map built from these

sparse landmarks (b).

Equation (2.26):
Σj = [Hprun

SLAM]
91
k 9AdT k,i Σj91 Ad

T
T k,i . (5.8)

The starting point for the recursion is Σ0 = 0⇒ Σ1 = [Hprun
SLAM]

91
1 .

Finally, Figure 5.6(e) contains the resulting pose-graph for the example case; the
width of the edges is proportional to its weight.

5.2.1.2 Stage I: Identification of Goal Candidates

From the sparse 3D point cloud generated by ORB-SLAM, we build a voxel map using
Octomap and project it onto the ground plane, thus creating a 2D OG map in which
frontiers can be detected in a similar fashion as in Section 5.1.1. Several morphology
operations on the OG map are required to obtain a meaningful frontier set from the
sparse map point cloud. The main drawback of this module is that the candidate
search is restricted to the ground surface, which limits the application of the algorithm
to ground robots. Future work will aim at extending this module to detect 3D goals
from sensor measurements, exploiting the insight that frontiers are bound to appear in
recently scanned areas [138]. Figure 5.7(a) shows the map points detected by ORB-
SLAM, projected onto the input image. Figure 5.7(b) contains a visualization of the
robot and the sensed portion of the environment in RViZ. This figure also contains the
Octomap built from the landmarks and the projected OG map over which frontiers are
searched. For visualization purposes, the height of the voxel map was limited between
0.1 and 2m.

5.2. Spectral Active Visual SLAM Using 3D Sparse Maps 87

Figure 5.8: Example of the graph hallucination process towards frontier fi, consid-
ering np,min = 3 and np,max = 6. A loop closure edge with probability P(lc) = 1 has

been created between vertices “fi” and “1”.

5.2.1.3 Stage II: Estimating the Posteriors and their Utility

Following the same procedure as in Section 5.1.1, the pose-graph from ORB-SLAM is
hallucinated towards each frontier. For each of these branches, we add a number of
vertices along the expected path to reach the corresponding frontier. The more complex
or longer the path, the greater the number of vertices. First, each vertex in the branch is
connected sequentially to its predecessor with an odometry constraint. Then we consider
the possibility of loop closures to appear. To do so, we first identify the set of existing
map points that are expected to be observed from every hallucinated node (i.e., lie
within its expected frustum). If the number of covisible points with any other existing
node in the SLAM graph, np, is greater than a certain threshold, np,min, the two will
be connected by a loop closure edge. This edge will have the following probability of
occurrence associated with it:

P(lc) =

0 if np < np,min

1 if np > np,max
np

np,max
otherwise

, (5.9)

where np,max is a defined upper bound. Figure 5.8 illustrates the idea behind the graph
hallucination process using a toy example. Figure 5.9 shows real examples of the process
during an exploration experiment. This figure contains the pose-graphs hallucinated
towards two different frontiers (green squares). The SLAM (red) and hallucinated (blue)
pose-graphs are plotted on top of the rectified grid map. While the case shown in
Figure 5.9(a) does not yield any reobservation edges in the hallucinated graph, the case
shown in Figure 5.9(b) does; this shows that a larger number of known landmarks are
expected to be observed along the path to reach the frontier.

88 Chapter 5. Online Spectral Active SLAM

(a) Frontier that produces odometry edges. (b) Frontier that produces odometry and loop clo-
sure edges.

Figure 5.9: Visualization of two different examples of the graph hallucination process
during exploration.

Once the topology of the hallucinated graph is properly defined, the FIMs associated
with each edge in the hallucinated branches must be computed in order to later weight
the graphs. Assuming that the visual odometry uncertainty will remain similar unless
a loop closure occurs, the relative FIMs associated with the odometry edges can be
considered equal to the last node (κ) in the known SLAM pose-graph:

Φodom = Φκ . (5.10)

In the case where a loop closure is expected between a pair of vertices, the FIM is
instead given by the Jacobian matrices of the reprojection error of all covisible points
and the likelihood of the loop closure:

Φlc = P(lc)
np∑
i

JTi J i . (5.11)

Hence, distant and scarce covisible points will result in higher expected uncertainties.

Nevertheless, the previous Hessians do not take into account the decrease in un-
certainty of the environment when exploring new regions, since the complete set of
landmarks is unknown. To include this and to motivate a balance between exploration
and exploitation, we follow the formulation from Section 5.1.1. Again, we adapt the con-
cept from [113] to operate in the task space and penalize the terms in Equations (5.10)
and (5.11) if no new areas are visited. Therefore, the FIM of the j-th edge will be given
by:

Φj = Φ{odom,lc} −
(1

1− α

)
Φ{odom,lc} , (5.12)

where Φ{odom,lc} is to be computed using Equation (5.10) or Equation (5.11) depending
on the constraint type, α = 1 + 1

σ and σ is a parameter that encodes the novelty of the
regions to be visited. More specifically, it is computed as the percentage of unseen area

5.2. Spectral Active Visual SLAM Using 3D Sparse Maps 89

expected to be observed in the occupancy grid map within a 1.5 meter radius around
the node.

Finally, each edge in the hallucinated pose-graph is weighted with D-opt of the
corresponding FIM, i.e., γj = ‖Φj‖0. The graph weights can be explicitly defined as
follows:

γodomj = (1 + σ) ‖Φκ‖0 , (5.13)

γlcj = (1 + σ) P(lc)
∥∥∥∥∥
np∑
i

JTi J i

∥∥∥∥∥
0

. (5.14)

At this point, the utility of each posterior can be computed via spectral techniques using
Equation (4.37).

5.2.1.4 Stage III: Action Selection and Execution

Just like in Section 5.1.1, the optimal frontier can be identified using Equation (5.4). The
optimization implicitly penalizes visiting distant candidates and encourages a balance
between the reduction of uncertainty in both the robot’s location and the map that
occurs when re-observing known landmarks, and the increase in knowledge about the
environment when visiting new regions.

Since the global plan has already been computed, navigation comes down to fol-
lowing that path, a task inherent to the local planner. We use the time elastic band
approach [51], which optimizes the trajectory locally with respect to various constraints.
As with the global planner, the local planner operates over a cost map constructed from
lidar measurements. As shown in Figure 5.1, navigation goals can exceptionally be ob-
tained from the recovery module if ORB-SLAM gets lost during exploration. In such
cases, the robot uses the wheel odometry to localize itself and generates navigation goals
to previously-visited areas in order to facilitate relocalization. Since most common track-
ing losses are due to getting too close to an obstacle, the first goal consists of a 180°
rotation. If no relocalization occurs, the robot is directed to previously-visited locations
with high relocalization potential. To identify them, we search all the pose-graph nodes
within a 2 m radius and compute the number of map points visible from each of them.
The preferred destination is the one with the highest map point density.

5.2.2 Experiments

ExplORB-SLAM was tested using Gazebo simulator. The experiment consisted of au-
tonomous exploration of the AWS bookstore and house scenarios2, whose texture is

2https://github.com/aws-robotics/

90 Chapter 5. Online Spectral Active SLAM

(a) Bookstore. (b) House.

Figure 5.10: View of the AWS Bookstore (a) and House (b) scenarios in Gazebo.

Figure 5.11: Maps and pose-graphs generated by ExplORB-SLAM after exploring
the house scenario.

Figure 5.12: Maps and pose-graphs generated by ExplORB-SLAM after exploring
the bookstore scenario.

rich enough to be processed by visual SLAM algorithms (see Figure 5.10). In this ex-
periment, the termination condition is the absence of candidate frontiers, rather than a
maximum amount of time as in Section 5.1.2. The robot is equipped with a Kinect RGB-
D camera (for SLAM) and a lidar (for path planning and safe navigation). Additional
configuration parameters can be found in the project repository.

Figures 5.11 and 5.12 show the resulting maps and pose-graphs after exploring the
two environments. In the house scenario, exploration took 9 minutes, of which only 5%

https://github.com/JulioPlaced/ExplORB-SLAM

5.3. Spectral Identification of Task Completion 91

was spent on decision making. The agent was able to map most of the relevant parts of
the environment and ORB-SLAM was able to close two loops, thus providing an accurate
representation. The generated pose-graph is well-connected and distributed throughout
the environment, although some of the nodes are clustered in the center of the scene due
to its topology. In the bookstore environment, the exploration time increased to 16 min,
of which 7.3% was used for decision-making. In this case, 5 graph optimizations were
performed. Both environments were fully explored, despite the presence of open regions
in the grid maps corresponding to low-textured walls in the simulator. Since planning
feasibility is checked for all candidates, no frontiers were detected in these areas.

5.3 Spectral Identification of Task Completion

The ability of a robot to determine task-completion during active SLAM, i.e., to identify
the moment when an exploration strategy no longer adds information to the system,
is fundamental to avoid the unnecessary computational burden of acquiring irrelevant
information —indeed, the continuous acquisition of redundant data has been shown to
be detrimental to SLAM and can lead to inconsistent and unrecoverable states— but also
to autonomous operation in unknown environments. The experiments in the previous
two sections have demonstrated the limitations of hand-crafted spatial and temporal
criteria, and they call for the use of task-driven criteria.

The set of rules for deciding whether or not to continue performing active SLAM is
known as stopping criteria, or termination criteria, and it was already identified as an
open challenge in [65] more than five years ago. Despite the impact of this work, no
further research has been done in this area. In this section, we thoroughly review the
limitations of the most widely used criteria. We then propose a novel criterion based on
the insight of monitoring the evolution of optimality criteria over time and exploiting
their fast computation via spectral techniques. We seek to stimulate this field of research
and encourage the use of meaningful criteria.

5.3.1 Limitations of Existing Metrics

Most work in the active SLAM literature resorts to spatio-temporal constraints as stop-
ping criteria. However, these are handcrafted metrics experimentally designed for a
specific environment and therefore cannot be used in unknown environments or across
systems. On the one hand, spatial constraints (e.g., achieving 90% coverage) can only
be used if the size of the environment to be explored is known in advance. On the other
hand, temporal criteria (e.g., explore during 30 minutes) typically encode physical lim-
itations of the robot (e.g., the battery) rather than a measure related to the task of
active SLAM. Table 5.2 illustrates how temporal and spatial (i.e., geometric) criteria

92 Chapter 5. Online Spectral Active SLAM

monopolize the attention in the literature. This table also provides a summary of the
limitations of each of these criteria and the space over which they are designed.

Limiting the exploration time has been used extensively [7,103,113,248] for two main
reasons: its simplicity and the convenience and ease of benchmarking different strategies
over the same time horizon. These criteria do not directly require prior knowledge of
the environment, although for exploration results to be relevant, the time selected must
be consistent with the size of the environment. In any case, temporal criteria:

i) do not guarantee low uncertainty estimates or exploration of the entire environ-
ment (i.e., task-completion);

ii) must be set experimentally, e.g., by manually exploring the environment before-
hand; and

iii) cannot be compared across systems: a different robot configuration, environment
or even SLAM algorithm back-end would make the comparison unfair.

The simplest common geometric stopping criterion in the literature is the non-
existence of candidate locations to explore, which usually translates as the absence
of frontiers [249–251]. A second relevant metric is a desired coverage (e.g., 98%). To
use it, however, it is mandatory to know at least the size of the environment; and this
directly conflicts with the active SLAM definition. Coverage as a stopping criterion is
still extremely popular [156, 167, 252–254]. The recent work in [255] also exemplifies
this popularity, proposing a unified framework for benchmarking robotic exploration
based on coverage efficiency. Other geometry-centered stopping criteria rely on limit-
ing the size of the exploration trees [256], or on qualitative metrics that require human
supervision [120]. In contrast to temporal criteria, all of the above allow checking the
completion of the task of covering a surface or volume, since they are formulated over
the state space. Nevertheless, they raise two important limiting factors:

i) They do not evaluate the active SLAM task, but the coverage one, and do not
care about the quality of the estimates.

ii) The fundamental aspect in active SLAM of lack of prior information about the
environment is violated.

Following information theory (IT) and the well-known (approximate) relationship
between the entropy of an occupancy map and the number of unknown cells on it [96],
a number of works [174,257,259] soon reformulated the above spatial criteria in the so-
called information space [261,262]. Stachniss et al. [94] observe that considering only a
constant upper bound on the map information can lead to repeatedly acquiring the same
information, which is indeed detrimental to SLAM performance. Ghaffari et al. [260] use

5.3. Spectral Identification of Task Completion 93

T
ab

le
5.

2:
C

om
pa

ris
on

of
th

e
va

rio
us

ex
ist

in
g

st
op

pi
ng

cr
ite

ria
:

re
le

va
nt

wo
rk

s,
fo

rm
ul

at
io

n
ba

sis
an

d
lim

ita
tio

ns
.

St
op

pi
ng

C
ri

te
ri

on
W

or
ks

Fo
rm

ul
at

io
n

L
im

it
at

io
ns

Te
m

po
ra

l
[7

,1
03

,1
13

,2
48

]
T

im
e

sp
ac

e
•

N
ot

co
m

pa
ra

bl
e

ac
ro

ss
sy

st
em

s
•

M
us

t
be

se
t

ex
pe

rim
en

ta
lly

(s
ce

na
rio

-a
nd

ro
bo

t-
de

pe
nd

en
t)

•
N

o
ta

sk
co

m
pl

et
io

n

Sp
at

ia
l

Fr
on

tie
rs

[2
49

–2
51

]

or
hu

m
an

in
te

ra
ct

io
n

•
M

os
t

tim
es

re
qu

ire
pr

io
r

kn
ow

le
dg

e
of

th
e

en
vi

ro
nm

en
t

•
U

no
bs

er
va

bl
e

an
d

un
re

ac
ha

bl
e

ar
ea

s
•

D
iffi

cu
lt

to
co

m
pa

re
ac

ro
ss

sy
st

em
s

•
N

o
ta

sk
co

m
pl

et
io

n
(c

ov
er

ag
e

on
ly

)

C
ov

er
ag

e
[1

56
,1

67
,2

52
–2

55
]

St
at

e
sp

ac
e

O
th

er
[1

20
,2

56
]

ba
se

d
U

nc
er

ta
in

ty
-

IT
[4

0,
94

,1
74

,2
57

–2
60

]
In

fo
rm

at
io

n
sp

ac
e

•
M

ay
re

qu
ire

pr
io

r
kn

ow
le

dg
e

of
th

e
en

vi
ro

nm
en

t
•

U
no

bs
er

va
bl

e
an

d
un

re
ac

ha
bl

e
ar

ea
s

•
D

iffi
cu

lt
to

co
m

pa
re

ac
ro

ss
sy

st
em

s
•

N
o

ta
sk

co
m

pl
et

io
n

(c
ov

er
ag

e
on

ly
)

T
O

ED
—

Ta
sk

sp
ac

e
•

C
om

pu
ta

tio
na

la
nd

fo
rm

ul
at

io
n

co
m

pl
ex

ity

94 Chapter 5. Online Spectral Active SLAM

a saturation information value over the current (and not necessarily complete) map that
reflects the confidence in the representation. Salan et al. [258] conclude that coverage-
based criteria are impractical, even when formulated over the information space: some
cells may be unobservable or unreachable. Instead, they suggest exploring until there
are no possible configurations that maximize the information. Gómez et al. [40] offer
a fresher look at spatial criteria by using the notion of “interesting” frontiers, that is,
candidates with an expected utility above a defined threshold. Determining this thresh-
old must be done experimentally, though, and is scenario-specific. Information-theoretic
stopping criteria are fast to evaluate, but they do not allow to check task-completion:
they are usually not related to the active SLAM task, but to the (volumetric) cover-
age via the entropy or information gain of the map. Moreover, the task of defining a
threshold is not trivial, since it has to be done over the information space (which has no
physical meaning). In fact, how these thresholds relate to the task space is not straight-
forward. For example, what does it mean when all candidates contribute less than 100
information units? Is that a good time to stop performing active SLAM? Does it mean
that the joint state has been accurately estimated?

5.3.2 Towards Meaningful Task-Driven Stopping Criteria

The use of metrics stemming from the theory of optimal experimental design (TOED)
as stopping criteria has been identified as promising many times [65, 263], although no
progress has been made in the field. The main advantage of using them (either raw
or their evolution over time) is that they evaluate the uncertainty in the task space
(i.e., over the variance of the estimates) and therefore allow to directly check if a given
set of actions improves the task or if the estimates are already sufficiently accurate. In
contrast to IT metrics, one could intuitively specify, for example, that active SLAM ter-
minates when there are no new areas to discover and all potential actions would result
in sub-centimeter improvements in the robot/map estimates, or when the accuracy of
the estimates is below 5 cm. The main drawback of task-driven criteria is the high com-
putational cost traditionally required to evaluate large covariance matrices. However,
thanks to the fast computation of graph connectivity indices and their equivalence to
optimality criteria in active graph-SLAM (see Chapter 4), we propose their evolution
along the exploration as stopping criterion.

In order to effectively assess task-completion, the stopping criterion should monitor
the information over the robot’s locations and the map representation. Based on the
properties of graph-based SLAM methods (see Section 2.4.1), we propose to capture
the evolution over the robot’s uncertainty (via the graph’s D-opt) and the amount of
recently observed regions,

Γ = ∆D-opt + |∆A| < Γmin (5.15)

5.3. Spectral Identification of Task Completion 95

−8 −6 −4 −2 0 2

X (m)

−5

−4

−3

−2

−1

0

1

2

Y
(m

)

Trajectory

Start-End

LC

(a) Trajectory. (b) Evolution of ∆D-opt and ∆A over time.

Figure 5.13: Simple active SLAM experiment with several sequential loop closures
(a), demonstrating the typical evolution of the explored area over time and the infor-

mation about the robot locations (b).

where D-opt is the utility function (see Equation (4.37)), A the explored area, and ∆
denotes percentage variations from the immediately preceding step. Absolute variations
on the map area are intended to avoid loop closures to trigger the criterion after updating
the map. Note also that the map uncertainty is embedded in D-opt. We are aware that
evaluating variations on D-opt instead of the raw values does not allow to directly
constrain the robot’s variance. However, unlike the usual SC in the literature, it does
not require prior knowledge of the environment or human interaction during the task,
takes into account both variables of interest and is transferable across systems. Future
work will aim at studying variance bounds on optimality criteria.

Should Γ fall below a certain threshold, Γmin, during a given action window, w, active
SLAM would be terminated because no information would be added to the system. Thus,
for a fixed map size, if the robot keeps gathering the same information (i.e., ∆U . 0), the
termination condition will be triggered. Otherwise, the exploration will continue even
if the information decreases (pure exploration) until the loss of information exceeds
the gain in the map area. This would indicate that another exploration strategy is
needed, rather than that the exploration is finished. Therefore, the proposed criterion
depends on two parameters: the minimum percentage increment and the window in
which evaluations are performed. The former is related to task-completion, and the
smaller it is, the more complete, accurate and time-consuming the task will be. The
latter serves to check whether it is a stationary or a transient regime: short horizons
(e.g., 1 action) should not be used to check for completion. Note that these parameters
are not scenario- or robot-specific.

Let us consider a simple active SLAM case that illustrates a typical behavior of
both terms. Figure 5.13(a) contains the trajectory of the robot in this experiment (red
dots and lines represent the nodes and odometry edges in the pose-graph, respectively)
and the loop closures (blue lines). Figure 5.13(b) shows the percentage variation in

96 Chapter 5. Online Spectral Active SLAM

D-optimality (blue) and area (red) during the task. Two phases can be clearly distin-
guished, also labeled in the figure: exploration and exploitation. In the first, there is a
large initial increase in both variables. As the exploration continues, fewer new areas
decrease are discovered and the uncertainty gradually increases. At a certain point,
the robot starts to revisit known places. During the exploitation phase, the area no
longer increases —in fact, it may even decrease when the map is updated after a loop
closure. On the other hand, the uncertainty continues to decrease as loops are closed.
However, after the first few loop closures, there is no further improvement. Both in-
crements reach a constant regime near zero, and after that, if the robot continues to
collect the same data from the environment, there is a loss of information (see the last
part of Figure 5.13(b)). This regime represents the point at which exploration should
be terminated or the utility function should be changed.

5.3.3 Experiments

The proposed criterion has been evaluated in the house and bookstore scenarios (see
Figure 5.10). The robot configuration and the active SLAM framework are the same as
those used in Section 5.1. The experiment consisted of determining and comparing the
moment when different criteria decide to stop active SLAM. To make a fair comparison,
they are all evaluated during the same exploration run. That is, as the autonomous
agent explores the environment, the criteria are checked and if one of them is satisfied,
evaluation metrics for that criterion are extracted. Then, the exploration continues
until all stopping criteria are met. Besides the proposed criterion (parametrized by
Γmin = 2%, w = 3), we used a temporal criterion (10 min) and two coverage conditions:
90 and 99%, following the somewhat standardized values in the literature [255]. Note
that in order to compute the coverage conditions, it is necessary to know the size of
the entire environment in advance. A human-supervised exploration of the environment
was performed for this purpose.

Table 5.3 contains the results (average values over 2 trials) in both scenarios. For
each of the aforementioned strategies, we present different metrics at the moment of
termination to assess the quality of the following elements:

i) The map representation, in terms of the area explored (free and occupied), the
coverage and the maximum root mean squared error (RMSE).

ii) The pose-graph, in terms of the number of nodes and the average node degree of
the pose-graph, the number of graph optimizations performed (i.e., loop closures),
and the value of D-opt.

iii) The exploration time.

5.3. Spectral Identification of Task Completion 97

T
ab

le
5.

3:
R

es
ul

ts
of

ex
pl

or
at

io
n

in
AW

S
sc

en
ar

io
s

w
ith

ag
en

ts
w

ith
di

ffe
re

nt
SC

.F
or

ea
ch

en
vi

ro
nm

en
t,

th
ey

ar
e

lis
te

d
in

or
de

r
of

fu
lfi

llm
en

t.
T

he
su

pe
rs

cr
ip

t†
de

no
te

sv
al

ue
sa

re
ex

pl
ic

itl
y

fix
ed

by
th

e
cr

ite
rio

n,
an

d
th

e
da

sh
ed

lin
es

in
di

ca
te

a
cr

ite
rio

n
wa

sn
ev

er
m

et
du

rin
g

th
e

ex
pe

rim
en

ts
.

Sc
en

ar
io

St
op

pi
ng

C
ri

te
ri

on
T

im
e

(s
)

A
re

a
(m

2)
C

ov
er

ag
e

(%
)

R
M

SE
(m

)
n

d
O

pt
im

iz
at

io
ns

D
-o

pt

Bo
ok

st
or

e

Te
m

po
ra

l(
10

m
in

)
60

0†
15

5.
04

86
.0

1
0.

22
49

2
2.

48
3

33
72

.5
8

O
ur

s
10

18
15

9.
56

88
.5

2
0.

11
86

7
2.

74
6

38
62

.9
4

C
ov

er
ag

e
(9

0%
)

∞
–

90
†

–
–

–
–

–

C
ov

er
ag

e
(9

9%
)

∞
–

99
†

–
–

–
–

–

H
ou

se

C
ov

er
ag

e
(9

0%
)

30
1

14
9.

53
90
†

0.
72

23
6

2.
49

0
28

69
.2

4

O
ur

s
48

2
15

5.
40

93
.5

3
0.

23
33

1
2.

45
1

29
41

.2
5

Te
m

po
ra

l(
10

m
in

)
60

0†
15

5.
48

93
.5

8
0.

24
38

2
2.

40
2

29
09

.9
4

C
ov

er
ag

e
(9

9%
)

∞
–

99
†

–
–

–
–

–

98 Chapter 5. Online Spectral Active SLAM

(a) Bookstore – temporal criterion (10 min). (b) Bookstore – task-driven criterion.

(c) House – coverage criterion
(90%).

(d) House – task-driven criterion. (e) House – temporal criterion
(10 min).

Figure 5.14: Occupancy grid maps and pose-graphs (nodes in red, edges in blue)
at the moment of fulfillment of the different stopping criteria, in the bookstore (a-b)
and house (c-e) scenarios. The final location of the robot is marked with a black dot.

Results for the criteria that were never met (i.e., coverage) are omitted.

In addition to this table, Figure 5.14 shows the qualitative results of the experiment.
This figure contains the maps and the pose-graphs at the moment of fulfilling the dif-
ferent criteria.

In the bookstore environment, the temporal criterion is met first. After 10 minutes
of execution, the robot has explored 86% of the environment and the maximum error
in the mapped area is 22 cm. The proposed criterion is not met until 7 minutes later.
Despite the similar coverage (only 2.5% higher), the number of graph optimizations is
doubled and the map error is halved. Consequently, D-opt is also 15% higher. Coverage
conditions are never satisfied because there are many unobservable or unreachable areas
for the robot. This illustrates the limitations of coverage criteria, despite knowing the

5.4. Summary and Discussion 99

size of the entire environment. For them to be useful, the ground-truth map would also
be needed.

The coverage criterion (90%) is the first fulfilled in the house scenario, after about
5 minutes. Nevertheless, at this point the accuracy of the robot’s pose and the map is
extremely low. In addition, many areas have not yet been explored, see Figure 5.14(c).
Three minutes later, the task-driven criterion is met. Not only has 3.5% more of the
environment been explored, but the already known areas have also been exploited: the
maximum map error has been reduced by a factor of three and D-opt is also higher.
Then, the temporal criterion is triggered. The results in terms of map size and coverage
are similar to those of the task-driven stopping criterion. However, the repeated acqui-
sition of the same data (over-exploitation) was detrimental for the SLAM algorithm:
despite a larger number of loop closures, the robot pose and the map are less accurate
and the graph is not as well connected (there is a larger number of nodes but they are
sparsely connected and encode less information; see the last columns of Table 5.3). This
illustrates the limitations of temporal stopping criteria, and the difficulty of producing
meaningful metrics with them. The 99% coverage criterion is never met again.

In conclusion, the proposed stopping criterion based on the spectral D-opt shows
a relevant behavior for active SLAM and outperforms other widely used criteria. This
criterion successfully identifies the moment when exploration no longer adds relevant
information to the system, without requiring prior knowledge or manual tuning. Intu-
itively, it can be regarded as an automatically configured spatio-temporal criterion that
also accounts for the uncertainty in the robot’s location. The experiments conducted
also showed that the usefulness of coverage and temporal criteria depends heavily on
having prior knowledge of the environment and even then may be impractical.

5.4 Summary and Discussion

In this chapter, we have presented two online active SLAM approaches that leverage the
spectral uncertainty quantification method proposed in Chapter 4. Both open-source
systems operate in real-time and address active SLAM comprehensively: identification
of candidate destinations, computation and evaluation of pose-graph posteriors, and
selection and execution of optimal actions. By also incorporating the expected costs
(e.g., travel distance) and benefits (e.g., potential loop closures, discovery of new areas)
into the posterior FIMs of the pose-graph, we achieve a balance between exploration and
exploitation. The main difference between the two systems is the SLAM algorithm used
and, therefore, the information available to estimate the posterior pose-graphs and their
associated FIMs. The first system uses lidar-based 2D SLAM, and the estimation of the
posterior FIMs is based on the structure of the occupancy grid map. The second system,
ExplORB-SLAM, is more sophisticated and builds upon a state-of-the-art visual SLAM

100 Chapter 5. Online Spectral Active SLAM

algorithm. The FIMs are computed from the accurate sparse landmark map and the
trajectory estimation provided by ORB-SLAM2.

The thorough experiments conducted to benchmark the proposed algorithms demon-
strate their usefulness and also a superior performance compared to other traditional
methods. More importantly, we show that not only these systems, but topological utility
functions in general, yield decisions equivalent to using classical optimality criteria in a
fraction of the time.

Nonetheless, the above experiments also brought to the forefront the important
and often overlooked following question of when to consider the task completed and
stop performing active SLAM. In Section 5.1 we used a hand-picked time limit, and
in Section 5.2 we used the absence of candidate goals to decide when to terminate the
experiments. But none of this really served to evaluate whether the task of creating an
accurate and complete model of the environment had been successfully accomplished.
In the last part of this chapter, we have taken a step forward in the use of meaningful
stopping conditions by presenting a novel task-driven stopping criterion that also relies
on the advantageous spectral relations from Chapter 4. The experiments conducted
show that, despite its simple formulation, this criterion successfully captures when the
exploration strategy is no longer adding information to the system: the robot is allowed
to explore all relevant regions of the environments and to stop when the returns are
repeatedly low (i.e., avoiding both under-exploration and over-exploitation). Moreover,
it does not require any prior knowledge of the environment, unlike time- or geometry-
based criteria.

101

Chapter 6

Learning Policies for D-optimal
Decision-making

Deep learning has the potential to impact many areas of active SLAM, but perhaps
one of the most promising and exciting is the ability to learn decision-making policies
that push the costly process of uncertainty quantification to an offline training phase,
thus reducing real-time operation to a forward pass on the network. There have been
numerous attempts to apply learning techniques to autonomous robotic exploration,
most of which are end-to-end methods and fall under the umbrella of deep reinforcement
learning (DRL). Essentially, these methods guide the learning process by rewarding
the agents with a metric of task success. So far, however, most rewards have been
hand-crafted, resulting in decision-making policies valid for safe navigation and pure
exploration, but not for active SLAM with optimality guarantees. This fact highlights
the disconnect between estimation-theoretic and data-driven techniques.

In this chapter, we present a novel end-to-end approach to active SLAM based on
DRL. Contrary to most approaches in the literature, we go beyond neural obstacle avoid-
ance and train agents capable of making uncertainty-informed decisions in real time, by
embedding the classical estimation-theoretic utility functions (e.g., D-optimality) in the
reward design. We demonstrate the feasibility of uncertainty-aware learning approaches
and show that uncertainty quantification can be learned during active SLAM. This
chapter is based on [4] and [8].

6.1 Introduction

The great success of deep learning methods, such as [200,205], has opened the possibility
of using data-driven models to solve active SLAM. These methods follow a completely
different scheme than modular approaches, bypassing the split and embedding many of

102 Chapter 6. Learning Policies for D-optimal Decision-making

the subproblems in the network. For example, most works avoid goal identification and
path planning by computing the best control inputs directly, utility computation is also
embedded in the network, etc.

Nearly a decade ago, the first works in which DRL was used for mobile robotics
appeared, showing extremely limited capabilities but also a promising line of research.
Since then, a variety of approaches have been presented, somehow leading to a more
balanced framework in which DRL is no longer used end-to-end but combined with tradi-
tional methods, such as estimation- or information-theoretic uncertainty quantification,
classical navigation algorithms, and so on. The purpose of this section is to provide an
overview of all these methods and to position our work within them (see Table 6.1). For
a more detailed analysis of related works, see also Section 3.4.

The work of Tai and Liu [210] among the first to use DRL for decision-making in
navigation. A large convolutional network extracted the feature maps from a front-view
camera, which were later fed into a 2-layer deep Q-network (DQN) capable of selecting
the best next action to take. In this work, experiments were performed in a complex
simulator, but training convergence was achieved only for topologically simple scenarios
(e.g., straight corridors). Moreover, the same simple scenarios were used in both the
training and testing phases, making the agent’s ability to generalize unclear. Mirowski et
al [211] demonstrate that navigation via DRL was also achievable using policy gradient
algorithms, with a significant improvement in speed convergence compared to DQN.
However, the acquired knowledge was never tested in an environment other than the
training one, so the environment was known again in all cases. A critical generalization
experiment was performed in [264], showing that trained agents do not perform as well in
previously unseen maps, and can even exhibit behavior comparable to random agents in
certain scenarios. [221] shows a similar approach to [210], where the D3QN architecture
and FastSLAM [101] are used to address the obstacle avoidance problem and map an
environment.

The aforementioned works used only extrinsic rewards to encourage obstacle avoid-
ance, but, once navigation was shown to be feasible, motivation and curiosity capabili-
ties [212] were added to the agents in order to extend the problem to robotic exploration.
On the one hand, some approaches (often called curiosity-driven) encourage the agents
to visit user-defined or novel states [213], or to maximize the coverage of a known map.
For example, Chen et al. [214] and Chaplot et al. [115] propose holistic, open-source
approaches that employ a coverage reward to explore complex 3D simulation environ-
ments. The detailed study in [214] shows the benefits of pre-training and combining
inputs from different sources. Typically, these works aim to directly generate optimal
control commands, either discrete [214] or not [199]. Thus, they represent end-to-end
solutions where the safe navigation task is embedded in the network and therefore do
not require planning and the SLAM estimates.

6.1. Introduction 103

On the other hand, uncertainty-based methods motivate actions that minimize the
uncertainty of the environment, e.g., by encouraging the visit of those states that are
more difficult to predict [56,265]. Only recently, true uncertainty metrics inherited from
classical theories have been introduced into reward function design, seeking more robust
foundations. The robot’s T -opt of virtual landmarks is used in [117] and the map’s
MI is used in [116, 118]. Other information-theoretic metrics such as the information
gain and the Kullback-Leibler divergence have been used in 2D occupancy maps [197,
259]. Also, in [85, 149], entropy reduction is achieved by incorporating the maximum
likelihood of being in any state (i.e., the belief accuracy). Agents trained with this new
perspective can perform active SLAM in complex scenes, albeit only targeting location
or mapping uncertainties. Designing effective reward functions that account for both
is still an open problem. In addition, this new family of methods has promoted the
use of learning as a part of the solution rather than end-to-end, without deprecating,
e.g., the well-established planning algorithms. As a result, policies are easier to learn,
generalize better and can be transferred across platforms. In this vein, Niroui et al. [116]
and Chen et al. [117] use DRL to extract the best candidates from previously-detected
frontiers, thereby providing a link to modular approaches. [117] shows that generalization
is possible with high-dimensional state spaces. However, the simulation environment was
a very limited grid world where obstacle avoidance was not required and only landmark
positions changed. Instead, Li et al. [118] and Lodel et al. [215] use nearby sampled
locations, but they also leave the motion planning task out of the scope of learning.
Chaplot et al. [115] use different policies to infer long-term (i.e., frontiers) and short-term
(i.e., control commands) goals, which are linked by a model-based trajectory planner.

As noted above, experiments in the literature are usually limited to extremely-
simplified simulation environments (such as grid-worlds where the agent moves between
cells in a discrete fashion) and sensors are never modeled. In these cases, the inputs
to the networks range from occupancy-grid maps [266] to combinations of frontiers and
ground-truth robot locations [116, 117]. Only more complex and realistic scenarios al-
low to feed images [210, 221] or laser measurements [55] into the network. Knowledge
transfer to the real world has yet to be evaluated due to the early stage most of these
approaches are in. Only a few works have effectively addressed sim2real transfer, and
only for navigation tasks [55,210].

In summary, DRL methods have shown great potential in recent years for navigation,
mapping, and even exploration tasks. In this chapter, we aim to explore this potential
for the specific task of active SLAM. In this way, one of the main drawbacks of traditional
active SLAM methods is alleviated by shifting the intensive computations to the training
phase, requiring only feed-forward propagation during evaluation. We formulate active
SLAM as a multi-reward DRL problem based on classical multi-objective optimization
approaches, the theory of optimal experimental design, and state-of-the-art deep Q-
networks. The trained agents are able to make quasi-optimal decisions to navigate and

104 Chapter 6. Learning Policies for D-optimal Decision-making

T
able

6.1:
C

om
parison

between
related

works.
For

each
ofthe

tasks,the
works

are
ordered

chronologically.

W
o

rk
T

ask
A

rch
itectu

re
R

ew
ard

In
p

u
t

O
u

tp
u

t
E

x
p

erim
en

ts
G

en
eralizatio

n
P

artial
o

b
servab

ility

T
ai

and
L

iu
[210]

N
avigation

D
Q

N
E

xtrinsic
Im

ages
V

elocity
com

m
ands

G
azeb

o

M
irow

ski
et

al.
[211]

N
avigation

A
3C

E
xtrinsic

Im
ages

V
elocity

com
m

ands
C

ustom

W
en

et
al.

[221]
N

avigation
D

3Q
N

E
xtrinsic

Im
ages

V
elocity

com
m

ands
G

azeb
o

&
real-w

orld

T
ai

et
al.

[55]
G

oal
navigation

A
D

D
P

G
Intrinsic

L
aser,

velocity
&

goal
V

elocity
com

m
ands

V
-R

E
P

&
real-w

orld
X

Z
helo

et
al.

[56]
G

oal
navigation

A
3C

Intrinsic
L

aser
&

goal
N

earby
p

ositions
G

rid-w
orld

X

O
h

and
C

avallaro
[265]

G
oal

navigation
A

3C
Intrinsic

Im
ages

V
elocity

com
m

ands
C

ustom

Z
hu

et
al.

[266]
F
rontier

selection
A

3C
Intrinsic

G
rid

m
ap

N
earby

p
ositions

G
rid-w

orld
X

N
iroui

et
al.

[116]
F
rontier

selection
A

3C
Intrinsic

G
rid

m
ap,

p
osition,

frontiers
G

oal
frontier

C
ustom

&
real-w

orld
X

X

C
haplot

et
al.

[149]
A

ctive
localization

A
3C

P
osterior
b

elief
Im

ages
V

elocity
com

m
ands

C
ustom

X

G
ottipati

et
al.

[85]
A

ctive
localization

A
2C

P
osterior
b

elief
G

rid
m

ap,
laser

V
elocity

com
m

ands
G

rid-w
orld

&
real-w

orld
X

C
hen

et
al.

[259]
E

xploration
D

Q
N

E
ntropy

G
rid

m
ap

N
earby

p
ositions

G
rid-w

orld
X

X

O
urs

[4,8]
A

ctive
SL

A
M

D
3Q

N
D

-opt
L

idar
V

elocity
com

m
ands

G
azeb

o
X

X

C
hen

et
al.

[117]
A

ctive
SL

A
M

D
Q

N
+

G
N

N
T

-opt
P

ose-graph
N

earby
p

ositions
G

rid-w
orld

X
X

L
i

et
al.

[118]
E

xploration
D

Q
N

E
ntropy

G
rid

m
ap

N
earby

p
ositions

G
rid-w

orld
&

real-w
orld

X
X

L
odel

et
al.

[215]
E

xploration
D

Q
N

E
ntropy

G
rid

m
ap,

p
osition

N
earby

p
ositions

G
rid-w

orld
X

X

6.2. Preliminaries on (Deep) Reinforcement Learning 105

explore an environment, based solely on raw laser measurements. We test the transfer
of the acquired knowledge to previously unseen and more complex scenarios in order
to determine their generalization ability. Traditional extrinsic and uncertainty-based
rewards are also compared to demonstrate the value of the proposed approach.

6.2 Preliminaries on (Deep) Reinforcement Learning

Revisiting Section 3.2, active SLAM can be formulated as a partially observable Markov
decision process (POMDP), and defined by the 7-tuple (S,A,Z, ξs, ξz, r, γ). In partic-
ular, a POMDP consists of the agent’s state space S, a set of actions A, a transition
function between states ξs : S × A 7→ Π(S) where Π(S) is the space of probability
density functions (PDFs) over S, an observation space Z, the conditional likelihood of
making any of those observations ξz : S 7→ Π(Z), where Π(Z) is the space of PDFs
over Z, a reward scalar mapping r : S ×A → R, and the discount factor γ ∈ (0, 1) ∈ R
which allows to work with finite rewards even when planning over infinite time horizons.
Every time step, the agent selects an action to execute at ∈ A based on the current
policy π, generating a transition from st to st+1, both contained in S, where a new ob-
servation ot ∈ O is made. Alternative, it can be formulated as an MDP over the belief
space B(S). The goal of the agent is to find the optimal policy π? (see Equation (3.7))
that maximizes a metric of the reward function, usually defined as the future expected
discounted reward. See Figure 6.1.

Resolution of (PO)MDPs can be based on several methods, such as Monte Carlo,
dynamic programming or temporal differences. RL algorithms, based on the latter
and the Bellman equations, attempt to solve the problem by iterating over either the
policy or an (action-)value function. Intuitively, a policy can be seen as the decision
of what action to take in a given state to maximize the reward, while a value function
measures the expected reward(s) following a given policy. The simplest value functions
only measure the value encoded in being in a certain state, i.e.,

V π(st) , E [rt|st] . (6.1)

In a more complex fashion, an action-value, or Q-value, function measures the value of
being in a certain state and also performing a certain action according to the current
policy, i.e.,

Qπ(st, at) , E [rt|st, at] . (6.2)

Policy iteration methods can be divided into two steps. First, the values of the
states using the current policy are computed (evaluation) and then, the policy is greedily
updated so as to take actions that lead to the highest rewards (improvement). Value
iteration methods, on the other hand, find the optimal policy by choosing the actions

106 Chapter 6. Learning Policies for D-optimal Decision-making

ActionObservations, reward

Environment

Agent

Figure 6.1: A learning cycle in RL.

Algorithm 1 Q-learning (for deterministic environment).
Parameters: α ∈ (0, 1], γ ∈ (0, 1]
Initialize Q-table with arbitrary Q-values
for episode ← 1 to max episodes do

Perceive st
while st not terminal do

Select at ← π(st)
Take at, get rt and perceive st+1
if st+1 is terminal then Qt ← rt
else Qt ← rt + γmax

a
Q(st+1, a)

end if
Q(st, at)← (1− α)Q(st, at) + αQt
st ← st+1

end while
end for

that maximize the optimal (action-)value function. Q-learning methods maintain a
lookup table of Q-values for each state-action pair, and learn the optimal Q-functions
recursively using the Bellman’s update (see also Algorithm 1):

Q?(st, at) = r(st, at) + γ
∑

st+1∈S
ξs(st, at, st+1)max

a∈A
Q?(st+1, at) . (6.3)

In the case of Q-learning, the optimal policy can be conveniently retrieved directly:

π?(st) = arg max
a∈A

Q?(st, at) , (6.4)

Either when iterating directly over a policy or over any value function, RL algorithms
are recursions over the expected rewards. Therefore, designing the reward function
correctly is key to learning the right skills; much like in optimization problems with
cost functions. Both value-based and policy-based trends allow a POMDP resolution
when the process itself (i.e., ξ{s,z}) is neither known nor modeled, as is the case in
active SLAM. Moreover, model-free algorithms estimate optimal policies directly from
interaction with the environment (i.e., experience).

6.2. Preliminaries on (Deep) Reinforcement Learning 107

Action

State

State

Q-value (action 1)

Q-value (action 2)

Q-value (action n)

...

Q-value

Figure 6.2: Equivalence between Q-learning and deep Q-learning.

Instead of using a Q-table, in deep Q-learning, the analytical computation of Equa-
tion (6.3) is approximated by a deep neural network whose coefficients are iteratively
updated by using the well-known backpropagation algorithm [267]. See Figure 6.2. The
network parameters, θk, can be updated by, e.g., stochastic gradient descent by mini-
mizing the quadratic loss:

L(θ) = (ŷ− y)2 , (6.5)

where ŷ = Q(s, a|θ) is the Q-value estimated by the network, and y is the target Q-value
(cf. Equation (6.3)):

y = r(st, at) + γ max
at+1∈A

Q(st+1, at+1|θk) . (6.6)

Thus, updating the Q-function is equivalent to updating the network weights:

θk+1 = θk + α (y− ŷ)∇θk ŷ , (6.7)

with α the learning rate.

To avoid the instabilities caused by continuously changing the target and guarantee
convergence, one can update the parameters in Equation (6.6) only every C iterations
with θ−k = θk. This is the main idea behind deep Q-networks (DQN) [200]:

yDQN = r(st, at) + γ max
at+1∈A

Q(st+1, at+1|θ−k) . (6.8)

Moreover, the max operator in Equation (6.6) induced an upward bias, since the
same Q-values (i.e., network weights) are used to select and evaluate an action (i.e., the
estimated values are overoptimistic). In [201], a double estimator is used to decouple
action selection and evaluation. In double deep Q-networks (DDQN), the target Q-value
is replaced by:

yDDQN = r(st, at) + γQ(st+1, arg max
a∈A

Q(st+1, a|θk)|θ−k) , (6.9)

108 Chapter 6. Learning Policies for D-optimal Decision-making

Advantage stream

Value stream

∑
Input
layer

Hidden layers

Output
layer

Figure 6.3: Dueling architecture for a deep Q-network. The network is divided into
two streams that encode the value and the advantage functions, and they are aggregated

at the output to produce the Q-values.

leading to improved stability and thus performance. Note that the policy is chosen
accordingly to a network with parameters θk while the evaluation of the current greedy
action is given by a second network with parameters θ−k .

Instead of having fully connected layers in the entire network, decoupling the flow
into two streams has been shown to lead to improved performance [268]. The first head
encodes the value function, V π(s), while the second encodes the advantage, Aπ(s, a) =
Qπ(s, a) − V π(s). Then, both streams are aggregated to output the Q-values. This
variant is known as double dueling DQN, or D3QN. See Figure 6.3 for a visualization
of this architecture.

6.3 Method

This section contains the details of the proposed approach First, we provide details on
the SLAM algorithm used and the process of extracting the covariance matrices needed

6.3. Method 109

for decision-making. Then, we present the different network architectures evaluated,
the learning configuration and the design of the reward function. The entire framework
(including training and testing phases) is built within a ROS-Gazebo framework.

6.3.1 SLAM Backbone

Since the method requires the recovery of the covariance matrix, a slightly modified
version of Gmapping [112] runs in the background during training, re-initializing its map
after each episode and communicating the covariance estimate to the learning module
via ROS (see Algorithm 2). Although other SLAM algorithms (e.g., [19, 68]) would be
able to compute more accurate states and covariance matrices, Gmapping requires much
less computational resources, which is crucial for the experiments performed.

Each time the SLAM module processes a laser scan, it recovers the distribution of
the particles’ state as a Gaussian with mean µ ∈ R3 and covariance:

Σ =
np∑
i=1

w̄i(si −µ)(si −µ)T , (6.10)

where np is the total number of particles, w̄i = wi/
∑np
j=1wj the particle’s normalized

weight, and si = (x, y, θ)Ti the 2D state vector. After its retrieval, the covariance matrix
is referenced to the previous pose according to the absolute formulation available in [13],
and published in ROS.

The parameters of the SLAM algorithm are configured so as to achieve a balance
between performance and low computational load. Because each particle must to carry
its own map, only five particles were used. The minimum effective number of particles,
a key parameter for detecting loop closures, was set to a quarter of the total number of
particles.

6.3.2 Decision-making using Q-networks

The decision-making module represents the main contribution of this approach, and it
is based on deep Q-learning because of the high computational load that multi-agent
training (e.g., asynchronous advantage actor-critic, A3C) would require in Gazebo.

We have implemented three different Q-network architectures in TensorFlow [269] to
compare their performance for the task. The first two are a vanilla DQN and a DDQN
containing two hidden layers, each of them with 24 hidden units and LeakyReLU ac-
tivation with negative slope f(x) = 90.01x, and a linear output layer with a number
of hidden units equal to the dimension of the action set. The third one is a D3QN
with prioritized experience replay (PER) [270], similar to the state-of-the-art network

110 Chapter 6. Learning Policies for D-optimal Decision-making

described in [202]. It contains two parallel streams that encode the value and the advan-
tage functions, respectively. Each stream contains hidden layers with the same structure
as the previous networks, and an intermediate output linear layer (1-dimensional for V
and 3-dimensional for A). Both flows are non-trivially aggregated at the output head to
produce the estimated Q-value, again with dimension equal to the size of the action set.
The architecture layout is depicted in Figure 6.3. In addition, the weights of this network
have been non-randomly initialized to known values that encode a reasonable policy, in
order to speed up convergence. In all cases, the target network is hard-updated every
10000 steps, the training algorithm uses RMSProp optimizer (ε = 1× 10−6, ρ = 0.9),
and the agents follow an ε-greedy policy with decreasing ε in the interval (1, 0.02] during
the first Ce = 50 training episodes. Nevertheless, this policy is changed to a greedy one
during testing.

Just as in the formulation of active SLAM as a multi-objective optimization [89],
the reward in (D)RL can be split into two terms that account, respectively, for navi-
gation (i.e., finding and executing a collision-free trajectory) and for minimizing of the
uncertainty of the SLAM estimates. The first term is a fully extrinsic reward aimed at
finding the collision-free trajectories. It is empirically designed and tries to penalize to
non-zero angular velocities to prevent continuous spins and uneven trajectories:

rnav =

9100, if collision

1, if ω = 0

90.05, if ω 6= 0

. (6.11)

To accomplish the task of active SLAM, the above must to incorporate an uncertainty
metric:

runc =

9100, if collision

1 + tanh
(

η
f (Σ)

)
, if ω = 0

90.05 + tanh
(

η
f (Σ)

)
, if ω 6= 0

, (6.12)

where η is a task-specific scale factor and f(Σ) has been chosen as the D-optimality
criterion. Since this criterion is right-unbounded, we propose the use of tanh(·) to
bound it in the interval [0, 1] and thus maintain a balance between the navigation and
uncertainty terms.

Algorithm 2 describes the complete approach, using a dueling double DQN with
PER in the Gazebo simulation environment.

6.4 Experiments

The proposed learning method has been evaluated in the Gazebo simulation environ-
ment. The robot is a ground platform equipped with a laser sensor that generates r

6.4. Experiments 111

Algorithm 2 Dueling Double Deep Q-learning with PER in simulation environment.
Parameters: α ∈ (0, 1], γ ∈ (0, 1], C, Ce, ε0, εf , ε← ε0
Initialize memory, δ ≈ 0 and α′ ∈ (0, 1]
Initialize network with parameters θ and θ− ← θ
Initialize ROS-Gazebo and SLAM algorithm
for episode ← 1 to max episodes do

I Resume simulation
Reset robot pose, map and SLAM algorithm
Perceive st
I Pause simulation
while st not terminal do

Select at ← π(st|ε)
I Resume simulation
Execute at during ta seconds
Recover Σ, compute desired f(Σ) and rt
Perceive st+1
I Pause simulation
if st+1 is terminal then et = 1 else et = 0
Store tuple (st, at, rt, st+1, et) in memory with max(p)
Sample minibatch from memory
for each tuple in minibatch do

if si+1 is terminal then Qtarget ← ri
else Qtarget ← ri + γQ(si+1, arg max

a
Q(si+1, a|θ)|θ−)

end if
Ωi ← Qtarget −Q(si, ai|θ)
pi ← (Ωi + δ)α

′

end for
Perform optimization on Ω2 w.r.t. θ
Every C steps set θ− ← θ
st ← st+1
ε← min

(
ε0, ε− (ε0 − εf)/Ce

)
end while

end for

rays evenly distributed in the 180° front field of view of the robot, each of them with a
minimum range of 0.1 m, a maximum range of 10 m, two-digit decimal precision and a
Gaussian noise model with zero mean and small variance.

We used three different environments for training and/or testing phases, which are
modified versions of the environments available in Gym-Gazebo [223] and are shown
in Figure 6.4. The first scenario consists of a simple maze with 90° turns. The topol-
ogy in the second and third environments is more complex, and includes successive
turnarounds and dead-ends. The simulation environment is connected via ROS to the
SLAM algorithm and the decision-making module (i.e., the neural network model). To
make this connection, we used the GymGazebo [223] library,1 which is based on the
OpenAI Gym [224]. All experiments in this chapter were performed using an Intel Core
i7-7500U CPU @ 3.50GHz and a Nvidia Quadro M520 GPU.

1https://github.com/erlerobot/gym-gazebo

https://github.com/erlerobot/gym-gazebo

112 Chapter 6. Learning Policies for D-optimal Decision-making

Training

Policy

ROS-Gazebo

PER bu er

StateReward

Testing

ROS-Gazebo

State

Action

Figure 6.4: Training (left) and testing (right) processes. During training, a sample
from the prioritized experience replay buffer is drawn and the policy is updated. Then,
the updated policy is evaluated to select the next-best-action. During testing, the

policy is only evaluated.

A training/testing stage consists of a variable number of episodes; in each episode
the robot moves until either a collision occurs (i.e., if it approaches within 0.2 m of any
obstacle) or 500 steps have been consumed. Every step can be considered as a single
decision, where the neural network receives the r-dimensional sensed state and estimates
the Q-values for each possible action, namely going forward, turning right and turning
left:

a1 = {v = 0.3, ω = 0} ,

a2 = {v = 0.05, ω = 0.3} ,

a3 = {v = 0.05, ω = −0.3} ,

where v is the linear forward velocity (in the local robot frame and in m/s), and ω is
the angular velocity (in rad/s). Note that non-zero linear velocity has been imposed in
all cases to avoid continuous turnings on the same spot.

6.4.1 On the Validity of Uncertainty-aware Policies

In order to demonstrate that uncertainty-aware decision-making can be learned by em-
bedding an uncertainty metric in the reward function, a preliminary experiment was
conducted in which decisions were made using Q-learning. In this case, only five laser
rays (r = 5) were used to reduce the computational complexity of this tabular approach.
The uncertainty metric η/f(Σ) in Equation (6.12) is defined as the inverse of the robot’s
entropy for this experiment, i.e.,

runcRL =

9100, if collision

1 + tanh
(

1
H

)
, if ω = 0

90.05 + tanh
(

1
H

)
, if ω 6= 0

. (6.13)

6.4. Experiments 113

(a) Extrinsic reward. (b) Uncertainty-aware reward.

Figure 6.5: Logarithmic occurrence of entropy along episodes in the second sce-
nario. Results are shown for traditional (a) and uncertainty-aware (b) reward functions.

Darker colors denote lower occurrence.

To prove the validity of our approach, we compared agents using purely extrinsic and
uncertainty-based rewards. Both agents were pre-trained in the first scenario for 300
episodes to learn general navigation and obstacle avoidance skills (i.e., using purely ex-
trinsic rewards), and then trained in the second and more complex environment for 1000
more episodes. Figure 6.5 contains the evolution of entropy occurrence over episodes dur-
ing the second training phase for both agents; the color map represents the logarithmic
occurrence (darker means less occurrence). Therefore, this figure contains information
about the entropy of all robot poses in each episode. A high frequency of low entropy
values indicates exploitation, while a high frequency of high entropy values indicates
pure exploration. It is easy to see that the entropy evolution in Figure 6.5(a) is not
ordered. Moreover, the most frequent entropy values are clustered in the upper part and
all improvements in the entropy evolution have been achieved randomly. The entropy
values are particularly large at the end of the experiment. In contrast, Figure 6.5(b)
shows a decreasing trend as training progresses, which is consistent with the proposed
formulation.

6.4.2 Deep RL Policies

After validating the suitability of the proposed learning method, we extended it to
exploit the potential of deep learning techniques. First, the three agents (based on DQN,
DDQN and D3QN, respectively) were trained in the first environment with an extrinsic
reward to compare the performance of the different models, to study their generalization
ability, and to prove that exploration is not achievable with such a formulation. The
main parameters of the learning algorithm and the simulator are listed in Table 6.2.

Figure 6.6 contains the training curves for each agent, i.e., the cumulative reward
after each episode of the training. Light-colored curves correspond to raw data while
bold ones do to outlier-filtered moving averages. The DQN agent (blue curve) shows
persistent instabilities due to the memory saturation with useless experience, resulting

114 Chapter 6. Learning Policies for D-optimal Decision-making

Table 6.2: Learning and simulation main hyper-parameters.

Parameter Value

Learning rate, α 0.00025
Discount factor, γ 0.99
Memory buffer size 20000
Batch size, bs 64
Dimension of the network input, r 100
Dimension of the network output 3
Exploration episodes, Ce 50
Steps between θ− updates, C 10000
Scaling factor, η 0.01
Gazebo real-time factor 10
Seconds to apply the actions 0.1
Max. number of steps per episode 500

0 100 200 300 400 500
Episodes

−100

0

100

200

300

400

C
um

ul
at

ed
R

ew
ar

d

Deep Q-Network

Raw reward DQN
Raw reward Double
Raw reward Dueling
Moving average reward DQN
Moving average reward Double
Moving average reward Dueling

Figure 6.6: Cumulative reward during training in the first environment for DQN
(blue), DDQN (red) and D3QN (green) agents, using an extrinsic reward. Light-colored
curves correspond to raw reward values while bold ones correspond to outlier-filtered

moving averages.

in continuous cycles of forgetting and relearning similar policies. The DDQN agent (red)
mitigates most of these instabilities them, although the converged maxima are slightly
lower (i.e., policies are less optimal and thus trajectories become rougher). For both
DQN and DDQN, the training phase required about 30 hours and 500 episodes. After
this time, no further improvements in the policy were found. Finally, the agent based
on D3QN (green) shows a significantly more stable behavior due to the use of PER, and
also higher maximum converged values. Note that the convergence is much faster in this
case due to the non-random initialization of the weights.

Table 6.3 contains the performance of each agent in the three scenarios during testing.
We report results for the success rate (defined as the number of times that an agent
sensed more than 95% of the map), the number of steps per episode and the total
reward per episode. All values are the average over five trials with different simulation
random seeds. The standard deviation is also shown in parenthesis. The results of
the D3QN agent are the most remarkable in the three environments. In the second

6.4. Experiments 115

Table 6.3: Evaluation results in all environments for DQN, DDQN and D3QN agents
trained with an extrinsic reward. Also, results for a DQN agent that was allowed to
train on the second environment shortly before its evaluation (denoted as DQN†). The

best results in each environment are shown in bold.

Agent Success
rate (%)

Steps Reward

Environment 1
DQN 100 500(0) 352.1(0.1)

DDQN 100 500(0) 337.6(2.2)

D3QN 100 500(0) 355.3(0.3)

Environment 2

DQN 72.8 312(13) 95.6(14.4)

DQN† 100 500(0) 269.9(4.4)

DDQN 100 500(0) 192.5(3.0)

D3QN 89.3 419(9.3) 196.5(5.7)

Environment 3
DQN 0 170(15) 924.9(8.3)

DDQN 0 253(16) 942.2(4.8)

D3QN 0 432(18) 241.6(16.5)

environment DDQN performs similarly, with an even higher success rate, but the higher
reward values obtained by D3QN prove the generation of more optimal trajectories:
smoother movements and fewer spins. The third environment is challenging for all
agents, not only because it is unknown but also because of its complex topology. None
of the agents trained with an extrinsic reward was able to traverse the entire map,
leaving some regions unexplored (e.g., the top right corner and the middle dead-end,
see Figure 6.9(f)). Once again, D3QN’s navigation performance is outstanding, with
reward values several times higher than those of DQN and DDQN.

After the training, the agents effectively learned to decide when to move forward and
when to steer when encountering nearby obstacles. As the complexity of the network
increases, so does the complexity of the learned skills. For instance, the agent based on
D3QN learned the exact moment to steer in order to minimize the distance traveled. The
three agents were able to generalize their knowledge to the second environment, due to its
similarity to the training environment. However, the third environment is topologically
different from the training scenario. There are several dead-ends and a corridor with
two possible paths. In this environment, only the D3QN agent was able to generalize
the learned skills, obtaining a positive reward and also navigating in it without colliding.
However, the zero success rate indicates the absence of exploration skills: when there
are two paths to reach the same point, the same one is always chosen. Thus, the agents
only navigate in the environment without showing any reasoning towards exploration
or exploitation.

To show the strong effect of having no prior knowledge of the environment, a second
experiment was performed in which the simplest trained agent (DQN) was allowed to
store information about the second environment for a few episodes before being tested

116 Chapter 6. Learning Policies for D-optimal Decision-making

DQN warm-up evaluation

DQN
DDQN
D3QN
DQN†

Figure 6.7: Evolution of the cumulative reward (mean and standard deviation) over
the retraining episodes (orange curve). Also, for comparison, the reward values of DQN

(blue), DDQN (red) and D3QN (green) agents in the second environment.

on it (denoted as DQN† in Table 6.3). The results of the retraining phase are shown
in Figure 6.7. Initially, the agent’s performance deteriorates as the network weights are
adjusted, but after approximately 65 episodes, it is able to outperform more complex
architectures, as shown in Table 6.3. It is also worth noticing too how the standard
deviation of the reward increases significantly when the environment is unknown to
the agents, since the input states are unfamiliar. This experiment was not performed
in the first scenario because the DQN agent was already trained on it. In the third
environment, the number of warm-up steps required for the neural network to adapt
was too high, so it is not presented either. Despite the potentially superior behavior
in the third scene as well, the agent would learn a completely new policy based on the
newly gathered information.

Finally, the best of the previous agents (D3QN) was retrained in the first environ-
ment using the augmented reward proposed in Equation (6.13). In this case, training
took 250 episodes, achieving a trade-off between performance and short training time.
A comparison between D3QN and this agent (denoted as D3QN‡) is presented in Ta-
ble 6.4. Note that for comparison purposes, the mean rewards shown only correspond to
the extrinsic term of runc, although the full function was used during training. After the
training, the performance in the training environment deteriorated slightly, but general-
ization improved significantly. In the second scenario, the agent achieved a success rate
of 100% and received reward values close to those that an agent with prior knowledge of
the environment would receive (cf. DQN† in Table 6.3). In the third environment, there
is also an improvement in the reward values. The most remarkable fact, however, is the
non-zero success rate, which means that in some cases the agent was able to explore the
entire scenario: no other agent had achieved this due to its topological complexity and
the absence of exploration skills. In all cases, the use of runc led to the selection of more
optimal actions, but also to a significant increase in the standard deviation. This could
be mitigated with longer training periods, as the optimization problem becomes more
complex with multi-term reward functions.

6.4. Experiments 117

Table 6.4: Evaluation results in all environments for D3QN agents using both ex-
trinsic and uncertainty-aware rewards (denoted as D3QN‡). The best results in each

environment are shown in bold.

Agent Success
rate (%)

Steps Reward

Environment 1
D3QN 100 500(0) 355.3(0.3)

D3QN‡ 100 500(0) 300.1(9.3)

Environment 2
D3QN 89.3 419(9.3) 196.5(5.7)

D3QN‡ 100 500(0) 241.1 (29.2)

Environment 3
D3QN 0 432(18) 241.6(16.5)

D3QN‡ 26 459(97) 261.6(57.5)

All previous results in this section have demonstrated the effectiveness of the ap-
proach only in terms of safe navigation. In the following, we examine the effects of using
runc for the active SLAM task. Figure 6.8 shows the evolution of D-opt of the covari-
ance matrix over time (or steps, equivalently) when evaluating D3QN (red) and D3QN‡

(blue) agents. For each of the environments, we made 50 evaluations with each of the
agents. The results for all trials are shown in the background, while the the average
is shown in bold with a confidence interval at 95%. In the first two environments the
evolution is similar for both agents, but there is a big difference in how they achieve
such behavior: while the agent based on D3QN‡ tries to reduce uncertainty, D3QN
achieves it by chance due to the reduced topological complexity of the environments.
The third scenario illustrates this, as it is more complex. On the one hand, D3QN left
several areas unexplored and did not exploit those already known. On the other hand,
D3QN‡ significantly reduced D-opt (a 34% reduction, approximately). These plots also
reflect the appearance of loop closures in the form of sudden variations and show the
monotonicity property of D-opt.

Finally, Figure 6.9 contains the maps generated by the SLAM algorithm during the
testing phase in the three environments. This figure also includes the starting positions
(red dots), the loop closures (black stars), the trajectory of the robot (red arrows),
and its uncertainty in 2D (yellow ellipses). Note that although these maps have been
hand-picked, they represent a representative example of the agent’s policy; given a
reproducible simulation run. The D3QN‡ agent reported lower uncertainty in all cases,
which can be seen in the size of the uncertainty ellipses, e.g, in figures 6.9(a) and 6.9(d).
Also, the trajectories followed are more optimal and the angular velocity is applied
more sparsely (source of increased uncertainty). Compare, for example, figures 6.9(b)
and 6.9(e). In the third environment, D3QN‡ was able to choose different paths to
explore a larger area and close several loops; a behavior that the agent trained with
extrinsic rewards could not reproduce (see figures 6.9(c) and 6.9(f)).

118 Chapter 6. Learning Policies for D-optimal Decision-making

D3QN
D3QN‡

(a) Environment 1.

D3QN
D3QN‡

(b) Environment 2.

D3QN
D3QN‡

(c) Environment 3.

Figure 6.8: Evolution of D-opt of the covariance matrix during evaluations of the
agents trained with rnav (D3QN, red) and runc (D3QN‡, blue).

6.5 Summary and Discussion

In this chapter, we have presented a novel formulation of active SLAM as an instanti-
ation of deep reinforcement learning. At the time of publication, it represented one of
the first attempts to combine estimation-theoretic approaches with data-driven models
to achieve uncertainty-driven decision-making. The same scheme has been used in sub-
sequent work [117,271]. The work in this chapter has shown that it is possible to learn
meaningful policies for active SLAM if the reward function is properly designed, and that
D-optimal policies can be computed at extremely low computational cost. Moreover,
since the network is trained on raw sensory data, the SLAM algorithm is not required
during deployment, and the learned policies can be transferred to different unknown
environments.

The novelty of this work implies the existence of a number of limitations and related
open questions. These outline future research directions. Using deep learning as a part
of the solution, rather than in an end-to-end fashion (e.g., only to solve the uncertainty
quantification step) is a promising line of future work, as is the study of memory and
transfer to the real world.

6.5. Summary and Discussion 119

LOOP

CLOSURE

(a) D3QN, environment 1. (b) D3QN, environment 2. (c) D3QN, environment 3.

LOOP CLOSURE

(d) D3QN‡, environment 1.

LOOP

CLOSURE

(e) D3QN‡, environment 2.

LOOP
CLOSURE 2

LOOP
CLOSURE 1

SECOND PATH FIRST PATH

(f) D3QN‡, environment 3.

Figure 6.9: Maps generated by D3QN (a–c) and D3QN‡ (d–f) agents in the three
environments during testing. Red circles indicate the start position, red arrows indicate
the trajectory followed, black stars indicate a resample of algorithm particles (loop
closures), and yellow ellipses illustrate a measurement of the uncertainty of the robot’s

2D position.

121

Chapter 7

Towards Active Spatial
Perception: Reasoning over
Hierarchical High-level Concepts

Currently, most active SLAM works in the literature focus on building an accurate
metric model of the environment in the form of an occupancy grid or a voxel map,
i.e., a geometric representation of the occupied space. However, real environments
contain a vast amount of information that goes beyond geometry. Semantic and higher
abstraction information has the potential to create a complete environment model and
enable richer interactions with it. Only recently have notable efforts been devoted
to incrementally creating such representations in real time, a task known as spatial
perception. This development raises the fundamental question of how to build them
autonomously. In this chapter, we present a first method to active spatial perception.
By reasoning over the different abstraction layers of a scene graph and leveraging its
hierarchical structure, agents are capable of efficiently deciding the next best locations to
visit, with the ultimate goal of creating accurately reconstructing the environment. Our
preliminary experiments in realistic indoor simulated scenes show the potential of this
approach and its outstanding behavior compared to other classical and state-of-the-art
exploration methods.

The work in this chapter was initiated during the research stay at SPARK Lab and
is still in progress. As result, [1] is expected to be published shortly.

7.1 Introduction

Until very recently, active SLAM works predominantly relied on metric maps, where
decision-making involved quantifying the uncertainty of the posterior robot state and

122 Chapter 7. Towards Active Spatial Perception

map. The use of discretized map representations has further allowed to make such
quantification discrete, assuming each cell is independent (cf. Chapter 3). However, the
resulting models only allow for simple tasks such as navigation, thus limiting the interac-
tion with the environment. In contrast, humans perceive and represent the environment
in a very different way, where reasoning goes beyond the geometry of an environment:
semantics, abstract high-level entities and the relationships between them are crucial.
The adoption of high-level abstract representations in the context of active SLAM is a
promising alternative to metric maps, that has the potential to enable richer interac-
tions with the environment (e.g., manipulation, item search, human-robot interaction).
Active spatial perception would allow robots to detect and recognize elements in their
surroundings, understand their spatial relationships, and plan appropriate actions based
on this information; key for a number of tasks such as manipulation, humans interaction,
object search, etc.

Metric-semantic maps [31, 33, 35] extend geometry by incorporating semantic infor-
mation into the representation. By associating parts of the environment (i.e., voxels)
with labels, metric-semantic maps enable robots to reason about the environment in a
more human-like way, improving their ability to perform subsequent tasks such as object
search and manipulation. Despite these maps offer a more detailed representation of the
environment, they still fall short in capturing the complex spatial relationships between
objects and more abstract concepts (e.g., groups of objects in rooms).

Higher-level representations have recently emerged as a promising alternative to tra-
ditional metric maps for representing the environment in mobile robotics. The adoption
of these representations is arguably motivated by the limitations of traditional maps in
capturing abstract entities in the environment and the complex spatial relationships be-
tween them. By incorporating high-level abstract representations, robots can represent
and understand the environment in a more human-like way, bridging the gap between
human and robotic spatial perception. This, in turn, paves the way for subsequent
human-like reasoning and human-robot interaction, including the use of large language
models.

Dynamic scene graphs (DSGs) alleviate the limitations of metric and metric-semantic
maps by representing the environment as a layered graph of related spatial concepts,
each of which is described by a set of attributes (e.g., position, semantic label). Armeni
et al. [272] presented the first algorithm to build such graphs from metric-semantic
maps. Wu et al. [273] instead incrementally extract an object-level scene graph from
images. Similarly, Kimera [37] allows DSGs to be built directly from visual sensor
data, introducing also new levels of abstraction into the graph, such as free space.
Hydra [36] extend the previous work to operate in real-time, and investigate the loop
closure detection at different levels of abstraction and how to optimize the graph. Chang
et al. [274] propose a centralized multi-robot spatial perception system based on Hydra.

7.2. Preliminaries on Hierarchical Representations 123

Bavle et al. [275] contribute a real-time algorithm to build DSGs incrementally, using a
3D lidar sensor instead and slightly differing on what the abstract layers exactly encode.

These hierarchical graph structures offer a more expressive and human-like way of
capturing complex spatial relationships, enabling robots to reason about the environ-
ment at multiple levels of abstraction: from low-level geometry (e.g., a mesh, a voxel
map) to high-level semantic relationships. However, as with SLAM algorithms, spa-
tial perception remains passive, thus relying on human interaction to guide the robot’s
movements. This dependence on human interaction limits the robot’s autonomy and
its ability to effectively explore and understand the environment, which is critical for
many robotic applications. The challenge of autonomously building DSGs by reasoning
about their uncertainty —active spatial perception— represents an intriguing and unex-
plored area of research that motivates this chapter. To date, no effort has been made to
quantify uncertainty and make decisions in DSGs. By addressing this challenge, we can
significantly enhance the capabilities of mobile robots and enable them to perform more
complex tasks and interact with the environment in a more intelligent and human-like
manner.

Just like with active SLAM over metric maps, the goal of active spatial perception
amounts to finding the next actions to execute so the model of the environment (i.e., the
DSG) is as accurate and complete as possible. It can be formulated as the following
optimization problem, cf. Equation (3.26):

a? = arg max
a∈A

U(M,X ; a) = arg min
a∈A

U(DSG; a) , (7.1)

where the DSG encodes both the map and the robot states, and whose structure is
defined in the next section.

7.2 Preliminaries on Hierarchical Representations

In this chapter we will consider a 3D DSG to be a layered graph representation containing
five different layers, as described in Hydra [36]. See also Figure 7.1. The layers, from
lower to higher abstraction, are as follows:

Layer 1. A volumetric model of the robot’s surroundings is built using Kimera [37],
which integrates semantic point clouds into both a truncated signed distance
field (SDF) and an Euclidean SDF using Voxblox [276]. This model is main-
tained only locally within an active window, for which a metric-semantic
mesh is extracted using the marching cubes algorithm.

Layer 2. Objects are segmented over the mesh via Euclidean clustering. Each node
in this layer is defined by its centroid, bounding-box and semantic class.

124 Chapter 7. Towards Active Spatial Perception

Figure 7.1: Figure 2.7 revisited. Visualization of the layers in a 3D DSG, obtained
evaluating Hydra [36] in the uHumans dataset [37]. From top to bottom: rooms (colored
cubes), places (red spheres), objects (centroids as spheres colored by semantic class and
bounding boxes in the mesh), robot pose-graph (yellow), and metric-semantic mesh.

Edges within and across layers are included, and the building layer is omitted.

Besides, objects are associated with the closest node in the next layer (i.e., a
place). This layer also contains the agents (e.g., the robot), defined by their
trajectories in the form of a pose-graph.

Layer 3. Using a generalized Voronoi diagram (GVD) in the Euclidean SDF integra-
tion, the subset of voxels equidistant to at least two obstacles (i.e., sup-
porting points) can be extracted. Then, the GVD is further sparsified by
selecting only those voxels that meet certain requirements as nodes. This
results in a subgraph of places that encode the free space in the environment
(i.e., a topological map). A place in the DSG is described by its position,
the number of supporting points and the distance to the closest obstacle.
Two places are connected in this layer if an obstacle-free straight-line can
be drawn between them.

Layer 4. By performing dilation operations on the voxel map, the subgraph of places
is pruned to reveal the room topology of the environment. Rooms in the
DSG are defined by their centroid and the set of child places, and adjacent
rooms are connected if their children are.

Layer 5. Buildings.

The hierarchical structure implies that there are connections within and between
layers. For example, edges in the fourth and fifth layers denote traversability between

7.3. Quantifying the Utility of a DSG 125

places and rooms, respectively; and edges across layers can describe, e.g., that a mesh
vertex belongs to an object located in a certain room.

Hydra also contains a back-end to compensate drift and to keep the above represen-
tation consistent. It uses a hierarchical loop closure detection method and optimizes a
deformation graph including the pose-graph and a portion of the mesh and places layers.
See [36] for a more detailed description.

7.3 Quantifying the Utility of a DSG

Without loss of generality, let us consider a DSG to be defined by a set of objects (O), a
set of places (P), a set of rooms (R), a set of buildings (B), and a sequence of robot poses
(X), all of them interconnected. Therefore, using the concept of entropy, the utility of
a given scene graph can be defined as the joint entropy of the above sets of variables:

U(DSG) = H(DSG) = H(O,P,R,B,X) . (7.2)

Note that we have omitted the metric-semantic mesh, since the information it contains
is propagated upwards in the graph and thus encoded in more abstract layers (i.e., an
accurate reconstruction of the places and objects layers will necessarily imply having an
accurate metric-semantic mesh).

Computing the above joint entropy is intractable, so a number of assumptions must
be considered. Assuming that the state of the robot is independent from the map (a
common assumption in the literature, see Section 3.2), it yields:

H(DSG) ≈ H(O,P,R,B)⊕H(X) , (7.3)

where the map M , (O,P,R,B), and ⊕ denotes a non-trivial aggregation to compen-
sate for the mismatch between the magnitudes of the different addends (e.g., a weighted
sum as presented in Section 3.3.2.2).

Considering the semantic and geometric components of the map, M, also indepen-
dent variables, i.e.,

P(Mg,Ms) ≈ P(Mg)P(Ms) , (7.4)

the entropy of the DSG can be expressed as:

H(DSG) ≈ H(Mg)⊕H(Ms)⊕H(X) (7.5)

= H(Og,Pg,Rg,Bg)⊕H(Os,Rs,Bs)⊕H(X) , (7.6)

126 Chapter 7. Towards Active Spatial Perception

where the superscripts g and p refer to geometric and semantic attributes, respectively.
Note that the above assumption of the geometry of an entity and its semantic class being
uncorrelated is also usual in the context of metric-semantic active SLAM [277,278].

The weighted entropy, defined for a probability distribution (X) as [279–281]:

Hw(X) , 9
∑
i

w(xi)P(xi) logP(xi) , (7.7)

provides a mathematical framework for Equation (7.6), which can be rewritten as [280]:

Hw(DSG) = Hw(Og,Pg,Rg,Bg)︸ ︷︷ ︸
geometry

+Hw(Os,Rs,Bs)︸ ︷︷ ︸
semantics

+ Hw(X)︸ ︷︷ ︸
trajectory

, (7.8)

where the aggregations ⊕ have now become a weighted sum that is task-specific and al-
lows biasing the exploration towards achieving better geometric, semantic, or trajectory
models. Henceforth, these weights will be considered fixed for a given experiment, but
their variation during the same exploration run is a promising line of research (e.g., tog-
gling loop closing behavior to prioritize having a navigable model over fine semantic
refinement).

7.3.1 Geometric Entropy

Let us now consider that the geometric attributes of the building are completely defined
by the rooms within it, and that these are conditioned by the geometry of the places
and objects, i.e., the geometry of a room is fully described by the entities within it:

P(Og,Pg,Rg,Bg) = P(Bg|Og,Pg,Rg) P(Rg|Og,Pg) P(Og,Pg) (7.9)

≈ P(Og)P(Pg) , (7.10)

with objects and places also considered independent of each other. Therefore, the geo-
metric (or volumetric) entropy of the DSG (first term in Equation (7.8)) will be:

Hw(Og,Pg,Rg,Bg) ≈ Hw(Og) +Hw(Pg) (7.11)

=
∑
ri∈R

wgo ∑
oj∈Ori

H(ogj) +wgp
∑

pk∈Pri

H(pgk)

 , (7.12)

where Ori ⊂ O and Pri ⊂ P are the subsets of objects and places contained in the
i-th room, ri ∈ R, respectively. Here, we have introduced the weights wgo and wgp ,
splitting the geometric weights into two, to allow for a balance between object and
free-space reconstruction behaviors. However, they could be set to wgo = wgp , since
both entropies reduce to counting the number of unobserved voxels and can therefore
by summed directly.

7.3. Quantifying the Utility of a DSG 127

The geometric entropy of an entity in the DSG can be computed by looking at the
voxels that define the entity’s attributes, leveraging the mature volumetric exploration
metrics [282] —all entities are ultimately based on the metric-semantic mesh, and thus
on a voxel discretization. However, in our case, only a subset of voxels is associated with
each entity and thus of relevance, making not necessary to evaluate the entire voxel space
(Υ) as in related literature. That is, only a few voxels have the potential to improve
the geometric reconstruction of the objects and places, and the rest are independent
variables. Then, the entropy for an object can be expressed as:

H(ogj) = 9
∑

vm∈Υoj

P(vm) logP(vm) , (7.13)

where Υoj ⊂ Υ is the set of voxels of interest surrounding oj . The voxels of interest can
simply be defined as those adjacent to the object. If there are unobserved voxels in this
region, there is a potential improvement in the geometry of oj (i.e., its centroid and
bounding box estimate, and the object completion).

Equivalently, for each place:

H(pgk) = 9
∑

vm∈Υpk

P(vm) logP(vm) , (7.14)

with Υpk ⊂ Υ the set of voxels of interest surrounding pk. Given Hydra’s place extraction
method, a given place in the DSG can only be modified if there exist unobserved voxels
within the volume of the sphere defined by its supporting points —the entire volume
being observed implies that it is free space and thus the place attributes will remain
as they are (see Figure 7.2). In fact, the existence of unobserved voxels within these
spheres could induce incorrect subsequent behaviors (e.g., in navigation tasks), since
they are intended to represent free space. In addition, if there are unobserved voxels
along the straight line connecting nearby places, there is a potential undiscovered edge
between them that could improve the connectivity of this layer. Therefore, Υpk contains
all voxels within the influence sphere of pk and along the rays to all nearby places.

This approach guarantees that only voxels with the potential to improve the rep-
resentation are being evaluated (i.e., observing any unobserved voxel vm /∈ ΥP ∪ ΥO
will not change the existing DSG). This constitutes the main difference with respect
to volumetric approaches. In addition, if a voxel is relevant for more than one entity
it will be counted multiple times, thus inducing an importance weighting in the voxel
space. The general formulation provided allows to create different behaviors by simply
redefining the regions of interest. For instance, ΥO could be defined by using a prior
of the size of the object, derived from its semantic class —this concept will be further
explored in future work. Figure 7.3(a) contains a 2-dimensional diagram of the proposed
method, showing the regions of interest (orange areas). Since places are one of the most
fundamental building blocks of the DSG, improving them will also have an impact into

128 Chapter 7. Towards Active Spatial Perception

Figure 7.2: Visualization of the voxels of interest for two places (black dots). The
colored circles represent the regions of the space that can influence the places (i.e., the
distance to their supporting points). Unobserved voxels within the sphere and also along
the ray connecting two nearby places are considered of interest (orange squares), while
those outside these regions are not (purple squares). In this example, a 2-dimensional
visualization is presented, voxels are considered either observed or unobserved, and

only the latter are displayed.

(a) Geometric utility in a corridor scene. (b) Potential impact of the places con-
nectivity on the GVD in a room.

Figure 7.3: Illustration of the geometric regions of interest in two examples. Places
are represented by red dots, accompanied by red dotted circumferences indicating the
regions of the space that influence them. Existing and potential connections between
places are depicted as black solid and dotted lines, respectively. The green polygon
illustrates an incomplete object. Obstacles in the environment are represented by thick
black solid lines, while unobserved regions are denoted by thick blue solid lines. Addi-
tionally, orange areas are unobserved regions of interest (i.e., voxels with high utility).

upper layers. For example, Figure 7.3(b) shows how the potential connections (dotted
lines) would change the room segmentation from two to one instance.

Inserting Equations (7.13) and (7.14) into Equation (7.12), it begets:

Hw(Og,Pg,Rg,Bg) ≈ 9
∑
ri∈R

wgo ∑
oj∈Ori

∑
vm∈Υoj

P(vm) logP(vm) +

wgp
∑

pk∈Pri

∑
vm∈Υpk

P(vm) logP(vm)

 (7.15)

= 9wgo
∑

vm∈ΥO

P(vm) logP(vm) 9wgp
∑

vm∈ΥP

P(vm) logP(vm) ,

(7.16)

7.3. Quantifying the Utility of a DSG 129

where, for generality, ΥO = {Υo1 , . . . , ΥoJ}, and ΥP = {Υp1 , . . . , ΥpK}; with J = |O|
and K = |P| the total number of objects and places in the DSG, respectively. Note that
the voxel spaces ΥO, ΥP 6⊂ Υ might contain overlapped regions.

Since we formulated the weighted entropy over voxel subsets, it can be general-
ized to the entire voxel space (Υ), following the somewhat standardized volumetric
approaches [277,282]:

∴ Hw(Mg) ≈ 9
∑
vm∈Υ

P(vm) logP(vm) wm , (7.17)

with:

wm =

0, if vm /∈ ΥP ∪ ΥO

κ, otherwise
, (7.18)

where κ is the number of regions of interest to which vm belongs. For example, if vm
belongs to Ω = Υo1 ∩ · · · ∩ΥoJ′ ∩Υp1 ∩ · · · ∩ΥpK′ , κ = J ′+K ′, with J ′ ≤ J and K ′ ≤ K.
As a result, a voxel’s impact on the geometric utility is zero if it does not belong to any
regions of interest associated to the objects and places in the DSG. However, if it does
belong to one or more regions of interest, its weight will be determined by the number
of regions it is associated with.

7.3.2 Semantic Entropy

Consider now the objects within a room to be divided into two subsets. The first of
them (o1, . . . , oHi) are specific objects with the potential of determining the room label
(e.g., a refrigerator in a kitchen, a bed in a bedroom, a shower in a bathroom), and the
second one (oHi+1, . . . , oJi) are generic objects that can be found in almost any room
(e.g., a chair, a lamp); with Hi ≤ Ji ∈ Z constants specific for room i. Then, the
joint probability of the semantic class of the objects and rooms can be approximated as
follows after assuming objects independent from each other:

P(Os,Rs) =
∏
ri∈R

P(rsi , os1, . . . , osJi) (7.19)

≈
∏
ri∈R

P(os1|rsi) . . .P(osJi |r
s
i) P(rsi) (7.20)

=
∏
ri∈R

P(os1|rsi) . . .P(osHi |r
s
i)P(osHi+1) . . .P(osJi) P(r

s
i) (7.21)

=
∏
ri∈R

P(rsi) ∏
j=1,...,Hi

P(osj |rsi)
∏

j=Hi+1,...,Ji
P(osj)

 , (7.22)

where P(·s) denotes the probability of entity (·) of being of a certain semantic class,
the subscript ri for each object has been dropped for readability (i.e., oj ≡ ori,j), and

130 Chapter 7. Towards Active Spatial Perception

the semantic class of a building has been omitted. Note that the boundary cases of all
objects belonging to the first or to the second subsets would result in the second and
first productories inside the brackets of Equation (7.22) being equal to one, respectively.
The case Hi = Ji = 0 would make the term in brackets equal to P(rsi), although it lacks
meaning, since the semantic class of a room is extracted from the segmented objects
within it.

The chain rule of conditional entropy allows to write the semantic entropy in Equa-
tion (7.8) as:

∴ Hw(Os,Rs,Bs) ≈ Hw(Os,Rs) =
∑
ri∈R
Hw(rsi , os1, . . . , osJi) (7.23)

=
∑
ri∈R

Hw(rsi) + ∑
j=1,...,Hi

Hw(osj |rsi) +
∑

j=Hi+1,...,Ji
Hw(osj)

 ,

(7.24)

where:

• the semantic entropy of a room is given by the sum over per-class entropy [277]:

Hw(rsi) =
∑
`∈LR

P(rs`i) logP(rs`i)ws` (7.25)

with LR the set of room semantic labels, P(rs`i) the probability of room ri of having
semantic class `, and ws` a weighting parameter that allows to bias exploration
towards certain specific rooms (e.g., kitchens).

• The conditional relationships between objects and rooms can be, e.g., learned
parameters.

• And the semantic entropy of an object is also given by the sum over per-class
entropy:

Hw(osj) =
∑
`∈LO

P(os`j) logP(os`j)ws` , (7.26)

with LO the set of object semantic labels, P(os`i) the probability of object oi
of having semantic class `, and ws` a weighting parameter that allows to bias
exploration towards certain specific objects (e.g., fire extinguishers). As with the
geometric entropy, we can rewrite the above in terms of the set of voxels that form
each object (Υoj):

Hw(osj) =
∑

vm∈Υoj

1
|Υoj |

∑
`∈LO

P(vs`m) logP(vs`m)ws` , (7.27)

7.3. Quantifying the Utility of a DSG 131

being |Υoj | the number of voxels forming oj . Equation (7.27) can be generalized
to the entire voxel space (Υ) too, as in Equation (7.17):

Hw(osj) =
∑
vm∈Υ

∑
`∈LO

P(vs`m) logP(vs`m) wm , (7.28)

with:

wm =

w
s`/|Υoj |, if vm ∈ Υoj

0, otherwise
. (7.29)

Despite the generality provided in Equation (7.24), for simplicity and given the
preliminar nature of this method, only the semantic entropy of objects will be considered
from now on. The use and implementation of the complete formulation is future work
that will require learning the relationships between object and room labels.

7.3.3 Summary

The above two subsections have shown that the utility of a DSG can be expressed
as a weighted entropy over the voxel space, thus being equivalent to the mainstream
volumetric approaches. By treating free/occupied space as one more semantic label, it
yields the general expression:

Hw(DSG) ≈ Hw(X) +
∑
vm∈Υ

Hw(vs`m) = Hw(X) 9
∑
vm∈Υ

∑
`∈L

P(vs`m) logP(vs`m)wm , (7.30)

where P(vs`m) is the probability of voxel m of being of class `, and Hw(X) can be
computed using the pose-graph (cf. Section 3.3.2.2). By exploiting the hierarchy and
attributes of the DSG, Equation (7.30) particularizes to:

∴ Hw(DSG) ≈ Hw(X) 9
∑
ri∈R

∑
pk∈Pri

 ∑
vm∈Υpk

wgo P(vm) logP(vm)+

∑
oj∈Opk

 ∑
vm∈Υoj

wgp P(vm) logP(vm) +
∑
`∈L

ws` P(os`j) logP(os`j)

 .

(7.31)

where Pri is the set of places within ri, Υpk the set of voxels of interest for pk, Opk the
set of objects associated to pk, and Υoj the set of voxels of interest for oj .

The main advantages of this formulation with respect over existing voxel-based meth-
ods are as follows:

132 Chapter 7. Towards Active Spatial Perception

i) Instead of evaluating the entire voxel space, we evaluate only those voxels that
have the potential to improve the geometry of the model. This implies that voxels
outside these regions of interest are considered independent of the DSG. We main-
tain the mainstream independence assumption between voxels within each region.
In addition, the formulation is local to each entity in the DSG, allowing regions of
interest to overlap and some voxels to be counted multiple times. This induces an
importance weighting in the voxel space.

ii) Similarly, the evaluation of the semantic utility can be bounded to certain subsets
of voxels. We only evaluate the semantic entropy of those regions of the environ-
ment that have been segmented into objects, and since all voxels that form an
object share the same class, we can combine them and only evaluate the entropy
of the object.

iii) The weighted entropy allows to promote user-defined or task-specific behaviors, for
example, to create an accurate reconstruction of the free space (i.e., wgp � wgo �
ws`), to identify objects (i.e., wg{p,o} � ws`), etc. Moreover, we can further specify
a subset of objects of interest (via ws`) to focus exploration on their identification
and completion.

iv) Finally, the summations over entities in Equation (7.30) exhibit a hierarchy and
allow for hierarchical reasoning and planning, as will be shown in the next section.
This formulation can be easily generalized to include the utility of other (higher-
level) entities in the DSG. In addition, since the utility is implicitly aggregated to
the upper layers of the DSG, it is easy to compare utility between rooms or even
buildings.

7.4 Method

This section describes a preliminary method for active spatial perception based on the
formulation presented above and Hydra [36]. Only some parts of the above general
formulation have been implemented and evaluated, the rest being under investigation
at the time of submission of this thesis.

As in modular approaches, we divide the problem into three stages: finding the set
of candidate destinations, evaluating their utility and selecting the optimal sequence
of viewpoints to visit. We describe each of these stages in the following pages, and
Figure 7.4 shows a high-level overview of the different blocks that comprise this method.

7.4. Method 133

Figure 7.4: Functional blocks of the proposed method for active spatial perception.

(a) Frontier examples. (b) Erroneous frontier.

Figure 7.5: Example of frontier search over a metric-semantic mesh (a) and a common
error case (b). Frontier nodes of the mesh are shown as green dots (limited to 1.5 m

height), and Euclidean clustered frontiers are shown as red spheres.

7.4.1 On the Identification of Candidate Destinations

Most active perception approaches in the literature, including those presented in the
previous chapters, identify frontiers as the boundaries between the known and un-
known space directly in the underlying discretized representation of the environment
(cf. Section 3.3.1). Although such a frontier search is not computationally intensive, the
detected frontiers usually require successive filtering steps to discard inconsistent and
low-informative goals, and to reduce the dimensionality of the action space. Figure 7.5
shows the mesh boundaries (green dots) and the clustered frontiers (red spheres) in an
indoor environment mapped with Hydra. Also, Figure 7.5(b) contains an example of an
inconsistent frontier detected due to a mesh misalignment. Similar cases can be seen in
the middle of Figure 7.5(a).

Instead of detecting frontiers incrementally in the voxel map within Hydra’s active
window or globally over the mesh (e.g., as shown above and in Figure 7.6(a)), we leverage
the topological layer of the DSG. Places are created incrementally as the environment
is mapped, defining the free observed space. In explored regions, places are typically
densely distributed with nearby supporting points, resulting in small spheres of influence.
However, places created near the boundaries of the unobserved space are often sparser
and have distant supporting points (e.g., in the floor and ceiling, between two walls).
In essence, this leads to the formation of large spheres of influence that extend beyond
the observed space —this forms the basis of the geometric utility formulation discussed

134 Chapter 7. Towards Active Spatial Perception

(a) Mesh frontiers. (b) Pattern of unobserved voxels.

Figure 7.6: A traditional frontier search method over the reconstructed mesh of
an indoor environment (a), and the pattern of unobserved voxels contained in the
spheres associated with each place in the DSG (b). In the first case, frontier points are
represented in blue. In the second case, unobserved voxels are depicted as colored cubes,
with lighter colors indicating voxels that belong to more than one sphere (reflecting the
previously mentioned importance weighting). For visualization purposes, the voxel map

has been cropped to a height of 1.8 m.

in Section 7.3.3. Figure 7.6(b) illustrates the spheres of influence associated with each
place for an example scene, and the unobserved voxels contained within them. The color
map of the voxels indicates their occurrence, with lighter color representing voxels that
have the potential to influence more than one place. It is worth notin the similarity
between the frontiers detected over the mesh and the distribution of large spheres and
unobserved voxels depicted in Figures 7.6(a) and 7.6(b).

Places in the context described are a representation of the skeletonized observed
space, making them useful for identifying the boundaries between the known and un-
known regions, once their utility has been computed. Consequently, places with a ge-
ometric utility greater than zero serve as candidate goals. In fact, any entity within
the DSG that possesses utility can be regarded as a potential goal to visit, offering the
opportunity to enhance both the metric representation and semantic understanding.
This automatically discards irrelevant frontiers, aligning with the objective of building
the most accurate and comprehensive model of the environment possible. By directly
considering DSG entities as candidate destinations to be observed, the drawbacks of
traditional methods are mitigated without incurring additional computational cost.

7.4.2 Utility Computation

Given the preliminary nature of this method, several simplifications have been made
despite the generality offered by Equation (7.31). As a result, instead of computing
Equation (7.31), we only evaluate the geometric utility of the places:

Hw(DSG) ≈ 9
∑
ri∈R

∑
pk∈Pri

∑
vm∈Υpk

P(vm) logP(vm) . (7.32)

7.4. Method 135

Figure 7.7: Example of the aggregation of the places’ utility (shown in the lower
part of the figure) in the room layer (upper part). Also, visualization of the created
virtual rooms (black cubes). The numerical values displayed above each entity indicate
the count of unobserved voxels associated with it. In this particular example, room 0
emerges as the preferred destination based on utility, followed by virtual room 0 and

room 4.

The full implementation of the approach is currently work in progress. The whole
method has been implemented in a generic way, such that the above equation can be
substituted by Equation (7.31).

The computation of utility has been integrated into Hydra’s front-end. Whenever
new place nodes are created or updated, the utility within their spheres of influence
and along the rays connecting nearby nodes is (re)evaluated by querying the voxel map
(i.e., the TSDF). It is important to note that these nodes within the active window. To
incorporate the utility into the decision-making process, we modify the attributes of the
DSG entities to encode the utility values. The complete DSG description is then passed
to the decision maker module (see Figure 7.4).

As outlined in the summations in Equation (7.32), the utility of places is aggregated
within rooms. However, there is a possibility that certain places may not yet belong
to any room, meaning they have not been segmented. In such cases, we perform Eu-
clidean clustering, grouping these places into virtual rooms (VR) where utility can be
aggregated. Interestingly, these areas often represent regions of high interest for ex-
ploration. Figure 7.7 provides an example of this aggregation process. The utility of
places has been aggregated into the rooms layer, and virtual rooms have been generated
where places lack a parent. This method allows for a comprehensive evaluation of all
candidates, even in cases where room segmentation has not been completed.

136 Chapter 7. Towards Active Spatial Perception

7.4.3 Hierarchical Optimization and Planning

At this stage, every place and room in the DSG has a utility value assigned to it. By
leveraging the hierarchical structure of the graph, we can determine the next best place
to visit through a two-stage process. First, we identify the best candidate room based
on its utility, and then we find the best sequence of places within it. This allows us to
narrow down the search space and focus only on a subset of potential destinations. Once
the candidate room has been determined, we proceed to find the optimal sequence of
places to visit within the selected room. By optimizing the sequence within each room,
we can identify the most favorable path to follow for exploration. This approach offers
an advantage over classical frontier-based methods as it significantly reduces the number
of candidates that need to be considered. Leveraging the hierarchical structure of the
DSG enables us to efficiently identify the most promising destinations for exploration.

Currently, the determination of the next best room relies on a myopic approach,
where the room with highest utility value is identified via enumeration. However, ongo-
ing work involves considering an optimal sequence of rooms to visit, rather than solely
focusing on individual rooms, we would capture the global context and reason over the
long-term. Implementing this approach will further enhance the exploration strategies.

Once the next room goal has been identified, we compute the sequence of viewpoints
to visit within it —each of them associated with an entity with utility. Candidate
viewpoints can be thus defined as 2-dimensional poses that fully observe the unobserved
voxels associated with a DSG entity, i.e, they are within the camera frustum. For
semantic utility, observing the entity’s bounding box is sufficient. In the case of studying
places, this involves observing the sphere of influence, as illustrated in Figure 7.8. It is
important to note that the example shown in the figure is a 2-dimensional representation,
chosen for the purpose of visualization.

To determine a candidate viewpoint for a specific place, we employ a process that
involves dividing its surrounding space into k sectors and selecting the closest sector to
the robot. Within that sector, we sample a random point from an arc that has radius
equal to the minimum distance required for the entire sphere to be contained within the
frustum. Due to the small arc lengths for high values of k, random sampling has not
been considered a critical issue. Once a candidate goal has been computed, we verify
it is traversable, ensuring that the robot can actually reach it. This is achieved by
evaluating whether the goal lies within the free observed space, i.e., within the spheres
of influence of any other place in the DSG. See Figure 7.9(a). If the goal is not within
the free space, we sample another point in the same sector. If, after sampling a certain
number of points, none of them are determined to be traversable, we blacklist that
sector and repeat the entire process in the next closest sector to the robot. The primary
objective of this procedure is to avoid the need for traversability checks on a low-level
map representation, such as a navigation mesh. Currently, only the goal destination

7.4. Method 137

Figure 7.8: Example of the process of computing a candidate viewpoint to observe a
particular place (black circle), where the surrounding space has been divided into four

sectors.

(a) Traversability. (b) Visibility.

Figure 7.9: Traversability (a) and visibility (b) verification examples. In the first
case, a viewpoint has been discarded (marked in red) because it falls outside the free
observed space. A second candidate (green) has been sampled and selected as it sat-
isfies the requirement of lying within the sphere of influence of another place in the
DSG. In the second case, after visiting a candidate viewpoint (red), it is observed that
the corresponding place still holds utility, so a second candidate viewpoint (green) is

sampled within the next sector.

is checked for traversability over the places layer. However, further developments are
underway to incorporate traversability verification of the complete path to reach it.

The process described provides two important guarantees. First, it guarantees that
the unobserved voxels will are always inside the camera frustum, regardless of their lo-
cation within the sphere of influence. This is achieved without the need to store their
specific coordinates, simplifying the implementation and reducing the memory require-
ments. Second, it guarantees that the candidate goals are within the free space, making
them navigable. However, it does not provide a guarantee that the unobserved voxels

138 Chapter 7. Towards Active Spatial Perception

Figure 7.10: Visualization of the candidate viewpoints (depicted as magenta arrows)
and the optimal traversal paths (green lines) in an example corridor scene. The figure
also showcases the reconstructed metric-semantic mesh and the places in the DSG
(blue spheres). The intensity of the place nodes indicates their utility, with darker

colors indicating higher utility values.

will actually be observed. An obstacle inside the camera frustum can occlude these vox-
els, as illustrated in Figure 7.9(b). Instead of actively verifying visibility using the mesh,
we adopt a passive approach by traveling to the candidate destination. If the utility of
that place has not dropped to zero after visiting the candidate viewpoint, it indicates
that some voxels were not observed, therefore requiring to sample another viewpoint.
The use of sectors is instrumental in this process, allowing to compute new goals within
unexplored and reachable sectors, i.e., excluding those that have been blacklisted.. This
ensures that the exploration remains systematic and avoids revisiting previously ex-
plored areas, enhancing the overall efficiency. One drawback of this approach is that the
robot might need to travel to different goals to observe the same place. This situation
can occur when obstacles obstruct the view of specific voxels from the current goal,
requiring the robot to navigate to an alternative viewpoint that offers a clearer line of
sight to those voxels. This may indeed result in redundancy in the exploration, but it
also makes the decision-making process extremely fast: instead of spending time in, e.g.,
rendering mesh observations, the robot navigates the environment.

The entire process is iterated for each entity within the selected room that has a util-
ity value greater than zero. This iteration produces a set of candidate viewpoints. Then,
we solve a traveling salesman problem (TSP) that aims to find an optimal sequence of
viewpoints to visit, considering a cost-utility function, which is designed to penalize
longer paths and excessive turnings and promote the selection of viewpoints with the
highest expected utility. By incorporating the TSP optimization into the process, the
robot can strategically plan its path to maximize the overall utility. Figure 7.10 illus-
trates an example of the algorithm generating the optimal sequence (depicted as green
lines) for visiting a set of candidate viewpoints (magenta arrows). These viewpoints
have been computed to observe places with non-zero utility (blue spheres).

7.5. Preliminary Results 139

Figure 7.11: Visualization of the Matterport3D indoor scene.

Considering that the utility has already been computed, the process of aggregating
the utility and determining the best sequence of goals is indeed extremely fast (in the
order of milliseconds). This efficient computation enables us to recalculate the next
best room and the sequence of goals within that room at every decision-making step
without incurring significant computational overhead. An alternative approach involves
deferring the computation of room goals until the current room has been fully explored.
This approach allows for a more focused exploration within the current room, prioritiz-
ing comprehensive coverage before transitioning to a different room. This strategy can
be advantageous in certain situations where an accurate exploration of a single room
is preferred over rapidly moving between rooms. Both approaches have been imple-
mented and offer their own advantages. The decision of whether to recompute room
goals at each step or wait until the current room is fully explored can be tailored to
optimize the exploration strategy based on the characteristics of the environment and
the requirements of the task at hand.

7.5 Preliminary Results

The method described in the previous has been thoroughly tested in Habitat simula-
tor [226], which provides the capability to render 3D scenes from image datasets. For
our experimentation, we used the Matterport 3D dataset [229]. More specifically, we
tested the approach on an indoor single-floor scene, whose corresponding 3D model is
shown in Figure 7.11. All the experiments detailed in this section were carried out on a
system equipped with an Intel Core i9-10900K CPU @ 3.70GHz and a Nvidia GeForce
RTX 3070 GPU.

Sensor data from Habitat is transmitted to ROS by employing ZeroMQ sockets and
then published as ROS topics to provide Hydra with RGB-D (640× 480 resolution and
60° field-of-view) and semantic information. Additionally, we extract the ground-truth

140 Chapter 7. Towards Active Spatial Perception

robot/sensor poses, which are utilized to build a ground-truth pose-graph. An iner-
tial measurement unit (IMU) simulation has also been implemented within the Habitat
framework. This opens up the possibility of integrating visual-inertial pose estima-
tion [32] in future work. The robot/sensor is capable of moving at maximum linear and
angular velocities of 1 m/s and 1.5 rad/s, respectively, similar to a differential robot.
For more detailed configuration parameters of the simulator, please refer to the project
repository. Finally, the simulator also handles the movement planning via a navigation
mesh, which is constructed at the beginning of the simulation. This allows the agent to
navigate the environment without relying on external packages, e.g,. to create a naviga-
tion grid map, using the ground-truth navigation mesh. The use of a path planning and
navigation module that operates on the built mesh, or the DSG, rather than relying on
ground-truth information, is a potential avenue for future research. However, this topic
is beyond the scope of the current work.

7.5.1 Experimental Results

In order to correctly evaluate the results, we have evaluated a number of baselines along
our own method.

Initially, we evaluated the performance of Hydra by executing an exhaustive ex-
ploration process that lasted approximately one hour. During this experiment, goals
were selected randomly distributed within the ground-truth scene. The purpose of this
baseline is to generate a pseudo-ground-truth DSG, which serves as a benchmark for
the subsequent agents and results. Henceforth, all the results presented will be relative
to the performance achieved by the exhaustive exploration agent. The mesh resolution
was set to 10 cm. The DSG generated in the scene evaluated is shown in Figure 7.12.
Quantitative results are provided in Table 7.1. The metrics are categorized into three
groups, each corresponding to one the layers analyzed in the DSG:

• For the rooms layer, we present the node precision (i.e., percentage of segmented
rooms that actually exist in the scene), coverage (i.e., percentage of true rooms in
the scene detected) and recall (i.e., percentage of rooms in the explored region of
the scene detected). Ground-truth node data was retrieved using the dataset infor-
mation. Regarding the connectivity between rooms (i.e., edges in this layer), we
provide precision and recall. Ground-truth edges used to compute the connectivity
metrics were manually labeled.

• For the places layer, we present the total number of nodes and edges. Addition-
ally, we analyze the connectivity, including the average node degree (i.e., average
number of edges connected to each node), percentage of places disconnected from
the main graph, and number of disconnected clusters (segmented by Euclidean

7.5. Preliminary Results 141

Figure 7.12: DSG obtained after the exhaustive exploration. For visualization pur-
poses, only the metric-semantic mesh, the rooms layer, and the object bounding boxes

are displayed.

distance) with more than five nodes. The presence of big disconnected clusters of-
ten represents rooms that have not yet been detected, much like equivalent to the
virtual rooms explained in the previous section. Furthermore, we assess the exis-
tence of paths connecting pairs of arbitrary points in the scene. To evaluate this,
we sample a uniformly distributed set of points within the scene, which remains
consistent across all methods. For a path to exist between a pair of points, two
conditions must be met: (i) both points must lie within the free space (i.e., they
fall within the spheres of influence of at least one place in the graph), and (ii)
there must be a traversable path connecting those places. By analyzing these
conditions, we can determine whether two points are traversable using solely the
information provided by the places layer. Therefore, this evaluation allows to as-
sess the usefulness of this layer for navigation tasks, as it provides insight into
the traversability between regions within the scene. In cases where a path exists,
we also present the average shortest path length. Finally, regarding accuracy, we
present the percentage of places that lie outside the scene boundaries.

• For the objects layer, we report the total number of objects detected, precision,
coverage and recall. In addition, we include the average error of the bounding
box centers, and the maximum error found. Again, ground-truth information was
obtained from the dataset.

The results indicate that while rooms are generally identified accurately, almost
half of them are missed, i.e., they are under segmented. The same applies to the
connections between rooms. In the places layer, only a few disconnected clusters are
present, depicting some rooms that were not segmented. There is a significant number
of isolated places disconnected from the main graph, showcasing bad connectivity. Only
approximately 2% of the places are outside the scene boundaries, indicating an accurate

142 Chapter 7. Towards Active Spatial Perception

representation of the free space. In this scene, a viable path was found between random
pairs of points within it in more than 70% of the cases, indicating the coverage and
traversability of the free space volume. Nearly 90% of the detected objects are correctly
identified, although the coverage is relatively lower (∼ 50%). Lastly, the average error
in the object centroids is approximately 20 centimeters.

Apart from the exhaustive exploration, we evaluated two additional methods: se-
mantic Shannon mutual information (SSMI) [31] and a cost-utility classical exploration
algorithm. The former is a voxel-based method that detects frontiers on a projected
occupancy grid and selects the optimal destinations based on metric-semantic entropy.
The SSMI algorithm was used to compute the optimal paths, and Hydra was simultane-
ously evaluated to build the corresponding DSGs; this allowed for a comparison of the
different approaches. The second method runs directly on top of Hydra and utilizes a
mesh frontier detector. Initially, frontier points are identified as mesh nodes that only
belong to one triangle, and then, these points are clustered. Figure 7.5 contains an
example of the raw and clustered frontier points. This algorithm selects the optimal
frontiers by striking a balance between the expected area to be discovered (measured by
the size of the frontier) and the length of the path required to reach it.

The experiment conducted consisted in exploring the environment during 30 minutes
(only navigation time is considered). First of all, Figure 7.13 contains the resulting model
of the environment built by each agent, which can be easily compared to the models in
Figures 7.11 and 7.12.

Numeric results of the experiment are presented in 7.1. Overall, our method dis-
played superior performance compared to the other agents evaluated. In terms of room
detection, we achieved 100% precision and coverage similar to that of the exhaustive
exploration. This indicates two important points. Firstly, it suggests that the rooms
were not over segmented. Secondly, it implies that any areas that were not segmented
can be potentially attributed to the behavior and configuration of Hydra rather than the
exploration strategy. However, it is important to note that the connectivity recall was
lower compared to other methods. On the other hand, the connectivity recall was lower
than other methods. The analysis of the places layer demonstrates that our method re-
sulted in better connectivity, performing at a level comparable to the exhaustive search.
Although SSMI also exhibited similar performance, it is worth mentioning that the area
covered by this agent was significantly smaller. Additionally, the study of the shortest
paths reveals that our method successfully found a path can be found between points
in the scene in 71% of the cases, a performance equivalent to exhaustive exploration.
The length of the shortest path should be carefully considered, as it only accounts for
the length of the paths found. Therefore, an agent that only finds paths between close
nodes will have shorter average distance at the cost, however, of having found a little
amount of paths. In the objects layer, we achieved the highest precision and cover-
age, being close the exhaustive agent that navigated the environment for over an hour.

7.5. Preliminary Results 143

(a) Cost utility.

(b) SSMI.

(c) Ours.

Figure 7.13: DSGs constructed by each agent. For visualization purposes, only the
metric-semantic mesh and the rooms layer are displayed. For further understanding of

the coverage, compare to Figure 7.11 and Figure 7.12.

Moreover, the error in the object locations was minimized, demonstrating how optimiz-
ing the utility of the places layer transfers to the rest of the layers of the DSG. Finally,
our decision-making time was significantly shorter than that of the SSMI method.

144 Chapter 7. Towards Active Spatial Perception

7.6 Summary and Discussion

In this chapter, we have explored the limitations of existing active SLAM methods, which
primarily reason over discretized metric representations. We recognize that real envi-
ronments offer a wealth of information beyond mere geometry, encompassing semantic
and higher-level elements, and that incorporating them into decision-making can lead
to more accurate representations that enable richer subsequent interactions with the
environment. Firstly, we have contributed a general formulation for quantifying utility
of hierarchical, abstract, metric-semantic representations (dynamic scene graphs) using
the concept of weighted entropy. This formulation provides a valuable framework for
evaluating the usefulness of executing different candidate actions. Additionally, we have
presented a new active spatial perception method that leverages a portion of this formu-
lation to reason over the dynamic scene graph. The experiments conducted in realistic
indoor simulated scenes demonstrate the potential of our approach. Despite being in
its preliminary and ongoing stages, our method shows the agents ability to capture and
integrate higher-level information to construct accurate scene graphs. While the current
method only computes the utility of one (topological) layer to guide decision-making, the
exploration strategies have a positive impact on the construction of higher-abstraction
layers as well. This chapter makes a valuable contribution to the field by paving the way
for advancements in active spatial perception. We anticipate conducting more thorough
experiments in the near future to further refine and validate our approach.

7.6. Summary and Discussion 145

T
ab

le
7.

1:
Q

ua
nt

ita
tiv

e
re

su
lts

of
ex

pl
or

at
io

n.
T

he
be

st
re

su
lts

am
on

g
th

e
th

re
e

m
et

ho
ds

co
m

pa
re

d
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

M
et

ri
c

E
xh

au
st

iv
e

C
os

t-
ut

ili
ty

SS
M

I
O

ur
s

R
oo

m
s

la
ye

r

N
od

e
pr

ec
isi

on
10

0%
90

%
10

0%
10

0%
N

od
e

co
ve

ra
ge

50
%

45
%

25
%

45
%

N
od

e
re

ca
ll

50
%

45
%

35
.7

%
52

.9
%

C
on

ne
ct

iv
ity

pr
ec

isi
on

10
0%

10
0%

10
0%

10
0%

C
on

ne
ct

iv
ity

re
ca

ll
62

.5
%

91
.6

%
79

.2
%

16
.7

%

Pl
ac

es
la

ye
r

N
um

be
r

of
pl

ac
es

12
05

71
1

31
9

87
1

N
um

be
r

of
ed

ge
s

73
44

29
24

11
85

38
56

Av
er

ag
e

no
de

de
gr

ee
12

.3
8.

2
7.

4
8.

9
Pl

ac
es

di
sc

on
ne

ct
ed

5.
6%

9.
3%

7.
8%

8.
6%

D
isc

on
ne

ct
ed

cl
us

te
rs
>

5
3

3
2

2
Pl

ac
es

ou
ts

id
e

sc
en

e
2.

8%
2.

0%
1.

3%
1.

7%
Pa

th
s

fo
un

d
71

.6
%

55
.3

%
14

.7
%

71
.6

%
Le

ng
th

sh
or

te
st

pa
th

(m
)

12
.7

14
.8

8.
8

11
.6

O
bj

ec
ts

la
ye

r

N
um

be
r

of
ob

je
ct

s
12

6
98

57
11

0
Pr

ec
isi

on
85

.7
%

91
.6

%
10

0%
91

.7
%

C
ov

er
ag

e
48

.3
%

37
.6

%
21

.8
%

42
.2

%
R

ec
al

l
48

.3
%

37
.6

%
32

.2
%

46
.8

%
Av

er
ag

e
er

ro
r

(m
)

0.
22

0.
21

0.
22

0.
18

M
ax

im
um

er
ro

r
(m

)
2.

4
2.

4
1.

7
1.

9

D
ec

isi
on

-m
ak

in
g

tim
e

(s
)

−
18

1
76

0
12

0

147

Chapter 8

Open Problems in Active SLAM

Active SLAM still requires much research in order to support the deployment of fully
autonomous robots in complex environments. Many are the challenges and research
fields involved, so collaboration between them is crucial to achieve real-world impact.

The purpose of this chapter is to identify these challenges and outline promising
research directions. To do so, we pose some of what we consider to be the most relevant
open problems in active SLAM (e.g., reproducibility, stopping criteria and active spatial
perception). Some of them are long-known challenges and are already under intense
investigation, others are emerging or have not received such attention. We devote one
section in this chapter to each of these research frontiers, emphasizing their relevance
and the potential benefits that they could bring to the field, as well as outlining a set of
research questions and promising directions. Figure 8.1 summarizes the open problems
and illustrates the stage of active SLAM to which they relate.

This chapter is the last of the contributions of this thesis, thereby closing the work
that started in Chapter 3 by formulating the problem of active SLAM and reviewing the
state-of-the-art. Despite being presented as a final chapter, these open problems have
been present throughout the entire document: they have shaped the topics addressed
in the previous chapters and set the direction of the research. In return, the research
outcomes have contributed to pushing the frontiers of active SLAM. This chapter is
based on [2].

8.1 Reasoning in Dynamic and Deformable Scenes

One of the most common assumptions in active SLAM is to consider the environment
static and the elements within it rigid. Real scenes, however, contain moving agents most
of the times (e.g., humans, other robots) and even deformable elements (e.g., clothes,

148 Chapter 8. Open Problems in Active SLAM

World

Data association (§8.2)Complex envs. (§8.1)

SLAM
Measurements Map and robot

state

Actions

Novel representations (§8.3)

Prediction (§8.4)

Optimality (§8.5)

Reproducibility (§8.7) Real-world applications (§8.8)

Stopping condition (§8.6)

Figure 8.1: Open challenges in active SLAM.

water). Handling these elements would greatly impact the robot’s autonomy, its reason-
ing ability and awareness, and would facilitate its deployment in real-world scenarios.

The study of dynamic environments has long been a topic of interest for the path
planning [283] and the SLAM [284] communities; but its investigation in the context
of active SLAM has been typically restricted to the action execution step (i.e., re-
planning) [285, 286]. However, many other relevant aspects emerge when considering
reasoning with dynamic elements: How to foresee their effects in planning? How to
integrate them in the utility function and how do they affect the task objectives? How
to track them while maintaining a lightweight representation?

Non-rigid environments present an even greater challenge. Planning for mobile
robots in deformable environments started receiving some attention a couple of decades
ago [287, 288]. Medical applications have also stimulated progress on SLAM in de-
formable environments [289,290]. However, to date, no efforts have been made towards
combining them and developing a deformable active SLAM framework. We believe this
is partly due to the unavailability and complexity of simulators for mobile robots in
deformable environments, and partly due to the difficulty in extending the current map
representations to deformable scenes. Active SLAM can play a major role in deformable
SLAM: observing as many deformations as possible is critical to achieve high quality
estimates [291]. Given the importance of the robot trajectories towards mapping de-
formable environments, great advances in this field can be expected in the coming years,
regarding, for example, observability optimization or inclusion of deformation metrics
in utility.

8.2. Robust Online Belief Space Planning and Active SLAM 149

8.2 Robust Online Belief Space Planning and Active SLAM

Another key aspect is data association, i.e., association between measurements and the
corresponding landmarks (or other entities in the map representation). In perceptu-
ally aliased and ambiguous environments, determining the correct data association is
challenging, and incorrect associations may lead to catastrophic failures. The research
community has been investigating approaches for robust perception to allow reliable
and efficient operation in ambiguous environments (see, e.g., [292–297]). Yet, these ap-
proaches focus on inference rather than planning, i.e., actions are given. Only recently,
ambiguous data association was considered also within belief space planning (BSP)
and, in particular, active SLAM. Pathak et al. [298] incorporate, for the first time,
reasoning about future data association hypotheses within a BSP framework, enabling
autonomous hypotheses disambiguation. Another related work in this context is [299],
that also reasons about ambiguous data association in future beliefs while utilizing the
graphical model presented in [296]. A first-moment approximation to Bayesian infer-
ence with random sets of targets, known as the probability hypothesis density filter,
has been successfully applied to active target tracking problems [300,301]. However, ex-
plicitly considering all possible data associations leads to an exponential growth of the
number of hypotheses, and determining the optimal action sequence quickly becomes
intractable. Shienman and Indelman [302] recently presented an approach that utilizes
only a distilled subset of hypotheses to solve BSP problems while reasoning about data
association and providing performance guarantees considering a myopic setting. Nev-
ertheless, BSP and active SLAM in these challenging settings remain open problems.
More generally, finding an appropriate simplification of the original BSP or active SLAM
problem, which is easier to solve, with no, or bounded, loss in performance, is an exciting
and novel direction [233,302–304].

8.3 From Active SLAM to Active Spatial Perception

Most active SLAM approaches reason over geometric representations of the environ-
ment (e.g., OG maps). However, when we explore new environments as humans, we
are mostly interested in semantic elements of the environment (e.g., presence of objects,
rooms) rather than the shape of the environment per se. Modern SLAM systems are now
able to build 3D metric-semantic maps in real time from semantically labeled images,
see [32] and the references therein. These maps include both occupancy information
and semantic labels of entities (e.g., chairs, tables, humans, etc.) in the environment.
Very recent work goes even further and develops spatial perception systems that infer
hierarchical map representations, in the form of 3D scene graphs [36,37,272]. They sym-
bolize high-level representations of an environment, that capture from low-level geome-
try (e.g., a 3D mesh of the environment) to high-level semantics (e.g., objects, people,

150 Chapter 8. Open Problems in Active SLAM

rooms, buildings, etc.). While there is a growing amount of work in estimating these
high-level representations from sensor data, their use in active SLAM is still uncharted
territory. Very early effort in this direction includes the work from Zhang and Scara-
muzza [305], which introduces a 3D map representation for perception-aware motion
planning, and Ravichandran et al. [306], which focuses on object search using 3D scene
graphs. In addition, the work presented in Chapter 7 makes significant contributions in
this direction.

Active metric-semantic information acquisition, or active spatial perception, has the
potential to impact many aspects of robot autonomy:

i) By leveraging semantic knowledge, a robot can more effectively predict unseen
space (e.g., predict the presence of rooms or objects in each room).

ii) The use of semantics can further enhance SLAM performance (e.g., allowing for
novel loop closure detection methods [36]).

iii) Hierarchical representations may enable novel and more computationally efficient
motion and task planning methods.

However, each opportunity comes with many open research questions, for instance: How
to quantify uncertainty over metric-semantic or even hierarchical scene representations?
How to leverage hierarchical structures to improve computation? How to perform spatial
prediction in hierarchical representations?

8.4 Prediction Beyond Line-of-sight

Resolution of active SLAM relies on fast and precise predictions of future states for the
variables of interest. The accurate prediction of the map representation and the robot
location after executing a set of candidate actions can be the difference between making
the right decision or not.

On the one hand, the expected sensed space and the resulting map representation
have traditionally been predicted using a sensor model together with ray-casting tech-
niques [113,132]. Recent related work, however, addresses the problem of scene comple-
tion and occupancy anticipation from a deep learning perspective. Fehr et al. [307] use
a neural network to augment the measurements of a depth sensor and Ramakrishnan
et al. [308] directly predict augmented occupancy grid (OG) maps beyond the sensor’s
field-of-view using auto-encoders (AE). Rather than using raw sensor measurements,
Katyal et al. [309, 310] and Hayoun et al. [311] extend an input OG map beyond the
line-of-sight also using AE. Shrestha et al. [312] predict maps of occupancy probabilities
instead with variational AE. Dai et al. [313] perform scene prediction over 3D signed

8.5. Optimal Decision-making in Real Time 151

distance field-based maps. All these methods seem promising for fast and precise online
map prediction beyond line-of-sight, although their integration into active SLAM is yet
to be done and brings with it numerous associated challenges. For instance: How does
scene prediction behave in unstructured environments? How to account for the un-
certainty in the predictions? Is measurement prediction more reliable and informative
than direct map or scene prediction? How to forecast the effect of only a certain set of
non-myopic actions in the map rather than augmenting the whole scene? Regarding the
latter, [314–316] subordinate predictions to candidate actions.

On the other hand, the robot state is directly estimated using motion models or path
planners. However, predicting the associated uncertainty is not trivial and requires more
attention. Work from Asraf and Indelman [316] is among the very few efforts made to
combine data-driven scene prediction with BSP. In addition, they use the predicted
observations to forecast the posterior uncertainty over the robot trajectory. Besides
the robot’s movement, it is the appearance of loop closures (i.e., exploitation) that
significantly affects the new states’ uncertainty, thus making its forecast critical. Despite
some isolated works have partially studied this problem [5,94,317], it still remains as an
open challenge.

8.5 Optimal Decision-making in Real Time

A robust decision-making process is paramount for any active SLAM algorithm; and it
essentially boils down to correctly assessing the utility of the joint posteriors (i.e., of the
map representation and the robot pose). Doing such computations in a reasonable time
(e.g., in the order of a few seconds) is crucial to achieve real-time performance and there-
fore real-world deployment. On the one hand, information-theoretic methods provide a
fast way to compute utility, making them suitable for online approaches. Nonetheless,
they often only consider the map representation and are therefore bound to be sub-
optimal. Accommodating the information gain over the robot location is not trivial, as
the difference between the two terms is of orders of magnitude and manual tuning is
required. On the other hand, formulating utility over the task space using theory of op-
timal experimental design (TOED) does provide these guarantees, at the cost, however,
of extremely high computational loads. Also, TOED-based metrics target Gaussian dis-
tributions, which make it difficult to include the map state in them. Designing utility
functions that accommodate the joint posterior, are optimal and can be computed in
real time is an open research question. Optimal decision-making in real time is an issue
strongly connected to other open problems in active SLAM, cf. Sections 8.1 and 8.3.

Very recent works on spectral utility functions have provided a fast way to compute
task-driven metrics, while providing optimality guarantees (see, e.g., [3]). However, a
method to consistently incorporate the uncertainty in the environment’s representation

152 Chapter 8. Open Problems in Active SLAM

is yet to be devised. In the context of information theory, the use of the weighted
entropy [279, 280] to formulate utility seems a promising direction; not only to allow
aggregating terms of different magnitude, but also to evaluate the uncertainty in multi-
level representations or to prioritize reducing the uncertainty of a subset of the variables
of interest (e.g., certain objects in the environment), as in focused active inference (see
Section 3.3.2.2). Finally, data-driven methods have the potential to enable fast uncer-
tainty quantification. Some works have addressed the problem of active SLAM in an
end-to-end manner [4, 116, 118], but using deep learning just for estimating utility is
still unexplored, and could restrain the training complexity and allow for better gener-
alization. Moreover, questions such as how to provide optimality guarantees, transfer
learning to real-world scenarios or measure the uncertainty in the network still remain
unanswered.

8.6 Towards Meaningful and Autonomous Stopping Criteria

Unlike with coverage and exploration in known environments, determining the moment
in which the task of active SLAM is complete is non-trivial. Performing active SLAM
is known to be a computationally expensive process: a vast amount of resources is
required to estimate and optimize utility online, thereby conditioning the execution of
other tasks. It is crucial to understand when such process can be considered complete
and other tasks can be prioritized. Moreover, an excess of irrelevant or redundant
information may lead to wrong estimates and even to irrecoverable states. Cadena et
al. [65] already identified this issue as an open research question, but little research
has been done on the topic. Even recent active SLAM work still relies on traditional
temporal [7,113] or spatial [23,255] constraints to decide when exploration is complete.
These metrics, however, cannot be used in truly unknown environments nor do they
assert task completion (see [6]). The use of metrics based on TOED has been identified
as a promising tool [6,65,263] to determine when a given exploration strategy is no longer
adding information. Very recent work in this direction demonstrates the usefulness of
TOED-based metrics as stopping criteria [6]. Nevertheless, many questions remain to
be answered: How to guarantee task completion? How to transition between exploration
strategies? Also, the advent of DRL approaches raises a new question: when to stop
training?

8.7 Reproducible Research in Active SLAM

The increasing attention towards active SLAM creates the need for new benchmarks
to objectively evaluate new findings against existing research. This has long been a
challenge in the robotics community [318], where real-life robotics experiments are often

8.8. Practical Applications 153

difficult to replicate across research groups. In related problems, such as SLAM, static
datasets are commonly used for benchmarking (e.g., [244]). However, in active SLAM,
the agent must interact with the environment to select actions and acquire measure-
ments, making the use of datasets impractical. In recent years, a significant effort has
been made in robotics to address challenges in benchmarking [319] and reproducibil-
ity [320]. Despite these efforts, such benchmarks are still lacking in active perception.

Typically, in active SLAM, researchers select a set of scenarios (e.g., platform, task,
and environment) representative of the desired application, and experiments are con-
ducted in simulation via customized simulators or in the real world via specialized hard-
ware. While such an evaluation is adequate for validation, the specified scenario may
not be general enough or sufficiently specified to be reproduced. Consequently, one-to-
one comparisons are rarely made between approaches. While targeting more general
embodied agents, several open-source datasets [321] and simulators [226,255,322] show
promise for active SLAM research. Also, open-source frameworks (see Table 3.1) make
the comparison and testing of new algorithms straightforward, only by modifying the
decision-making portion. While some works take advantage of these simulators and
datasets [115], establishing a proper methodology for evaluating active SLAM when
it comes to generalization from simulation to the real world remains an open question.
Furthermore, there is a dire need to establish appropriate performance metrics for active
SLAM that go beyond the commonly-used exploration time and coverage. Improving
the quality of estimates is the main objective of active SLAM and should therefore be
measured.

8.8 Practical Applications

Although active SLAM methods have practical relevance in many real-world problems
such as search and rescue, where constructing a sound representation of the environ-
ment is time critical, very few practical implementations and deployments of active
SLAM have been described in the literature. Walter et al. [323] propose a partially
autonomous system for underwater ship hull inspection. Kim and Eustice [147] deploy
a complete active SLAM system for the same application. Palomeras et al. [114, 167]
report the autonomous exploration of complex underwater environments for environ-
mental preservation purposes. Fairfield and Wettergreen [317] investigate terrestrial
applications and autonomous mapping of abandoned underground mines. A roughly
similar application but in the archaeological context of catacomb exploration is pre-
sented in [324]. Strader et al. [87] report experiments of active perception in a Mars-
analogue environment. Finally, assistive mapping examples for office-like environments
can be found in [95, 299, 325]. Aerial applications of active SLAM are significantly less
common. Chen et al. [23] propose a model predictive control framework to address
coverage tasks while maintaining low uncertainty estimates.

154 Chapter 8. Open Problems in Active SLAM

Overall, there are very few reports of field experiments involving active SLAM sys-
tems. Besides, by 2022, there is a large imbalance between the patents using the terms
SLAM and active SLAM, about 39,000 for the former and 31 for the latter.1 This
indicates that the technology readiness level of active SLAM is not in a deployment
phase but in early development. Furthermore, it raises the question of whether active
SLAM is important for all applications or whether human supervision is still preferred.
Among the roadblocks preventing the transition from theory to applications (including
the challenges mentioned in the previous sections), we also remark that the high compu-
tational complexity of active SLAM often clashes with application constraints (e.g., the
low computational budget available on aerial robots).

8.9 Summary and Discussion

In this final chapter, we have provided an overview of what we believe to be the most
relevant open problems in active SLAM. We have discussed issues like reproducibility,
active spatial perception and meaningful stopping criteria, among others. We have
emphasized the potential benefits that research on these fields could bring to active
SLAM, and also outlined promising directions. Much research is still required to achieve
real-world deployment of active SLAM systems without human supervision, but we hope
that the insights provided in this chapter will stimulate the research and contribute to
fill the existing gaps.

1We used “simultaneous localization and mapping” after:priority:19920101, and “active slam” OR
“active simultaneous localization and mapping” after:priority:19920101 as queries search in the Google
patents search platform.

155

Chapter 9

Conclusions and Future Work

Active simultaneous localization and mapping (SLAM) is a research field that has at-
tracted increasing attention in recent years. It has a crucial position in the deployment
of mobile autonomous robots operating in real-world environments, with a wide range of
applications such as search and rescue, exploration, and surveillance missions. Despite
the significant progress, there still exist several roadblocks preventing the transition from
theory to real-world applications, e.g., the high computational requirements to quantify
the expected uncertainty. To this end, this thesis has made significant contributions to-
wards the development of new methods for effective, fast, and optimal decision-making.
The contributions can be divided into four main parts.

First, we have presented a comprehensive survey on active SLAM, addressing the
need for a unified problem formulation and providing a guide for both researchers and
practitioners. This survey has provided a new perspective on the problem that goes be-
yond the classical —but still mainstream— entropy computation over discretized grids;
and will hopefully stimulate further progress in the field. In addition, we have outlined
a number of open challenges that need to be addressed to take the field forward, as well
as promising research directions that will guide future work in this area. Our motivation
is twofold: to inspire researchers to address these challenges, and to provide a roadmap
for them to follow. Overall, this survey will be a valuable resource for the active SLAM
community.

Second, we have explored the potential that spectral graph theory offer to speed up
uncertainty quantification during active graph-SLAM, thus addressing one of the major
challenges in the field. By establishing a theoretical relationship between the well-
established optimality criteria and the graph connectivity indices, we have shown that
uncertainty can be quantified in just a fraction of the time that classical methods would
require. This lays the foundation for topological active SLAM, or spectral active SLAM.
In addition, we have demonstrated the usefulness of these novel techniques by presenting
three applications: two open-source end-to-end systems that make optimal decisions

156 Chapter 9. Conclusions and Future Work

online using the graph topology, and a novel stopping criterion. Results have shown that
these methods in particular, and topological utility functions in general, yield decisions
equivalent to using optimality criteria, but in a much more efficient manner. Spectral
techniques have the potential to dramatically reduce the computational requirements of
active SLAM, overcoming one of the major obstacles to its widespread use in real-time
and multi-robot configurations.

The third contribution is a novel end-to-end approach to active SLAM based on
uncertainty-aware deep reinforcement learning. By embedding classical utility functions
(e.g., optimality criteria) into the reward design, we trained agents capable of making
uncertainty-informed decisions in real time; thus going beyond the neural obstacle avoid-
ance task typically considered in the literature. In doing so, we have provided a link
between estimation-theoretic and data-driven approaches. Despite the simplicity of the
method, the experiments demonstrate the feasibility of uncertainty-aware learning and
the potential of deep learning for rapid uncertainty quantification. Furthermore, we have
paved the way for more sophisticated learning frameworks and network architectures.

Our fourth and final contribution addresses the problem of reasoning over high-level
representations. In this context, we have introduced a first approach to active spatial
perception, where intelligent agents consider the uncertainty of high-level representations
to make informed decisions. Firstly, we have contributed a sound formulation of the
utility of a dynamic scene graph, using the concept of weighted entropy. This general
formulation allows the exploration process to be biased towards different goals depending
on the specific objective of the task (e.g., object search). Secondly, we have developed a
new algorithm for active spatial perception that leverages the structure and hierarchy of
these representations. Our method demonstrates the ability to make efficient decisions,
while also building more accurate models of the environment compared to both classical
and state-of-the-art approaches.

In summary, this thesis has addressed several important challenges in active SLAM.
We have contributed a comprehensive overview of the problem, and solutions to achieve
fast decision-making and to facilitate reasoning over high-level representations. In addi-
tion, we have devoted considerable effort to ensuring reproducibility and comparability,
which constitute key challenges in the field. We have made significant contributions to
pushing the frontiers of active SLAM, and we believe that our work will help achieve the
stretch goal of deploying autonomous robots in real-world environments. Nonetheless,
there is still much work to be done to achieve this goal, as we have tried to convey in
this thesis. Future lines of work that are closely related to the work presented in this
thesis are as follows.

The extension of spectral methods to broader configurations is a promising direction
of research. For example, their application to full SLAM methods has yet to be explored,
and may yield new and interesting insights. Their transfer to the information-theoretic

9.1. Conclusiones y Trabajo Futuro 157

domain has recently attracted some attention, although more research is also needed
in this area. A key advantage of these methods is their ability to provide extremely
fast uncertainty quantification with optimality guarantees, making them particularly
well-suited for use in multi-robot configurations and real-world scenarios where com-
putational complexity grows exponentially. By exploring these two applications, the
active SLAM community would unlock the full potential of spectral methods, opening
up exciting new opportunities for advancing the state-of-the-art and leaning towards
real-world deployment.

The combination of learning models and estimation-theoretic methods represents an
exciting avenue for future research in active SLAM. Using data-driven approaches for
specific portions of the problem (e.g., uncertainty quantification) would greatly reduce
the computational cost, while retaining the strengths of classical methods, which are
more mature and perform incredibly well in some aspects of the problem (e.g., nav-
igation or goal identification). The use of graph neural networks is also a promising
direction, offering the ability to learn from graph representations and the complex in-
terdependencies they encode. Moreover, learning spectral metrics could accelerate the
training phase.

Using of information that goes beyond metric maps for reasoning in active SLAM
is perhaps one of the most interesting lines of research. Autonomously building models
that contain higher level and abstract information will allow robots to perceive and
reason about the environment in a more human-like manner. If built accurately, these
models will enable many subsequent tasks (e.g., object search, interacting with humans
using large language models). In this thesis we have taken the first steps towards active
spatial perception, but this is a largely uncharted area with vast untapped potential to
revolutionize the field.

Finally, conducting experiments with real robots in real-world environments is es-
sential to evaluate the validity of active SLAM, and is a critical step towards deploying
truly autonomous agents. While our contributions have been confined to simulated
environments, we acknowledge the imperative to validate our approaches in real-world
scenarios, and intend to conduct such experiments in the near future. A closely related
topic that has garnered attention in the SLAM and computer vision communities is the
use of active SLAM in dynamic and changing environments; an area that has remained
predominantly unexplored in the context of active SLAM and represents an attractive
avenue for future research.

9.1 Conclusiones y Trabajo Futuro

El SLAM activo es un campo de investigación que ha atráıdo una gran atención durante
los últimos años. Esto se debe, en parte, al papel fundamental que desempeña en

158 Chapter 9. Conclusions and Future Work

el despliegue de robots móviles autónomos en entornos reales, como por ejemplo en
misiones de búsqueda y rescate, en exploración, o en tareas de vigilancia. A pesar
de los grandes avances conseguidos, todav́ıa existen algunos obstáculos que impiden la
transición de la teoŕıa a aplicaciones prácticas en el mundo real (por ejemplo, el gran
coste computacional de cuantificar la incertidumbre). En este sentido, esta tesis ha
realizado importantes contribuciones al desarrollo de nuevos métodos para lograr una
toma de decisiones eficaz, rápida y óptima. Estas contribuciones pueden dividirse en
cuatro partes principales.

En primer lugar, hemos realizado una revisión exhaustiva sobre el SLAM activo, pre-
sentando una necesaria formulación unificada del problema y proporcionando una gúıa
tanto para investigadores como para profesionales. Este estudio ha abordado el prob-
lema desde una nueva perspectiva que va más allá del clásico —pero aún predominante—
cálculo de entroṕıa sobre mapas de ocupación, y esperamos que estimule nuevos avances
en el campo. Además, hemos identificado una serie de problemas abiertos que creemos
deben abordarse para impulsar el campo del SLAM activo, aśı como direcciones de inves-
tigación prometedoras que guiarán los trabajos futuros. Por tanto, nuestra motivación
es doble: inspirar a los investigadores para que aborden estos retos y proporcionarles
una hoja de ruta que seguir. En conclusión, este estudio será un valioso recurso para la
comunidad investigadora que trabaja en SLAM activo.

En segundo lugar, hemos explorado las posibilidades que ofrece la teoŕıa espectral de
grafos para acelerar la cuantificación de la incertidumbre durante graph-SLAM activo
—uno de los principales retos en este campo. Hemos establecido una relación teórica
entre los conocidos criterios de optimalidad y los ı́ndices de conectividad del grafo sub-
yacente, demostrando que la incertidumbre también puede cuantificarse usando estos
últimos. Estas relaciones sientan las bases del SLAM activo topológico, o SLAM ac-
tivo espectral. Además, hemos probado la utilidad de estos novedosos métodos en tres
ámbitos de aplicación diferentes: dos sistemas de SLAM activo completos y de codigo
abierto que permiten tomar decisiones óptimas en tiempo real utilizando la topoloǵıa
del grafo, y un nuevo criterio de parada eficiente. Los resultados han mostrado que estos
métodos en particular, y las funciones de utilidad topológicas en general, producen deci-
siones equivalentes a usar los criterios de optimalidad, pero de una manera mucho más
eficiente. Las técnicas espectrales tienen el potencial de reducir drásticamente los req-
uisitos computacionales del SLAM activo, superando uno de los principales obstáculos
para generalizar su uso en tiempo real y en configuraciones multirobot.

La tercera contribución es un método de SLAM activo basado en aprendizaje por
refuerzo profundo que tiene en cuenta la incertidumbre. Al integrar funciones de utilidad
clásicas (por ejemplo, los criterios de optimalidad) en el diseño de la recompensa, hemos
sido capaces de entrenar agentes que pueden de tomar decisiones en tiempo real basadas
en la incertidumbre esperada. Este enfoque va, por tanto, más allá de la evasión neuronal
de obstáculos habitualmente contemplada en la literatura. De esta manera, hemos

9.1. Conclusiones y Trabajo Futuro 159

creado un v́ınculo entre los enfoques basados en la teoŕıa de estimación y los modelos
los basados en datos. A pesar de la sencillez de este método, los experimentos realizados
evidencian la viabilidad de este tipo de aprendizaje; probando su potencial para una
cuantificación rápida de la incertidumbre, pero también allanando el camino para marcos
de aprendizaje y arquitecturas más sofisticadas.

Nuestra cuarta y última contribución aborda el problema del razonamiento sobre
representaciones de alto nivel. En este contexto, hemos presentado una primera aprox-
imación a la percepci’on espacial activa, en la que los agentes tienen en cuenta la in-
certiumbre de las representaciones de alto nivel para tomar decisiones informadas. En
primer lugar, hemos propuesto una formulaci’on s’olida de la utilidad de los grafos de
escenas din’amicos, empleando el concepto de entrop’ia ponderada. Esta formulaci’on
gen’erica permite sesgar el proceso de exploraci’on hacia distintas metas, en funci’on
de la tarea espec’ifica a realizar (por ejemplo, hacia la b’usqueda de objetos). En se-
gundo lugar, hemos desarrollado un nuevo algoritmo de percepci’on espacial activa que
aprovecha la estructura y jearqu’ia de estas representaciones. Nuestro m’etodo permite
realizar una toma de decisiones eficaz, a la vez que construir modelos del entorno m’as
precisos que otros m’etodos cl’asicos y aquellos que representan el estado del arte.

En resumen, esta tesis ha abordado varios retos importantes en SLAM activo. Hemos
aportado una visión global del problema, y soluciones para lograr una toma de decisiones
rápida y para razonar sobre representaciones de alto nivel. Además, hemos dedicado
un notable esfuerzo a garantizar que los resultados sean reproducibles y comparables;
dos retos fundamentales en este campo. Hemos contribuido a ampliar las fronteras del
SLAM activo, y creemos que nuestro trabajo ayudará a alcanzar el objetivo último de
desplegar robots autónomos en entornos reales. No obstante, aún queda mucho trabajo
para alcanzar este objetivo; tal y como hemos intentado transmitir en esta tesis. Entre
las ĺıneas de trabajo futuro ı́ntimamente relacionadas con el trabajo de esta tesis se
encuentran las siguientes.

La extensión de los métodos espectrales a configuraciones más amplias es una ĺınea
de investigación prometedora. Por ejemplo, aún no se ha estudiado su aplicación en
grafos completos. Su transferencia al dominio de la teoŕıa de la información ha atráıdo
cierta atención recientemente, aunque sigue siendo necesaria más investigación al re-
specto. La principal ventaja de estos métodos radica en su capacidad para cuantificar la
incertidumbre de manera rápida con garant́ıas de optimalidad, lo que los hace especial-
mente adecuados para su uso en configuraciones multirobot y en escenarios reales donde
la complejidad computacional crece exponencialmente. Explorando estas dos aplica-
ciones, la comunidad de SLAM activo aprovechaŕıa todo el potencial de los métodos
espectrales, abriendo nuevas e interesantes formas de avanzar en el estado del arte e
impulsar el despliegue en el mundo real.

160 Chapter 9. Conclusions and Future Work

La combinación de modelos de aprendizaje y métodos basados en la teoŕıa de esti-
mación tambien constituye una dirección interesante de investigación futura. Usar los
métodos basados en datos únicamente en partes espećıficas del problema (por ejemplo,
en la cuantificación de incertidumbre) reduciŕıa en gran medida el coste computacional,
a la vez que conservaŕıa los beneficios de los métodos clásicos, mucho más maduros y
robustos en algunos aspectos del problema (por ejemplo, en navegación o en la iden-
tificación de objetivos). La combinación de redes neuronales con grafos también es
prometedora, ya que ofrece la posibilidad de aprender de las estas representaciones con-
densadas y de las complejas interdependencias que codifican. Además, el aprendizaje de
métricas espectrales podŕıa acelerar el proceso.

El uso de información que vaya más allá de las representaciones métricas para razonar
durante SLAM activo es quizá una de las ĺıneas de investigación más fascinantes. La
construcción autónoma de modelos que contengan información abstracta de alto nivel
permitirá a los robots percibir y razonar sobre el entorno de una forma más humana.
Si se construyen con precisión, estos modelos permitirán muchas tareas adicionales (por
ejemplo, interactuar con humanos utilizando modelos de lenguaje o buscar objetos). En
esta tesis hemos dado los primeros pasos hacia la percepción espacial activa, pero se
trata de un area en gran medida inexplorada con un enorme potencial para revolucionar
el SLAM activo.

Por último, la experimentación con robots reales en entornos reales es esencial para
evaluar la validez de los algoritmos de SLAM activo, y constituye un paso fundamental
hacia el despliegue de agentes verdaderamente autónomos. Aunque las contribuciones
de esta tesis se han limitado a entornos de simulación, somos conscientes de la necesidad
de validar nuestros métodos en entornos reales, y tenemos previsto realizar estos exper-
imentos en un futuro próximo. Otro tema estrechamente relacionado que ha atráıdo la
atención de las comunidades de SLAM y visión por computador es el uso de SLAM activo
en escenarios dinámicos y variables; un área que ha permanecido predominantemente
sin estudiar en el contexto de SLAM activo y que representa una atractiva oportunidad
para futuras investigaciones.

161

Appendix A

Lie Groups Theory Fundamentals

This appendix contains a brief introduction to Lie group theory for robotics, with the
aim of providing a compendium of the most relevant formal definitions and formulas
that do not appear in the main chapters of this thesis for readability. The notation of
this appendix is self-contained, but also consistent with that of Chapter 2.

A robot’s pose and its uncertainty can be defined over Lie groups [11, 12] by using
the special Euclidean group SE(n) that represents rotations (R) and translations (p),
both for 2D and 3D spaces, as:

SE(n) ,

g =

R p

0 1

 | R ∈ SO(n),p ∈ Rn

 ∈ R(n+1)×(n+1) , (A.1)

where SO(n) is the special orthogonal group defined by:

SO(n) , {R ∈ Rn×n | RRT = IIIn, det(R) = 1} , (A.2)

where IIIn is the n-dimensional identity matrix.

Associated to every Lie group, there exists a tangent vector space (i.e. the space of
differential transformations) around its identity element which fully captures its prop-
erties locally. It is known as the Lie algebra and is denoted as se(n) and so(n), for the
special Euclidean and special orthogonal groups, respectively. The Lie algebras map spa-
tial coordinates to spatial velocity. Elements of the Lie algebra se(n) are represented as
matrices contained in R(n+1)×(n+1), which are generated from tangent vectors contained
in R`, being ` the number of degrees of freedom of the space (` = n(n+ 1)/2). The
hat operator of the special Euclidean group is defined as ·̂ : R` → H ∈ R(n+1)×(n+1),
and it allows to generate elements of the Lie algebra se(n) from tangent vectors. Let

162 Appendix A. Lie Groups Theory Fundamentals

d = (ω,υ)T be such generic vector. Then,

d̂ =

 bωc× υ

0 0

 ∈ se(n) , (A.3)

where bωc× is the skew symmetric matrix corresponding to the hat operator in so(n).
This operator is defined as b·c× : R→H ∈ R2×2 and b·c× : R3 →H ∈ R3×3 for 2 and
3D, respectively. For the 2D case in which ω = dθ and υ = (dx, dy), it will be:

bωc× =

 0 −dθ

dθ 0

 ∈ so(2) . (A.4)

And for the 3D case, where ω = (dwx, dwy, dwz) and υ = (dx, dy, dz),

bωc× =

0 −dωz dωy

dωz 0 −dωx

−dωy dωx 0

 ∈ so(3) . (A.5)

The Lie algebra of the Euclidean group SE(n) used in (A.3) may be formally defined
as:

se(n) ,

ξ̂ =
bωc× υ

0 0

 | bωc× ∈ so(n), υ ∈ Rn

 ∈ R(n+1)×(n+1) , (A.6)

with so(n) the Lie algebra of SO(n), which will be isomorphic to Rn with the Lie bracket
given by the cross product:

so(n) , bωc× ∈ Rn×n | ω ∈ Rn . (A.7)

Elements of the Lie algebra and those of the underlying Lie group may be related
through the exponential maps, which have a closed form. For the special Euclidean
group, se(n) 7→ SE(n) is defined as:

exp(d̂) =

 exp (bωc×) V υ

0 1

 , (A.8)

where the exponential map exp (bωc×) is given for the 2D case as:

exp (bωc×) = exp

 0 −dθ

dθ 0

 =

cos(dθ) − sin(dθ)

sin(dθ) cos(dθ)

 , (A.9)

163

and,

V =

 sin(dθ)
dθ −1−cos(dθ)

dθ

1−cos(dθ)
dθ

sin(dθ)
dθ

 . (A.10)

For the 3D case, exp (bωc×) is obtained as follows using the Rodrigues’ formula:

exp(bωc×) = III+ sin θ
θ
bωc× +

1− cos θ
θ2 bωc2× , (A.11)

where θ =
√
ω ωT , and,

V =

 III if θ → 0

III+ 1−cos θ
θ2 bωc× + θ−sin θ

θ3 bωc2× otherwise
. (A.12)

165

Appendix B

Relationship between Optimality
Criteria of the Covariance and
Fisher Information Matrices

This appendix contains the proof of the following general equality:

‖Σ−1‖p = (‖Σ‖−p)−1 ∀p , (B.1)

where ‖ · ‖p denotes Kiefer’s optimality criteria.

Proof. Consider the covariance matrix Σ with eigenvalues (λ1, . . . ,λ`) and the Fisher
information matrix (FIM) Y with eigenvalues (ρ1, . . . , ρ`). Since Y , Σ−1,

ρk =
1
λk

∀k .

Following Equation (3.19), the p-norm of both matrices will be:

‖Σ‖p =

(
1
`

∑̀
k=1

λpk

) 1
p

if 0 < |p| <∞

exp
(

1
`

∑̀
k=1

log(λk)
)

if p = 0

,

and,

‖Σ−1‖p =

(
1
`

∑̀
k=1

λ−pk

) 1
p

if 0 < |p| <∞

exp
(

1
`

∑̀
k=1

log
(

1
λk

))
if p = 0

.

166 Appendix B. Relationship between Optimality Criteria of Σ and Y

For the case that p = 0,

‖Σ−1‖0 = exp
(

1
`

∑̀
k=1

log
(1
λk

))
= exp

(
1
`

∑̀
k=1
− log(λk)

)
,

∴ ‖Σ−1‖p = (‖Σ‖p)−1 if p→ 0 .

For p = ±1:

‖Σ−1‖1 =
1
`

∑̀
k=1

λ−1
k ,

‖Σ‖1 =
1
`

∑̀
k=1

λk ,

‖Σ−1‖−1 =

(
1
`

∑̀
k=1

λk

)−1

,

‖Σ‖−1 =

(
1
`

∑̀
k=1

λ−1
k

)−1

,

∴ ‖Σ−1‖p = (‖Σ‖−p)−1 if p = ±1 .

Finally, for p→ ±∞:

‖Σ−1‖∞ = max (ρk) = max
(
λ−1
k

)
= min(λk)−1 ,

‖Σ‖∞ = max(λk) ,

‖Σ−1‖−∞ = min (ρk) = min
(
λ−1
k

)
= max(λk)−1 ,

‖Σ‖−∞ = min(λk) ,

∴ ‖Σ−1‖p = (‖Σ‖−p)−1 if p→ ±∞ .

QED

167

Appendix C

Notions on the Kronecker
Product

This appendix defines the Kronecker product and presents some of its most relevant
properties. This mathematical operator plays a fundamental role in Chapter 4. The
generic notation of this appendix is independent from the rest of the document.

Let A be an n×m matrix and B a p× q matrix. Then, their Kronecker product
(denoted by ⊗) is a matrix C of dimensions (mp)× (nq), which elements are given by:

cαβ = aij bkl , (C.1)

where α = p(i− 1) + k, and β = q(j − 1) + l.

The Kronecker product can be expressed in matrix form as:

A⊗B ,

a11B · · · a1mB
...

...

a1nB · · · amnB

 . (C.2)

The Kronecker product satisfies the following properties:

• Associative and bilinear:

A⊗ (B+C) = A⊗B+A⊗C , (C.3)

(B+C)⊗A = B⊗A+C⊗A , (C.4)

(kA)⊗B = k(A⊗B) = A⊗ (kB) , (C.5)

A⊗ (B⊗C) = (A⊗B)⊗C , (C.6)

A⊗ 0 = 0⊗A = 0 . (C.7)

168 Appendix C. Notions on the Kronecker Product

• Non-commutative:

A⊗B 6= B⊗A . (C.8)

• Mixed product:

(A⊗B)(C⊗D) = (AC)⊗ (BD) . (C.9)

• Inverse (if A and B are invertible):

(A⊗B)−1 = A−1 ⊗B−1 . (C.10)

• Transpose:

(A⊗B)T = AT ⊗BT . (C.11)

Consider now λ to be eigenvalue of A with eigenvector x and µ eigenvalue of B with
eigenvector y, then λµ will be eigenvalue of A⊗B with eigenvector x⊗ y. It can be
proven using the eigenvalue equations that:

Ax = λx and By = µy (C.12)

Then,
(Ax)⊗ (By) = (λx)⊗ (µy) (C.13)

And using the associative and mixed product properties:

(A⊗B)(x⊗ y) = λµ(x⊗ y) (C.14)

Therefore, if (λ1, . . . ,λn) and (µ1, . . . ,µp) are the sets of eigenvalues of A and B,
then (λiµj : i = 1, 2, . . . ,n and j = 1, 2, . . . , p) is the set of eigenvalues of A⊗B. In
particular, the set of eigenvalues of A⊗B is the same as the one of B⊗A. It follows
that the trace and determinant of the Kronecker product are:

trace(A⊗B) = trace(A)trace(B) (C.15)

det (A⊗B) = det (A)p det (B)n (C.16)

169

References

[1] J. A. Placed, A. Ray, J. Strader, L. Schmidt, L. Carlone, and J. A. Castellanos,
“Active spatial perception,” in (to be submitted to) IEEE Intl. Conf. on Robotics
and Automation, 2024.

[2] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and
J. A. Castellanos, “A survey on active simultaneous localization and mapping:
State of the art and new frontiers,” IEEE Trans. on Robotics, 2023.

[3] J. A. Placed and J. A. Castellanos, “A general relationship between optimality
criteria and connectivity indices for active graph-SLAM,” IEEE Robotics and Au-
tomation Letters, vol. 8, no. 2, pp. 816–823, 2023.

[4] J. A. Placed and J. A. Castellanos, “A deep reinforcement learning approach for
active SLAM,” Applied Sciences, vol. 10, no. 23, p. 8386, 2020.

[5] J. A. Placed, J. J. G. Rodŕıguez, J. D. Tardós, and J. A. Castellanos, “ExplORB-
SLAM: Active visual SLAM exploiting the pose-graph topology,” in 5th Iberian
Robotics Conf. Lecture Notes in Networks and Systems, vol. 589, pp. 199–210,
Springer, Cham, 2022.

[6] J. A. Placed and J. A. Castellanos, “Enough is enough: Towards autonomous
uncertainty-driven stopping criteria,” in 11th IFAC Symp. on Intelligent Au-
tonomous Vehicles. IFAC-PapersOnLine, vol. 55, pp. 126–132, 2022.

[7] J. A. Placed and J. A. Castellanos, “Fast autonomous robotic exploration using
the underlying graph structure,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, pp. 6649–6656, 2021.

[8] J. A. Placed and J. A. Castellanos, “Active slam via deep reinforcement learning,”
in Workshop on Fast Neural Perception and Learning for Intelligent Vehicles and
Robotics in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2019.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). MIT Press, 2005.

170 REFERENCES

[10] J. Sola, J. Deray, and D. Atchuthan, “A micro Lie theory for state estimation in
robotics,” arXiv preprint arXiv:1812.01537, 2018.

[11] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three-dimensional
poses for use in estimation problems,” IEEE Trans. on Robotics, vol. 30, no. 3,
pp. 679–693, 2014.

[12] M. Brossard, S. Bonnabel, and J.-P. Condomines, “Unscented Kalman filtering on
Lie groups,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 2485–
2491, 2017.

[13] M. L. Rodŕıguez-Arévalo, J. Neira, and J. A. Castellanos, “On the importance of
uncertainty representation in active SLAM,” IEEE Trans. on Robotics, vol. 34,
no. 3, pp. 829–834, 2018.

[14] S. Thrun et al., “Robotic mapping: A survey,” Exploring Artificial Intelligence in
the New Millennium, vol. 1, no. 1-35, p. 1, 2002.

[15] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele, “Room segmenta-
tion: Survey, implementation, and analysis,” in IEEE Intl. Conf. on Robotics and
Automation, pp. 1019–1026, 2016.

[16] L. Euler, “The seven bridges of Königsberg,” The world of mathematics, vol. 1,
pp. 573–580, 1956.

[17] B. Mu, M. Giamou, L. Paull, A.-a. Agha-mohammadi, J. Leonard, and J. How,
“Information-based active SLAM via topological feature graphs,” in IEEE Conf.
on Decision and Control, pp. 5583–5590, 2016.

[18] L. Fermin-Leon, J. Neira, and J. A. Castellanos, “TIGRE: Topological graph based
robotic exploration,” in European Conf. on Mobile Robots, pp. 1–6, 2017.

[19] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile
and accurate monocular SLAM system,” IEEE Trans. on Robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[20] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-
toMap: An efficient probabilistic 3D mapping framework based on OcTrees,” Au-
tonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[21] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM using model predictive
control and attractor based exploration,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pp. 5026–5031, 2006.

[22] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous domain: A
generalized belief space approach for autonomous navigation in unknown environ-
ments,” The Intl. J. of Robotics Research, vol. 34, no. 7, pp. 849–882, 2015.

REFERENCES 171

[23] Y. Chen, S. Huang, and R. Fitch, “Active SLAM for mobile robots with area
coverage and obstacle avoidance,” IEEE/ASME Trans. on Mechatronics, vol. 25,
no. 3, pp. 1182–1192, 2020.

[24] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”
Computer, vol. 22, no. 6, pp. 46–57, 1989.

[25] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” in Sensor
Devices and Systems for Robotics, pp. 253–276, Springer, 1989.

[26] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. Kelly, and S. Leutenegger, “Effi-
cient OcTree-based volumetric SLAM supporting signed-distance and occupancy
mapping,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1144–1151,
2018.

[27] M. Muglikar, Z. Zhang, and D. Scaramuzza, “Voxel map for visual SLAM,” in
IEEE Intl. Conf. on Robotics and Automation, pp. 4181–4187, 2020.

[28] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Gaussian processes autonomous
mapping and exploration for range-sensing mobile robots,” Autonomous Robots,
vol. 42, no. 2, pp. 273–290, 2018.

[29] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilistic data
association for semantic SLAM,” in IEEE Intl. Conf. on Robotics and Automation,
pp. 1722–1729, 2017.

[30] L. Nicholson, M. Milford, and N. Sünderhauf, “Quadricslam: Dual quadrics from
object detections as landmarks in object-oriented SLAM,” IEEE Robotics and
Automation Letters, vol. 4, no. 1, pp. 1–8, 2018.

[31] A. Asgharivaskasi and N. Atanasov, “Semantic OcTree mapping and Shannon
mutual information computation for robot exploration,” IEEE Trans. on Robotics,
2023.

[32] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: An open-source library
for real-time metric-semantic localization and mapping,” in IEEE Intl. Conf. on
Robotics and Automation, pp. 1689–1696, 2020.

[33] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and
J. Nieto, “Volumetric instance-aware semantic mapping and 3D object discovery,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3037–3044, 2019.

[34] L. Zheng, C. Zhu, J. Zhang, H. Zhao, H. Huang, M. Niessner, and K. Xu, “Active
scene understanding via online semantic reconstruction,” in Computer Graphics
Forum, vol. 38, pp. 103–114, 2019.

172 REFERENCES

[35] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger, “Fusion++:
Volumetric object-level SLAM,” in IEEE Intl. Conf. on 3D Vision, pp. 32–41,
2018.

[36] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial perception
system for 3D scene graph construction and optimization,” Robotics: Science and
Systems, 2022.

[37] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and
L. Carlone, “Kimera: From SLAM to spatial perception with 3D dynamic scene
graphs,” The Intl. J. of Robotics Research, vol. 40, no. 12–14, pp. 1510–1546, 2021.

[38] S. Thrun and A. Bücken, “Integrating grid-based and topological maps for mobile
robot navigation,” in 13th AAAI Conf. on Artificial Intelligence, pp. 944–951,
1996.

[39] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous localization
and map building: A natural integration of topological and metric,” Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 3–14, 2003.

[40] C. Gomez, A. C. Hernandez, and R. Barber, “Topological frontier-based explo-
ration and map-building using semantic information,” Sensors, vol. 19, no. 20,
p. 4595, 2019.

[41] L. Quan, L. Han, B. Zhou, S. Shen, and F. Gao, “Survey of UAV motion planning,”
IET Cyber-systems and Robotics, vol. 2, no. 1, pp. 14–21, 2020.

[42] L. Dong, Z. He, C. Song, and C. Sun, “A review of mobile robot motion planning
methods: from classical motion planning workflows to reinforcement learning-
based architectures,” arXiv preprint arXiv:2108.13619, 2021.

[43] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[44] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path plan-
ning,” 1998.

[45] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The Intl. J. of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[46] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on grid maps,”
in AAAI Conf. on Artificial Intelligence, vol. 25, pp. 1114–1119, 2011.

[47] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms. MIT Press, 2022.

REFERENCES 173

[48] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion plan-
ning techniques for automated vehicles,” IEEE Trans. on Intelligent Transporta-
tion Systems, vol. 17, no. 4, pp. 1135–1145, 2015.

[49] W. Di, L. Caihong, G. Na, S. Yong, G. Tengteng, and L. Guoming, “Local path
planning of mobile robot based on artificial potential field,” in 39th Chinese Con-
trol Conf., pp. 3677–3682, 2020.

[50] M. Seder and I. Petrovic, “Dynamic window based approach to mobile robot mo-
tion control in the presence of moving obstacles,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 1986–1991, 2007.

[51] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory planning
and optimization in distinctive topologies,” Robotics and Autonomous Systems,
vol. 88, pp. 142–153, 2017.

[52] S. Aradi, “Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles,” IEEE Trans. on Intelligent Transportation Systems, vol. 23,
no. 2, pp. 740–759, 2020.

[53] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. David-
son, “PRM-RL: Long-range robotic navigation tasks by combining reinforcement
learning and sampling-based planning,” in IEEE Intl. Conf. on Robotics and Au-
tomation, pp. 5113–5120, 2018.

[54] L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement based mobile robot path
planning with improved dynamic window approach in unknown environment,”
Autonomous Robots, vol. 45, pp. 51–76, 2021.

[55] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, pp. 31–36, 2017.

[56] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven exploration
for mapless navigation with deep reinforcement learning,” in IEEE Intl. Conf. on
Robotics and Automation Workshop in Machine Learning in the Planning and
Control of Robot Motion, 2018.

[57] H. Shi, L. Shi, M. Xu, and K.-S. Hwang, “End-to-end navigation strategy with
deep reinforcement learning for mobile robots,” IEEE Trans. on Industrial Infor-
matics, vol. 16, no. 4, pp. 2393–2402, 2019.

[58] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[59] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of robot 3D path
planning algorithms,” J. of Control Science and Engineering, vol. 2016, 2016.

174 REFERENCES

[60] A. S. H. H. V. Injarapu and S. K. Gawre, “A survey of autonomous mobile robot
path planning approaches,” in IEEE Intl. Conf. on Recent Innovations in Signal
Processing and Embedded Systems, pp. 624–628, 2017.

[61] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al., “A review: On path planning
strategies for navigation of mobile robot,” Defence Technology, vol. 15, no. 4,
pp. 582–606, 2019.

[62] J. R. Sánchez-Ibáñez, C. J. Pérez-del Pulgar, and A. Garćıa-Cerezo, “Path plan-
ning for autonomous mobile robots: A review,” Sensors, vol. 21, no. 23, p. 7898,
2021.

[63] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part
I,” IEEE Robotics & Automation Mag., vol. 13, no. 2, pp. 99–110, 2006.

[64] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-
based SLAM,” IEEE Intelligent Transportation Systems Mag., vol. 2, no. 4, pp. 31–
43, 2010.

[65] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. on Robotics, vol. 32,
no. 6, pp. 1309–1332, 2016.

[66] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A general frame-
work for (hyper) graph optimization,” in IEEE Intl. Conf. on Robotics and Au-
tomation, pp. 9–13, 2011.

[67] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing and
mapping,” IEEE Trans. on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[68] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” The Intl. J.
of Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[69] R. Bajcsy, “Active perception vs. passive perception,” in IEEE Workshop on Com-
puter Vision, 1985.

[70] C. K. Cowan and P. D. Kovesi, “Automatic sensor placement from vision task
requirements,” IEEE Trans. on Pattern Analysis and machine intelligence, vol. 10,
no. 3, pp. 407–416, 1988.

[71] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” Intl. J. of Com-
puter Vision, vol. 1, no. 4, pp. 333–356, 1988.

[72] N. Atanasov, J. Le Ny, K. Daniilidis, and G. Pappas, “Information acquisition with
sensing robots: Algorithms and error bounds,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 6447–6454, 2014.

REFERENCES 175

[73] R. Bajcsy, “Active perception,” Proc. of the IEEE, vol. 76, no. 8, pp. 966–1005,
1988.

[74] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Au-
tonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[75] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous
Mobile Robots. MIT press, 2011.

[76] C. Connolly, “The determination of next best views,” in IEEE Intl. Conf. on
Robotics and Automation, vol. 2, pp. 432–435, 1985.

[77] J. Maver and R. Bajcsy, “Occlusions as a guide for planning the next view,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 417–433,
1993.

[78] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by uncertainty,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 3, pp. 193–
205, 1997.

[79] R. Pito, “A solution to the next best view problem for automated surface acquisi-
tion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, no. 10,
pp. 1016–1030, 1999.

[80] R. Zeng, Y. Wen, W. Zhao, and Y.-J. Liu, “View planning in robot active vision:
A survey of systems, algorithms, and applications,” Computational Visual Media,
pp. 1–21, 2020.

[81] D. Fox, W. Burgard, and S. Thrun, “Active Markov localization for mobile robots,”
Robotics and Autonomous Systems, vol. 25, no. 3-4, pp. 195–207, 1998.

[82] G. Borghi and V. Caglioti, “Minimum uncertainty explorations in the self-
localization of mobile robots,” IEEE Trans. on Robotics and Automation, vol. 14,
no. 6, pp. 902–911, 1998.

[83] P. Jensfelt and S. Kristensen, “Active global localization for a mobile robot using
multiple hypothesis tracking,” IEEE Trans. on Robotics and Automation, vol. 17,
no. 5, pp. 748–760, 2001.

[84] C. Mostegel, A. Wendel, and H. Bischof, “Active monocular localization: Towards
autonomous monocular exploration for multirotor MAVs,” in IEEE Intl. Conf. on
Robotics and Automation, pp. 3848–3855, 2014.

[85] S. K. Gottipati, K. Seo, D. Bhatt, V. Mai, K. Murthy, and L. Paull, “Deep active
localization,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4394–4401,
2019.

176 REFERENCES

[86] Q. Xie and Y. Wang, “A survey of filtering based active localization methods,” in
4th Intl. Conf. on Big Data and Internet of Things, pp. 69–73, 2020.

[87] J. Strader, K. Otsu, and A.-a. Agha-mohammadi, “Perception-aware autonomous
mast motion planning for planetary exploration rovers,” J. of Field Robotics,
vol. 37, no. 5, pp. 812–829, 2020.

[88] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-mobile robot
navigation with uncertainty in dynamic environments,” in IEEE Intl. Conf. on
Robotics and Automation, vol. 1, pp. 35–40, 1999.

[89] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of uncertainty crite-
ria for active SLAM,” in IEEE Intl. Conf. on Robotics and Automation, pp. 2080–
2087, 2012.

[90] S. B. Thrun and K. Möller, “Active exploration in dynamic environments,” Ad-
vances in Neural Information Processing Systems, vol. 4, pp. 531–538, 1991.

[91] H. J. S. Feder, J. J. Leonard, and C. M. Smith, “Adaptive mobile robot navigation
and mapping,” The Intl. J. of Robotics Research, vol. 18, no. 7, pp. 650–668, 1999.

[92] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-
Whyte, “Information based adaptive robotic exploration,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, vol. 1, pp. 540–545, 2002.

[93] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-Whyte, “An
experiment in integrated exploration,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, vol. 1, pp. 534–539, 2002.

[94] C. Stachniss, D. Hahnel, and W. Burgard, “Exploration with active loop-closing
for FastSLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, vol. 2,
pp. 1505–1510, 2004.

[95] P. Newman, M. Bosse, and J. Leonard, “Autonomous feature-based exploration,”
in IEEE Intl. Conf. on Robotics and Automation, vol. 1, pp. 1234–1240, 2003.

[96] C. Stachniss, Robotic Mapping and Exploration, vol. 55. Springer, 2009.

[97] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Pérez, “Belief space planning
assuming maximum likelihood observations,” in Robotics: Science and Systems,
2010.

[98] C. Stachniss and W. Burgard, “Mapping and exploration with mobile robots us-
ing coverage maps,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
vol. 1, pp. 467–472, 2003.

[99] R. Sim and N. Roy, “Global A-optimal robot exploration in SLAM,” in IEEE Intl.
Conf. on Robotics and Automation, pp. 661–666, 2005.

REFERENCES 177

[100] A. J. Davison and D. W. Murray, “Simultaneous localization and map-building
using active vision,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 24, no. 7, pp. 865–880, 2002.

[101] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “FastSLAM: A factored
solution to the simultaneous localization and mapping problem,” in 18th AAAI
Conf. on Artificial Intelligence, pp. 593–598, 2002.

[102] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration
using Rao-Blackwellized particle filters,” in Robotics: Science and Systems, vol. 2,
pp. 65–72, 2005.

[103] R. Valencia, J. Valls Miro, G. Dissanayake, and J. Andrade-Cetto, “Active pose
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 1885–
1891, 2012.

[104] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact pose
SLAM,” IEEE Trans. on Robotics, vol. 26, no. 1, pp. 78–93, 2009.

[105] L. Carlone, J. Du, M. K. Ng, B. Bona, and M. Indri, “Active SLAM and explo-
ration with particle filters using Kullback-Leibler divergence,” J. of Intelligent &
Robotic Systems, vol. 75, no. 2, pp. 291–311, 2014.

[106] C. Zhu, R. Ding, M. Lin, and Y. Wu, “A 3D frontier-based exploration tool for
MAVs,” in IEEE 27th Intl. Conf. on Tools with Artificial Intelligence, pp. 348–352,
2015.

[107] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-D mapping with
an RGB-D camera,” IEEE Trans. on Robotics, vol. 30, no. 1, pp. 177–187, 2013.

[108] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding hori-
zon next-best-view planner for 3D exploration,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 1462–1468, 2016.

[109] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odom-
etry using a direct EKF-based approach,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pp. 298–304, 2015.

[110] C. Papachristos, S. Khattak, and K. Alexis, “Uncertainty-aware receding horizon
exploration and mapping using aerial robots,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 4568–4575, 2017.

[111] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration based on mul-
tiple rapidly-exploring randomized trees,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pp. 1396–1402, 2017.

178 REFERENCES

[112] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping
with Rao-Blackwellized particle filters,” IEEE Trans. on Robotics, vol. 23, no. 1,
pp. 34–46, 2007.

[113] H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, “Autonomous robotic
exploration using a utility function based on Rényi’s general theory of entropy,”
Autonomous Robots, vol. 42, no. 2, pp. 235–256, 2018.

[114] N. Palomeras, N. Hurtós, E. Vidal, and M. Carreras, “Autonomous exploration of
complex underwater environments using a probabilistic next-best-view planner,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1619–1625, 2019.

[115] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning
to explore using active neural SLAM,” in Intl. Conf. on Learning Representations,
2020.

[116] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning
robot for search and rescue applications: Exploration in unknown cluttered en-
vironments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617,
2019.

[117] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous explo-
ration under uncertainty via deep reinforcement learning on graphs,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, pp. 6140–6147, 2020.

[118] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based automatic ex-
ploration for navigation in unknown environment,” IEEE Trans. on Neural Net-
works and Learning Systems, vol. 31, no. 6, pp. 2064–2076, 2020.

[119] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vin-
cent, “Efficient sparse pose adjustment for 2D mapping,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, pp. 22–29, 2010.

[120] S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen, and M. Kaess, “Active
SLAM using 3D submap saliency for underwater volumetric exploration,” in IEEE
Intl. Conf. on Robotics and Automation, pp. 3132–3138, 2020.

[121] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leutenegger, “Fast
frontier-based information-driven autonomous exploration with an MAV,” in IEEE
Intl. Conf. on Robotics and Automation, pp. 9570–9576, 2020.

[122] L. Zhao, S. Huang, and G. Dissanayake, “Linear SLAM: Linearising the SLAM
problems using submap joining,” Automatica, vol. 100, pp. 231–246, 2019.

[123] A. Batinovic, T. Petrovic, A. Ivanovic, F. Petric, and S. Bogdan, “A multi-
resolution frontier-based planner for autonomous 3D exploration,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4528–4535, 2021.

REFERENCES 179

[124] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D lidar
SLAM,” in IEEE Intl. Conf. on Robotics and Automation, pp. 1271–1278, 2016.

[125] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source slam system for
monocular, stereo, and RGB-D cameras,” IEEE Trans. on Robotics, vol. 33, no. 5,
pp. 1255–1262, 2017.

[126] E. Bonetto, P. Goldschmid, M. Pabst, M. J. Black, and A. Ahmad, “iRotate: Ac-
tive visual SLAM for omnidirectional robots,” Robotics and Autonomous Systems,
vol. 154, p. 104102, 2022.

[127] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual si-
multaneous localization and mapping library for large-scale and long-term online
operation,” J. of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[128] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1-2,
pp. 99–134, 1998.

[129] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial Intelligence.
2013.

[130] K. J. Åström, “Optimal control of Markov processes with incomplete state infor-
mation,” J. of Mathematical Analysis and Applications, vol. 10, no. 1, pp. 174–205,
1965.

[131] M. Araya, O. Buffet, V. Thomas, and F. Charpillet, “A POMDP extension with
belief-dependent rewards,” Advances in Neural Information Processing Systems,
vol. 23, 2010.

[132] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated multi-
robot exploration,” IEEE Trans. on Robotics, vol. 21, no. 3, pp. 376–386, 2005.

[133] H. H. González-Banos and J.-C. Latombe, “Navigation strategies for exploring in-
door environments,” The Intl. J. of Robotics Research, vol. 21, no. 10-11, pp. 829–
848, 2002.

[134] B. Tovar, L. Munoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R. Monroy,
and S. Hutchinson, “Planning exploration strategies for simultaneous localization
and mapping,” Robotics and Autonomous Systems, vol. 54, no. 4, pp. 314–331,
2006.

[135] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in IEEE
Intl. Symp. on Computational Intelligence in Robotics and Automation, pp. 146–
151, 1997.

180 REFERENCES

[136] P. Quin, D. D. K. Nguyen, T. L. Vu, A. Alempijevic, and G. Paul, “Approaches
for efficiently detecting frontier cells in robotics exploration,” Frontiers in Robotics
and AI, vol. 8, p. 1, 2021.

[137] M. Keidar and G. A. Kaminka, “Robot exploration with fast frontier detection:
Theory and experiments,” in 11th Intl. Conf. on Autonomous Agents and Multi-
agent Systems, pp. 113–120, 2012.

[138] M. Keidar and G. A. Kaminka, “Efficient frontier detection for robot exploration,”
The Intl. J. of Robotics Research, vol. 33, no. 2, pp. 215–236, 2014.

[139] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the efficiency of
frontier-based exploration strategies,” in 41st Intl. Symp. on Robotics, pp. 1–8,
2010.

[140] C.-Y. Wu and H.-Y. Lin, “Autonomous mobile robot exploration in unknown
indoor environments based on rapidly-exploring random tree,” in IEEE Intl. Conf.
on Industrial Technology, pp. 1345–1350, 2019.

[141] W. Qiao, Z. Fang, and B. Si, “Sample-based frontier detection for autonomous
robot exploration,” in IEEE Intl. Conf. on Robotics and Biomimetics, pp. 1165–
1170, 2018.

[142] C. Dornhege and A. Kleiner, “A frontier-void-based approach for autonomous
exploration in 3D,” Advanced Robotics, vol. 27, no. 6, pp. 459–468, 2013.

[143] P. Senarathne and D. Wang, “Towards autonomous 3D exploration using surface
frontiers,” in IEEE Intl. Symp. on Safety, Security, and Rescue Robotics, pp. 34–
41, 2016.

[144] S. Shen, N. Michael, and V. Kumar, “Stochastic differential equation-based ex-
ploration algorithm for autonomous indoor 3D exploration with a micro-aerial
vehicle,” The Intl. J. of Robotics Research, vol. 31, no. 12, pp. 1431–1444, 2012.

[145] L. Lu, C. Redondo, and P. Campoy, “Optimal frontier-based autonomous ex-
ploration in unconstructed environment using RGB-D sensor,” Sensors, vol. 20,
no. 22, p. 6507, 2020.

[146] R. Grabowski, P. Khosla, and H. Choset, “Autonomous exploration via regions
of interest,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, vol. 2,
pp. 1691–1696, 2003.

[147] A. Kim and R. M. Eustice, “Active visual SLAM for robotic area coverage: Theory
and experiment,” The Intl. J. of Robotics Research, vol. 34, no. 4-5, pp. 457–475,
2015.

REFERENCES 181

[148] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty
using iterative local optimization in belief space,” The Intl. J. of Robotics Research,
vol. 31, no. 11, pp. 1263–1278, 2012.

[149] D. S. Chaplot, E. Parisotto, and R. Salakhutdinov, “Active neural localization,”
in Intl. Conf. on Learning Representations, 2018.

[150] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael, and
V. Kumar, “Information-theoretic planning with trajectory optimization for dense
3D mapping,” in Robotics: Science and Systems, vol. 11, pp. 3–12, 2015.

[151] F. Amigoni and A. Gallo, “A multi-objective exploration strategy for mobile
robots,” in IEEE Intl. Conf. on Robotics and Automation, pp. 3850–3855, 2005.

[152] W. Chen and L. Liu, “Pareto Monte Carlo tree search for multi-objective infor-
mative planning,” in Robotics: Science and Systems, 2019.

[153] A. Soragna, M. Baldini, D. Joho, R. Kümmerle, and G. Grisetti, “Active SLAM
using connectivity graphs as priors,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, pp. 340–346, 2019.

[154] G. Li, W. Chou, and F. Yin, “Multi-robot coordinated exploration of indoor
environments using semantic information,” Science China Information Sciences,
vol. 61, no. 7, pp. 79201–1, 2018.

[155] J. J. Lopez-Perez, U. H. Hernandez-Belmonte, J.-P. Ramirez-Paredes, M. A.
Contreras-Cruz, and V. Ayala-Ramirez, “Distributed multirobot exploration based
on scene partitioning and frontier selection,” Mathematical Problems in Engineer-
ing, vol. 2018, pp. 1–17, 2018.

[156] Y. Chen, L. Zhao, K. M. B. Lee, C. Yoo, S. Huang, and R. Fitch, “Broadcast your
weaknesses: Cooperative active pose-graph SLAM for multiple robots,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2200–2207, 2020.

[157] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning strategies for
autonomous exploration and mapping of unknown environments,” Autonomous
Robots, vol. 33, no. 4, pp. 427–444, 2012.

[158] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical J., vol. 27, no. 3, pp. 379–423, 1948.

[159] T. M. Cover, Elements of Information Theory. John Wiley & Sons, 1999.

[160] A. Rényi et al., “On measures of entropy and information,” in 4th Berkeley Symp.
on Mathematical Statistics and Probability, vol. 1, 1961.

182 REFERENCES

[161] R. G. Colares and L. Chaimowicz, “The next frontier: Combining information
gain and distance cost for decentralized multi-robot exploration,” in ACM Symp.
on Applied Computing, pp. 268–274, 2016.

[162] J. Vallvé and J. Andrade-Cetto, “Dense entropy decrease estimation for mobile
robot exploration,” in IEEE Intl. Conf. on Robotics and Automation, pp. 6083–
6089, 2014.

[163] J.-L. Blanco, J.-A. Fernandez-Madrigal, and J. González, “A novel measure of
uncertainty for mobile robot SLAM with Rao—Blackwellized particle filters,” The
Intl. J. of Robotics Research, vol. 27, no. 1, pp. 73–89, 2008.

[164] M. Popović, T. Vidal-Calleja, J. J. Chung, J. Nieto, and R. Siegwart, “Informative
path planning for active field mapping under localization uncertainty,” in IEEE
Intl. Conf. on Robotics and Automation, pp. 10751–10757, 2020.

[165] J. Wang and B. Englot, “Autonomous exploration with expectation-
maximization,” in Robotics Research, pp. 759–774, Springer, 2020.

[166] A. J. Davison, “Active search for real-time vision,” in IEEE Intl. Conf. on Com-
puter Vision, vol. 1, pp. 66–73, 2005.

[167] N. Palomeras, M. Carreras, and J. Andrade-Cetto, “Active SLAM for autonomous
underwater exploration,” Remote Sensing, vol. 11, no. 23, p. 2827, 2019.

[168] J. Du, L. Carlone, M. K. Ng, B. Bona, and M. Indri, “A comparative study on
active SLAM and autonomous exploration with particle filters,” in IEEE/ASME
Intl. Conf. on Advanced Intelligent Mechatronics, pp. 916–923, 2011.

[169] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[170] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and J. De Schutter, “A
comparison of decision making criteria and optimization methods for active robotic
sensing,” in Intl. Conf. on Numerical Methods and Applications, pp. 316–324, 2002.

[171] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel,
“VIME: Variational information maximizing exploration,” Advances in Neural In-
formation Processing Systems, vol. 29, 2016.

[172] D. Fox, “Adapting the sample size in particle filters through KLD-sampling,” The
Intl. J. of Robotics Research, vol. 22, no. 12, pp. 985–1003, 2003.

[173] M. Kontitsis, E. A. Theodorou, and E. Todorov, “Multi-robot active SLAM with
relative entropy optimization,” in American Control Conf., pp. 2757–2764, 2013.

REFERENCES 183

[174] D. Deng, R. Duan, J. Liu, K. Sheng, and K. Shimada, “Robotic exploration of un-
known 2D environment using a frontier-based automatic-differentiable information
gain measure,” in IEEE/ASME Intl. Conf. on Advanced Intelligent Mechatronics,
pp. 1497–1503, 2020.

[175] D. Deng, Z. Xu, W. Zhao, and K. Shimada, “Frontier-based automatic-
differentiable information gain measure for robotic exploration of unknown 3D
environments,” arXiv e-prints:2011.05288, 2020.

[176] D. S. Levine and J. P. How, “Sensor selection in high-dimensional Gaussian trees
with nuisances,” Advances in Neural Information Processing Systems, vol. 26,
2013.

[177] D. Kopitkov and V. Indelman, “No belief propagation required: Belief space plan-
ning in high-dimensional state spaces via factor graphs, the matrix determinant
lemma, and re-use of calculation,” The Intl. J. of Robotics Research, vol. 36, no. 10,
pp. 1088–1130, 2017.

[178] D. Kopitkov and V. Indelman, “General-purpose incremental covariance update
and efficient belief space planning via a factor-graph propagation action tree,” The
Intl. J. of Robotics Research, vol. 38, no. 14, pp. 1644–1673, 2019.

[179] H. Chernoff, “Locally optimal designs for estimating parameters,” The Annals of
Mathematical Statistics, pp. 586–602, 1953.

[180] S. Ehrenfeld, “On the efficiency of experimental designs,” The Annals of Mathe-
matical Statistics, vol. 26, no. 2, pp. 247–255, 1955.

[181] A. Wald, “On the efficient design of statistical investigations,” The Annals of
Mathematical Statistics, vol. 14, no. 2, pp. 134–140, 1943.

[182] V. V. Fedorov, Theory of Optimal Experiments. Academic Press, 1972.

[183] J. Kiefer, “General equivalence theory for optimum designs (approximate theory),”
The Annals of Statistics, pp. 849–879, 1974.

[184] F. Pukelsheim, Optimal Design of Experiments. Society for Industrial and Applied
Mathematics, 2006.

[185] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial
navigation,” in IEEE Intl. Conf. on Robotics and Automation, pp. 3886–3893,
2017.

[186] H. Carrillo, Y. Latif, M. L. Rodriguez-Arevalo, J. Neira, and J. A. Castellanos,
“On the monotonicity of optimality criteria during exploration in active SLAM,”
in IEEE Intl. Conf. on Robotics and Automation, pp. 1476–1483, 2015.

184 REFERENCES

[187] Y. Kim and A. Kim, “On the uncertainty propagation: Why uncertainty on Lie
groups preserves monotonicity?,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, pp. 3425–3432, 2017.

[188] C.-S. Cheng, “Maximizing the total number of spanning trees in a graph: Two
related problems in graph theory and optimum design theory,” J. of Combinatorial
Theory, Series B, vol. 31, no. 2, pp. 240–248, 1981.

[189] K. Khosoussi, S. Huang, and G. Dissanayake, “Novel insights into the impact of
graph structure on SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, pp. 2707–2714, 2014.

[190] K. Khosoussi, M. Giamou, G. S. Sukhatme, S. Huang, G. Dissanayake, and J. P.
How, “Reliable graphs for SLAM,” The Intl. J. of Robotics Research, vol. 38,
no. 2-3, pp. 260–298, 2019.

[191] Y. Chen, S. Huang, L. Zhao, and G. Dissanayake, “Cramér–Rao bounds and
optimal design metrics for pose-graph SLAM,” IEEE Trans. on Robotics, vol. 37,
no. 2, pp. 627–641, 2021.

[192] A. Kitanov and V. Indelman, “Topological information-theoretic belief space plan-
ning with optimality guarantees,” arXiv e-prints:1903.00927, 2019.

[193] M. Shienman, A. Kitanov, and V. Indelman, “FT-BSP: Focused topological belief
space planning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4744–
4751, 2021.

[194] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
Intl. J. of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[195] R. Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet, “A
Bayesian exploration-exploitation approach for optimal online sensing and plan-
ning with a visually guided mobile robot,” Autonomous Robots, vol. 27, no. 2,
pp. 93–103, 2009.

[196] P. Karkus, D. Hsu, and W. S. Lee, “Qmdp-net: Deep learning for planning under
partial observability,” Advances in Neural Information Processing Systems, vol. 30,
2017.

[197] S. Bai, F. Chen, and B. Englot, “Toward autonomous mapping and exploration
for mobile robots through deep supervised learning,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, pp. 2379–2384, 2017.

[198] F. Chen, J. Wang, T. Shan, and B. Englot, “Autonomous exploration under un-
certainty via graph convolutional networks,” in Intl. Symp. on Robotics Research,
2019.

REFERENCES 185

[199] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based multi-robot
autonomous exploration in unknown environments via deep reinforcement learn-
ing,” IEEE Trans. on Vehicular Technology, vol. 69, no. 12, pp. 14413–14423,
2020.

[200] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529,
2015.

[201] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
Q-learning,” in 30th AAAI Conf. on Artificial Intelligence, pp. 2094–2100, 2016.

[202] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements
in deep reinforcement learning,” in 32nd AAAI Conf. on Artificial Intelligence,
pp. 3215–3222, 2018.

[203] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv e-prints:1707.06347, 2017.

[204] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
e-prints:1509.02971, 2015.

[205] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in Intl. Conf. on Machine Learning, pp. 1928–1937, 2016.

[206] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in Intl.
Conf. on Machine Learning, pp. 1861–1870, 2018.

[207] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Processing Mag., vol. 34,
no. 6, pp. 26–38, 2017.

[208] F. Zeng, C. Wang, and S. S. Ge, “A survey on visual navigation for artificial agents
with deep reinforcement learning,” IEEE Access, vol. 8, pp. 135426–135442, 2020.

[209] K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot navigation:
A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, 2021.

[210] L. Tai and M. Liu, “Mobile robots exploration through CNN-based reinforcement
learning,” Robotics and Biomimetics, vol. 3, no. 1, p. 24, 2016.

186 REFERENCES

[211] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning
to navigate in complex environments,” in Intl. Conf. on Learning Representations,
2017.

[212] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic definitions
and new directions,” Contemporary Educational Psychology, vol. 25, no. 1, pp. 54–
67, 2000.

[213] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,
“Unifying count-based exploration and intrinsic motivation,” in 30th Intl. Conf.
on Neural Information Processing Systems, pp. 1471–1479, 2016.

[214] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for navigation,”
in Intl. Conf. on Learning Representations, 2019.

[215] M. Lodel, B. Brito, A. Serra-Gómez, L. Ferranti, R. Babuška, and J. Alonso-
Mora, “Where to look next: Learning viewpoint recommendations for informative
trajectory planning,” in IEEE Intl. Conf. on Robotics and Automation, pp. 4466–
4472, 2022.

[216] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially observable
MDPs,” in AAAI Fall Symp. Series, 2015.

[217] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, “A sim-to-
real pipeline for deep reinforcement learning for autonomous robot navigation
in cluttered rough terrain,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 6569–6576, 2021.

[218] K. Yokoyama and K. Morioka, “Autonomous mobile robot with simple naviga-
tion system based on deep reinforcement learning and a monocular camera,” in
IEEE/SICE Intl. Symp. on System Integration, pp. 525–530, 2020.

[219] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools
for multi-robot and distributed sensor systems,” in 11th Intl. Conf. on Advanced
Robotics, vol. 1, pp. 317–323, 2003.

[220] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, vol. 3, pp. 2149–2154, 2004.

[221] S. Wen, Y. Zhao, X. Yuan, Z. Wang, D. Zhang, and L. Manfredi, “Path planning
for active SLAM based on deep reinforcement learning under unknown environ-
ments,” Intelligent Service Robotics, vol. 13, no. 2, pp. 263–272, 2020.

REFERENCES 187

[222] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable robot
simulation framework,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems, pp. 1321–1326, 2013.

[223] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the OpenAI
gym for robotics: A toolkit for reinforcement learning using ROS and Gazebo,”
arXiv e-prints:1608.05742, 2016.

[224] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI gym,” arXiv e-prints:1606.01540, 2016.

[225] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al., “Deepmind lab,” arXiv e-
prints:1612.03801, 2016.

[226] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik, et al., “Habitat: A platform for embodied AI research,”
in IEEE/CVF Intl. Conf. on Computer Vision, pp. 9339–9347, 2019.

[227] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-
Artal, C. Ren, S. Verma, et al., “The Replica dataset: A digital replica of indoor
spaces,” arXiv e-prints:1906.05797, 2019.

[228] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson Env: Real-
world perception for embodied agents,” in IEEE/CVF Conf. on Computer Vision
and Pattern Recognition, pp. 9068–9079, 2018.

[229] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang, “Matterport3D: Learning from RGB-D data in indoor
environments,” arXiv preprint arXiv:1709.06158, 2017.

[230] C. Li, F. Xia, R. Mart́ın-Mart́ın, M. Lingelbach, S. Srivastava, B. Shen, K. Vainio,
C. Gokmen, G. Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-
Fei, and S. Savarese, “iGibson 2.0: Object-centric simulation for robot learning of
everyday household tasks,” in 5th Conf. on Robot Learning, vol. 164, pp. 455–465,
2022.

[231] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon,
Y. Zhu, A. Gupta, and A. Farhadi, “AI2-thor: An interactive 3D environment for
visual AI,” arXiv preprint arXiv:1712.05474, 2017.

[232] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han,
E. Kolve, A. Kembhavi, and R. Mottaghi, “ProcTHOR: Large-scale embodied
AI using procedural generation,” in Advances in Neural Information Processing
Systems, 2022.

188 REFERENCES

[233] K. Elimelech and V. Indelman, “Simplified decision making in the belief space us-
ing belief sparsification,” The Intl. J. of Robotics Research, vol. 41, no. 5, pp. 470–
496, 2022.

[234] B. Zhou, “On sum of powers of the Laplacian eigenvalues of graphs,” Linear Al-
gebra and its Applications, vol. 429, no. 8-9, pp. 2239–2246, 2008.

[235] E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan, “On the sum of the Laplacian
eigenvalues of a tree,” Linear Algebra and its Applications, vol. 435, no. 2, pp. 371–
399, 2011.

[236] H. A. Ganie, A. M. Alghamdi, and S. Pirzada, “On the sum of the Laplacian eigen-
values of a graph and Brouwer’s conjecture,” Linear Algebra and its Applications,
vol. 501, pp. 376–389, 2016.

[237] N. M. M. De Abreu, “Old and new results on algebraic connectivity of graphs,”
Linear Algebra and its Applications, vol. 423, no. 1, pp. 53–73, 2007.

[238] H. Chen and F. Zhang, “Resistance distance and the normalized Laplacian spec-
trum,” Discrete Applied Mathematics, vol. 155, no. 5, pp. 654–661, 2007.

[239] M. Yadav, Resistance Distance, Kirchhoff Index, Foster’s Theorems, and Gener-
alizations. PhD thesis, University of Oklahoma, 2017.

[240] I. Gohberg and M. G. Krĕın, Introduction to the Theory of Linear Nonselfadjoint
Operators, vol. 18. 1978.

[241] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast and accurate
approximation for planar pose graph optimization,” The Intl. J. of Robotics Re-
search, vol. 33, no. 7, pp. 965–987, 2014.

[242] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques for
3D SLAM: a survey on rotation estimation and its use in pose graph optimization,”
in IEEE Intl. Conf. on Robotics and Automation, pp. 4597–4604, 2015.

[243] S. Agarwal, K. Mierle, and The Ceres Solver Team, “Ceres solver,” 2022.

[244] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achte-
lik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The Intl. J. of
Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[245] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. Montiel, and J. D. Tardós, “ORB-
SLAM3: An accurate open-source library for visual, visual–inertial, and multimap
SLAM,” IEEE Trans. on Robotics, 2021.

[246] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in Intl. Conf. on Computer Vision, pp. 2564–2571, 2011.

REFERENCES 189

[247] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjust-
ment —a modern synthesis,” in Intl. Workshop on Vision Algorithms, pp. 298–372,
Springer, 1999.

[248] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM in structured environ-
ments,” in IEEE Intl. Conf. on Robotics and Automation, pp. 1898–1903, 2008.

[249] B. Yamauchi, “Decentralized coordination for multirobot exploration,” Robotics
and Autonomous Systems, vol. 29, no. 2-3, pp. 111–118, 1999.

[250] R. Korb and A. Schöttl, “Exploring unstructured environment with frontier trees,”
J. of Intelligent & Robotic Systems, vol. 91, no. 3, pp. 617–628, 2018.

[251] J. M. Pimentel, M. S. Alvim, M. F. Campos, and D. G. Macharet, “Information-
driven rapidly-exploring random tree for efficient environment exploration,” J. of
Intelligent & Robotic Systems, vol. 91, no. 2, pp. 313–331, 2018.

[252] V.-C. Pham and J.-C. Juang, “A multi-robot, cooperative, and active SLAM algo-
rithm for exploration,” Intl. J. of Innovative Computing, Information and Control,
vol. 9, no. 6, pp. 2567–2583, 2013.

[253] F. Amigoni, A. Q. Li, and D. Holz, “Evaluating the impact of perception and
decision timing on autonomous robotic exploration,” in European Conf. on Mobile
Robots, pp. 68–73, IEEE, 2013.

[254] K. Lenac, A. Kitanov, I. Maurović, M. Dakulović, and I. Petrović, “Fast active
SLAM for accurate and complete coverage mapping of unknown environments,”
in Intelligent Autonomous Systems 13, pp. 415–428, Springer, 2016.

[255] Y. Xu, J. Yu, J. Tang, J. Qiu, J. Wang, Y. Shen, Y. Wang, and H. Yang,
“Explore-Bench: Data sets, metrics and evaluations for frontier-based and deep-
reinforcement-learning-based autonomous exploration,” in IEEE Intl. Conf. on
Robotics and Automation, pp. 6225–6231, 2022.

[256] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding
horizon path planning for 3D exploration and surface inspection,” Autonomous
Robots, vol. 42, no. 2, pp. 291–306, 2018.

[257] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and
H. Younes, “Coordination for multi-robot exploration and mapping,” in 17th
AAAI Conf. on Artificial Intelligence, pp. 852–858, 2000.

[258] S. Salan, E. Drumwright, and K.-I. Lin, “Minimum-energy robotic exploration: A
formulation and an approach,” IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 1, pp. 175–182, 2014.

[259] F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration and mapping
for mobile robots via deep reinforcement learning,” in AIAA SciTech Forum, 2019.

190 REFERENCES

[260] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Sampling-based incremen-
tal information gathering with applications to robotic exploration and environ-
mental monitoring,” The Intl. J. of Robotics Research, vol. 38, no. 6, pp. 658–685,
2019.

[261] J. Barraquand and P. Ferbach, “Motion planning with uncertainty: The informa-
tion space approach,” in IEEE Intl. Conf. on Robotics and Automation, vol. 2,
pp. 1341–1348, IEEE, 1995.

[262] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space
by factoring the covariance,” The Intl. J. of Robotics Research, vol. 28, no. 11-12,
pp. 1448–1465, 2009.

[263] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot exploration:
A survey,” Sensors, vol. 21, no. 7, p. 2445, 2021.

[264] V. Dhiman, S. Banerjee, B. Griffin, J. M. Siskind, and J. J. Corso, “A critical inves-
tigation of deep reinforcement learning for navigation,” arXiv e-prints:1802.02274,
2018.

[265] C. Oh and A. Cavallaro, “Learning action representations for self-supervised visual
exploration,” in IEEE Intl. Conf. on Robotics and Automation, pp. 5873–5879,
2019.

[266] D. Zhu, T. Li, D. Ho, C. Wang, and M. Q.-H. Meng, “Deep reinforcement learning
supervised autonomous exploration in office environments,” in IEEE Intl. Conf.
on Robotics and Automation, pp. 7548–7555, 2018.

[267] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical framework
for back-propagation,” in Proc. of the 1988 Connectionist Models Summer School,
vol. 1, pp. 21–28, CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

[268] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas,
“Dueling network architectures for deep reinforcement learning,” in Intl. Conf. on
Machine Learning, pp. 1995–2003, 2016.

[269] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.

[270] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
in 4th Intl. Conf. on Learning Representations, 2016.

REFERENCES 191

[271] M. Alcalde, M. Ferreira, P. González, F. Andrade, and G. Tejera, “DA-SLAM:
Deep active SLAM based on deep reinforcement learning,” in Latin American
Robotics Symp., Brazilian Symp. on Robotics, and Workshop on Robotics in Edu-
cation, pp. 282–287, 2022.

[272] I. Armeni, Z. He, J. Gwak, A. Zamir, M. Fischer, J. Malik, and S. Savarese, “3D
scene graph: A structure for unified semantics, 3D space, and camera,” in Intl.
Conf. on Computer Vision, pp. 5664–5673, 2019.

[273] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “SceneGraphFusion:
Incremental 3D scene graph prediction from RGB-D sequences,” in IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, pp. 7515–7525, 2021.

[274] Y. Chang, N. Hughes, A. Ray, and L. Carlone, “Hydra-Multi: Collaborative on-
line construction of 3D scene graphs with multi-robot teams,” arXiv preprint
arXiv:2304.13487, 2023.

[275] H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, “S-Graphs+:
Real-time localization and mapping leveraging hierarchical representations,” arXiv
preprint arXiv:2212.11770, 2022.

[276] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremen-
tal 3D Euclidean signed distance fields for on-board MAV planning,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, pp. 1366–1373, 2017.

[277] R. Pimentel De Figueiredo, J. le Fevre Sejersen, J. G. Hansen, M. Brandão,
and E. Kayacan, “Real-time volumetric-semantic exploration and mapping: An
uncertainty-aware approach,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 9064–9070, 2021.

[278] X. Liu, A. Prabhu, F. Cladera, I. D. Miller, L. Zhou, C. J. Taylor, and V. Ku-
mar, “Active metric-semantic mapping by multiple aerial robots,” arXiv preprint
arXiv:2209.08465, 2022.

[279] S. Guiaşu, “Weighted entropy,” Reports on Mathematical Physics, vol. 2, no. 3,
pp. 165–179, 1971.

[280] Y. Suhov, I. Stuhl, S. Yasaei Sekeh, and M. Kelbert, “Basic inequalities for
weighted entropies,” Aequationes mathematicae, vol. 90, pp. 817–848, 2016.

[281] M. Kelbert, I. Stuhl, and Y. Suhov, “Weighted entropy: basic inequalities,” Mod-
ern Stochastics: Theory and Applications, vol. 4, no. 3, pp. 233–252, 2017.

[282] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A comparison of volu-
metric information gain metrics for active 3D object reconstruction,” Autonomous
Robots, vol. 42, no. 2, pp. 197–208, 2018.

192 REFERENCES

[283] J. P. Van Den Berg and M. H. Overmars, “Roadmap-based motion planning in
dynamic environments,” IEEE Trans. on Robotics, vol. 21, no. 5, pp. 885–897,
2005.

[284] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual SLAM and structure from
motion in dynamic environments: A survey,” ACM Computing Surveys, vol. 51,
no. 2, pp. 1–36, 2018.

[285] D. Trivun, E. Šalaka, D. Osmanković, J. Velagić, and N. Osmić, “Active SLAM-
based algorithm for autonomous exploration with mobile robot,” in IEEE Intl.
Conf. on Industrial Technology, pp. 74–79, 2015.

[286] I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for active SLAM
based on the D* algorithm with negative edge weights,” IEEE Trans. on Systems,
Man, and Cybernetics: Systems, vol. 48, no. 8, pp. 1321–1331, 2017.

[287] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki, “Deformable volumes
in path planning applications,” in IEEE Intl. Conf. on Robotics and Automation,
vol. 3, pp. 2290–2295, 2000.

[288] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion in completely
deformable environments,” in IEEE Intl. Conf. on Robotics and Automation,
pp. 2466–2471, 2006.

[289] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Reconstruction and
tracking of non-rigid scenes in real-time,” in IEEE/CVF Conf. on Computer Vi-
sion and Pattern Recognition, pp. 343–352, 2015.

[290] J. Lamarca, S. Parashar, A. Bartoli, and J. Montiel, “Defslam: Tracking and map-
ping of deforming scenes from monocular sequences,” IEEE Trans. on Robotics,
2020.

[291] S. Huang, Y. Chen, L. Zhao, Y. Zhang, and X. Mengya, “Some research questions
for SLAM in deformable environments,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pp. 7630–7637, 2021.

[292] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose graph SLAM,”
in IEEE Intl. Conf. on Robotics and Automation, pp. 1254–1261, 2012.

[293] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot
mapping,” The Intl. J. of Robotics Research, vol. 32, no. 7, pp. 826–840, 2013.

[294] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-convexity
for robust spatial perception: From non-minimal solvers to global outlier rejec-
tion,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1127–1134, 2020.

REFERENCES 193

[295] V. Indelman, E. Nelson, J. Dong, N. Michael, and F. Dellaert, “Incremental dis-
tributed inference from arbitrary poses and unknown data association: Using col-
laborating robots to establish a common reference,” IEEE Control Systems Mag.,
vol. 36, no. 2, pp. 41–74, 2016.

[296] M. Hsiao and M. Kaess, “MH-iSAM2: Multi-hypothesis iSAM using bayes tree
and hypo-tree,” in IEEE Intl. Conf. on Robotics and Automation, pp. 1274–1280,
2019.

[297] O. Shelly and V. Indelman, “Hypotheses disambiguation in retrospective,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2321–2328, 2022.

[298] S. Pathak, A. Thomas, and V. Indelman, “A unified framework for data associa-
tion aware robust belief space planning and perception,” The Intl. J. of Robotics
Research, vol. 32, no. 2-3, pp. 287–315, 2018.

[299] M. Hsiao, J. G. Mangelson, S. Suresh, C. Debrunner, and M. Kaess, “ARAS:
Ambiguity-aware robust active SLAM based on multi-hypothesis state and map es-
timations,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 5037–
5044, 2020.

[300] P. Dames, Multi-Robot Active Information Gathering Using Random Finite Sets.
PhD thesis, University of Pennsylvania, 2015.

[301] P. M. Dames, “Distributed multi-target search and tracking using the PHD filter,”
Autonomous Robots, vol. 44, pp. 673–689, 2020.

[302] M. Shienman and V. Indelman, “D2A-BSP: Distilled data association belief space
planning with performance guarantees under budget constraints,” in IEEE Intl.
Conf. on Robotics and Automation, pp. 11058–11065, 2022.

[303] V. Indelman, “No correlations involved: Decision making under uncertainty in a
conservative sparse information space,” IEEE Robotics and Automation Letters,
vol. 1, no. 1, pp. 407–414, 2016.

[304] M. Barenboim and V. Indelman, “Adaptive information belief space planning,”
in 31st Intl. Joint Conf. on Artificial Intelligence and 25th European Conf. on
Artificial Intelligence, 2022.

[305] Z. Zhang and D. Scaramuzza, “Fisher information field: An efficient and differen-
tiable map for perception-aware planning,” arXiv e-prints:2008.03324, 2020.

[306] Z. Ravichandran, L. Peng, N. Hughes, J. Griffith, and L. Carlone, “Hierarchical
representations and explicit memory: Learning effective navigation policies on 3D
scene graphs using graph neural networks,” in IEEE Intl. Conf. on Robotics and
Automation, pp. 9272–9279, 2022.

194 REFERENCES

[307] M. Fehr, T. Taubner, Y. Liu, R. Siegwart, and C. Cadena, “Predicting unobserved
space for planning via depth map augmentation,” in 19th Intl. Conf. on Advanced
Robotics, pp. 30–36, 2019.

[308] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman, “Occupancy anticipation for
efficient exploration and navigation,” in 16th European Conf. on Computer Vision,
pp. 400–418, Springer, 2020.

[309] K. Katyal, K. Popek, C. Paxton, P. Burlina, and G. D. Hager, “Uncertainty-aware
occupancy map prediction using generative networks for robot navigation,” in Intl.
Conf. on Robotics and Automation, pp. 5453–5459, 2019.

[310] K. D. Katyal, A. Polevoy, J. Moore, C. Knuth, and K. M. Popek, “High-
speed robot navigation using predicted occupancy maps,” in IEEE Intl. Conf.
on Robotics and Automation, pp. 5476–5482, 2021.

[311] S. Y. Hayoun, E. Zwecher, E. Iceland, A. Revivo, S. R. Levy, and A. Barel, “In-
tegrating deep-learning-based image completion and motion planning to expedite
indoor mapping,” arXiv e-prints:2011.02043, 2020.

[312] R. Shrestha, F.-P. Tian, W. Feng, P. Tan, and R. Vaughan, “Learned map pre-
diction for enhanced mobile robot exploration,” in IEEE Intl. Conf. on Robotics
and Automation, pp. 1197–1204, 2019.

[313] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner, “Scancom-
plete: Large-scale scene completion and semantic segmentation for 3D scans,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 4578–4587,
2018.

[314] C. Richter and N. Roy, “Safe visual navigation via deep learning and novelty
detection,” in Robotics: Science and Systems, 2017.

[315] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for safe high-
speed navigation in unknown environments,” in Robotics Research, pp. 325–341,
Springer, 2018.

[316] O. Asraf and V. Indelman, “Experience-based prediction of unknown environments
for enhanced belief space planning,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, pp. 6781–6788, 2020.

[317] N. Fairfield and D. Wettergreen, “Active SLAM and loop prediction with the
segmented map using simplified models,” in Field and Service Robotics, pp. 173–
182, Springer, 2010.

[318] A. P. del Pobil, R. Madhavan, and E. Messina, “Benchmarks in robotics research,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems Workshop, 2006.

REFERENCES 195

[319] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“Benchmarking in manipulation research: Using the Yale-CMU-Berkeley object
and model set,” IEEE Robotics & Automation Mag., vol. 22, no. 3, pp. 36–52,
2015.

[320] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and H. Larochelle, “Improving reproducibility in machine learning
research: A report from the NeurIPS 2019 reproducibility program,” J. of Machine
Learning Research, vol. 22, 2021.

[321] P. Ammirato, A. C. Berg, and J. Kosecka, “Active vision dataset benchmark,”
in IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops,
pp. 2046–2049, 2018.

[322] D. Hall, B. Talbot, S. R. Bista, H. Zhang, R. Smith, F. Dayoub, and
N. Sünderhauf, “BenchBot environments for active robotics (BEAR): Simulated
data for active scene understanding research,” The Intl. J. of Robotics Research,
2022.

[323] M. Walter, F. Hover, and J. Leonard, “SLAM for ship hull inspection using ex-
actly sparse extended information filters,” in IEEE Intl. Conf. on Robotics and
Automation, pp. 1463–1470, 2008.

[324] J. Serafin, M. Di Cicco, T. Bonanni, C. Stachniss, and V. Ziparo, “Robots for ex-
ploration, digital preservation and visualization of archaeological sites,” Artificial
Intelligence for Cultural Heritage, p. 121, 2016.

[325] P. Li, C.-y. Yang, R. Wang, and S. Wang, “A high-efficiency, information-based
exploration path planning method for active simultaneous localization and map-
ping,” Intl. J. of Advanced Robotic Systems, vol. 17, no. 1, 2020.

	TUZ_2764_Placed_beyond.pdf
	2764_Placed Perales TESIS
	Acknowledgements
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.1.1 A Unified Problem Formulation
	1.1.2 Fast Utility Estimation
	1.1.3 Meaningful Stopping Conditions
	1.1.4 Learning Uncertainty-aware Decision-making Policies
	1.1.5 Reasoning Beyond Geometric Representations: Abstract High-level Concepts

	1.2 Thesis Outcomes
	1.2.1 Research Stay
	1.2.2 Publications
	1.2.3 Open-source Repositories
	1.2.4 Participation in Robotics Conferences
	1.2.5 Teaching and Peer-Review

	1.3 Funding
	1.4 Thesis Structure

	2 Background
	2.1 Representing Robot Locations
	2.1.1 On the Uncertain Poses
	2.1.2 Compounding Relative Poses

	2.2 Representing the Environment
	2.2.1 Topological Maps
	2.2.2 Metric Maps
	2.2.3 Metric-semantic Maps
	2.2.4 Hybrid and Hierarchical Maps

	2.3 Robot Navigation
	2.4 Simultaneous Localization and Mapping (SLAM)
	2.4.1 Graph-SLAM

	2.5 Passive and Active Behaviors

	3 Active SLAM: Problem Definition and State-of-the-art
	3.1 Historical Review
	3.2 The Active SLAM Paradigm
	3.3 Modular Approaches
	3.3.1 Identification of Potential Destinations
	3.3.2 Utility Computation
	3.3.2.1 Naive Cost Functions
	3.3.2.2 Information Theory (IT)
	3.3.2.3 Theory of Optimal Experimental Design (TOED)
	3.3.2.4 The Graphical Structure of the Problem

	3.3.3 Action Selection and Execution

	3.4 Learning-based Methods
	3.4.1 Deep Reinforcement Learning (DRL)
	3.4.2 On the Reward Function Design and the Action Set
	3.4.3 Partial Observability and Generalization
	3.4.4 Training Environments

	3.5 Summary and Discussion

	4 Spectral Uncertainty Quantification for Active Graph-SLAM
	4.1 Introduction
	4.2 Preliminaries on Graph Theory
	4.2.1 Spectral Graph Theory

	4.3 A General Relationship between the Graph Laplacian and the FIM
	4.4 Transfer to the Spectral Domain: Optimality Criteria
	4.5 Experimental Validation
	4.5.1 Constant Uncertainty Case
	4.5.2 Variable Uncertainty Case

	4.6 Summary and Discussion

	5 Online Spectral Active SLAM
	5.1 Spectral Active SLAM Using Occupancy Grids
	5.1.1 Method
	5.1.1.1 SLAM Backbone
	5.1.1.2 Stage I: Identification of Goal Candidates
	5.1.1.3 Stage II: Computing the Posteriors and their Utility
	5.1.1.4 Stage III: Action Selection and Execution

	5.1.2 Experiments

	5.2 Spectral Active Visual SLAM Using 3D Sparse Maps
	5.2.1 Method
	5.2.1.1 SLAM Backbone
	5.2.1.2 Stage I: Identification of Goal Candidates
	5.2.1.3 Stage II: Estimating the Posteriors and their Utility
	5.2.1.4 Stage III: Action Selection and Execution

	5.2.2 Experiments

	5.3 Spectral Identification of Task Completion
	5.3.1 Limitations of Existing Metrics
	5.3.2 Towards Meaningful Task-Driven Stopping Criteria
	5.3.3 Experiments

	5.4 Summary and Discussion

	6 Learning Policies for D-optimal Decision-making
	6.1 Introduction
	6.2 Preliminaries on (Deep) Reinforcement Learning
	6.3 Method
	6.3.1 SLAM Backbone
	6.3.2 Decision-making using Q-networks

	6.4 Experiments
	6.4.1 On the Validity of Uncertainty-aware Policies
	6.4.2 Deep RL Policies

	6.5 Summary and Discussion

	7 Towards Active Spatial Perception
	7.1 Introduction
	7.2 Preliminaries on Hierarchical Representations
	7.3 Quantifying the Utility of a DSG
	7.3.1 Geometric Entropy
	7.3.2 Semantic Entropy
	7.3.3 Summary

	7.4 Method
	7.4.1 On the Identification of Candidate Destinations
	7.4.2 Utility Computation
	7.4.3 Hierarchical Optimization and Planning

	7.5 Preliminary Results
	7.5.1 Experimental Results

	7.6 Summary and Discussion

	8 Open Problems in Active SLAM
	8.1 Reasoning in Dynamic and Deformable Scenes
	8.2 Robust Online Belief Space Planning and Active SLAM
	8.3 From Active SLAM to Active Spatial Perception
	8.4 Prediction Beyond Line-of-sight
	8.5 Optimal Decision-making in Real Time
	8.6 Towards Meaningful and Autonomous Stopping Criteria
	8.7 Reproducible Research in Active SLAM
	8.8 Practical Applications
	8.9 Summary and Discussion

	9 Conclusions and Future Work
	9.1 Conclusiones y Trabajo Futuro

	Appendix A Lie Groups Theory Fundamentals
	Appendix B Relationship between Optimality Criteria of Sigma and Y
	Appendix C Notions on the Kronecker Product
	References

