Optimal modes of operation and product cost allocation in sugarcane steam cogeneration plants
Resumen: Sugar and ethanol production from sugar cane is one of the most competitive sectors of Brazil’s economy. The bagasse generated during the production process is used as fuel in cogeneration plants that provide thermal and electrical energy to the process. In the last decades, many sugar cane factories have produced a surplus of electricity that may be sold to the grid as a new product. This paper applies energy billing optimization and thermoeconomic analysis to a sugarcane steam cogeneration plant to determine the optimal operating mode of the plant, unveils the cost formation process of its internal products (refinery heat, process heat, and consumed electricity), and examines how the results are affected by: (i) the demand for the plant’s energy services, (ii) the availability of bagasse, and (iii) the selling price of surplus electricity. The thermoeconomic analysis involves a detailed study of the cost formation process, which is achieved through the decomposition of the steam cycle of the cogeneration plant into subcycles. Three main subcycles, in addition to the deaeration cycle and other auxiliary subcycles, have been identified: the cogeneration cycle generating work in the high-pressure turbine and refinery heat (subcycle one), the cogeneration cycle generating work in the high- and medium-pressure turbines and process heat (subcycle two), and the condensing cycle that generates only work in the high-, medium-, and low-pressure turbines (subcycle three). These subcycles make up the productive structure of the steam cogeneration plant and explain how water/steam goes through energy conversion processes from the bagasse energy to the heat and electricity produced. Both the optimization model and the thermoeconomic analysis serve as valuable tools for planning in response to potential changes in bagasse and electricity market prices, as well as fluctuating product demand conditions. In the base case, combining optimization with thermo-economic analysis, the unit monetary cost of the final products has been determined: heat for refinery (8.85 R$/MWh), electricity sold (183.60 R$/MWh), internally consumed electricity (41.51 R$/MWh), and process heat (8.85 R$/MWh).
Idioma: Inglés
DOI: 10.1016/j.tsep.2024.102686
Año: 2024
Publicado en: Thermal Science and Engineering Progress 52 (2024), 102686
ISSN: 2451-9049

Financiación: info:eu-repo/grantAgreement/ES/DGA/T55-23R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-06-27-13:20:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-06-27, última modificación el 2024-06-27


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)