000135920 001__ 135920
000135920 005__ 20240705134227.0
000135920 0247_ $$2doi$$a10.1039/d4su00160e
000135920 0248_ $$2sideral$$a138901
000135920 037__ $$aART-2024-138901
000135920 041__ $$aeng
000135920 100__ $$aMartínez-Barón, C.
000135920 245__ $$aTowards sustainable TiO2 photoelectrodes based on cellulose nanocrystals as a processing adjuvant
000135920 260__ $$c2024
000135920 5060_ $$aAccess copy available to the general public$$fUnrestricted
000135920 5203_ $$aPhotoelectrodes of TiO2 in the form of films are commonly fabricated using screen printing techniques, employing viscous commercial TiO2 pastes. However, these pastes comprise environmentally unfriendly, multicomponent formulations designed to manufacture the photoactive TiO2 nanoparticles. To strive for sustainable processing and pave the way for the use of liquid-phase film processing technologies, the inherent limited water dispersibility of TiO2 nanoparticles must be overcome. In this study, we show that cellulose nanocrystals, produced via an environmentally benign one-pot hydrolysis process, enable the preparation of stable TiO2 water dispersions. The remarkable stability of these dispersions, evidenced by their outstanding ξ-potential values of −34 mV, facilitates the fabrication of macroporous TiO2 photoactive films throughout spray coating. Employed as photoanodes in a photoelectrochemical cell, our TiO2 photoanodes are compared with conventional TiO2 electrodes obtained from commercial pastes under water splitting conditions. Interestingly, our photoanodes reveal a remarkable three-fold enhancement of the photocurrent performance (132 vs. 46 μA cm−2) and a four-fold increase in the on–off response rate (4 vs. 1 s). These findings underscore the valuable role of cellulose nanocrystals as a green processing asset for achieving TiO2 water dispersions. Moreover, they serve as sacrificial adjuvants for preparing highly macroporous and functional film photoelectrodes, representing a significant step forward in the pursuit of sustainable and efficient materials processing.
000135920 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/DGA/T03-23R$$9info:eu-repo/grantAgreement/ES/MICINN PID2020-120439RA-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-139671OB-I00
000135920 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000135920 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000135920 700__ $$aCalvo, V.
000135920 700__ $$aHernández-Ferrer, J.
000135920 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa, B.$$uUniversidad de Zaragoza
000135920 700__ $$aAnsón-Casaos, A.
000135920 700__ $$aGonzález-Domínguez, J. M.
000135920 700__ $$aMaser, W. K.
000135920 700__ $$aBenito, A. M.
000135920 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000135920 773__ $$g2, 7 (2024), 2015-2025$$pRSC sustain.$$tRSC Sustainability$$x2753-8125
000135920 8564_ $$s1214178$$uhttps://zaguan.unizar.es/record/135920/files/texto_completo.pdf$$yVersión publicada
000135920 8564_ $$s2702536$$uhttps://zaguan.unizar.es/record/135920/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000135920 909CO $$ooai:zaguan.unizar.es:135920$$particulos$$pdriver
000135920 951__ $$a2024-07-05-12:56:01
000135920 980__ $$aARTICLE