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ABSTRACT

Voice disorders, such as dysphonia, are common among the general population. These pathologies
often remain untreated until they reach a high level of severity. Assisting the detection of voice
disorders could facilitate early diagnosis and subsequent treatment. In this study, we address the
practical aspects of Automatic Voice Disorders Detection (AVDD). In real world scenarios, data
annotated for voice disorders is usually scarce due to various challenges involved in the collection and
annotation of such data. However, some relatively large datasets are available for a reduced number
of domains. In this context, we propose the use of a combination of out-of-domain and in-domain
data for training a deep neural network-based AVDD system, and offer guidance on the minimum
amount of in-domain data required to achieve acceptable performance.
Further, we propose the use of a cost-based metric, the normalized expected cost, to evaluate
performance of AVDD systems in a way that closely reflects the needs of the application. As an
added benefit, optimal decisions for the expected cost can be made in a principled way given by
Bayes decision theory.
Finally, we argue that for medical applications like AVDD, the categorical decisions need to be
accompanied by interpretable scores that reflect the confidence of the system. Even very accurate
models often produce scores that are not suited for interpretation. Here, we show that such models
can be easily improved by adding a calibration stage trained with just a few minutes of in-domain
data. The outputs of the resulting calibrated system can then better support practitioners in their
decision-making process.

Keywords Automatic Voice Disorder Detection · Calibration · Self-supervised models · proper
scoring rules · health applications

1 Introduction

Currently, voice disorders exhibit a relatively large prevalence within the general population. Prior studies [1, 2, 3] have
documented a significant impact of voice problems on individuals, particularly for those whose livelihoods depend
on their voice, such as teachers, telemarketers, TV presenters, and singers. Various factors contribute to individuals
with voice problems delaying their visit to a doctor, allowing the condition to worsen over time. The emergence of
remote health services presents an opportunity to leverage intelligent solutions in assisting doctors with the remote
screening of patients. This advancement has the potential to facilitate early diagnosis and continuous monitoring of
patients, reducing the need for hospital visits and alleviating the burden on the healthcare system.

Automatic systems for Voice Disorders Detection (AVDD) serve as the foundation for these remote services [4, 5].
AVDD systems can be implemented as machine learning models trained to discern pathological from healthy speech.
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A wide range of classification models, from statistical approaches to Deep Neural Networks (DNN) based models,
have been proposed for this task [6, 7, 8, 9, 10, 5, 11, 12, 13, 14]. For instance, Kadiri et al. [15] explored suitable
representations for this task, spanning spectral and cepstral features, voice quality, perturbation measures, and complexity
measures. Colnago Contreras et al. [14] compared eight cepstral coefficient extraction techniques and evaluated their
individual and combined effectiveness in representing speech signals against established classification methods to detect
dysphonia in speech signals. Gupta et al. [16] introduced CNN-based approaches using Residual Network (ResNet)
for categorizing the severity of dysarthric speech using short-duration speech segments of less than one second. More
recently, Ribas et al. [17] assessed the effectiveness of using Self-Supervised (SS) representations for AVDD, exploring
different combinations of upstream and downstream models to approach the task as a binary classification between
healthy and pathological speech. Fonseca et al. [13], utilized signal energy (SE), zero-crossing rates (ZCRs), and
signal entropy (SH) to construct a comprehensive time-frequency-information map that allowed them to tackled the
classification of pathologies with similar phonic symptoms. A comprehensive review by Hegde et al. [18] describes an
extensive list of AVDD approaches, detailing the methods employed for representation and classification, along with
their corresponding performance.

Thus far, previous efforts have primarily concentrated on enhancing the accuracy of AVDD systems using the same
publicly-available datasets for training. Systems trained on data from a given domain, consisting of specific acoustic
conditions and phonetic content, often fail to generalize to other domains. Hence, the performance of AVDD systems on
data from patients acquired in a hospital may be significantly worse than the performance estimated on the development
data. While this problem can be solved by developing the system using data from the domain of interest, this is often
infeasible or suboptimal due to the small size of such in-domain datasets.

Our previous study [17], explored the use of a large out-of-domain dataset to complement a smaller in-domain dataset
for system development. The results demonstrated that incorporating this additional out-of-domain data significantly
improves performance compared to using only the in-domain data. In this paper, we adopt this effective approach
to train a deep neural network-based AVDD system, making use of both in-domain and out-of-domain data. This
methodology allows us to draw meaningful and practical conclusions, providing valuable guidelines on the optimal
amount of in-domain data necessary to achieve an acceptable performance level for the specific application. To simulate
the target scenario, we use two publicly accessible datasets: the Saarbruecken Voice Database (SVD) [19] as the
in-domain dataset and the Advanced Voice Function Assessment Database (AVFAD) [20] as the out-of-domain dataset.
These corpus are noteworthy for being among the very few openly available databases that include speech samples from
both patients with voice disorders and control speakers, as diagnosed by specialized otorhinolaryngology or speech
pathologists experts.

Another crucial issue in practical application is the selection of relevant metrics for evaluating system performance. The
accuracy, one of the most widely used metrics for AVDD, given by one minus the error rate, considers that all errors are
equally severe. Yet, in the medical scenario, failing to detect that a person has a voice disorder should probably carry
higher penalty than incorrectly diagnosing a healthy person, suggesting that accuracy is not an appropriate metric for
this application. In this work, we propose to use a generalized version of the error rate called expected cost, where each
type of error can be penalized with a different cost, appropriately selected for the task of interest.

In addition, in many applications, it is desirable for the system to provide not only categorical decisions but also scores
that can be interpreted by the doctor as the posterior probability that the patient has a voice disorder given the provided
speech sample. In those cases, systems should be assessed by metrics that reflect the quality of the posterior probabilities
they generate, like the Cross-Entropy. Notably, we show that even the most discriminative systems do not produce
good-quality posteriors making them unreliable for interpretation. This happens because the best performing systems in
terms of discrimination are based on DNNs with a large number of parameters which makes them prone to overfitting
the training data. The overfitting, in turn, results in the system producing overconfident posteriors. Fortunately, a simple
solution exists for this scenario consisting of a calibration transformation of the scores added as a final stage to the
system. Importantly, we show that this calibration transformation can be successfully trained with just a few minutes of
in-domain data. Specifically, results show that with 30 to 40 minutes of in-domain data used to train the DNN classifier
and the calibration stage, the AVDD system can provide close to optimal discrimination as well as interpretable scores.

The next section describes our proposed approaches for the development of AVDD systems from a practical perspective.
Then, we describe the experimental design and results, highlighting the impact of the proposed approaches. Finally, we
conclude with a discussion.
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2 Assessment of AVDD Performance from a Practical Perspective

In this section we describe the aspects we believe to be most important for the development of AVDD systems from a
practical perspective and describe our proposed approaches. As an overview, Figure 1 shows the various steps involved
in the development and deployment of an AVDD system.

The “data selection” stage in this Figure depicts the first step of system development, where the data for training and
evaluation is selected. In order for the estimated performance to reflect the one that will be observed in practice once the
system is deployed, the evaluation needs to be done using in-domain data, i.e., data that perfectly reflects the conditions
of the practical scenario for which the system will be used. For training, though, both in-domain and out-of-domain
data can be used. The next step in the process, the “AVDD system” stage, is the development of the AVDD system
itself, which takes an audio sample as input and generates a score that indicates the probability that the speaker in
the audio has a voice disorder. While extremely important, the study of models for AVDD is covered in many prior
publications as mentioned in the introduction, and is out of the scope of this paper. For the experiments, we use a
previously proposed architecture [17].

Another essential aspect in development process is the assessment of the performance of the system that takes place in
the “evaluation” stage. Given the evaluation dataset, performance metrics that reflect the value that the end-user will
obtain from the system can be computed. Here, we assume that the end-user requires not only categorical decisions,
but also a score that reflects the posterior probability of the patient having a voice disorder, given the input sample.
To assess the quality of categorical decisions we propose to use the normalized expected cost (NEC), with costs set
to penalize the false negatives (missed detections) more severely than the false positives (false alarms). Categorical
decisions are made by thresholding the scores using the threshold that optimizes the metric of choice. For the NEC (and
for accuracy), the optimal threshold can be determined theoretically using Bayes decision theory, as will be explained
later in this section. To assess the quality of the scores, before decision-making, we use the cross-entropy, which
provides an overall measure of the goodness of the scores as posterior probabilities.
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Figure 1: General scheme of an AVDD system and the development process, with a focus on the stages that
have the most impact in a practical scenario: data selection, evaluation, calibration and decision-making.

At the “evaluation stage”, calibration metrics may also be computed to assess whether a calibration stage needs to be
added to the system to improve the quality of the posteriors which are provided to the end-user. For this, we propose to
use the calibration loss metric, which is described in Section 2.4. If the calibration loss is large, then a calibration stage
should be added to the system. The scores generated by the calibrator should be re-evaluated using the same metrics
as before. Finally, the calibrated scores can be used to make categorical decisions and also provided directly to the
end-user for interpretation in the “clinical decision” stage. The following sections explain the different stages in Figure
1 in detail.

2.1 Training and evaluation data

As in most machine learning applications, AVDD systems need to be trained on data that are representative of the
target domain. For example, models should ideally be trained on the same demographic, acoustic conditions, language,
and types of voice disorders for which they will later be used. The collection of such in-domain data for each new

3



Automatic Voice Disorder Detection System from a Practical Perspective

application is a slow and costly process since it requires the recruitment of subjects, recording of their speech, and
careful labelling from a medical evaluation of the health status of the voice. For this reason, most AVDD datasets
collected in the same scenario where the system would be deployed are relatively small.

A few relatively large datasets on voice disorders are publicly available. Such datasets are collected under a limited
variety of recording conditions and do not necessarily include the full range of existing voice disorders. Yet, despite this
issues, leveraging these larger – though potentially mismatched – datasets for system training can lead to improved
performance on the target domain.

In this work, we simulate a realistic scenario where a large out-of-domain dataset and a much smaller in-domain dataset
are available for development. We use the setup from our previous work [17] where the datasets are split as follows:

• For training, we use a large out-of-domain database with characteristics that are significantly different to those
of the target domain plus a small in-domain dataset that is perfectly matched to the target domain.

• For evaluation, we use a small in-domain dataset from the target scenario.

We highlight the importance of evaluating on in-domain data. The goal of evaluation is to predict the performance that
the system will have when deployed. If the evaluation data does not match exactly the conditions of the target domain,
the estimated performance may not be a good predictor of the system performance, as will be perceived by the end-user
on the data of interest.

2.2 Metrics for assessing the quality of categorical decisions

When making categorical decisions in binary classification, two types of errors exist: false positives also known as false
alarms, samples labelled by the system as having a voice disorder but which were produced by healthy individuals; and
false negative or misses, samples labelled as healthy but which were produced by a patient with a voice disorder. Given
a certain evaluation dataset, a number of different classification metrics can be computed as a function of the number of
false alarms and misses, and the number of samples of each class.

The most commonly used metrics in the AVDD literature are accuracy, unweighted average recall (UAR), among others
[21, 15, 11, 22]. These metrics rely on error rates computed from the confusion matrix values given by the true and
false positives and negatives (TP, FP, TN, FN). Despite their widespread use, these metrics do not necessarily reflect the
needs of the application, since they do not take into account the cost that each type of error has in practice.

To address this problem, recent works on medical applications have proposed the use of metrics that consider the impact
of each type of error on the use-case scenario. These metrics include the Net Benefit [23], its sibling, the expected
cost (EC) [24, 25, 26], and Weighted Utility, a generalization of Net Benefit [27]. These metrics allow for the explicit
specification of the cost (or utility) that each decision will have in the clinical setting given the true label of the sample.
For example, in the case of AVDD, it is reasonable to assume that false alarms should be considered as less costly than
misses. In the former case, a healthy patient may undergo unnecessary further testing or even treatment. In the latter
case, the disorder would go untreated and may eventually develop into a more severe, perhaps incurable, pathology.

Given an evaluation dataset with a total of N samples, H samples from healthy subjects (true negatives), P samples from
patients with a voice pathology (true positives), FP false positives and FN false negatives, the EC is given by:

EC = CFN PP RFN +CFP PH RFP, (1)

where RFP = FP/H is the false positive rate, namely the conditional probability of deciding that a sample belongs
to a patient with a voice disorder given that the patient was healthy; RFN = FN/H is the false negative rate, i.e.,
conditional probability of deciding that the subject is healthy given that she/he presents a voice disorder; PP = P/N is
the proportion of samples that belongs to subjects with a voice disorder; PH = H/N is the proportion of samples that
belongs to healthy subjects. The parameters CFP and CFN determine how costly each type of error is deemed for the
application of interest.

In this work we will use a normalized version of the EC, given by

NEC =
EC

min(CFN PD,CFP PH)
, (2)

The denominator corresponds to the EC of the best naive system, one that does not have access to the input sample and
always makes the same decision, the one that minimizes the EC. For an in-depth description of the EC and the NEC, we
refer the reader to [26].

Note that accuracy and UAR are tightly related to special cases of the EC. Accuracy is obtained as one minus the EC
when CFP = CFN = 1, while UAR is obtained as one minus the EC with CFP = 1/PH and CFN = 1/PD. Note that
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UAR implicitly assigns a cost to false alarms and misses that may not be appropriate for the task, depending on the
values of PD and PH. If, as is common in AVDD datasets, PD > PH, then CFN < CFP, which implies an assumption
that false negatives (misses) are less costly than false positives (false alarms), something that may not reflect the needs
of the clinical setting. In this work, we propose to use the EC metric with a higher cost for false negatives than for false
positives, setting CFN = 3, and CFP = 1.

An advantage of the EC and its special cases like the accuracy and the UAR is that, when the system produces
well-calibrated posteriors (see Section 2.4 for a definition of calibration), optimal decisions can be obtained using
Bayes decision theory [28]. For our AVDD binary classification problem, Bayes decisions correspond to comparing the
posterior for the class “patient has a voice disorder” to the following threshold:

thr =
CFP

CFP +CFN
, (3)

and deciding that the patient has a voice disorder whenever that posterior is larger than the threshold. For accuracy, the
Bayes threshold is given by 0.5, resulting in the usual decision rule of choosing the class with the largest score. For
UAR, the Bayes threshold is given by PD, the prevalence of voice disorders in the test data which, in the SVD dataset is
larger than 0.5. Hence, fewer samples will be labelled as having a voice disorder when optimizing UAR than accuracy,
resulting in more missed diagnoses, as required by the metric which effectively gives a higher weight to false positives
than to false negatives. On the other hand, for our selected EC with CFN = 3 and CFP = 1, the threshold is given
by 1/4, resulting in fewer false negatives, at the cost of more false positives. This, we believe, is a more appropriate
operating point for the AVDD application.

All metrics discussed in this section are designed to assess the quality of categorical decisions for a specific decision
threshold. In contrast, the Area Under the Receiver Operating Curve (AUROC or AUC), also commonly used in AVDD
literature, integrates the performance across the full range of possible decision thresholds, reflecting the performance
of the system without committing to a single decision threshold. While useful during the early stages of systems
development, the AUC does not reflect the actual performance of the categorical decisions as will be perceived by the
end-user and, hence, should not be used to assess the goodness of the system. In particular, a system may be better than
another in terms of AUC but worse in terms of NEC. In that case, the system that is better in terms of NEC should be
selected for deployment since that is the metric that reflects the needs of the application.

2.3 Metric for assessing the interpretability of scores

When interpretable scores are required, a metric that reflects the quality of the scores as posteriors is needed for
evaluation. A principled way to assess the quality of posteriors is through proper scoring rules (PSRs) [29]. PSRs assign
a numerical cost to a posterior distribution based on how well it aligns with the true label of the sample. The expected
value of a PSR is minimized when the posterior under evaluation coincides with the reference distribution with respect
to which the expectation is taken. This means that a lower PSR value indicates that the posterior distribution is closer to
this reference distribution. The expected value of a PSR (EPSR) over the data then reflects the quality of the posteriors.

One widely used EPSR is the cross-entropy. The (empirical) cross-entropy is given by:

XE = − 1

N

N∑
i=1

logP (ci|xi) (4)

where P (ci|xi) is the posterior probability produced by the system for input sample xi for class ci, the true class of the
sample. The summation is taken over the N samples in the evaluation dataset. The cross-entropy measures the average
surprise or information content of the true labels given the posteriors produced by the system. Lower cross-entropy
indicates a better match between posteriors and true labels.

In this work, we will use normalized XE (NXE) as the main metric for assessing whether the system’s output are useful
for interpretation. The normalization is done by diving the XE of the system by the XE of a naive system that does
not have access to the input samples and always outputs the prior probability of each class. Such a system is, from all
systems that do not have access to the input, the one that minimizes the XE. The NXE should always be lower than 1.0
since a larger value indicates that the system is worse than the best naive system. Assuming we know the class prior
probabilities, a system with NXE larger than 1.0 can be trivially improved by replacing its output with that of the best
naive system. Hence, a NXE larger or close to 1.0 implies that the posteriors are poor and should be fixed. Even when
NXE is lower than 1.0, the posteriors may sometimes be suboptimal, meaning that they can be improved by a post-hoc
transformation, as described in the next section.
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2.4 Assessing and fixing calibration

Classification systems designed to produce posterior probabilities are usually trained with XE as objective. Yet, despite
being trained to minimize an objective that reflects the goodness of the scores as posteriors, these systems can sometimes
end up producing extremely poor posteriors on the test data. This happens because the model overfits the training
data leading to an unrealistically good XE value on that data, but a rather poor one on the test data. This is a common
phenomenon in modern DNNs which are prone to overfitting due to their large number of parameters [30].

Fortunately, the effect of overfitting can usually be easily counteracted by adding a new stage in the system which is
meant to calibrate the scores. Calibration refers to the process of transforming a set of scores into the best possible
posteriors that can be obtained by this operation. The goal of doing calibration is to reduce the value of an EPSR, most
commonly, the cross-entropy. If posteriors can be improved by calibration, then they are said to be miscalibrated. On
the other hand, well-calibrated posteriors cannot be improved by adding a calibration stage to the system. A perfectly
calibrated system produces optimal Bayes decision for the EC of choice, meaning that no other decision rule can result
in better categorical decisions. For a discussion on calibration and many references on the topic, please see [26]. The
specific calibration approach used in this work will be discussed in the next section as part of the system description.

Model calibration has been well-studied in epidemiology literature [31, 32] and more recently in medical imaging
[33, 24]. However, to our knowledge, this topic has not been discussed in the context of voice pathology detection. Yet,
AVDD systems are prone to overfitting and, hence, to miscalibration, particularly so because of the scarcity of data
making the scores from these system suboptimal for interpretation unless a calibration stage is added to the system.

Diagnosing calibration problems in a system requires an explicit or implicit process of training a calibration transform
and evaluating whether this transform improved the posteriors. Currently, the most standard calibration metric is the
Expected Calibration Error (ECE) [34], a measure derived from reliability diagrams. These diagrams are constructed by
binning the posteriors obtained on the evaluation dataset for one of the two classes into M uniform intervals. Then, the
frequency of that class within the samples that fall in each bin is computed and plotted as the bar height in each bin
(see Figure 8). These frequencies determine the calibrated posterior for all the samples within the corresponding bin.
The ECE is then computed as the average absolute difference between average posterior within each bin Bm, called
avep(Bm), and the corresponding calibrated posterior (the bin height), frac(Bm):

ECE =

M∑
m=1

|Bm|
K

|frac(Bm)− avep(Bm)|. (5)

For well-calibrated posteriors the reliability plot is close to the diagonal, and the ECE is close to 0. The ECE, while
widely used in the literature, has a series of known problems [26, 35, 36]. For this reason, in this work, in addition
to showing ECE for consistency with prior literature, we use the calibration loss (CalLoss). CalLoss is given by the
difference between a raw EPSR, computed on the scores as they come out of the system, and a minimum EPSR,
computed on the scores after calibration. In this work, we use NXE as the EPSR, and compute the relative CalLoss as:

RelCalLoss = 100
NXEraw −NXEmin

NXEraw
. (6)

The value of NXEmin measures the performance that the system can achieve by optimally transforming the scores into
better posteriors, i.e., the best performance the system could achieve after calibration. This is sometimes called the
refinement or discrimination performance since it reflects the inherent ability of the system to separate the classes from
each other. For binary classification, NXEmin can be obtained using the Pool Adjacent Violators (PAV) algorithm [37]
which finds the monotonic transformation of the scores that minimizes an EPSR (nicely, optimizing any EPSR will lead
to the same transform). The resulting non-parametric calibration transform gives us the best possible posteriors that can
be obtained from the scores generated by the system on the evaluation dataset. These scores may be too optimistic since
the transform is trained on the evaluation data itself, but it provides a lower bound for the EPSR. If the RelCalLoss is
small, then we can be sure that the scores are well calibrated.

We would like to note that many works in recent machine learning literature use calibration metrics as a way to assess
the interpretability of posteriors. We believe this is a misguided practice. The usefulness of the posteriors is assessed,
by construction, by EPSRs. Calibration metrics, such as ECE or CalLoss, only measure part of the performance of the
posteriors. In the extreme, a system can have perfect calibration but be completely uninformative. For instance, the best
naive system described above, which always outputs the class priors, is a rather useless system since it does not carry
any information about the input sample. Yet, its CalLoss and ECE are equal to 0. On the other hand, a system may
have a CalLoss of 50% and still be better –more useful– than the best naive system if its NXE is lower than 1.0. In
summary, while calibration metrics are useful for diagnosing potential calibration problems, they should not be used as
an indication of the quality of the posteriors.
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3 Experimental Design

In this section we describe the DNN-based system and the calibration approach used in the experiments, as well as the
two databases used for training and testing.

3.1 Classification model

The classifier used in our experiments is based on the prior work [17], where we showed that using self-supervised (SS)
representations for AVDD results in significant improvements over prior approaches where DNNs are trained from
scratch on AVDD datasets. We use the HuBERT model [38] which generates 768-dimensional representations at a rate
of 50 vectors per second. HuBERT is a transformer-based model trained with a self-supervised approach to predict a
target clean speech signal from a noisy masked version of that signal. These representations have been used for various
tasks including emotion recognition, pronunciation assessment or speech enhancement [39, 40, 41]. The HuBERT
model is taken as a feature extractor and fine-tuned during training. We use the base model2, which was pretrained with
960 hours of speech from the Librispeech corpus.

The sequence generated by this HuBERT model is processed by a downstream model consisting of a transformer with
a class-token which summarizes the sequence into a single utterance-level token [42] using multi-head self-attention
mechanisms. A final output layer with softmax activation function provides the posterior probabilities for each of the
two classes. This model is trained using cross-entropy loss at utterance level. Details on the architecture and the training
process can be found in [17]. The classification models are built in PyTorch using the S3prl toolkit.3

3.2 Calibration model

For a given audio sample, the output of the downstream model are the posterior probabilities for each of the two classes.
As explained above, it may be possible to improve these posteriors by applying a calibration transformation. In this
work we use linear logistic regression as calibration transformation, which, for the binary classification case is also
known as Platt scaling [43]. This transformation has the following expression:

s̃P = sigmoid(α log(sP ) + β) (7)

where sP is the posterior for the class “patient has a voice disorder” output by the downstream model, and α and β are
two scalar parameters. These parameters are trained to minimize the cross entropy between the transformed scores s̃P
and the binary labels. The functional form of this equation can be shown to be optimal when the classes have Gaussian
distribution with the same covariance [44]. In practice, the transformation is often found to be quite effective even
when these conditions are not met. The python package psrcal4 was used for training and applying the calibration
transformation in the experiments.

3.3 Databases

In this experiments we use two publicly available datasets: the Advanced Voice Function Assessment Database (AVFAD)
and the Saarbruecken Voice Dataset (SVD).

AVFAD [20] is an open-access dataset in the Portuguese language with approximately 32 hours of speech recordings. It
contains 363 recordings labeled as healthy by 250 females and 113 males, and 346 recordings labeled as pathological
by 249 females and 97 males. There are 26 different labelled pathologies. Recordings contain sustained vowels and
phrases. In this paper we used the phrases chunked into 4-second segments. The audio was originally recorded in 48
KHz and, for our experiments, was downsampled to 16 KHz. This corpus was used as the out-of-domain dataset and
used only for training purposes.

SVD [19] is an open-access database in the German language with more than 2000 speakers recording phrases and
sustained vowels. After keeping the phrases only, we are left with 1988 sessions from 1627 speakers adding up to a total
of 72 minutes. There are 634 recordings labeled as healthy by 382 females and 252 males, and 1354 recordings labeled
as pathological by 726 females and 628 males. Pathological samples may be labelled as having one or more pathologies.
There are also available annotations of the GRBAS scales (grade, rough, breathy, asthenic, and strained) [45] that
provides a perceptual appraisal of voice quality. For further analysis of results we use the Grade rating of overall
dysphonia level as an indicator of the voice disorder severity. The database includes 71 pathologies with an imbalanced
distribution. As for AVFAD, we only use the phrases from this dataset. In this case, though, the phrases are already

2https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt
3The code is available in https://github.com/dayanavivolab/s3prl/tree/voicedisorder
4https://github.com/luferrer/psr-calibration
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short duration and, hence, are not chunked. This corpus is used both for training and testing using a cross-validation
approach described below.

3.4 Data splitting for experiments

As explained above, the goal is to simulate a practical scenario where limited in-domain data is available for system
development. We also assume that a relatively larger amount of out-of-domain data is available for the task. In this
work, we take AVFAD as the large out-of-domain dataset and use it only for training purposes. We use SVD as the
smaller in-domain dataset which needs to be wisely used for training the downstream model, the calibration transform,
and for final performance evaluation. We explore the effect that varying the amount of in-domain data used for training
the downstream model and the calibration transform has on performance. The goal of this exploration is to obtain a
guideline on the data requirements. Given a new application, we might be faced with the need to collect some in-domain
data. We want to answer how much data should we collect and how should we optimally use it for training the two
modules in the system.

 SVD data

                 train + calibration
 test

 5 folds 

SVD MT SVD MCAVFAD
train    calibration

F1 F2 F3 F4 F5

Figure 2: Data splitting strategy used for the experiments. The SVD data is split in 5 folds. Then, the
following process is repeated for each fold Fi: 1) a subset of size DT (yellow blocks) from each of the folds
that are not Fi is selected, 2) these subsets are pooled together to get MT = 4DT minutes of data, merged
with the AVFAD data and used to train the downstream model, 3) a subset of size DC (violet blocks) is
selected from each of the fold that are not Fi after excluding the data selected in step 1 above, 4) these subsets
are pooled together to get MC minutes of data, and the model generated in set 2 is used to generate scores for
this data, 5) a calibration model is trained using these scores, 6) the downstream model from step 2 is used
to generate scores on fold Fi, 7) these scores are calibrated using the model obtained in step 5. Finally, the
scores obtained in step 7 on each fold Fi are pooled together to compute the final metrics.

Figure 2 shows a diagram of the data splitting approach used in our experiments to address these questions. First, the
SVD data is split into five folds with similar number of speakers with around 14 minutes and 400 speakers each. For
each test fold, we select MT/4 minutes from each of the other four folds for training a downstream model. We set MT

to be 5, 10, 20, 30 or 40 minutes, corresponding to approximately 147, 292, 568, 838 and 1060 sessions, respectively.
Then, to this selected data, we add the complete AVFAD set and use 90% of the resulting set to train the downstream
DNN model using stochastic gradient descent, using the remaining 10% to select the best model across epochs. Finally,
the selected model is used to generate scores on the test fold. This process is repeated for each fold and the resulting
scores for every fold are concatenated. In the end, scores for the complete SVD dataset are available for computing
performance metrics for each value of MT. We call these the uncalibrated or raw scores.

In a second set of experiments we explore the impact of adding a calibration stage after the classifier. The calibration
transform is trained on a subset of the data from each fold that was not selected for training the downstream model.
Since each fold contains around 14 minutes of speech and we use at most 10 of those for training the downstream
model, we always have at least 4 minutes in each fold that are not used for training the downstream model. To explore
the impact of the amount of calibration data in the performance of the posteriors, for each test fold, we select MC/4
minutes from each of the other four folds to train the calibration model. We set MC to 2, 5, 10 and 15 minutes. The
calibration model trained on this data is then applied to the test fold. This process is repeated for each fold and all
resulting calibrated scores are pooled together to compute the performance metrics.
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4 Results and discussion

This section presents the experimental results. First, we show the results on the raw scores, without a calibration stage,
while increasing the amount MT of in-domain data used to train the downstream model. As expected, the discrimination
performance drastically improves as the amount of in-domain training data increases. On the other hand, the calibration
performance is poor for all cases. Finally, we show how calibration can be easily fixed using a relatively small amount
of calibration data, MC.

4.1 Discrimination performance of raw scores

Figure 3 shows two metrics that reflect the system’s discrimination performance: the AUC and the minimum cross-
entropy, NXEmin (see Section 2.4). These metrics are immune to calibration problems, assessing only the amount
of information that a system provides about the class of a sample regardless of whether the scores are good or bad
posterior probabilities. We can see that the discrimination performance drastically improves as the amount of in-domain
training data increases. In particular, the NXEmin is close to 1.0 when only out-of-domain data is used for training
(MT = 0). This value indicates that the system is close to a naive system that does not know anything about the input
samples. As MT increases, NXEmin reaches values under 0.5, indicating that the system contains useful information
about the input samples. The value of AUC follows a similar trend, starting at around 0.65 when only out-of-domain
data is used for training and reaching values over 0.90 when 40 minutes are used.

The largest value of MT, 40 minutes, contains speech from 1060 sessions. Obtaining an in-domain dataset with such a
large number of speakers may be infeasible in many practical applications. Fortunately, even with a quarter of that
data, 10 minutes of speech from 292 sessions, the performance is still significantly better than that of a random system
and of a system trained only with out-of-domain data. We hypothesize that perhaps the number of speakers could be
reduced further if each speaker provided a larger amount of speech, maintaining the total amount of speech at around
10 minutes. This hypothesis cannot be tested with the SVD dataset since each speaker recorded only one phrase. We
will address this question in later work using a new dataset that is currently being collected.
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Figure 3: Discrimination metrics, AUC (higher is better) and NXEmin (lower is better), as a function of the
total amount of data, MT, used to train and select the best epoch of the downstream model. No calibration
stage is used for these results.

4.2 Calibration performance of raw scores

Figure 4 shows the calibration performance measured by ECE and RelCalLoss (see Section 2.4) as a function of the
amount of training data for the downstream model. We can see that, while calibration performance improves as more
in-domain data is used for training, the best system, with MT = 40, still has a high calibration error, with ECE values
over 10% and RelCalLoss over 60%. That is, over 60% of the NXE of the system is due to miscalibration, even when
MT is relatively large. Notably, the trends indicate that increasing the amount of training data over 40 minutes would
not result in significant further improvements in calibration. The downstream model does not produce well-calibrated
posteriors, regardless of the amount of in-domain data used for training. This is likely due to the model overfitting the
training data. Fortunately, this problem can be fixed by adding a simple post-hoc calibration stage to the system, as
discussed in the next section.
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Figure 4: Calibration metrics, ECE and RelCalLoss, as a function of MT, as in Figure 3. Also as in that
figure, no calibration stage is used for these results.

4.3 Overall performance of raw and calibrated scores

Figure 5 shows two metrics that reflect the performance of categorical decisions at two different operating points:
a NEC, using CFN/CFP = 3, and the standard UAR, which, for our data, corresponds to one minus the EC with
CFN/CFP = 0.47. For both metrics, the decision threshold is the one determined by Bayes decisions. Bayes decisions
improve as the scores are better calibrated, i.e., better posterior probabilities. We also show the NXE, which reflects the
performance of the posteriors without committing to a specific operating point. Hence, the NXE reflects the overall
goodness of the scores as posterior probabilities, indicating how useful these scores would be for a human attempting to
interpret them as such.
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Figure 5: Overall performance metrics, UAR, NEC and NXE as a function of MT in minutes, as in Figure 3.
The two bottom plots show a zoomed in version of the top ones for NXE and NEC, without the NoCal curve.

The figure shows the performance as a function of MT, indicated in the x-axis, and MC, shown as different curves (see
legend). We can see that the UAR and the NEC sharply improve (for UAR higher is better, for NEC lower is better)
as MT increases, in line with the observations in Section 4.1. On the other hand, except when MT = 0 for NEC, the
post-hoc calibration stage has very little effect on these metrics.
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Turning to the NXE, we can see that the uncalibrated scores (blue lines) are very poor in terms of this metric. In
particular, the NXE is larger than 1.0 for all values of MT indicating that the scores are worse than those of a naive
system and, hence, not useful for interpretation. Focusing on the zoomed in plot for the NXE on the bottom right we
can see that, when calibration is performed, the NXE improves to values below 1.0, except for the model trained only on
AVFAD data (i.e., when MT = 0) for which discrimination performance is very poor, almost near 1.0. Further, we can
see that the performance tends to improve as MC increases, though only by a small margin. Hence, we can conclude
that a small amount of data is sufficient for training the calibration model.

Table 1 presents an overview of the system’s performance in terms of NEC, accuracy (ACC), and UAR, each computed
using their corresponding optimal Bayes threshold. For each metric, we provide values of sensitivity (Sen), specificity
(Spe), and precision (Pre) based on the respective thresholds used in their calculation. Additionally, normalized cross
entropy (NXE) is included in the last column. The first two rows in the table show the performance of raw (uncalibrated)
scores, with the downstream model trained with 0 minutes and 40 minutes of in-domain data as well as the AVFAD
out-of-domain data. The last row corresponds to the system in the second row with an additional calibration stage
trained with 15 minutes of in-domain data.

As seen in Figure 5, the NEC values show a significant decrease from 4.89 to 0.88 as MT goes from 0 to 40 minutes.
The same trends between those two systems can be observed for accuracy (ACC) which improves from 45.47% to
83.80%, and for UAR which improves from 58.27% to 82.61%. The sensitivity (Sen(%)) drastically increases for
all three metrics with the introduction of in-domain data, showing the model’s enhanced ability to correctly identify
pathological instances when in-domain data is used for training. On the other hand, specificity (Spe(%)), the ability of
the model to correctly identify healthy subjects as such, exhibits a general tendency to decrease as more in-domain data
is added. This is due to the fact that the Bayes threshold does not provide the optimal trade off between sensitivity and
specificity when the models are poorly calibrated, resulting in high specificity at the expense of low sensitivity. As the
system’s calibration is improved, the Bayes threshold results in a better trade off between both types of errors, indicated
by the improvement in the corresponding overall metric.

Finally, we can see that normalized cross entropy (NXE) values decrease from 7.28 to 0.63 with the use of in-domain
data for training the down-stream model and the calibrator, indicating in a drastic improvement in the quality of the
posteriors.

ThrNEC = 0.25 ThrACC = 0.5 ThrUAR = 0.68

MT CT NEC Sen(%) Spe(%) Pre(%) ACC(%) Sen(%) Spe(%) Pre(%) UAR(%) Sen(%) Spe(%) Pre(%) NXE

0 0 4.89 24.59 93.53 89.03 45.47 22.74 94.00 89.01 58.27 22.23 94.32 89.31 7.28
40 0 0.95 89.66 70.97 86.83 83.60 88.84 72.39 87.30 80.66 88.62 72.39 87.30 1.78
40 15 0.88 92.02 62.46 83.96 83.80 89.06 72.55 87.39 82.61 85.89 79.33 89.87 0.63

Table 1: Metrics for assessing the quality of categorical decisions (NEC, ACC and UAR) and the quality
of scores (NXE) for three systems: 1) a system that is not exposed to any in-domain data (first line, with
MT = MC = 0), 2) a system that uses in-domain data only to train the downstream model (second line, with
MT = 40 and MC = 0), and 3) a system that uses in-domain data for training the downstream model and a
calibrator (third line, with MT = 40 and MC = 15). The threshold for each metric for categorical decisions
(NEC, ACC, AUR) is indicated in the first row. For these three metrics, the sensitivity (Sen), specificity (Spe)
and precision (Pre) at the corresponding threshold are also listed.

Figure 6 shows the variation of three metrics, one minus accuracy (1-ACC) and two NEC values, as a function of the
decision threshold for the system in the last line in Table 1. Metrics are computed using scores that are log odds i.e., the
logarithm of the ratio between the posterior for class P and the posterior for class H. The threshold is transformed to the
log odds domain to improve visualization. That is, logoddsthr = log(thr/(1− thr)), where thr is given in Equation
(3), and is applied to the log odds of the posteriors rather than to the posterior for pathological speech. NEC3 is the
metric we have been calling NEC in previous figures and tables, obtained with CFN = 3, and CFP = 1. NEC1 is a
NEC with CFN = 1, and CFP = 1. As discussed in Section 2.2, the EC with these costs is equal to one minus accuracy.
Hence, NEC1 is simply a normalized version 1-ACC.

The dotted vertical lines represent the optimal Bayes thresholds calculated for each metric (the threshold for 1-ACC and
for NEC1 are the same). The blue line represents the Bayes threshold for NEC3, and the red line represents the Bayes
threshold for NEC1 and 1-ACC. In this example, NEC3 is not exactly optimized at the Bayes threshold due to random
differences between the data used to train the calibration model and the test data.

The figure shows that selecting the threshold that optimizes NEC1, which corresponds to thr = 0.5 and logoddsthr = 0,
is suboptimal for NEC3. Conversely, the threshold that optimizes NEC3, which corresponds to thr = 0.25 and
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Figure 6: Variation of 1-accuracy (1-ACC) and two different NEC values (NEC3 obtained with CFN = 3,
and NEC1 obtained with CFP = 1) as a function of the decision threshold for the system in the last line
in Table 1. NEC1 corresponds to the normalized version of 1-ACC. The dotted vertical lines represent the
optimal Bayes thresholds calculated for each metric (the threshold for 1-ACC and for NEC1 are the same).

logoddsthr = −1.09, does not generally correspond to the best value of NEC1. In this example, NEC1 is quite flat in
that region resulting in both thresholds giving very similar performance, but this may not be the case for other systems.
In general, it is important to select the threshold that optimizes the metric of interest rather than always defaulting to
using a logodds threshold of 0.0 (or posterior threshold of 0.5).

4.4 Error Analysis

As discussed in the previous section, the systems trained with 40 minutes of in-domain data as well as AVFAD data
have a reasonable performance, reaching a sensitivity over 92% for a specificity over 62% for NEC. Yet, performance
is not perfect. In this section we analyze the score distributions conditioned to the age of the subject and the overall
severity of their pathology given by the Grade rating (G), uncovering interesting trends between these conditions and
the performance of the system.

The left plot in Figure 7 shows the distribution of the log odds for each of the two classes for the system trained with
40 minutes of SVD data plus AVFAD before and after calibration with 15 minutes of SVD data. Figure 8 shows the
reliability plots for the same two systems. The height of each bar corresponds to the ratio of pathological samples
among those that had a posterior for class P within that bin. The green bars below the reliability plot show a histogram
of the posterior probabilities for class P. We can see that, for the raw scores, all values accumulate in the left-most
and right-most bins, indicating that the system is always very certain about the class of the sample, even when it is
wrong. We can also see that among all samples for which the system outputs a posterior over 0.9, the center of the
blue bar is below the diagonal showing that the system is overconfident and the predicted probabilities are, on average,
larger than they should be. After calibration, we can see that the center of this bar is closer to the diagonal, showing an
improvement in calibration, and that the scores are less concentrated around extreme values.

Going back to Figure 7, the middle plot shows the score distribution of the pathological samples dividing them by the G
rating. We can see that the samples for which the system gives low scores correspond mostly to the lowest severity
levels 0 and 1, indicating that perhaps those samples were labelled as pathological not based on the produced speech but
rather based on some other diagnostic test. Hence, a system based only on the speech produced by the patient would not
be able to detect a voice disorder. Most samples with a G rating of 3 have scores larger than the threshold, indicating
that the system is quite successful in identifying these patients as having a voice pathology.

Finally, the right plot in Figure 7 shows the score distributions by age range. We can see that, for the younger age
range (red curves), the distributions of the two classes are very well separated, indicating that these samples are easily
classified by the system. On the other hand, for the older age ranges, a large fraction of the healthy subjects have large
scores, indicating the the system believes those samples to be pathological. Focusing on the green dashed curve we can
see that the system incorrectly detects a voice disorder in large fraction of the older patients. In future work we plan to
explore approaches for solving this problem within the downstream model by conditioning the model with the age of
the subject.
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Figure 7: Score distributions by class (left), by severity level for the pathological speech (middle), and by class
and age range (right). RAW stands for uncalibrated and CAL for calibrated scores. Solid lines correspond to
class P (pathological), and dotted lines to class H (healthy). The vertical lines indicate the decision threshold
for the selected NEC metric.
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Figure 8: Reliability plots for the raw and calibrated scores for MT = 40 and MC = 15.

5 Conclusions

In this work, our focus has been on studying the different components of an AVDD system to better suit real-world
scenarios. We built upon our prior research to investigate effective strategies for harnessing both in-domain and
out-of-domain data to train a system, specifically for use in medical applications. Notably, our system has shown an
impressive ability to distinguish between healthy and pathological speech, using a DNN-based classifier approach
in conjunction with a pragmatic method for creating the training dataset. The approach was designed with resource
limitations in mind, achieved by supplementing out-of-domain data from the out-domain dataset with varying amounts
of in-domain data. The results are striking, with the system achieving an AUC value of 0.9 with just 30 to 40 minutes of
in-domain data.

In practical applications it is essential that the evaluation metric reflects the needs of the use-case scenario. The use
of cost-based metrics, as proposed in this paper and in some recent works dealing with other medical applications,
allows the designer to explicitly specify the consequences that different errors (false alarms vs. misses) carry in terms of
medical decisions. In this work, we propose the use of the normalized expected cost (NEC), with costs set to prioritize
the detection of pathological cases, which we believe to be appropriate for the AVDD task where missing a diagnosis
could be very costly to the patient and to the medical system, which may later have to treat a more severe pathology.

The NEC metric has the additional advantage of enabling the use of Bayes theory for optimal decision-making as long
as the scores are good posterior probabilities. In this work, the quality of the posteriors provided by the system is
measured with strictly proper scoring rules (SPSRs). In particular, we use the cross-entropy metric, a specific case of
SPSR, which is widely used as DNN training objective but much more rarely used for evaluation. A low cross-entropy
indicates that the scores are good posterior probabilities and, hence, can be used to make Bayes decisions. Further, and
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importantly, well-calibrated posteriors provide interpretable information to the end-user, something essential in medical
applications.

Our results show that increasing the amount of in-domain data has a positive impact on NEC, AUC, UAR, and accuracy.
However, when assessing the quality of the posteriors using cross-entropy, we see that, even with the largest amount of
in-domain data, the quality of the posteriors is quite poor. That is, even though the system’s posteriors can be used
to discriminate both classes well, they are overconfident, having no value for interpretation and being suboptimal for
Bayes decision-making. This problem can be solved by adding a post-hoc calibration stage to the system. We show that
with only a few minutes of in-domain data for training a calibration stage, the system can provide dramatically better
posteriors than the original DNN classifier.

We hope that the proposed approach can be applied generally to new databases. In other words, if a dataset from a new
domain is taken and the model is adjusted using the techniques we propose, we expect to achieve similar improvements
to those shown here. However, if it is expected that the model trained in a specific domain, such as AVFAD+SVD, will
generalize directly to another domain, we do not anticipate that it will work effectively. In this case, it is likely that an
adaptation stage to the new domain will be required before applying the proposed method.

In future work, we plan to extend our research to real-world scenarios, specifically those involving audio recordings in
the noisy environments of clinics or hospital consultations. Additionally, we intend to explore how calibration models
are influenced by channel variability introduced when audio is sourced from mobile devices designed for remote health
services. Moreover, we plan to explore approaches for regularizing the DNN model to reduce overfitting and, as a
consequence, improve the calibration performance of the system, in an effort to avoid the need for a post-hoc calibration
stage.

Furthermore, we propose to introduce additional inputs in the model representing the different factors that we found to
affect the performance of the system: the age and sex of the speaker, and severity of their voice disorder. The system
would then be able to adapt to each population of speakers, hopefully improving its performance on those groups that
currently suffer from poor performance.
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