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Abstract— Background: Slower adaptation of the QT in-
terval to sudden changes in heart rate has been identified
as a risk marker of ventricular arrhythmia. The gradual
changes observed in exercise stress testing facilitates the
estimation of the QT-RR adaptation time lag. Methods: The
time lag estimation is based on the delay between the
observed QT intervals and the QT intervals derived from the
observed RR intervals using a memoryless transformation.
Assuming that the two types of QT interval are corrupted
with either Gaussian or Laplacian noise, the respective
maximum likelihood time lag estimators are derived. Esti-
mation performance is evaluated using an ECG simulator
which models change in RR and QT intervals with a known
time lag, muscle noise level, respiratory rate, and more.
The accuracy of T-wave end delineation and the influence
of the learning window positioning for model parameter
estimation are also investigated. Results: Using simulated
datasets, the results show that the proposed approach to
estimation can be applied to any changes in heart rate trend
as long as the frequency content of the trend is below a
certain frequency. Moreover, using a proper position of the
learning window for exercise so that data compensation re-
duces the effect of nonstationarity, a lower mean estimation
error results for a wide range of time lags. Using a clinical
dataset, the Laplacian-based estimator shows a better dis-
crimination between patients grouped according to the risk
of suffering from coronary artery disease. Conclusions:
Using simulated ECGs, the performance evaluation of the
proposed method shows that the estimated time lag agrees
well with the true time lag.

Index Terms— QT-RR modeling, QT-RR adaptation time
lag, exercise stress testing, simulated ECGs, coronary
artery disease.

I. INTRODUCTION

Manuscript submitted on May 6, 2024. The work was supported by
projects PID2022-140556OB-I00, and TED2021-130459B-I00 funded
by Spanish Ministry of Science and Innovation (MICINN) and FEDER,
by Gobierno de Aragón (Reference Group Biomedical Signal Interpre-
tation and Computational Simulation (BSICoS) T39 23R and project
LMP94 21), and the Royal Physiographic Society, Lund, Sweden. The
computation was performed at the High Performance computing plat-
form of the NANBIOSIS ICTS (Corresponding author: Cristina Pérez).
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THE design of non-invasive, ECG-based markers for risk
prediction of sudden cardiac death (SCD) is highly

desirable [1]. The QT interval, reflecting the total duration of
ventricular depolarization and repolarization, and the related
heart rate correction have been used as markers to identify
cardiac abnormalities that may lead to SCD [2] in the general
population [3] and in cohorts of patients with chronic heart
failure [4] and myocardial infarction [5].

The QT adaptation time lag in response to sudden changes
in heart rate is another marker associated with cardiac ar-
rhythmias and SCD [6]. Normal ranges of the time lag have
been defined for different groups of patients, showing that
a prolonged time lag is associated with a higher risk of
cardiac arrhythmia [5], [7]–[9]. To shed light on cell and
tissue mechanisms underlying the time lag and its relation to
arrhythmic risk, experimental, clinical, and simulation stud-
ies have been performed [10]–[12]. More recently, multiple
parameter risk prediction of SCD based on machine learning
has been investigated, where not only ECG data is used but
also demographic, clinical, electrophysiological, imaging, and
genetic data [13]. The authors concluded that such an approach
to SCD prediction has been under-applied and incorrectly
implemented but is ripe for future investigation. The proposal
of novel ECG-derived parameters is a natural part of the
investigation.

Since sudden changes in heart rate may not always be
present in Holter recordings, we recently proposed a model-
based method to estimate the QT adaptation time lag from
ECGs recorded during exercise stress testing (EST) [14].
Although the changes during such testing tend to be more
gradual than sudden, they are always present and therefore
serve as a useful basis for time lag estimation. The time lag
was estimated as the delay between observed QT intervals and
QT intervals derived from the RR intervals. The results showed
that a prolongation of the time lag during exercise, and a
shortening during recovery, were associated with a higher risk
of coronary artery disease (CAD). Moreover, the difference in
time lag between exercise and recovery was significantly larger
for low-risk patients than for high-risk patients. These clinical
results are promising, but they need to be complemented
with results quantifying estimation performance in various
conditions.

ECG simulation represents a powerful tool not only for
methods development and training in machine learning, but
just as much for evaluation and comparison of methods
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performance. Since a gold standard to determine the true time
lag is lacking, simulation is particularly well-suited to evaluate
the performance of time lag estimation in the presence of QT
dynamics with known and controllable properties. A recently
proposed simulator was designed to model various cardiac
conditions, including arrhythmias of atrial and ventricular
origin, QT interval changes related to heart rate, and a known
QT-RR time lag [15]. Moreover, the simulator offers statisti-
cal, time-varying modeling of muscle noise, motion artifacts,
and respiration—components of particular significance when
simulating ECGs recorded during exercise.

Novelties of the present study include relaxation of the
assumptions associated with the QT-RR model originally pro-
posed in [14], making the time lag estimation well-suited for
a wider range of situations. The assumption of linear changes
in heart rate trends is extended to apply also to low-frequency
trends. The relative order of the two modeling blocks, i.e., a
memoryless transformation and a linear filter, is shown to be
uncritical, thereby further supporting the proposed approach
to time lag estimation. The above-mentioned simulator is used
to evaluate the performance of T-wave end delineation during
EST using different lead space reduction techniques as well
as the error between the estimated and the true time lag for
several signal-to-noise ratios (SNRs) and different estimator
structures.

The paper is organized as follows. Section II describes
the QT-RR model, the different steps of time lag estimation,
derived for both Gaussian and Laplacian noise models, and
the positioning of learning windows. Sections III and IV
describe the simulated and the clinical datasets, respectively.
Sections V and VI present and discuss the results, respectively,
and Sec. VII provides the main conclusions.

II. METHODS

A. T-wave end delineation

The performance of T-wave end delineation is critical in
QT interval analysis. In recent studies [9], [14], wavelet-
based delineation [16] was preceded by lead space reduction
to improve performance, defined by either principal compo-
nent analysis (PCA) [17] or generalized periodic component
analysis (GπCAP ) exploiting the fact that the T-wave is 1-to-
P -beat periodic [9]. Using the most significant, transformed
lead, robust delineation performance was reported for Holter
recordings.

Here, for the first time, the performance is evaluated for
conditions closely resembling those of EST, using a T-wave
end reference. The transformation matrices associated with
PCA and GπCAP are computed in a 150-s window positioned
at the onset of the exercise stress test; the matrices are then
held fixed throughout the test.

Before lead transformation and delineation is performed, the
influence of high-frequency noise is attenuated by forward–
backward filtering using a sixth-order Butterworth, lowpass
filter (cut-off frequency at 50 Hz). Baseline wander is attenu-
ated using cubic spline interpolation [18].

For each ECG contained in a simulated dataset, the perfor-
mance is quantified by the root mean square error, denoted ϵθ,

Fig. 1: The proposed model relating the observed RR series
dRR(n) to the observed QT series dQT(n). The generated
output of the memoryless transformation g (dRR(n);α, β) is
an instantaneous QT series diQT(n) that, when filtered by a
linear, time-invariant, first-order filter h(n), models the QT
series dmQT(n). The observed dQT(n) is modeled as the sum
of dmQT(n) and noise w(n). The QT-RR adaptation time lag
τ is estimated as the delay between diQT(n) and dQT(n).

between T-wave end determined from a noisy and a reference
beat, denoted θk and θrk, respectively, where k denotes beat
index. The reference beat is the same as the noisy beat except
that the SNR is very high (using the definition in (8), the SNR
is set to 40 dB); using a noise-free reference beat runs the risk
to have a singular transformation matrix.

B. QT-RR modeling

The starting point of QT-RR adaptation time lag estimation
is the beat-to-beat observation of RR and QT intervals, result-
ing in the series dRR(k) and dQT(k), respectively. Multilead
wavelet-based delineation is used to determine Q-wave onset
and R-wave position, whereas the most significant, trans-
formed lead of GπCA1 is used to determine T-wave end as
this choice was found to offer better performance, see Sec. V-
A. Using interpolation, dRR(k) and dQT(k) are then resampled
at a rate of 4 Hz, resulting in the uniformly sampled series
dRR(n) and dQT(n), where n is the sample index.

Time lag estimation builds on the model displayed in Fig. 1,
where the delay between dQT(n) and an instantaneous series
diQT(n), related to dRR(n) through a memoryless transforma-
tion, determines the time lag. This transformation, accounting
for the QT-RR relation under stationary conditions, is defined
by a differentiable function g(dRR(n);α, β) whose shape is
determined by the scalar parameters α and β; “stationary” is
here to be understood in the broader sense as “non-changing
trend”. Using the least squares technique, α and β are esti-
mated by fitting g(dRR(n);α, β) either to observed or modified
data pairs [dQT(n), dRR(n)] contained in three disjoint learning
windows with the following positions (window notation is
within parenthesis): the first 40 s of rest before exercise (Wb),
20 s either centered around peak exercise or aligned so that
the window ends when early recovery begins which depends
on the approach taken to window positioning (We), cf. Sec II-
D), and the last 40 s of recovery (Wlr). The window positions
are illustrated in Fig. 2(a). Thus, for each patient, α and β
are estimated using the data pairs of the concatenated three
windows. Together, the concatenated windows Wb∪We∪Wlr
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Fig. 2: (a) An observed RR series dRR(n) and the learning
windows positioned at rest (Wb), exercise (We), and late
recovery, (Wlr) indicated by boxes. (b) An observed QT series
dQT(n) and the related instantaneous QT series diQT(n), where
the intervals for time lag estimation are delimited by na,e and
nb,e for exercise and na,r and nb,r for recovery. The series
dRR(n) and dQT(n) are obtained from a simulated, typical
exercise ECG, see Sec. III-A.

should contain a wide range of RR intervals so as to produce
a more reliable least squares fit.

At an early stage of the study, the data pairs of these three
windows were assumed stationary. However, this assumption
was found reasonable only for the resting and recovery win-
dows, but not for the exercise window. Therefore, the data
pairs in the exercise window are modified to reduce the effect
of nonstationarity, see Sec. II-D.

The output diQT(n) of the memoryless transformation is
fed to a linear, time-invariant, first-order filter whose impulse
response is given by

h(n) = κe−n/τu(n), (1)

where τ is the memory time constant, expressed in samples,
here taken to be the QT-RR adaptation time lag, and u(n) is
the unit step function. The output of h(n) is the modeled QT
series dmQT(n), resulting in dQT(n) once noise w(n) is added
accounting for modeling and delineation errors.

In contrast to the original QT-RR model proposed in [19],
g (dRR(n);α, β) is here placed before h(n), not after, see
Fig. 1. The two orderings are not mathematically equivalent
since g (dRR(n);α, β) is typically nonlinear. However, if τ is
small relative to the time span required for RR intervals to
change significantly, it can be shown that the block order is
interchangeable, see Appendix I. While it is not clear which
order closer models the underlying physiology, the order in
Fig. 1 is better suited for estimation of τ as it allows diQT(n)
to be paired with dQT(n).

For simulated ECGs, the accuracy of the parameter esti-
mates α̂ and β̂ is characterized by their respective means mα̂,
mβ̂ and standard deviations σα̂, σβ̂ . The estimates are based
on the data pairs in the three learning windows.

C. QT-RR adaptation time lag estimation

When the input to a first-order filter h(n) is a linear ramp,
it is well-known that the output is a delayed linear ramp [20].
Since dRR(n) often exhibits such a ramp-like behavior during

exercise as well as recovery, diQT(n) will do so as well—a
result which is central to time lag estimation. Figure 2(b)
presents an example where the delay between dQT(n) and
diQT(n) is clearly discernible, serving as an estimate of τ .

When dRR(n) is better characterized by a low-frequency
trend, denoted s(n), than by a linear ramp, it can be shown
that h(n) still behaves as a time-delay system provided that
the spectral content of s(n) is below a certain frequency,
see Appendix II for derivation. This result is elucidated by
the following expression which shows that the discrete-time
Fourier transform of h(n) in (1) is approximately that of a
time-delay system,

H(ω) =
κ

1− e−1/τe−jω
≈ κe1/τ

e1/τ − 1
e−jωτ . (2)

This result motivates the introduction of the following
statistical model of diQT(n) and dQT(n):

diQT(n) = s(n) + vi(n),
dQT(n) = s(n− τ) + v(n),

n = 0, ..., N − 1, (3)

where both vi(n) and v(n) account for short-term, beat-to-beat
QT variability and delineation errors. The noise components
vi(n) and v(n) are assumed white, modeled by Laplacian or
Gaussian distributions, and statistically independent as v(n)
reflects uncertainty in Q-wave onset and T-wave end whereas
vi(n) reflects uncertainty in R-wave position. The statistical
parameters, i.e., location and scale of the probability density
functions, are assumed identical for vi(n) and v(n). The
integer N is the length of the interval, containing either the
exercise or the recovery trend.

Using the maximum likelihood technique, the two estima-
tors of τ can be defined by the same equation but with different
exponents of the integrand [21]:

τ̂p = arg min
−I≤τ≤I

nb∑
n=na

|diQT(n)−dQT(n+τ)|p, p = 1, 2, (4)

where τ̂1 and τ̂2 relate to Laplacian and Gaussian noise,
respectively, and the delay τ is contained in the search range
[−I, I]. Thus, the maximum likelihood estimators are identical
to minimizing either the least absolute error (p = 1, Laplacian)
or the least squares error (p = 2, Gaussian) between diQT(n)
and dQT(n + τ). It should be noted that neither s(n) nor the
statistical parameters need to be known to compute τ̂p.

The minimization interval [na, nb] is determined using the
algorithm in [14]. Since τ̂p is estimated both during exercise
(e) and recovery (r), yielding τ̂p,e and τ̂p,r, respectively,
two minimization intervals are determined from diQT(n) as
described next. The exercise onset na,e is defined in the time
series diQT(n) as the intercept between the flat interval during
rest and the linearly decreasing trend during exercise computed
from dRR(n). The same idea is employed to define the recovery
end nb,r, using the early and late part of recovery. Exercise
end nb,e, and thus recovery onset na,r, are established at 55%
of the total span of their respective areas in diQT(n), away from
peak exercise. The onset and end of the intervals used for time
lag estimation during exercise and recovery are exemplified in
Fig. 2(b).
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Using simulated ECGs, estimation performance is quantified
by the error ϵτ between the estimated time lag τ̂p,x and the
true time lag τp,x,

ϵτ (p, x) = τ̂p,x − τp,x, p = 1, 2; x ∈ {e, r}. (5)

Thus, in total, four estimates τ̂p,x are computed for each
simulated ECG.

The difference between τ̂p,e and τ̂p,r is also computed, being
of particular interest using clinical ECGs.

∆τ̂p = τ̂p,r − τ̂p,e, p = 1, 2. (6)

D. Data-dependent modification of the learning window
data pairs at peak exercise

Estimation of the model parameters α and β is based on the
assumption that [dQT(n), dRR(n)] are observed under station-
ary conditions in the three learning windows at fixed positions,
cf. Section II-B. Since this assumption rarely holds for the data
pairs in the window centered at peak exercise, this problem can
to some extent be reduced by replacing [dQT(n), dRR(n)] with
[dQT(n)−∆QT, dRR(n)]. The decrement ∆QT accounts for the
additional shortening of dQT(n), corresponding to dQT(n) that
would have been obtained provided that dRR(n) had remained
stationary long enough at peak exercise until [dQT(n), dRR(n)]
would have become stationary. The computation of ∆QT is
data-dependent as it involves both dQT(n) and diQT(n), see [14]
for details. Since the use of [dQT(n)−∆QT, dRR(n)] yields
other estimates of α and β, the modified instantaneous QT
series is denoted d̃iQT(n).

To deal even better with the above assumption, the end of
the exercise window is, in addition to modifying dQT(n) with
∆QT, aligned to the time for peak exercise, denoted W̌e, so
that only data pairs from exercise are used. For the modified
and aligned window, the resulting instantaneous QT series is
denoted ďiQT(n).

Thus, the following three definitions of the instantaneous
QT series are studied: diQT(n), d̃iQT(n), and ďiQT(n). The
block diagram in Fig. 3 shows the procedure to estimate α
and β using data pairs in the three concatenated windows
Wb ∪

(
We or W̌e

)
∪Wlr.

III. SIMULATED DATASETS

To evaluate estimation performance, the recently published,
open access ECG simulator is adopted, offering a rich variety
of features [15]. The following features are of particular
significance for the present study: a) user-defined heart rate
trends, b) inclusion of muscle noise and motion artifacts with
time-varying properties, commonly observed during exercise
and recovery, and c) full control of τ .

The simulations rely mostly on the default settings given
in [15], including the hyperbolic, memoryless transformation,

g(dRR(n);α, β) = β +
α

dRR(n)
. (7)

However, the modeling of RR intervals, muscle noise, motion
artifacts, and respiratory rate are modified to account for
pertinent characteristics of the four phases that together form
an EST, i.e., rest (for notational reasons referred to as basal),

Fig. 3: Estimation of α and β, defining the memoryless
transformation g (dRR(n);α, β), is based on [dQT(n), dRR(n)]
in the three concatenated learning windows. Using an un-
modified dQT(n) windowed with We the instantaneous QT
series becomes diQT(n). Using dQT(n) windowed with We

but modified with ∆QT the instantaneous QT series becomes
d̃iQT(n). Using dQT(n) modified with ∆QT and windowed with
W̌e the instantaneous QT series becomes ďiQT(n). LS, least
square.

exercise, early recovery, and late recovery, whose respective
endpoints are denoted tb, te, ter, and tlr. The statistics of the
duration of exercise and early recovery were determined from
25 tests [22], whereas the first and the last phase were set to
10 min.

Three different datasets are generated, each of them con-
sisting of 400 simulated, standard 12-lead ECGs, sampled at
a rate of 1000 Hz.

A. Simulated, typical exercise ECGs
This dataset, named Dt, contains simulated ECGs defined

by a template RR interval pattern mimicking typical EST
trends. This template is defined by four phases: 1) constant
mean RR interval during rest, [0, tb], 2) linearly decreasing
trend of RR interval during exercise, [tb, te], 3) linearly in-
creasing trend of RR interval during early recovery, [te, ter],
and 4) constant mean RR interval during late recovery,
[ter, tlr]. The defining values of phase 1, phase 4, and end of
phase 2 of the RR template were obtained by computing the
inter-patient mean of intra-patient RR interval means at rest,
recovery and exercise learning windows, respectively, using
ECGs from 213 patient with low risk of CAD [14]. The series
dRR(n) is obtained by adding variability to the RR interval
template trend, using the model in [23]. Figure 4(a) illustrates
a template RR interval trend and a simulated pattern dRR(n)
across the four phases.

A template pattern is also provided for the variance of
the muscle noise, defined by the four phases: 1) constant,
2) linearly increasing to become four times higher at te than
at tb, 3) linearly decreasing until ter, and 4) identical to the
constant in phase 1. Together with the generated muscle noise,
motion artifacts are randomly included with an occurrence
probability of 40%, see [15] for details.

The SNR at peak exercise is defined by

SNR = 20 log10

(
AQRS

RMSnoise

)
, (8)
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Fig. 4: Template RR interval pattern and observed RR interval series dRR(n) extracted from the datasets (a) Dt, containing
typical exercise ECGs with the four phases (rest ending at tb, exercise at te, early recovery at ter, and late recovery at tlr),
(b) Dee, containing exercise ECGs with extended exercise, and (c) Dr, containing exercise ECGs using real RR intervals.

where AQRS is the peak-to-peak amplitude of the ensemble-
averaged QRS complex, determined in a 100-ms interval
centered around the R-peak, see [9], [24] for details. The
muscle noise signal is rescaled so that its RMS value in a
window of 60 s at peak exercise equals RMSnoise. All leads are
assumed to have the same SNR. Simulated ECGs at different
SNRs are exemplified in Fig. 5.

The respiratory rate changes across the four phases accord-
ing to a template pattern similar to the one defined for the
muscle noise variance [24]: 1) constant, 2) linearly increasing
until te, 3) linearly decreasing until ter, and 4) identical to the
constant in phase 1. This respiratory rate modulates heart rate
variability and QRS-T complex morphology [15].

The dataset Dt is obtained by simulating 25 ECGs for all
combinations of τ and SNR, assuming the following values:

τ = {20, 30, 40, 50} s, (9)
SNR = {27, 30, 35, 40} dB, (10)

where the different SNRs correspond the following RMS
values: {45, 32, 18, 10} µV. Thus, in total, Dt contains
25 · 4 · 4 = 400 ECGs.

B. Simulated exercise ECGs with extended peak
exercise

This dataset, named Dee, is generated in exactly the same
way as Dt, except that peak exercise is extended for 10 min
with constant mean RR interval, constant muscle noise vari-
ance, and constant respiratory rate, see Fig. 4(b). When
analyzing Dee, the end of the exercise learning window is
aligned to the onset of early recovery. This positioning ensures
that both the observed QT interval and the observed heart rate
at peak exercise have become stationary, and, accordingly,
α and β can be estimated from stationary data in the three
learning windows.

Moreover, Dee makes it possible to study the effect of
nonstationarity in the exercise window separately from the
effect of selecting data pairs from just three windows during
EST.

TABLE I: User-defined simulation parameters.

Phase Dt Dee Dr

Mean duration
of the exercise
stress tests (min)

rest 10 10 5
exercise 12 12 8
extended peak exercise – 10 –
early recovery 5 5 3
late recovery 10 10 4

Mean heart rate
(beats per min)

rest 80 80 69
peak exercise 165 165 139
end of early recovery 95 95 81

Respiratory rate
(breaths per min)

rest 15 15 –
peak exercise 42 42 –
end of early recovery 18 18 –

C. Simulated exercise ECGs using real RR intervals
This dataset, named Dr, is generated using 25 different RR

series from exercise stress tests [25], one of them displayed in
Fig. 4(c). The use of real RR series as input to the simulator is
motivated by the observation that RR trends during exercise
and recovery can deviate considerably from a linear ramp,
which makes the use of real RR series a valuable complement
to simulated RR series when evaluating the performance of
time lag estimation. While the evaluation could have been
based on simulated linear ramps exclusively, the use of real
RR series is a means to validate the derivation in Appendix II,
showing that the estimation of τ is equally valid as long as
the deviation of the trends from a linear ramp is sufficiently
low-frequency.

The parameters defining the mean duration of exercise stress
tests, heart rate, and respiratory rate of the three simulated
datasets are listed in Table I.

IV. CLINICAL DATASET

To further evaluate the performance of the time lag estima-
tors in (4), a clinical dataset was analyzed, consisting of 448
ECGs recorded from patients undergoing EST at Tampere Uni-
versity Hospital in Finland [25]. The patients are classified into
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Fig. 5: Simulated ECGs (lead V4) with different SNRs at
(a) low or (b) high heart rate.

TABLE II: Mean and standard deviation of the T-wave end
delineation error ϵθ, mϵθ ±σϵθ (ms) for different types of lead
space reduction and SNRs. The results are based on Dt ∪Dr

and includes all values of τ listed in (9), yielding a total of
600 ECGs.

SNR 27 dB 30 dB 35 dB

GπCA1 3.2* ± 1.8 2.1 ± 1.1 1.0 ± 0.5
GπCA3 3.3* ± 1.8 2.2 ± 1.1 1.1 ± 0.6

PCA 3.7 ± 2.4 2.3 ± 1.5 0.9 ± 0.6

*p-value of a t-test when comparing GπCA1 vs PCA (p = 0.01), and GπCA3

vs PCA (p = 0.05) for an SNR of 27 dB.

four groups according to their likelihood of suffering CAD.
The low-risk ECG group (ECG-LR) was identified based
on clinical history and ECG interpretation. The remaining
patients underwent coronary angiography (COR) to determine
the percentage of luminal diameter narrowing in at least one
major epicardial coronary artery or main branches, resulting
in groups with low risk (COR-LR), middle risk (COR-MR),
and high risk (COR-HR). These three groups include patients
with an occlusion of less than 50%, between 50 and 75%,
and 75% or more, respectively. The ECG-LR, COR-LR, COR-
MR, and COR-HR groups have 213, 59, 24, and 152 patients,
respectively.

V. RESULTS

A. T-wave end delineation

For the union of Dt and Dr, the mean bias mϵθ and the
standard deviation σϵθ of the delineation error ϵθ is presented
in Table II for different types of lead space reduction and
SNRs. The results show that both GπCA1 and GπCA3 offer
better performance than PCA at the lowest SNR with statistical
significance (p-values of 0.01 and 0.05, respectively), whereas
the difference in mϵθ becomes smaller at higher SNRs. The
lowest mϵθ is obtained for GπCA1, and, therefore, this tech-
nique was selected to compute the T-wave end needed in
Sec. II-B. It should be noted that the statistical significance
reported in Table II depends on the number of simulations,
and, consequently, only comparisons in relative terms are
meaningful.

TABLE III: Mean mα̂ and standard deviation σα̂ computed
for different datasets and definitions of the instantaneous QT
series.

Simulated value α β

−0.090 0.490

Estimates obtained from dense α̂s β̂s

sampling of g(dRR(n);α, β) −0.078 0.461

Dataset Instant. QT series mα̂ σα̂ mβ̂ σβ̂

Dee diQT(n) −0.078 0.005 0.459 0.012

Dt

diQT(n) −0.074 0.004 0.454 0.011

d̃iQT(n) −0.078 0.004 0.460 0.010

ďiQT(n) −0.078 0.004 0.460 0.010

Dr

diQT(n) −0.074 0.005 0.456 0.012

d̃iQT(n) −0.079 0.005 0.460 0.012

ďiQT(n) −0.079 0.005 0.460 0.012

B. Estimation of α and β

Table III presents the mean mα̂ and the standard deviation
σα̂ of α̂ and β̂ for the three definitions of the instantaneous QT
series, i.e., diQT(n), d̃

i
QT(n), and ďiQT(n); α and β have been

assigned values identical to those used for simulation in [15].
The main observation to be made from Table III is that α̂ and
β̂ are both biased since mα̂ and mβ̂ deviate considerably from
their respective true values. This observation applies to Dt, Dr

as well as Dee.
The origin of the bias can be understood by an experiment

in which α̂ and β̂ are studied using a simulated ECG whose
template RR series decreases stepwise from exercise onset to
end, here taken to be 10 steps, each with a 5-min duration.
The last part of each step is then used as a learning window
with stationary conditions, thereby providing denser sampling
of data pairs when fitting g(dRR(n);α, β) than that provided
by the typical template RR pattern from EST. The estimates
of α and β resulting from using the data pairs of each step,
denoted α̂s and β̂s, are much closer to those obtained from
Dt, Dr, as well as Dee, see Table III.

C. QT-RR adaptation time lag estimation using Dt

and Dr

Estimation performance is investigated for the time lags
and SNRs given in (9) and (10), respectively. The results are
expressed in terms of mean bias mϵτ and standard deviation
σϵτ of the time lag error ϵτ , cf. (5), and presented for exercise
and recovery separately. Using diQT(n), d̃

i
QT(n), and ďiQT(n) in

combination with the Laplacian noise assumption, the results
obtained from Dt and Dr are presented in Fig. 6. The reason
for presenting results based on the Laplacian noise assumption
on, but not the Gaussian, is provided at the end of this
subsection.

Using diQT(n), τ1,e is typically underestimated during ex-
ercise since mϵτ is negative, while τ1,r is typically overesti-
mated during recovery since mϵτ is positive. Moreover, mϵτ

increases as τ becomes increasingly longer. This tendency can
be observed by analyzing the difference between the time lag
estimates obtained during recovery and exercise, i.e., ∆τ̂p: the
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Fig. 6: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ in exercise, recovery, and the difference between the two
time lag estimates, computed for different values of τ (columns), SNRs (horizontal axis), and definitions of the instantaneous
QT series. The results for Dt are shown in (a)–(d) and (e)–(h), respectively. Panels (i)–(l) and (m)–(p) show mϵτ and σϵτ for
Dr. Errors computed with diQT(n), d̃

i
QT(n), and ďiQT(n) are represented by blue, orange, and green colors, respectively. The

results are based on the Laplacian noise assumption.

Fig. 7: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ for Dee in exercise, recovery, and the difference between
the two time lag estimates, computed for different values of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and
(e)–(h), respectively. The results are based on diQT(n) and the Laplacian noise assumption.

larger the time lag, the larger the bias. Since the time lag in
the simulated ECGs is the same during exercise and recovery,
a value of ∆τ̂p closer to 0 indicates that the method offers
more accurate estimation. These observations apply to both
Dt and Dr, see Figs. 6(a)–(d) and (i)–(l), respectively.

Using d̃iQT(n) and ďiQT(n), the under- and overestimation
become less pronounced than for diQT(n), where ďiQT(n) is
the better choice of the two. In addition, mϵτ is essentially
independent of τ for d̃iQT(n) and ďiQT(n). The estimate ∆τ̂p
is closer to 0 for ďiQT(n) than for d̃iQT(n), confirming a

more accurate estimation when using the modified and aligned
learning window at exercise W̌e. However, the improvement in
mϵτ for d̃iQT(n) and ďiQT(n) is traded for a larger σϵτ during
exercise, whereas σϵτ differs only slightly between diQT(n),
d̃iQT(n), and ďiQT(n) during recovery. Again, these observations
apply to both Dt and Dr, see Figs. 6(e)–(h) and (m)–(p),
respectively.

In general, mϵτ is not much influenced by the SNR when
analyzing Dt and Dr, whereas σϵτ decreases for an increas-
ing SNR.
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The results obtained from Dt and Dr are quite similar, thus
supporting the derivation in Appendix II which shows that
s(n) does not have to be a linear ramp but it can indeed be a
trend whose spectral content is below a certain frequency.

To study the statistical distribution of the QT intervals,
the histogram of the difference dQT (k) − d̄QT (k) was com-
puted, where dQT (k) is the QT interval of the k-th beat and
d̄QT (k) is the running median QT interval of five consecutive
beats. Then, in the least square error sense, the best fit of
the Laplacian and the Gaussian probability density functions
to the histogram was determined. Using the simulated/real
datasets, the errors associated with the Laplacian assumption
were 0.0076/0.0029, whereas the errors associated with the
Gaussian assumption were 0.0099/0.0045, thus justifying the
use of the Laplacian assumption. Since, on the simulated
datasets, the Gaussian assumption leads to results which are
very similar to those of the Laplacian assumption, they are not
presented.

D. QT-RR adaptation time lag estimation using Dee

Peak exercise in Dee is extended by 10 min to ensure that
the exercise window is stationary. Therefore, only diQT(n) is
relevant to use when analyzing this dataset, while d̃iQT(n) and
ďiQT(n) are not as they aim to reduce the nonstationarity of
the exercise window. By comparing the results obtained from
Dee with those from Dt and Dr, the extent with which the
estimation of τ is influenced by nonstationarity is indicated.

The results from Dee show that τ1,e and τ1,r are over- and
underestimated, respectively, see Figs. 7(a)–(d), which stand
in contrast to the results obtained from Dt and Dr where τ1,e
and τ1,r are under- and overestimated, respectively, cf. Sec V-
C. This difference in time lag bias is unexpected since the
data in the exercise window is stationary. This result is likely
explained by the reduced RR interval range in this window
when compared to the exercise window of Dt or Dr.

The importance of the RR interval range is illustrated in
Fig. 8 where [dQT(n), dRR(n)] are displayed for the three learn-
ing windows together with fitted functions g(dRR(n); α̂, β̂).
Using diQT(n) on Dt and Dee, the better fit is obtained
from Dee. However, the best fit is obtained when using ďiQT(n)
on Dt. These observations corroborate the results in Sec. V-C
supporting the selection of ďiQT(n). The performance achieved
with ďiQT(n) is explained by better handling of the nonstation-
arity in the exercise window and the wider RR interval range
of the three learning windows.

E. Clinical evaluation in CAD patients
Using the clinical dataset, the discriminatory power to

classify different levels of cardiac risk in CAD patients is
evaluated for τ̂p,e, τ̂p,r, and ∆τ̂p. These estimates are obtained
using the hyperbolic transformation and ďiQT(n), where the
latter choice is motivated by the better performance obtained
on simulated ECGs, see Secs. V-C and V-D.

Figures 9(a)–(b) present the comparative results when τ̂p,e
and τ̂p,r are used for evaluation of the four risk groups.
During exercise, the ECG-LR/COR-HR and COR-LR/COR-
HR groups can be discriminated with statistical significance

Fig. 8: The two data pairs [dQT(n), dRR(n)] and [dQT(n) −
∆QT, dRR(n)] of the three learning windows, the memoryless
transformation g(dRR(n); α̂, β̂) with estimated parameters, and
the reference g(dRR(n); α̂s, β̂s) described in Sec. V-B. The
three clusters of data pairs originate from the exercise We, the
recovery Wlr, and the resting Wb windows (left to right). The
examples are taken from Dt and Dee. For reasons of clarity,
the results for d̃iQT(n) are omitted.

for both the Laplacian and the Gaussian-based estimators;
during recovery, this significance extends to also include ECG-
LR/COR-MR. No significant difference is found for the results
obtained using the two types of estimators.

Figure 9(c) shows that the Laplacian-based estimator offers
greater discriminatory power of ∆τ̂p, p = 1, 2. This result,
together with the better fit of a Laplacian probability density
function to the QT histogram, shows that the Laplacian as-
sumption is advantageous.

VI. DISCUSSION

A. QT-RR adaptation time lag estimation

The main aim of the present study is to evaluate whether
the time delay between dQT(n) and an instantaneous QT
series, either given by diQT(n), d̃

i
QT(n), or ďiQT(n), can serve

as a surrogate for estimating the QT-RR adaptation time lag.
The results show that the data-dependent modification of the
data pairs in the exercise window yields better performance
than the unmodified data pairs, i.e., d̃iQT(n) and ďiQT(n) yield
better performance than diQT(n). While the mean bias mϵτ

becomes increasingly larger for diQT(n) when τ increases from
20 to 50 s, mϵτ is essentially independent of τ for d̃iQT(n)

and ďiQT(n), see Fig. 6. Moreover, using diQT(n) for larger
values of τ , a large underestimation results during recovery
and a large overestimation during exercise which together
exaggerate ∆τ̂p, defined as the difference between τ̂p,r and
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Fig. 9: Box plots of the estimated time delay between ďiQT(n) and dQT(n) for the four patient groups, assuming either a
Laplacian or a Gaussian noise model. The estimates are obtained for (a) exercise, resulting in τ̂1,e and τ̂2,e, and (b) recovery,
resulting in τ̂1,r and τ̂2,r. (c) Box plots of the difference between recovery and exercise, resulting in ∆τ̂1 and ∆τ̂2. The dotted
and continuous lines in red correspond to the mean and the median, respectively. Patient group color code is: ECG-LR (blue),
COR-LR (green), COR-MR (yellow), and COR-HR (red). The delay significance, p-values, in separating patient groups, are
plotted above box plot pairs.

τ̂p,e, cf. (5). Consequently, ∆τ̂p is poorly suited to characterize
the underlying physiological mechanisms when using diQT(n).

In terms of mϵτ , ďiQT(n) offers better performance than
d̃iQT(n) since mϵτ is somewhat closer to 0 for most values
of τ and SNRs. For example, analysis of the exercise phase
of Dt using τ = 50 s and SNR = 40 dB results in mϵτ = 4.3 s
and 2.4 s for d̃iQT(n) and ďiQT(n), respectively, see Fig. 6(d).
The results for recovery have about the same magnitude as
those for exercise, but with reversed sign, −3.9 s and −2.3 s.

As noted in Sec. V-C, the lower mϵτ for d̃iQT(n) and
ďiQT(n) observed during exercise is traded for a higher standard
deviation σϵτ . This is due to the better learning achieved for
data pairs in the exercise window, either only in the first half
of the window when determining ∆QT to compute d̃iQT(n) or
entirely when aligning the window end to peak exercise before
ďiQT(n) is computed. It should be noted that the decrease in
mϵτ is larger than the increase in σϵτ .

B. Estimation of α and β

The data pairs in the exercise window profoundly influence
the estimation of α and β and consequently the time lag
estimation. This is corroborated by the results obtained from
Dee which show that [dQT(n), dRR(n)] should be selected
so that the QT interval achieves its actual stationary value
corresponding to the current heart rate, which would produce
accurate estimates. Since the data pairs in the exercise window
of Dt and Dr are nonstationary, data-dependent modification is
necessary to obtain better accuracy of α̂ and β̂. In addition, the
data pairs from the exercise window of Dt and Dr include a
wider range of the RR intervals, i.e., from d̃iQT(n), or ďiQT(n),
than the pairs selected in a window with stationary data, i.e.,
from Dee, see Fig. 8. This strategy leads to better fitting of
g(dRR(n);α, β) in Dt and Dr with d̃iQT(n), or ďiQT(n) as
compared to that in Dee with diQT(n).

The discrepancy between α, β and α̂s, β̂s is likely a con-
sequence of how the delineator handles T-waves at different

heart rates, i.e., different T-wave widths. The wavelet-based
delineator makes use of time-invariant filters which modify
the width of T-waves, narrower at high heart rates, since
higher frequencies can be filtered out. Thus, the behavior of
the delineator differs for T-waves at high and low heart rates.
Therefore, α̂s and β̂s represent better reference values than α
and β to evaluate performance, since differences in estimates
can only be attributed to differential time lag estimation
performance in data pair selection for computation of diQT(n),
d̃iQT(n), or ďiQT(n), see Table III.

C. T-wave end delineation

The results in Table II show that GπCA1 and GπCA3

yield significantly lower delineation errors ϵθ than PCA at a
low SNR (27 dB), whereas the differences in performance at
higher SNRs are negligible. Thus, since the SNR is typically
low during exercise, the GπCA-based techniques are better
suited for delineation. Accordingly, wave periodicity is a
more adequate criterion than variance to determine the best
transformed lead for T-wave end delineation.

The present results on delineation agree with those reported
in [14], although a known T-wave end reference was lacking in
that study. However, the lack was overcome by using the beat-
to-beat variability of the observed QT series as a reference,
assumed to be composed of natural variability and delineation
errors. Moreover, the results agree with those obtained when
Holter recordings were analyzed, either obtained from patients
in permanent atrial fibrillation [9] or patients suffering from
end-stage renal disease [26].

Convolutional neural networks have recently been proposed
for QT interval delineation [27]–[29], with performance results
similar to those obtained with wavelet analysis [16]. However,
the dynamic scenario of EST may prove a challenge to
methods based on machine learning.
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D. ECG simulation
Out of the many parameters defining the simulator, the

time lag and the SNR were deemed to be of primary interest
to investigate. When it comes to heart rate, also playing a
central role, the results obtained from simulated ECGs with a
linearly increasing heart rate trend during exercise are almost
identical to those obtained from simulated ECGs with a real
heart rate measured during exercise, see Fig. 6; the same
observation applies to a linearly decreasing heart rate trend
during recovery. These results provide experimental evidence
of the theoretical results derived in Appendix II, showing that
the assumption of a linearly changing heart rate trend can be
broadened to apply to low-frequency changes in the heart rate
trend with frequency content below 0.006 Hz.

The noise added to simulated, noise-free ECGs is composed
of muscle noise and motion artifacts [15]; baseline wander is
not part of the simulator as appropriate correction techniques
are available today. While the muscle noise model was specifi-
cally designed with reference to EST, the motion artifact model
was designed with reference to ambulatory ECGs. Although
the simulated motion artifacts resemble those observed during
EST, the model can be improved to closer resemble the real-
life scenario, e.g., with respect to artifact shape and occurrence
probability pattern.

E. Clinical results
The tendency of the estimated time lag follows a pattern

similar to the one in [14]: a prolongation during exercise and
a shortening during recovery associated with increased CAD
risk. A reduced difference between these two time lags is
also observed in high-risk CAD patients, see [14] for further
discussion. Statistical significance is presented in Fig. 9(c)
showing similar results to those presented in [21], obtained
from the dataset described in Sec. IV. The most prominent
difference is that the discrimination between the COR-LR and
the COR-MR groups is statistically significant here when using
∆τ̂1, while not so in [21]. This improvement is a consequence
of using the robust Laplacian estimator and an improved
definition of the learning window at exercise to estimate α
and β.

F. Limitations
This work assumes that τ remains constant for each indi-

vidual. However, studies have shown that QT-RR adaptation
depends on the level of sympathetic activation [11], [12], and
that the relation between QT and RR varies during exercise and
recovery. It is unclear whether the differences in QT adaptation
are only due to the varying time lag represented by h(n) or
also due to the differing QT-RR memoryless relation. Although
the differences between exercise and recovery are accounted
for by computing a time lag estimate for each phase, the
increasing sympathetic activation during exercise suggests that
further research is needed to fully explore this aspect.

VII. CONCLUSIONS

Using simulated ECGs, the performance evaluation of the
proposed method shows that the estimated QT-RR adaptation

time lag agrees well with the true time lag. The original
assumption of linear changes in heart rate trends is broad-
ened to also apply to more realistic, low-frequency trends.
Moreover, the Laplacian-based estimator better discriminates
patients with different risk of suffering from coronary artery
disease.

APPENDIX I
INTERCHANGEABILITY OF QT-RR MODEL BLOCKS

This appendix shows that the input–output relation of the
model in Fig. 1 is approximately equal to the model with
reversed block order in Fig. 10, introduced in [5]. In mathe-
matical terms, the modeled QT series of Fig. 1 is given by

dmQT(n) =

∞∑
m=0

g(dRR(n−m))h(m), (11)

which thus is approximately equal to the model with reversed
order, denoted drmQT(n). For convenience, g(dRR(n);α, β) is
shortened to g(dRR(n)).

The starting point is to truncate the sum in (11) to only
include the first M ≈ 5τ samples of h(n) as the remaining
samples have negligible significance. Thus,

dmQT(n) ≈
M∑

m=0

g(dRR(n−m))h(m). (12)

Then, since dRR(n−m) typically exhibits small changes
around dRR(n) in the interval m ∈ [0,M ], the first-order
approximation of the Taylor series expansion of g(dRR(n−m))
around dRR(n) becomes

dmQT(n) ≈
M∑

m=0

[g(dRR(n)) + g′(dRR(n))(dRR(n−m)− dRR(n))]h(m),

(13)

where g′(dRR(n)) denotes the first derivative. Assuming that
h(n) has unitary gain at zero frequency, the first-order approx-
imation becomes

dmQT(n) ≈ g(dRR(n)) + g′(dRR(n))(d
i
RR(n)− dRR(n)), (14)

where diRR(n) =
∑M

m=0 dRR(n−m)h(m). The series diRR(n)
can be interpreted as the expected memoryless RR interval
series corresponding to the observed dQT(n) under stationary
conditions. By scrutinizing (14), it becomes clear that this
expression is a Taylor series approximation of the memoryless
transformation which relates diRR(n) to dQT(n) around dRR(n),

dmQT(n) ≈ g(diRR(n)) = g

(
M∑

m=0

dRR(n−m)h(m)

)

≈ g

( ∞∑
m=0

dRR(n−m)h(m)

)
= drmQT(n), (15)

demonstrating the interchangeability of the model blocks in
Fig. 1 under the refereed assumptions.

Considering a τ of about 25 s during exercise, the effective
length of h(n) is about 5τ corresponding to about 125 s,
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Fig. 10: QT-RR model with a reversed block order,
cf. Fig. 1. Note that the reverted estimate of the QT se-
ries, drmQT(n), and the reverted modeling plus delineation
error, wr(n), differ from their equivalent in Fig.1 , but the
sum results in the observed dQT(n) series in both cases,
dQT(n) = drmQT(n) + wr(n).

implying RR changes of as much as 100 ms (≈ 5 bpm) [14].
During recovery, values of τ corresponding to about 50 s
should rather be considered, implying RR changes as large
as 200 ms (≈ 10 bpm). Several definitions of g(dRR(n))
were considered in [5], all defined so that RR changes as
small as 100 ms or 200 ms are well-approximated by a linear
QT dependence in the time span of the QT memory, thus
supporting the above derivation and the interchangeability of
the model blocks in Fig. 1. The basis of the approximation
can be observed in Fig. 8 for the hyperbolic transformation,
defined in (7).

APPENDIX II
CONDITIONS ON HEART RATE AND QT TREND IN

TIME LAG ESTIMATION

The discrete-time Fourier transform of h(n) in (1) is given
by

H(ω) =
κ

1− e−1/τe−jω
. (16)

For healthy subjects, for which τ corresponds to about 25 s [5]
and, accordingly, a cut-off frequency Fc of about 0.006 Hz
(ω ≈ 0.01), the magnitude function of H(ω) can be approxi-
mated for ω ≪ 0.01 by

|H(ω)| = κ√
1− 2e−1/τ cos(w) + e−2/τ

≈ κe1/τ

e1/τ − 1
. (17)

For 1/τ ≪ 1, the phase function ∠H(ω) can be approximated
by

∠H(ω) = − arctan

(
sin(w)

e1/τ−cos(w)

)
≈ − ω

e1/τ−1
≈ −ωτ,

(18)
resulting in the following approximate expression of H(ω):

H(ω) ≈ κe1/τ

e1/τ − 1
e−jωτ , (19)

which is a pure delay for frequencies below Fc. The constant
κ is chosen so that the gain is unitary.

Consequently, in order to estimate τ by measuring the delay
between dQT(n) and diQT(n), the QT trend s(n) does not need
to be a linear ramp, but it is enough if its frequency content is
below Fc. It should be noted that most of the frequency content
in real heart rate trends is below the very low-frequency band
of heart rate variability, defined by [0.0033, 0.04] Hz [30].
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