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In a recent publication we showed that a monoaxial chiral magnet has a continuum of metastable
helical states di�ering by the helix wave number. This intringuing result was obtained for the case of
an in�nite magnet (or of a magnet with periodic boundary conditions). However, it has been pointed
out that in a real magnet only one of these states is compatible with the boundary conditions, because
the helix wave number is determined by the surface chiral twist. Thus, only one of the continuum
of states is physically realizable. This is true for the case of a chiral magnet in contact with a non
magnetic medium (vacuum or air, for instance), but the boundary conditions can be altered by
setting the chiral magnet in contact with another magnetic medium, which may be able to absorb
the surface chiral twist. We show here that this is indeed the case by studying a composite magnet
system, which consists of one monoaxial chiral magnet of rectangular parallelepiped shape which has
two similar slabs of a uniaxial ferromagnet attached to each of the faces that are perpendicular to
the chiral axis. We show that, in the case of zero applied �eld, this composite system has a number
of metastable helical states which is proportional to the length L0 of the chiral magnet along the
chiral axis, and that the results of our previous publication are recovered in the limit L0 → ∞.

I. INTRODUCTION

Chiral magnets, characterized by the presence of a siz-
able Dzyaloshinskii- MnNb3S6 interaction (DMI), are be-
ing extensively studied since they host noncollinear mag-
netic states which appear as metastable or equilibrium
states at low temperature. Besides their intrinsic the-
oretical interest, these magnetic textures have inportant
potential applications in spintronics and magnonics [1�4].
Examples of these noncollinear magnetic textures are the
skyrmions of cubic chiral magnets [5, 6], the one dimen-
sional chiral solitons of monoaxial chiral magnets [7, 8],
and the helical or conical states which appear in both
types of chiral magnets [8, 9].

Cubic chiral magnets have been studied in much more
detail than monoaxial chiral magnets, the object of the
present work, but nevertheless the main features of the
equilibrium properties of the latter are rather well un-
derstood. In monoaxial chiral magnets the DMI acts
only along one speci�c direction with coincides with one
crystallographic axis. We call this direction the chiral

axis. To set this work in its context, let us summa-
rize brie�y the equilibrium properties of monoaxial chi-
ral magnets. At low temperature and zero applied �eld
the equilibrium state is a helical structure whose wave
number is determined by the competition between the
Heisenberg exchange interaction and the DMI. When an
external �eld is applied the helical structure becomes
a conical structure if the �eld is parallel to the chiral

axis, a chiral soliton lattice if the �eld is perpendicular
to the chiral axis, or a magnetic structure which inter-
polates between these two limiting cases if the �eld is
neither perpendicular nor parallel to the chiral axis [10�
21]. If the applied �eld strength is high enough the equi-
libium state is a forced ferromagnetic state, which can
host metastable isolated solitons [22]. The archetypical
monoaxial helimagnet is CrNb3S6 [23, 24], but there are
many others like CrTa3S6, MnNb3S6, CuB2O4, CuCsCl3,
Yb(Ni1−xCux)3Al9, or Ba2CuGe2O7 [25�31].

Although in the last years the magnetic states that
have received more attention and caused more excite-
ment have been the topologically non trivial skyrmions,
recently there has been a revival of the interest in the
helical/conical states, since the conical phases occupy a
larger fraction of the phase diagram and thus are cre-
ated more easily. In cubic chiral magnets the equilib-
rium helical states are degenerated since the helix wave
vector can point in di�erent equivalent crystallographic
directions selected by the cubic anisotropy. It has been
shown that the wave vector direction can be controlled
by electric means and thus helical states with di�erent
wave vectors can be used to storage and manipulate in-
formation [32]. The direction of the helix wave vector
can also be changed by means of thermal currents [33].
Therefore, the orientation of helical stripes may serve as
building blocks for devices for classical or unconventional
computing, in what would be a new technology that may
be named helitronics [34].
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In monoaxial chiral magnets the degeneracy of the he-
lical state is absent since the helix wave vector points
along the chiral axis in the direction determined by the
DMI. However, it was shown that in monoaxial chiral
magnets there is a continuum of metastable helical states
di�ering by the helix wave number [35, 36] (metastable
helical states of this kind exists also in cubic chiral mag-
nets [37]). In reference 35 we showed that it is possible
to swicth between these helical states, which were called
there p states, by applying magnetic �elds and electric
currents along the chiral axis. Therefore, these p states
could serve as building blocks for computing devices.
The existence of this continuum of metastable states,

di�ering from the equilibrium helical state only by the
wave number, is an intringuing question. Theses states
were obtained by solving the magnetic equilibrium equa-
tions for an in�nite magnet, ignoring thus the boundary
conditions. However, it has been pointed out that in
a real magnet the surface chiral twist required by the
boundary conditions in presence of DMI actually selects
the equilibrium helical state, which is the only p state
which satis�es the boundary conditions [38]. This is true
for a chiral magnet which is surrounded by a non mag-
netic medium (air or vacuum, for instance). But if the
chiral magnet is in contact with another magnet with ap-
propriate characteristics, the surface chiral twist can be
absorbed by the surrounding magnet, and the continuum
of metastable p states may be present.
The purpose of this work is to show that the multiplic-

ity of helical states is present also in a real chiral magnet,
developing the ideas put froward in the end of the previ-
ous paragraph. Besides an intrinsic theoretical interest,
the presence of many metastable helical states is inter-
esting from the point of view of applications since, as
explained in reference [35], they could be used in spin-
tronics as, for instance, elementary carriers of informa-
tion. For simplicity, we restrict the analysis to the case of
zero applied �eld and zero current, because in this case
the theoretical problem can be solved exactly.
The paper is organized as follows. In section II we

analize carefully the conditions that the magnetization
has to satisfy at the interface that separates two di�erent
media; in section III we describe a system which host
a continuum of p states, which consists of a monoaxial
chiral magnet of rectangular shape, with the two faces
perpendicular to the chiral axis sticked to two similar
slabs of a uniaxial ferromagnet; section IV is devoted
to the determination of the helical states of this system
and in section V the stability of these states is analyzed.
Finally, in section VII we summarize the conclusions.

II. CONDITIONS AT THE INTERFACE
BETWEEN THE TWO MEDIA

The magnetization of a composite magnetic system
formed by several magnetic media set in contact is not a
smooth function in general, but it is generically discon-

tinuous at the interfaces, due to the discontinuity of the
saturation magnetization. However, the mathematical
structure of the Landau-Lifschitz-Gilbert (LLG) equa-
tion set constraints on the nature of the singularity of
the magnetization. It turns out that the vector �eld that
describe the direction of the magnetization has to be con-
tinuous at the interface, although its derivative along the
normal vector of the interface may be discontinuous.

The conditions which has to satisfy the magnetization
at interfaces have been obtained in reference 39 (see also
reference 40) by studying the variational problem from
which the LLG equation is derived. In this section we
analyze these conditions directly from the LLG equation,
rather than from the variational approach.

To set the notation, let the unit vectors x̂ = x̂1, ŷ = x̂2

and ẑ = x̂3 form a set of cartesian coordinate axes and
let x = x1, y = x2, and z = x3 be the corresponding
coordinates. For notational convenience, to analyze the
conditions on the magnetization at the interface between
two di�erent media it is convenient to work with a system
which is slightly more general than that studied in this
work (section III). Thus, in this section we consider an
inhomogeneous magnet in which the magnetization di-
rection is described by the unit vector �eld n̂ and whose
energy density is given by

W =

3∑
i=1

(
A∂in̂ · ∂in̂−Din̂ · (x̂i × ∂in̂)

)
+W0(n̂), (1)

where A and Di are the intensities of the ferromagnetic
and DMI exchange interactions, respectively. If D1 =
D2 = D3 we have a chiral cubic magnet and if D1 =
D2 = 0 and D3 ̸= 0 we have a monoaxial chiral magnet
with chiral axis along ẑ. The term W0 contains all the
terms which do not depend on the derivatives of n̂. For
instance, the single-ion anisotropy energies, the energy
associated to the applied �eld, and the magnetostatic
interaction are included in W0.

Our goal is to study the conditions that the magneti-
zation has to full�ll at the sharp interface between two
di�erent media, where the interaction intensities A and
Di, and the other parameters of the system, such us
the saturation magnetization, are discontinuous. For the
mathematical analysis, however, it is convenient to work
with parameters that are smooth functions of the posi-
tion, which vary rapidly (but smoothly) at the interface
between di�erent magnets. This smoothness allows us
to apply safely the standard rules of calculus (integra-
tion by parts). We obtain the case of sharp interfaces as
a limit, making the parameters dependent on one addi-
tional regularizing parameter, δ, in such a way that they
are smooth for δ > 0 and become discontinuous at some
given surface (the interface) in the limit δ → 0.

The e�ective �eld, obtained from the functional deriva-
tive of the energy with respect to n̂, can be written as

B⃗eff = B⃗
(d)
eff + B⃗

(0)
eff , where B⃗

(0)
eff does not depend on the



3

FIG. 1. A small cylindric pillbox enclosing a surface element
of the interface, with the axis oriented along the normal of
the surface element, ŝ.

derivatives of n̂ and

B⃗
(d)
eff =

1

Ms

∑
i

(
∂i(2A∂in̂)−Dix̂i×∂in̂− x̂i×∂i(Din̂)

)
.

(2)
In the above equation Ms is the saturation magnetiza-
tion, which is a smooth function of the position which
may become discontinuous at the interface for δ → 0.
In the limit of a sharp interface (δ → 0) the magneti-

zation may become a non smooth function which, never-
theless, has to full�ll some conditions which are derived
from the structure of the Landau-Lifschitz-Gilbert (LLG)
equation, which has the form

∂tn̂ = γB⃗eff × n̂+ αn̂× ∂tn̂, (3)

where γ > 0 is the absolute value of the electron giro-
magnetic ratio and α is the Gilbert damping parameter.

Using the product rule for derivatives, the term B⃗
(d)
eff × n̂

can be written as

B⃗
(d)
eff × n̂ =

1

Ms

∑
i

[
∂i

(
(2A∂in̂−Dix̂i × n̂)× n̂

)
+ Di

(
(x̂i × n̂)× ∂in̂− (x̂i × ∂in̂)× n̂

)]
. (4)

To �nd the conditions at the interface, we consider a
small cylindric pillbox which encloses a surface element of
the interface, and whose axis is oriented along the normal
vector of the surface element, ŝ, as in Fig. 1. The pillbox
occupies the volume Ωp and is bounded by the surface
∂Ωp. We multiply both sides of the LLG equation by Ms

and integrate over Ωp. Using the divergence theorem for
the �rst term of the right hand side of equation (4), we
get∫

Ωp

Ms∂tn̂ d3r = γ

∫
∂Ωp

dσ
∑
i

σi(2A∂in̂−Dix̂i × n̂)× n̂

+

∫
Ωp

γ

[∑
i

Di

(
(x̂i × n̂)× ∂in̂− (x̂i × ∂in̂)× n̂

)]
d3r

+

∫
Ωp

Ms

[
γB⃗

(0)
eff × n̂+ αn̂× ∂tn̂

]
d3r, (5)

where σ̂ is the normal vector of ∂Ωp. Now, we take the
limit of sharp interface, δ → 0, making the following

assumptions: 1) n̂ remains continuous at all points, in-
cluding the interface; 2) the derivatives ∂in̂, ∂tn̂ remain
bounded, although ∂in̂ may be discontinuous at the in-
terface. Next, we take the limit in which the pillbox
thinkness tends to zero. In this limit the volume inte-
grals and the surface integral over the curved face of the
pillbox vanish, and thus equation (5) requires that

C⃗ = 2A(ŝ · ∇)n̂− (D̃ŝ)× n̂ (6)

be continuous at the interface. Here D̃ is the diagonal
3× 3 matrix with D1, D2, and D3 in the diagonal. Con-
tinuity, obviously, means that

lim
t→0+

C⃗(x⃗− tŝ) = lim
t→0+

C⃗(x⃗+ tŝ) (7)

for any x⃗ at the interface. A consequence of this fact is
that if A or D are discontinuous at the interface, then
the derivative of n̂ along the surface normal has to be
discontinuous at the interface.
For a cubic chiral magnet D1 = D2 = D3 = D and

then

C⃗ = 2A(ŝ · ∇)n̂−Dŝ× n̂, (8)

while for a monoaxial chiral magnet with chiral axis along
ẑ we have D1 = D2 = 0, D3 = D, and then

C⃗ = 2A(ŝ · ∇)n̂−D(ẑ · ŝ)ẑ × n̂. (9)

If the magnet is in contact with a non magnetic

medium (vacuum or air, for instance), then C⃗ has to
vanish at the boundary, because it vanishes in the non
magnetic medium, since there A and D vanish. This is
the boundary condition which originates the well known
surface chiral twists.
On the other hand, if a magnet (chiral or not) is in

contact with a very hard magnet, the expression (7) has
to be equated to Ah(ŝ · ∇)n̂, which corresponds to the
hard magnet side. If the sti�ness constant of the hard
magnet, Ah, is very large, then (ŝ ·∇)n̂ has to be propor-
tionally small on the hard magnet side, and it vanishes
in the limit Ah → ∞. In this limit n̂ has direction of
the equilibrium magnetization of the hard magnet and
equation (7) is continuous because on the hard magnet
part Ah(ŝ · ∇)n̂ can take any value. We obtain in this
way Dirichlet boundary conditions.
As a word of caution, let us notice that the discus-

sion on conditions at interfaces presented here, includ-
ing boundary conditions, ignores the possible existence
of surface anisotropies, in which case the condition at
the interface would be

lim
t→0+

(
C⃗(x⃗+ tŝ)− C⃗(x⃗− tŝ)

)
= S⃗, (10)

where S⃗ is the contribution of the surface anisotropy to
the volume integrals of (5), which does not vanish in the
limit of sharp interface (δ → 0) and in�nitely thin pillbox,
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FIG. 2. Composite magnet. The cyan region is occupied by a
monoaxial chiral magnet and the gray regions by two similar
slabs of a uniaxial ferromagnet. The chiral axis is oriented
along the ẑ direction.

in this order. Hence, C⃗ could be discontinuous at the
interface.

Finally, it is worthwhile to stress that at a sharp in-
terface that separates two magnetic media the satura-
tion magnetization becomes discontinuous, what induces
a surface density of magnetic charge at each point x⃗ of
the surface, given by

lim
t→0+

(
Ms(x⃗− tŝ)−Ms(x⃗+ tŝ)

)
ŝ · n̂. (11)

This surface magnetic charge contributes to the magne-
tostatic �eld of the two media, but does not a�ect the
interface conditions given by (7) or (10) [39].

III. A COMPOSITE MAGNETIC SYSTEM

In this work, we consider a magnetic system of rect-
angular parallelepiped shape which occupies a region of
size 2L along the ẑ direction, so that −L ≤ z ≤ L (the
convention for the coordinate system is described at the
beginning of section II). The dimensions of the system
in the directions x̂ and ŷ are very large and thus are con-
sidered in�nite. The system is inhomogeneous along the
ẑ direction and consists of three homogeneous parts: one
monoaxial chiral magnet occupies a central region of size
2L0, that is, the region −L0 ≤ z ≤ L0; the peripheral
regions, −L ≤ z < −L0 and L0 < z ≤ L, are occu-
pied by two similar uniaxial ferromagnets, as in �gure 2.
The materials are oriented so that the chiral axis of the
monoaxial chiral magnet is aligned with the ẑ axis, and
the easy axis of each ferromagnet is aligned with the x̂
axis. The direction of the magnetization is given by the
unit vector �eld n̂.

It is convenient to introduce the characteristic func-
tions χc(z) and χu(z), de�ned by χc(z) = 1 if |z| ≤ L0

and χc(z) = 0 otherwise, and by χu(z) = 1 if L0 < |z| ≤
L and χu(z) = 0 otherwise. The energy of the system is

given by

E =

∫
d3r (χcWc + χuWu), (12)

whereWc andWu are the energy densities of the monoax-
ial chiral magnet and of the uniaxial ferromagnet, respec-
tively, and have the form

Wc = A
∑
i

∂in̂ · ∂in̂−Dẑ · (n̂× ∂zn̂)−Kc(ẑ · n̂)2, (13)

Wu = ρA
∑
i

∂in̂ · ∂in̂−Ku(x̂ · n̂)2. (14)

In the above expressions A is the sti�eness constant of the
chiral magnet and the dimensionless parameter ρ is the
ratio beween the sti�ness constants of the ferromagnet
and the chiral magnet. The chiral magnet has a uniaxial
anisotropy, which is of easy-plane type, whose axis coin-
cides with the chiral axis ẑ, and whose energy per unit
volume is given by the anisotropy constant Kc < 0. The
ferromagnet has its easy axis along x̂ and its anisotropy
constant is Ku > 0. Finally, D sets the strength of
the DMI interaction in the chiral magnet. We ignore
the magnetostatic energy since it can be included in the
anisotropies for the one dimensional modulations consid-
ered in this work [41]. Notice also that we consider only
the case of zero applied �eld.

The e�ective �eld is given by B⃗eff = −(1/Ms)δE/δn̂,
where the saturation magnetization Ms is a function of
z given by Ms(z) = Mcχc(z) + Muχu(z), and Mc and
Mu are the saturation magnetizations of the chiral mag-
net and the ferromagnet, respectively. If n̂ satis�es the
conditions discussed in section II, that is, continuity of n̂

and C⃗, integration by parts can be applied to obtain the
functional derivative in the standard way, and we obtain

B⃗eff = (2A/Ms)⃗beff , where

b⃗eff = a∇2
T n̂+ ∂z

(
a∂zn̂− q0χcẑ × n̂

)
− q0χcẑ × ∂zn̂

+ q20κχc(ẑ · n̂)ẑ + ρq2uχu(x̂ · n̂)x̂.
(15)

In the above expresion we introduced ∇2
T = ∂2

x + ∂2
y ,

q20 =
D

2A
, κ =

AKc

D2
, q2u =

Ku

ρA
, (16)

and the function a(z) = χc(z) + ρχu(z).

At the interfaces z = ±L0, both n̂ and C⃗, given by
(9) with ŝ = ẑ, have to be continuous. The condition of

continuity of C⃗ at z = L0 can be cast to the form

lim
z→L−

0

(
∂zn̂− q0ẑ × n̂

)
= lim

z→L+
0

ρ ∂zn̂. (17)

An analogous condition holds for z = −L0. We call these
conditions at z = ±L0 the matching conditions.
Finally, the ferromagnetic slabs are in contact at ±L

with a non magnetic medium, what means that expres-
sion (7), with ŝ = ẑ and D̃ = 0, has to vanish at the
boundaries z = ±L. This provides the Neumann bound-
ary conditions

∂zn̂(−L) = ∂zn̂(L) = 0. (18)
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IV. HELICAL STATES

Since we seak static magnetic states with modulations
only along the ẑ direction, the e�ective �eld can be writ-
ten as

b⃗eff =

{
n̂′′ − 2q0ẑ × n̂′ + q20κ(ẑ · n̂)ẑ, |z| < L0,

ρ
(
n̂′′ + q2u(x̂ · n̂)x̂

)
, L0 < |z| < L,

(19)

where the prime means derivative with respect to z.

The equation for the static states is b⃗eff× n̂ = 0. Equa-
tion (19) implies that we have to solve one di�erential
equation for |z| < L0 and another one for L0 < |z| < L,
and to impose the matching condition (17) at z = L0 and
the analogous condition for z = −L0, and the boundary
conditions (18).
The static equations admit solutions in which the mag-

netization lies on the easy plane of the chiral magnet, and
thus can be written as

n̂ = cosφ x̂+ sinφ ŷ, (20)

where the function φ(z) is a solution of

φ′′ = 0, |z| < L0, (21)

φ′′ − q2u sinφ cosφ = 0, L0 < |z| < L, (22)

which satis�es the boundary conditions and the matching
conditions. We proof in the next subsections that there
exist a big number of such solutions.
The idea is as follows. The general solution of (21) is

φ(z) = C + pq0z, where C and p are arbitrary constants,
while equation (22) is the well known double Sine-Gordon
equation, which also has a known two parameter family of
solutions. This allows us to construct exact solutions for
the whole system, which satisfy the di�erential equations
(21) and (22), the boundary conditions, and the matching
conditions.
Let φsg(z,A,B) the two-parameter family of solutions

of equation (22), where A and B are the parameters (see
appendix A). We build a solution of the whole system as

φ(z) =


φsg(z,A1, B1), −L < z < −L0,

C + pq0z, −L0 < z < L0,

φsg(z,A2, B2), Lo < z < L,

(23)

We have to impose the boundary and the matching con-
ditions, which are six conditions. Since we have six free
parameters, A1, B1, A2, B2, C, and p, we should expect
generically that the value of p will be �xed by these con-
ditions. However, as we show in the remaining of this
section, the fact that the magnetic state is of helical na-
ture within the chiral magnet implies that the matching
conditions have an oscillatory character and there are
many solutions for p, its number growing linearly with
the size of the chiral magnet, L0.

A. Explicit form of the solution

Speci�cally, we propose a symmetric solution which
has helical nature within the chiral magnet, given by

φ(z) =


−σp φ0(−z), −L < z < −L0,

pq0z, −L0 < z < L0,

σp φ0(z), Lo < z < L,

(24)

where the parameter p, which is the helix wave number
in units of q0, is to be determined. In equation (24) we
introduce σp = 1 if p ≥ 1 and σp = −1 if p < 1. As it
will become clear in the following, σp is needed to satisfy
the matching conditions (17). The function φ0(z) is the
solution of equation (22) with −π < φ0 < 0 and

φ0(z0) = −π

2
, φ′

0(L) = 0, φ′
0(z) > 0, (25)

where z0 < L is a point to be determined by imposing the
matching conditions. The explicit form of φ0 is obtained
in appendix A, and is given by

φ0(z) = − arccos
(
η sn

(
qu(z − z0), η

))
, (26)

where sn(x, η) is the Jacobi elliptic function, with el-
lipticity modulus η, and z0 < L is chosen such that
φ0(z0) = −π/2. If L − L0 is large, we may visual-
ize φ0 as a domain wall centered at z0, which connects
two domains with magnetization pointing along ±x̂ for
z → ±∞.

Equation (26) is complemented with

K(η) = qu(L− z0), (27)

where K(η) is the complete elliptic integral of the �rst
kind. The above equation, which determines the param-
eter η, ensures that the boundary condition φ′(L) = 0
is satis�ed (see appendix A). Taking into account that
sn
(
K(η), η

)
= 1, equation (26) gives η = cosφ0(L).

Summarizing, the magnetic state given by (24) con-
sists of a helical state of wave number pq0 within the chi-
ral magnet connected at z = L0 to a section of a domain
wall hosted by the ferromagnet in the z > L0 region. The
wall center, z0, is a free parameter tuned to enforce the
matching conditions. The helical state is also connected
to a section of another domain wall section hosted by
the ferromagnet in the z < −L0 region. This latter do-
main wall is obtained from the former domain wall by a
symmetry. The domain wall center, z0, need not be at a
physical point inside the ferromagnetic slab, but can lie
in the region z < L0. Actually, this view of the magnetic
states in the ferromagnetic slabs as sections of domain
walls holds only if the slabs are thick enough. However,
we �nd it useful to think of these magnetic states as do-
main walls.



6

B. Matching conditions

The matching conditions select the possible values of
p. The continuity of n̂(z) is guaranteed if and only if

cosφ0(L0) = cos(pq0L0), (28)

σp sinφ0(L0) = sin(pq0L0), (29)

that is

σpφ0(L0) = (pq0L0) mod 2π. (30)

The matching condition (17) reduces to

ρσpφ
′
0(L0) = (p− 1)q0, (31)

which, taking into account the form of φ′
0 (appendix A),

the de�nition of σp, and equation (28), can be cast to the
form

|p− 1| = ρqu
q0

√
η2 − cos2(pq0L0). (32)

By symmetry, the matching condition at z = −L0 is also
satis�ed if equation (32) holds.
Equations (27), (30), and (32) determine completely

the magnetic states of the form (24). They constitute a
system of three equations with three unknowns: η, z0,
and p. Since 0 ≤ η < 1, the right hand side of (32) is
bounded by ρqu/q0, what implies the following bounds
for p:

1− ρqu
q0

≤ p ≤ 1 +
ρqu
q0

. (33)

C. The number of p states

We show here that equations (27), (30), and (32),
which determine the p states, have many solutions, with
di�erent values of p, and that the number of solutions
increases proportionally to the size of the chiral magnet,
L0. We provide below an argument that shows that this
statement is true if L0 and L−L0 are large. The numer-
ical solution of the system of equations indicates that it
is also true if L−L0 is not large. Therefore, we conclude
that there are many states of the form (24) di�ering by
the wave number pq0 of the helical part (the magnetiza-
tion of the ferromagnetic slabs is also di�erent for di�er-
ent values of p, of course). The values of p for these states
become dense in a certain interval pmin < p < pmax in
the limit L0 → ∞ (but L− L0 may remain �nite).
Let us argue in the large L − L0 limit, in which the

analysis is considerably simpli�ed. To work in this limit
it is convenient to substitute the ellipticity modulus η by
the nome, de�ned by q = exp

(
− πK/K̄

)
, where [42]

K = K(η), K̄ = K
(√

1− η2
)
. (34)

Hence, from now on we consider that η is a function of
q, given by inverting the equation that de�nes the nome.

Notice that equation (27) means that the nome is expo-
nentially small, q ∼ exp

(
−2qu(L−L0)

)
, for large L−L0.

Using the properties of the complete elliptic integral K
[43], we see that η = 1+O(q) and then equation (32) has
the form

p− 1 = −ρqu
q0

sin(pq0L0) +O(qb), (35)

where b = 1/2 if sin(pq0L0) = 0 and b = 1 otherwise.
Also, using sn(x, η) = tanhx + O(q), we obtain that for
large L− L0

φ0(z) = −2 atan e−qu(z−z0) +O(q). (36)

Thus, as we said before, φ0 has the form of a conven-
tional domain wall centered at z0, with some correction
exponentially small with L.
Finally, combining equations (36) and (30) we get

tanh
(
qu(L0 − z0)

)
= cos(pq0L0) +O(q). (37)

This gives an explicit solution for z0 if we neglect the
O(q) term.
It is clear that equation (35) has many solutions if we

neglect the O(q) term, and it is also clear that this term,
exponentially small with L− L0, cannot change this be-
havior. Moreover, it is also clear that the number of
solutions increases proportionally to q0L0, and thus the
values of p that solve equation (35), or equation (32),
become dense in the interval (33) in the limit L0 → ∞.
Thus, there is a continuum of helical states in the limit
q0L0 → ∞, as claimed in reference 35. Figure 3 illus-
trates these statements.

D. Energy of the p states

The energy density (total energy divided by 2L) can
be readily computed and has the form

e(p) = Aq20
L0

L

(
ec(p) + eu(p)

)
, (38)

where ec(p) = (p − 1)2 − 1 is the energy density of the
helical state within the chiral magnet, which is indepen-
dent of its size L0, and eu(p) is the contibution of the
ferromagnetic slabs, which has the form

eu(p) =
ρη2

q0L0

qu
q0

∫ K

K−xL

(
1− 2 sn2(x, η)

)
dx, (39)

where xL = qu(L−L0) is the width of the slabs in units
of 1/qu. If the slab width is kept constant, eu(p) vanishes
in the large q0L0 limit, and the energy density of the p
states attains the energy density of the chiral magnet
part, e(p) → ec(p).
The behaviour of the energy of the p states as q0L0

increases is interesting and will be analyzed, in some ex-
amples, in section VI. For large q0L0 the energy density
has its minimum at p = 1, and thus all the p states with
p ̸= 1, are at most metastable. It remains to see which, if
any, of the p states are actually metastable. This problem
is addressed in section V.
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FIG. 3. Graphical illustration of the solutions of equation
(35). The red line is the left-hand side of the equation, and the
violet line if the right-hand side. The upper panel corresponds
to q0L0 = 10 and the lower panel to q0L0 = 40. In both cases
ρqu/q0 = 3. The vertical dashed lines signal the bounds (33).

E. A classi�cation of the p states

Before closing this section we notice an interesting fact
about the solutions of equation (32). The derivative with
respect to p of the right-hand side of equation (32) is

−ρquL0
sin(pq0L0) cos(pq0L0)√

η2 − cos2(pq0L0)
. (40)

Since the sign of sin(pq0L0) is �xed by σp, see equation
(29), the sign of the above expression is determined by
cos(pq0L0). It is clear from Fig. 3 that the solutions of
equation (32) correspond alternatively to points in which
the right hand side of equation (32) increases and de-
creases. These means that cos(pq0L0) is positive for one
half of the p's and negative for the other one half. Then,
equation (37) implies that one half of the p values cor-
respond to z0 < L0 and the other one half to z0 > L0.
In the case z0 < L0 the center of the wall is outside the
physical region occupied by the ferromagnetic slab, while
if z0 > L0 it is within the slab. To lighten the writing,
let us call the former case a virtual domain wall and the
latter a real domain wall. Hence, half of the p corre-
spond to virtual domain walls and the other half to real

domain walls. We will see in next section that, if L−L0 is
large, all p states with real domain wall are unstable and
that the p states with a virtual domain wall are stable if
pmin < p < pmax, with

pmin = max

{
1−

√
hc, 1−

ρqu
q0

}
,

pmax = min

{
1 +

√
hc, 1 +

ρqu
q0

}
,

(41)

where hc = 1−κ > 1 is the dimensionless critical �eld of
the chiral magnet.
The case p = 1 is somehow especial. In this case

equations (30) and (31) give cos(φ0(L0)) = ±η. Then,
from equation (A6), we get sn(x0, η) = ±1, where x0 =
qu(L0 − z0). The solution for the plus case is x0 = K(η),
which, on account of (27), is only possible if L0 = L, that
is, if the thickness of the ferromagnetic slabs vanishes. So,
this possibility is realized only if the system consists of a
monoaxial chiral magnet in contact with a nonmagnetic
material. For the minus case we have x0 = −K, and this
gives z0 = (L0 +L)/2. This means the center of the wall
is in the middle of the ferromagnetic slab, hence it is a
real wall, and therefore unstable. In spite of this discus-
sion, p = 1 can also be realized if the chiral magnet is
in contact with ferromagnetic slabs, in the sense that we
can get metastable states with p as close to 1 as wanted
by making q0L0 su�ciently large.

V. STABILITY OF THE HELICAL STATES

To be useful, the p states have to be metastable, that
is, they have to be local minima of the energy. Let n̂p

be the magnetization of the p state, given by equation
(20), with φ given by (24). A necessary condition for
the p state to be a local minimum of the energy is the
positivity of the second variation of the energy, δ(2)E,
at n̂p. Thus, the analysis of δ(2)E allows us to select
the metastable p states among all those found by the
procedure of the previous section.
To analyze the stability of the p state we ignore the

magnetostatic energy, which cannot contribute to desta-
bilize the p state. This is due to the fact that the mag-
netostatic �eld created by the p state vanishes, since its
sources vanish: ∇ · n̂p = 0 and ẑ · n̂p = 0. Then, the
magnetostatic energy of the p state is zero and, since it
cannot be negative, a perturbation can only increase it.
The argument of the previous paragraph relies on the

fact that we consider a system which is in�nite in the
directions perpendicular to the chiral axis (x̂ and ŷ). In
a real system with �nite but very large dimensions along
x̂ and ŷ, the magnetostatic energy of the p states is not
zero due to the magnetic poles on the surfaces perpendic-
ular to x̂ and ŷ. In the chiral magnet section the poles
on each surface are alternatively positive and negative,
due to the helical character of the magnetization, and
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thus the magnetostatic energy will not be large. The ef-
fect of magnetostatice energy on the modulated states of
monoaxial ferromagnets is studied in reference 21, where
it is concluded that it is only relevant in the case of thin
�lms, although some distortion of the magnetization may
be expected near the surface to optimize the magneto-
static energy. If the ferromagnetic slabs are very thin,
with thickness of the order of the domain wall width, the
contribution of its surface magnetic poles will be negli-
gible. If the slabs are thick, but the thickness is much
smaller than the dimension of the system along the x̂ di-
rection, there will be a single domain in the slab, since
the domain width in a uniaxial ferromagnet is propor-
tional to its size along the easy axis [44]. Again, some
distortion of the magnetization may be expected near the
slab surfaces (there might even be domain branching), to
optimize the magnetostatic energy. In conclusion, we ex-
pect that the results of this section will hold in a magnet
large enough in the directions perpendicular to the chiral
axis.

The second variation of the energy can be written in
terms of two linear selfadjoint operators, K11 and K22

[cf. equation (44)]. The positivity of δ(2)E is equivalent
to the positivity of these two operators. The p state with
minimum energy, which has p close to 1, is stable. We
call it the equilibrium p state. For this state K11 and K22

have to be positive, what means that their spectrums lie
on the positive real axis. In the in�nite system studied in
reference 35 the lower edge of the spectrum is continuous
as a function of p, and then there is a certain interval
around p = 1 in which the p states are metastable. We
show in this section that also in the �nite system there
are many metastable p states, the number of which grows
linearly with the size of the chiral magnet, L0.

The existence of metastable helical states with very
close values of the wave number raises a question: why
a helical state which has a wave number very close to
the equilibrium wave number cannot reduce its energy by
changing its wave number? The answer is that, in spite of
appearances, two states with very close but di�erent wave
numbers are not close in the space of magnetic con�gu-
rations. In a sense, they are orthogonal, and one cannot
be transformed into the other by a small perturbation,
no matter how close the wave numbers are [35].

The remaining of this section is devoted to �nd the
conditions under which K11 and K22 are positive, and to
establish the conditions under which the p states satisfy
these conditions. The reader not interested in the mathe-
matical details can skip the remaining of this section and
go directly to section VI, where the results are discussed.

A. The second variation of the energy

To obtain δ(2)E we consider a perturbation of n̂p,
which if it is small enough can be written in terms of

two �elds ξ1 and ξ2 as

n̂ =
√
1− ξ21 − ξ22 n̂p + ξ1 ê1 + ξ2 ê2, (42)

where we introduce the unit vector �elds

ê1 = −ẑ, ê2 = − sinφ(z) x̂+ cosφ(z) ŷ, (43)

so that {ê1, ê2, n̂p} is a right-handed orthonormal triad.
To have perturbations of �nite energy we restric the �elds
ξi, for i = 1, 2, to square integrable functions. The conti-
nuity of n̂ and the matching conditions at z = ±L0 pro-
vide further conditions for ξi and ∂zξi, to be discussed
below.
The second variation of the energy at n̂p can be ob-

tained by inserting the above perturbation into the en-
ergy functional and expanding in powers of ξ1 and ξ2 to
the second order. A straightforward computation gives

δ(2)E = 2A

∫
d3r

(
ξ1K11ξ1 + ξ2K22ξ2

)
, (44)

where K11 and K22 are linear di�erential operators de-
�ned by their action on functions ξ as

Kii ξ = −a∇2
T ξ − ∂z(a∂zξ) +Qii ξ, i = 1, 2, (45)

where

Q11 = q20

(
hc − (p− 1)2

)
χc + ρ

(
q2uη

2 − 2φ′ 2)χu, (46)

Q22 = ρ
(
q2uη

2 − 2φ′ 2 − ρq2u(1− η2)
)
χu, (47)

and where, we recall, hc = 1− κ > 1 and a(z) = χc(z) +
ρχu(z) is the function de�ned at the end of section III.
The positivity of δ(2)E is equivalent to the positivity

of K11 and K22. These operators are selfadjoint in an
appropriate domain, and they are positive if and only if
their spectrum lies on the positive real axis.

B. The operators K11 and K22

Since the �potentials� Q11 and Q22 depend only on z,
to study the spectrum of K11 and K22 it is convenient to
perform the Fourier transform in the coordinates x and y.
To avoid symbol proliferation we use the same notation
for functions and operators in the real and transformed
space. After the Fourier transformation we have

Kii ξ = −
(
aξ′

)′
+ ak2T ξ +Qii ξ. (48)

Now ξ is a function of the Fourier wave vector k⃗T =
kxx̂+ky ŷ, and of z, and the prime means derivative with
respect to z.
The continuity of n̂ and the matching conditions (17)

imply that ξ and aξ′ have to be continuous (here ξ rep-
resents either ξ1 or ξ2). In particular, the matching con-
dition implies

lim
z→L−

0

ξ′(z) = lim
z→L+

0

ρ ξ′(z). (49)
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An analogous relation holds for z → −L±
0 . Finally, the

boundary conditions for n̂ give

ξ′(−L) = 0, ξ′(L) = 0. (50)

After the Fourier transformation, K11 andK22 are par-
ticular cases of a general kind of di�erential operators
thoroughly studied in reference 45. Their actions are
well de�ned on continuous functions ξ de�ned in [−L,L],
which are piecewise continuously di�erentiable and such
that a ξ′ is also continuous and piecewise continuously
di�erentiable, and satisfy the boundary conditions (50)
[46]. The operators are selfadjoint in the appropiate ex-
tended domain and have a purely discrete [45].
The eigenvalues of Kii are given by the values of λ for

which the di�erential equation

Kiiξ = λξ (51)

has solutions which satisfy the matching conditions (49)
and the boundary conditions (50). A necessary condition
for the stability of the p state is that the eigenvaules of
K11 and K22 be positive.

C. Bounds on the spectrum

The spectrum of operators likeK11 andK22 is bounded
from below, since Q11 and Q22 are functions bounded
from below. Indeed, multiplying equation (51) by ξ, inte-
grating from [−L,L], and then using integration by parts
and the boundary conditions (50), the following bound
for the spectrum of K22 is obtained:

λ ≥ min
{
ρ(k2T − q2u), 0

}
. (52)

Similarly, for the spectrum of K11 we get the bound

λ ≥ min
{
k2T +

[
hc − (p− 1)2

]
q20 , ρ(k2T − q2uη

2)
}
. (53)

D. Eigenvalue equations

To study the spectrum of K11 and K22 it is convenient
to introduce the quantities

β1 = η2 +
k2T − λ/ρ

q2u
, β2 = 2η2 − 1 +

k2T − λ/ρ

q2u
, (54)

γ1 = hc − (p− 1)2 +
k2T
q20

+
ρq2u
q20

(
β1 − η2 − k2T

q2u

)
, (55)

γ2 =
k2T
q20

+
ρq2u
q20

(
β2 − 2η2 + 1− k2T

q2u

)
. (56)

Since the operators K11 and K22 commute with the
parity operator, their eigenfunctions can be chosen as
even or odd functions. From the form of these operators,

we see the that the eigenfunctions, u, ofKii, with i = 1, 2,
can be written, for z ≥ 0, as

u(z) = c1v(q0z, γi)χc(z) + c2w
(
x, βi

)
χu(z), (57)

where x = qu(z − z0), c1 and c2 are constants to be
determined, v(x, γ) is a particular, even or odd, solution
of

v′′ − γv = 0, (58)

and w(x, β) is a particular solution of

w′′ +
2

q2u
φ′ 2
0 w − βw = 0, (59)

which satis�es the condition w′(K,β
)
= 0. Equations

(58) and (59) are simply the restriction of equation (51)
to |z| < L0 and L0 < z < L, respectively. In equation
(59) we use the coordinate x = qu(z−z0), and thus z = L
corresponds to x = K, due to equation (27). The form
of the eigenfunction for z < 0 can be obtained from the
parity symmetry. It should be clear that, in equation
(59), φ′ 2

0 , which is given by equation (A9) of appendix
A, is evaluated at z = z0 + x/qu.
We are interested only in studying the existence of non

positive eigenvalues, λ ≤ 0. For this case equations (52)
and (53) give the bounds

β
(i)
min ≤ βi ≤ β(i)

max, (60)

where

β
(1)
min = η2 + k2T /q

2
u, β

(2)
min = 2η2 − 1 + k2T /q

2
u, (61)

and

β(1)
max = max

{
2η2, η2 +

ρ− 1

ρ

k2T
q2u

+
q20
ρq2u

(
hc − (p− 1)2

)}
,

(62)

and β
(2)
max = 2η2.

The functions v and w entering equation (57) have
to full�ll the matching conditions at z = L0 (then, the
parity symmetry guaranties that they are full�lled also
at z = −L0). This conditions can hold non trivially (that
is, with u ̸= 0) only for speci�c values of β, which give
the eigenvalues of the corresponding operator.
We observe that we have four matching conditions, cor-

responding to the even and odd eigenfunctions of K11

and K22. We identify each condition by a pair (i, s),
where i = 1, 2 and s = e, o label the operator and the
eigenfunction parity, respectively. Each matching condi-
tion sets a system of two homogeneous linear equations
where the unkowns are the constants c1 and c2 entering
equation (57). To have non trivial solutions a condition

F
(s)
i (βi) = 0 must hold. The four functions F

(s)
i (β) are

given by

F
(s)
i (β) = v′s(q0L0, γi)w(x0, β)−

ρqu
q0

vs(q0L0, γi)w
′(x0, β)

(63)
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where x0 = qu(L0 − z0). In the above equation it is
understood that γi is computed with βi = β, and vs(x, γ)
are solutions of equation (58) with de�nite parity, which
can be chosen as

ve(x, γ) = cosh(
√
γx), vo(x, γ) = sinh(

√
γx), γ > 0,

ve(x, γ) = 1, vo(x, γ) = x, γ = 0, (64)

ve(x, γ) = cos(
√
−γx), vo(x) = sin(

√
−γx), γ < 0.

For given p, equations F
(s)
i (β) = 0 determine the eigen-

values of K11 and K22. The p state will be stable if

F
(s)
i (β) ̸= 0, β

(i)
min ≤ β ≤ β(i)

max (65)

for i = 1, 2 and s = e, o.

E. Solution of equation (59)

It remains to �nd the solutions of equation (59), which
is studied in appendix B. Here, we summarize the re-
sults. The solutions which satis�es the boundary condi-
tion w′(K,β) = 0 can be written as

w(x, β) = w+(x, α) + dw−(x, α), (66)

where w+ and w− are two linearly independent solutions
of equation (59) which can be expressed in terms of the
Jacobi theta functions θ1 and θ2 as

w±(x, α) = ± ϕ′
1(0, q)

ϕ1(α, q)

ϕ2(x± α, q)

ϕ2(x, q)
exp

(
∓ϕ′

1(α, q)

ϕ1(α, q)
x

)
(67)

with

ϕi(x, q) = θi

(
i
πx

2K̄
, q
)
, i = 1, 2, 3, 4. (68)

The nome q is de�ned just above equation (34). The pa-
rameter α > 0, which has nothing to do with the Gilbert
damping parameter entering the LLG equation, is related
to β through the equation

sn2(α, η) =
1

β + 1− η2
, (69)

and the constant d is determined from the boundary con-
dition, w′(K,β) = 0, and is given by

d = − exp

(
πα

K̄
− 2

ϕ′
1(α, q)

ϕ1(α, q)
K

)
. (70)

Now we can introduce w(x, β) in the eigenvalue equa-
tions (63) and analyze them numerically. However, it is
useful to analyze �rst the limit of large qu(L−L0), which
leads to important simpli�cations.

F. Analysis for large qu(L− L0)

The large qu(L − L0) regime corresponds to q → 0.
This limit is studied in appendix C, where the formulas
used in this section are derived. There, it is observed
that we have to distinguish the case β > 1 from the case
β = 1, which is especial.
If β is not too close to one, the solution of equation

(69) is

α =
√
β +O(q), (71)

and, taking into account that K = − log
√
q+O(q log q),

we have

d = − exp
(
2α+

√
β log q +O(q log q)

)
. (72)

Hence d is negligible for large L, which corresponds to
small q. Then w(x, β) can be approximated by w+(x, α),
which in its turn can be expanded in powers of q. For
�xed x we obtain the simple expression

w(x, β) =
(√

β + tanhx
)
e−

√
βx +O(q log q). (73)

Neglecting the O(q log q) terms, this is the solution we
would have obtained had we considered an in�nite system
with u′(x, β) → 0 for x → ∞ as a boundary condition.

We now analyze F
(e)
2 (β) for kT = 0 and large β. Us-

ing equation (73), ignoring the O(q log q) corrections, we
obtain that for β → ∞

F
(e)
2 (β) ∼

(
1 +

1
√
ρ

)
ρqu
q0

exp
(√

β
(√

ρquL0 − x0
))

.

(74)

Thus, F
(e)
2 (β) > 0 for large β.

For β = 1 the solution of equation (69) has the form
α = K − ᾱ, where ᾱ is of order one for q → 0 (see
appendix C). The leading term in q of w(x, β = 1) is
given by equation (C12). From it, it is straightforward
to get

F
(e)
2 (1) =

(
6 + 2

√
6
)ρqu
q0

tanhx0

coshx0
+O(q log q). (75)

Thus, F
(e)
2 (1) < 0 if x0 < 0. Therefore, the correspond-

ing states are unstable because F
(e)
2 (β) has a zero for

β > 1. Since x0 < 0 means z0 > L0, we see that all
p states which have a real domain wall are unstable, as
claimed in section IV. These unstable states correspond
to half of the solutions of equation (32).

G. Analysis of states with large p

Consider again kT = 0. If |p − 1| >
√
hc we have

that γ1 < 0 in a neighborhood of β = 1. Then, for β
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q0L0 10 20 40 80 100 120 240 480 960

Np 8 16 32 63 78 93 220 373 746

Np/q0L0 0.8 0.8 0.8 0.79 0.78 0.78 0.77 0.78 0.78

TABLE I. Number of metastable states, Np, versus q0L0 for
the case of thick ferromagnetic slabs: qu(L − L0) = 40. The
system parameters are given at the beginning of section VI.

FIG. 4. Energy density of p states, in units of Aq20 , as a
function of p in the case of thick ferromagnetic slabs, qu(L−
L0) = 40, for the values of q0L0 displayed in the legend. The
system parameters are given at the beginning of section VI.
The black line, labeled as∞, corresponds to the in�nite chiral
magnet studied in reference 35. The vertical lines mark the
limits pmin and pmax given by equation (41).

su�ciently close to one we have

F
(e)
1 (β) = −

√
−γ1 sin

(√
−γ1q0L0

)
w(x0, β)

−ρqu
q0

sin
(√

−γ1q0L0

)
w′(x0, β). (76)

By continuity, small changes of β produce small changes
on w(x0, β), w

′(x0, β), and γ1. But if q0L0 is large, the
trigonometric functions entering the above equation suf-

fer big oscillations, so that that F
(e)
1 (β) changes sign in a

neighborhood of β = 1. Hence, states with |p− 1| >
√
hc

are unstable. This relation, toghether with equation (33),
provides the bounds (41).

VI. DISCUSION OF SOME RESULTS

Let us discuss the results in two cases: one in which
the ferromagnetic slabs attached to the chiral magnet
are thick and another one in which they are very thin. In
both cases we consider hc = 6, ρ = 3 and qu = q0. The
possible p states are obtained by solving numerically the
coupled equations (27) and (32), and their stability by

evaluating numerically the functions F
(s)
i (β), de�ned in

equation (63).

FIG. 5. Magnetization of p states in the composite magnet
system for the case of thick ferromagnetic slabs, with qu(L−
L0) = 40. The size of the chiral magnet is q0L0 = 100. The
system parameters are given at the beginning of section VI.
From top to bottom the �gures show nx, ny, and φ′/q0 versus
q0z. The left panels correspond to p = 1.068 and the right
panels to p = 2.007.

A. Thick ferromagnetic slabs

We take qu(L − L0) = 40, which can be considered
in the large qu(L − L0) regime, and thus we con�rm by
numerical means the results of section V. Recall that we
say that the system has a real domain wall if the center
of the wall which characterizes the magnetization in the
ferromagnetic slab lies within the slab, and that it has
a virtual domain wall if the center lies outside the slab.
We get the following results:

1. States that have a real domain wall are unstable,
whatever the value of p, in agreement with the anal-
ysis of section VF.

2. States with |p − 1| >
√
hc are always unstable, in

agreement with the argument of section VG.

3. States with a virtual domain wall and |p−1| <
√
hc

are metastable.

4. The number of metastable p states, Np, grows lin-
early with q0L0 (see table I), and the values of
such p are homogeneously distributed in the inter-
val 1−

√
hc ≤ p ≤ 1+

√
hc. Hence, the bounds (41)

are saturated.
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q0L0 10 20 40 80 100 120 240 480 960

Np 10 19 38 76 92 112 226 453 882

Np/q0L0 1 0.95 0.95 0.95 0.92 0.93 0.94 0.94 0.92

TABLE II. Number of metastable states, Np, versus q0L0 for
the case of thin ferromagnetic slabs: qu(L − L0) = 1. The
system parameters are given at the beginning of section VI.

FIG. 6. Energy density of p states, in units of Aq20 , as a
function of p in the case of thin ferromagnetic slabs, with
q0(L−L0) = 1, for the values of q0L0 displayed in the legend.
The system parameters are given at the beginning of section
VI. The black line, labeled as ∞, corresponds to the in�nite
chiral magnet studied in reference 35.

All this conclusions are in agreement with the analysis
of the large qu(L− L0) regime presented in section VF,
and imply that the results of reference 35 are recoverd in
the limit q0L0 → ∞.

Figure 4 shows the energy density as a function of p
for di�erent values of q0L0. For large q0L0 the conver-
gence towards the energy density of the chiral magnet
is observed (see section IVD). The composite magnet
has lower energy density than the in�nite chiral magnet.
This is due to the fact that the magnetic state in the fer-
romagnetic slabs is almost uniform (it is a virtual domain
wall), and the anisotropy energy contributes to lowering
the system energy. Observe however that the di�erent
sets of points in �gure 4 correspond to di�erent systems
and the comparison of energies has no clear meaning.

Figure 5 shows the magnetization in two representative
cases, one for p = 1.068 (the closest value to p = 1)
and another one for p = 2.007 (the closest value to p =
2). Observe that the magnetization in the ferromagnetic
slabs has the form a virtual domain wall. The bottom
panels show the derivative φ′(z)/q0. The discontinuity
at z = 100 is due to the matching condition (31).

FIG. 7. Magnetization of p states in the composite magnet
system for the case of thin ferromagnetic slabs, with qu(L −
L0) = 1. The size of the chiral magnet is q0L0 = 100. The
system parameters are given at the beginning of section VI.
From top to bottom the �gures show nx, ny, and φ′/q0 versus
q0z. The left panels correspond to p = 0.958 and the right
panels to p = 1.997.

B. Thin ferromagnetic slabs

To analyze the case in which the ferromagnetic slabs
are very thin slabs we take qu(L−L0) = 1, which means
that the thickness of the slabs is equal to the width of
a domain wall hosted by a very thick (in�nite) magnet.
Table II shows that the number of metastable p states is
proportional to q0L0. The metastable p states are groped
into pairs which have very close values of p (see below),
and the pairs are homogeneously distributed in the in-
terval −0.43 < p < 2.44. This means that there is a
continuum of metastable p states in the limit q0L0 → ∞.
The interval of metastable states is within the limits (41),
but does not saturate them. However, these limits are
rapidly saturated by increasing the thickness of the slabs,
qu(L − L0). Indeed, with a thickness equal to twice the
domain wall width, qu(L − L0) = 2, the bounds are al-
ready saturated.

Figure 6 shows the energy density as a function of p
for di�erent values of L0. For large q0L0 the convergence
towards the energy density of the magnetic state of the
chiral magnet is again observed (see section IVD). It is
clearly seen that the metastable p states are grouped into
pairs. One of the p states of the pair has lower energy
than the in�nite chiral magnet limit, while the other has
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higher energy. The presence of these metastable higher
energy states is due to the thinness of the ferromagnetic
slabs. The higher energy states, and thus the pairing,
disappear quickly as the thickness of the slabs increases.
Indeed it does not appear if qu(L− L0) = 2.
For illustration, �gure 7 shows the magnetization com-

ponents and the derivative φ′(z) for the cases p = 0.958
(the closest value to p = 1) and p = 1.997 (the closest
value to p = 2), for a chiral magnet of size q0L0 = 100.
The p state of the left panels is the high energy state of
the pair with p closest to 1. We see that the magnetiza-
tion in the ferromagnetic slab stays very close to the ŷ
axis, which is perpendicular to the easy axis. This causes
the increase of energy density with respect to the in�nite
chiral magnet case. Since the ferromagnetic slabs are so
thin, this increase of energy is not enough to destabilize
the state. By contrast, the right panels of �gure 7 cor-
respond to the lower energy p state of the pair with p
closest to 2. It is seen that, in the ferromagnetic slabs,
the magnetization rotates towards the easy axis as we
move towards the boundary, and it never crosses the di-
rection perpendicular to the easy axis. The anisotropy
energy compensates the ferromagnetic energy due to the
rotation and the energy of the composite magnet p state
is slightly reduced with respect to the energy of the p
state of the in�nite chiral magnet.
The bottom panels of �gure 7 show the derivative

φ′(z)/q0. The discontinuity at z = 100 is due to the
matching condition (31).

VII. CONCLUSIONS

In reference 35 we showed that in an in�nite monoaxial
chiral magnet there exists a continuum of metastable he-
lical states di�ering by the helix wave vector, pq0. It was
pointed out that in a real �nite magnet only the state
with p = 1 is compatible with the surface chiral twist
induced by the natural boundary conditions [38]. This
means that states with p ̸= 1 are ruled out by the bound-
ary conditions, and, apparently, the results of reference
35 only hold in the non physical cases of an in�nite mag-
net or of a magnet with periodic boundary conditions.
However, the boundary conditions can be taylored by

attaching some other magnet to the faces of the monoax-
ial chiral magnet which are perpendicular to the chiral
axis. These magnets may absorb the chiral twist and thus
states with di�erent p may satisfy the boundary condi-
tions. We proof in this work that this is indeed the case
by considering a composite magnet system formed by a
monoaxial chiral magnet attached to two similar slabs
of a uniaxial ferromagnet, as in �gure 1. We deal only
with the case of zero applied �eld and zero applied cur-
rent, since this problem can be solved exactly. We show
that if the ferromagnets are thick enough (thickness a few
tens times larger than the width of their characteristic
domain wall) the composite system has metastable mag-
netic states which are helical within the chiral magnet

and look like a virtual domain wall within the ferromag-
nets (by virtual we mean that the wall center is outside
the physical region occupied by the ferromagnetic slab).
Those metastable states di�er by the wave number of the
helix within the chiral magnet and its number increases
linearly with size of the chiral magnet, L0. The results of
reference 35 are thus fully recovered in the limit L0 → ∞.

We also obtain results similar to those of reference 35
(for zero applied �eld and current) in the limit L0 → ∞ if
the ferromagnetic slabs are thin (thickness approximately
equal to the domain wall width). In this case, however,
the results are not exactly the same as in 35, since the
range of p for which the helical states are metastable is
smaller than that predicted in 35.

In reference 35 we pointed out the possibility of using
the p states as building blocks for information storing,
because there are processes that allow to switch between
di�erent p states. In particular, we showed that, in the
in�nite magnet, the switching between di�erent p states
can be performed by applying suitable combinations of
external magnetic �eld and electric current. We expect
that some analoguous switching can be also performed
in the compositie magnet. In this case, however, the be-
haviour of the p states under applied �eld and current
has to be studied numerically. Work in this direction is
in progress. We expect that the applicacion of an ex-
ternal magnetic �eld along the chiral axis will deform
the p state in the vicinity of the magnet interfaces and
will destabilize some of them, gradually, more or less as
in the in�nite magnet case. Preliminary results con�rm
this expected behaviour. On the other hand, in the in-
�nite magnet the application of an electric current leads
to a rigid steady motion of the p state, and to its desta-
bilization when the current intensity is high enough. In
the composite magnet it is di�cult to conceive the steady
motion state. If the applied current is not too large, we
expect a non static, time varying state which retains the
helical features of the p state, and an eventual desta-
bilization as the current reaches some critical value, so
that, after removing the current, the original p state will
be replaced by another one with di�erent p. Then, it
seems reasonable to expect that some switching mecha-
nism between p states can be devised for the composite
magnet.

Let us stress again a theoretical fact dicussed at the
beginning of section V, which may be of interest beyond
the physics of chiral magnets. The fact is that, despite
appearances, two helical states with very close but di�er-
ent wave numbers are not close in the space of magnetic
con�gurations. In a sense, they are orthogonal, and one
cannot be transformed into the other by a small pertur-
bation, no matter how close the wave numbers are [35].
This explains why a helical state cannot reduce its en-
ergy by simply changing its wave number: there may be
an energy barrier between two helical states even if their
wave numbers are arbitrarily close.

At �rst sight, the existence of so many non degenerate
metastable states in chiral magnets is also somehow dis-
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concerting, for a di�erent reason: we usually believe that
the boundary conditions select one of the many solutions
of the di�erential equations that constrain the state of
the system in the static case. In this case, however, if
the temperature is low enough and if the energy barri-
ers between the p states are high enough, it is the initial
condition what determines the magnetic state in the long
term. Actually, this situation resembles the physics of
ferromagnets, in which the existence of many metastable
states characterized by di�erent spatial distributions of
domains is at the origin of hysteresis.
To conclude, let us stress that the possible uses of the

p states depend strongly on their life times, which in
turn depend on the energy barriers which separate them.
If the barriers are high enough, the p states could be
experimentally detected at low enough temperature in a
composite magnet of the kind studied in this work, for
instance with SANS experiments.
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Appendix A: A solution of the double Sine-Gordon
equation

The solution of equation (22) which satisfy the condi-
tions (25) can be obtained as follows. Multiplying equa-
tion (22) by φ′ we get

d

dz

(
φ′ 2 − q2u sin

2 φ
)
= 0, (A1)

so that the term within brackets has to be a constant.
Since we require φ′(L) = 0 the constant has to be
−q2u sin

2 φ0(L) and we obtain

φ′ = qu

√
sin2 φ− sin2 φ0(L), (A2)

since we also require φ′ > 0. Let us call η = cosφ0(L).
Notice that 0 < η < 1. Then, solving the above di�eren-
tial equation by separation of variables, we have∫ φ0

−π
2

dφ√
η2 − cos2 φ

= qu(z − z0). (A3)

With the change of variable η t = cosφ in the integral,

so that sinφ = −
√

1− η2t2, we obtain∫ 1
η cosφ0

0

dt√
(1− t2)(1− η2t2)

= qu(z − z0). (A4)

The integral of the left-hand side is

arcsn
(
cosφ0/η, η

)
, (A5)

where arcsn(x, η) is the inverse Jacobi elliptic function
[43]. Hence, we get

cosφ0 = η sn
(
qu(z − z0), η

)
. (A6)

The parameter η is determined by setting z = L in equa-
tion (A4), in which case cosφ0 = η and the upper limit
of the integral (A4) is one. Thus the integral becomes
the complete elliptic integral of the �rst kind, K

(
η
)
, so

that

K
(
η
)
= qu(L− z0). (A7)

The above equation determines uniquely η if L and z0
are given. Then, since −π < φ0 < 0, equation (A6)
determines completely φ0, which is given by equation
(26). In particular, since sinφ0 < 0, we have

sinφ0 = −
√

1− cos2 φ0. (A8)

We also need an explicit form of φ′ 2
0 , which, taking into

account (A2) and (A6), has the form

φ′ 2
0 (z) = q2uη

2
(
1− sn2

(
qu(z − z0), η

))
. (A9)

Appendix B: Solution of equation (59)

In this appendix we outline a way of solving equation
(59) which relies on the Weierstrass elliptic function ℘
with fundamental half periods chosen as ω1 = iK̄ and
ω3 = −K. We use the notation of reference 47 for the
fundamental half periods, and K and K̄ are de�ned in
equation (34). This choice of fundamental half periods
gives the nome q = exp(−πK/K̄), which is convenient
if L is large. The related Weierstrass functions ξ and σ
and the Jacobi theta functions also appear in the solu-
tion. The properties of these functions are thoroughly
presented for instance in references 48 or 49, and an ex-
haustive summary can be found in reference 47. It should
be clear that the Weierstrass function ξ of this appendix
has nothing to do with the functions ξ1, ξ2, and ξ of
section V.
Using equation (A2) from appendix A, we see that

equation (59) has the form

u′′ − 2η2sn2(x, η)−
(
β − 2η2

)
u = 0, (B1)

This is one of Lame's equation in Jacobian form [50].
Expressing sn(x, η) in terms of ℘, the equation is cast to
the form

w′′− 2℘
(
x+iK̄

)
w−

(
β − 2

3
+

4

3
(1− η2)

)
w = 0. (B2)
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For given β, its general solution [50] is a linear combina-
tion

w(x, β) = d1w+(x, α) + d2w−(x, α), (B3)

where d1 and d2 are arbitrary constants,

w±(x, α) = ± σ(x+ iK̄ ± α)

σ(x+ iK̄)σ(α)
e±ξ(α)x. (B4)

and α is the solution of

℘(α) = β − 2

3
+

4

3
(1− η2), (B5)

which, using again the relation between sn(x, η) and
℘(x), leads to equation (69).
If w′

−(K,α) ̸= 0, the boundary condition w′(K) = 0
gives

d2
d1

= −
w′

+(K,α)

w′
−(K,α)

. (B6)

It is convenient to express σ and ξ in terms of theta
functions, using equations 23.6.9 and 23.6.13 of reference
47, since these functions have Fourier series rapidly con-
vergent for small q. We get

σ(x+ iK̄ ± α)

σ(x+ iK̄)σ(α)
=

ϕ′
1(0, q)ϕ1(x+ iK̄ ± α, q)

ϕ1(x+ iK̄, q)ϕ1(α, q)
×

exp

(
±ξ(ω1)

ω1
α(x+ iK̄)

)
,

(B7)

ξ(α) =
ξ(ω1)

ω1
α+

ϕ′
1(α, q)

ϕ1(α, q)
, (B8)

where the functions ϕi(z, q) are related to theta functions
by equation (68). We also use the periodicity of the theta
functions (formulas 20.2.6 and 20.2.12 of reference 47) to
obtain

ϕ1

(
z + iK̄

)
= −ϕ2(z, q). (B9)

Inserting equations (B7), (B8) and (B9) into equation
(B4), and removing the factor exp

(
∓ ξ(ω1)α

)
, which is

a pure phase factor of order one as q → 0, what amounts
merely to a rede�nition of w±(x, α), we obtain equation
(67).
The derivatives of w±(x, α) can be readily computed

from equation (67), obtaining

w′
±(x, α)

w±(x, α)
= ±ϕ′

2(x± α, q)

ϕ2(x± α, q)
± ϕ′

2(x, q)

ϕ2(x, q)
∓ ϕ′

1(α, q)

ϕ1(α, q)
. (B10)

To compute d2/d1, equation (B6), we have to evaluate
w′

±
(
K,α

)
, for which we use the behaviour of theta func-

tions under translation by half periods, given by equa-
tion 20.2.13 of reference 47. Taking into account that
θ′3(0, q) = 0 and setting d1 = 1 and d2 = d we arrive at
equation (27).

Appendix C: Expansion in q for large L

1. Case β > 1

For q → 0 and β > 1 + c, where c > 0 is any �xed
number, independent of q, equation (69) can be expanded
in powers of q, by introducing the expansion α = α0 +
α1q + . . .. Since sn(α, η) = tanh(α) + O(q), we get for
the leading order

α0 = atanh
(
1/
√
β
)
. (C1)

It is clear that this expansion is not valid for β → 1, since
in this limit α0 → ∞.
For q → 0 we have K = − log(

√
q) +O(q log q) and

πα

K̄
= 2α+O(q),

ϕ′
1(α, q)

ϕ1(α, q)
=

√
β +O(q). (C2)

Inserting these equations into equation (70) we arrive at
equation (72), and we see that d vanishes exponentially
as quL → ∞. Hence, w(x, β) can be approximated by
w+(x, α) in this limit. The expansion of this function in
powers of q is obtained from

ϕ′
1(0, q)

ϕ1(α, q)
= 1+O(q),

ϕ2(x+ α, q)

ϕ2(x, q)
=

√
β−tanhx+O(q),

(C3)
and from the second of equations (C2). Inserting these
equations into equation (67) for w+(x, α) we obtain equa-
tion (73).

2. Case β = 1

For β = 1 the expansion in power of q is di�erent. In
this case the right hand side of equation (69) is 1+O(q).
Taking into account that sn(K, η) = 1, we see that the
solution has the form α = K− ᾱ, where ᾱ is of order one
as q → 0. Using the relation sn(K − ᾱ, η) = cd(ᾱ, η),
where cd is the ratio of the cn and dn Jacobi elliptic
functions, we get the equation for ᾱ,

cd2(ᾱ, η) = 1− 1− η2

2− η2
. (C4)

Now we can expand this equation in powers of q, inserting
the expansion ᾱ = ᾱ0 + ᾱ1q + . . .. Using

cd(ᾱ, q) = 1− 4
(
cosh(2ᾱ)− 1

)
q +O(q2),

we obtain ᾱ0 = asinh (
√
2).

Then we insert α = K − ᾱ into the equation for d,
(70). We use the properties of theta functions under
translations by a half period to obtain

ϕ′
1(K − ᾱ)

ϕ1(K − ᾱ)
=

π

2K̄
− ϕ′

4(ᾱ, q)

ϕ4(ᾱ, q)
. (C5)
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Hence, we get

d = exp

(
−πᾱ

K̄
+ 2

ϕ′
4(ᾱ, q)

ϕ4(ᾱ, q)
K

)
. (C6)

For q → 0 the term that multiplies K in the exponential
is O(q), while K is O(log q), and therefore d does not
vanish as q → 0:

d = −e−2ᾱ0 +O(q log q). (C7)

For w±
(
x,K − ᾱ

)
we use the relations

ϕ1(K − ᾱ, q) = iq−1/4e
πᾱ
2K̄ ϕ4(ᾱ, q), (C8)

ϕ2(x±K ∓ ᾱ, q) = q−1/4e
π(x∓ᾱ)

2K̄ ϕ3(x∓ ᾱ, q), (C9)

obtained from the behaviour of theta functions under

translations of half period. Then we get that, for β = 1

w±
(
x,K − ᾱ

)
= ± ϕ′

1(0, q)

ϕ4(ᾱ, q)

ϕ3(x± ᾱ, q)

ϕ2(x, q)
×

exp

(
±ϕ′

4(ᾱ, q)

ϕ4(ᾱ, q)
x

)
.

(C10)

For q → 0, the above expression gives

w±
(
x,K − ᾱ

)
= (1 + tanhx) e−x +O(q). (C11)

Hence, we obtain

w(x, β = 1) = C(1 + tanhx) e−x +O(q log q), (C12)

where C = 1 + e−2ᾱ0 = 6− 2
√
6 > 0.
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