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Abstract
We develop a novel methodology for data-driven simulation of coupled multi-physics systems. The result of the method is
a learned numerical integrator of the coupled system dynamics. In order to preserve the fundamental physics of the coupled
systems, and thus preserve the geometrical properties of the governing equations—even if theymay be completely unknown—
we impose a port-metriplectic structure on the system evolution, i.e., a combination of a symplectic evolution for the system
energy with a gradient flow for the entropy of each system, which can be exchanged through predefined ports. The resulting
method guarantees by construction the satisfaction of the laws of thermodynamics for open systems, leading to accurate
predictions of the future states of their dynamics. Examples are given for systems of varying complexity, based on synthetic
as well as experimental data.

Keywords GENERIC · Port-metriplectic · Scientific machine learning · Coupled problems · Structure-preserving
formulations · Regression

1 Introduction

The analysis of complex physical systems from experimen-
tal data is a highly topical subject with countless practical
applications. Among them, we cite the development of dig-
ital twins [1, 2] or structural health monitoring [3], to name
but a few. Machine learning techniques developed in recent
years shed light on the behavior of these systems, particu-
larly when there is no detailed knowledge of the physical
laws governing their behavior.

Although great advances have been made in the develop-
ment of these techniques, there are still certain difficulties
that have prevented their widespread use in industry. These
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include those related to the accuracy and stability of the pre-
dictions made, which are often sensitive to variations in the
input data.

This has led to interest in the development of techniques
that can ensure a certain degree of accuracy, as well as com-
pliance with known physical laws. If these are fully known,
in the form of PDEs, the most widespread technique is the
use of physics-informed neural networks, PINNs [4]. How-
ever, there is often a discrepancy between the predictions
made by these physical laws and the actual behavior of the
system under analysis [5]. On other occasions, these equa-
tions are not known and these types of techniques can help to
determine the physical laws governing the phenomenon, giv-
ing rise to explainable artificial intelligence techniques [6].
At other times, solutions are restricted to those that comply
with more general physical principles, or of a higher epis-
temic level. Thus, inductive biases are developed to ensure
(within the range of accuracy of the technique) compliance
with general physical laws such as conservation [7–12], etc.

In general, physics-based machine learning aims to incor-
porate physical knowledge into purely data-driven strategies.
The goal is to devise methods capable of learning the dynam-
ics of physical systems from data and making accurate
predictions about states not explicitly included in the training
data. In the framework of physics-informed methods, prior
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knowledge about the system is taken into account to improve
the accuracy and interpretability of the results. Of partic-
ular interest are the so-called structure-preserving methods
[13, 14]. In computational mechanics, geometric numerical
integration refers to methods that respect the physics of a
particular problem, in particular its geometric characteristics
[15, 16].

In particular,we are interested in learning strategies that do
not take into account the exact equations that model the prob-
lem at hand, simply because it is assumed that they are not
known. We focus on general formulations that only impose
the fulfillment of universal physical laws, such as the laws
of thermodynamics [17–20]. Thus, the data serve to reveal
the particular formulation of the problem under experimental
conditions. Then, for new, unseen situations, the structure is
predicted by appropriate interpolation.

For closed isolated systems, the General Equation for the
Non-Equilibrium Reversible-Irreversible Coupling,
GENERIC, formulation [21, 22] defines a general struc-
ture for the evolution of the system, while ensuring the first
and second laws of thermodynamics are satisfied. Numer-
ical learning strategies based on the GENERIC formalism
have successfully been developed in previous works, while
numerical integrators with guaranteed stability properties
also exist [23]. In them, prediction is performed by appro-
priate interpolation on the manifold of solutions [17, 24,
25] or by training neural networks [26–28]. Alternative for-
malisms with thermodynamical considerations, such as the
generalized Onsager formalism [29, 30], also offer a gen-
eral structure for the evolution of reversible and irreversible
processes [12, 31, 32].

Recently, a machine learning strategy for interacting, dis-
sipative open systems was proposed by Hernández et al
[33]. It employs, during the training period, an inductive
bias that generalizes port-Hamiltonian structures [34–36] to
dissipative systems. This strategy essentially develops a port-
Hamiltonian formulation, in which GENERIC is extended
to open systems that communicate and exchange energy
through ports.

In this paper, we present a learning strategy which
applies piece-wise linear regression to the terms in the port-
metriplectic formulation in [33] for interacting open systems
governed by different physics. The resulting method ensures
the fulfillment of the principles of thermodynamics (con-
servation of energy at a global scale, but exchange among
sub-systems; non-negative entropy production) for the pre-
dicted states of the coupled system. The strategy is specially
suitable in cases with a low amount of available data. The
robustness of the method is tested for pseudo-experimental
(synthetic) and experimental data.

The remainder of the paper is structured as follows. First,
we briefly overview the generalized Onsager and GENERIC
formalisms modeling the dynamics of closed systems in

Sect. 2, and the port-metriplectic formulation for open sys-
tems in Sect. 3. Section 4 is devoted to the description of the
proposed learning algorithm for the dynamics of open sys-
tems. In Sect. 5, we assess the performance of the strategy
for three different examples. The discussion in Sect. 6 closes
the paper.

2 Dynamics of closed systems

The state of a closed (isolated) system at time t is assumed to
be fully described by the value of a set of variables z = z(t).
We can learn the evolution of the system by identifying the
structure of the dynamical problem

ż = d z
dt

= f (z, t), z(0) = z0, (1)

where function f is unknown in general [37, 38]. In the data-
driven approach, the closed form of f is not sought. Instead,
we look for an approximation of f that enables a robust
and efficient integration in time with sufficient accuracy.
Given some observations for the evolution of z at discrete
time instants, function f is readily approximated by apply-
ing regression techniques, such as classical linear regression
[17, 25, 39], support vector machines [40] or neural net-
works [26, 33], among others. This classical approach to the
problem presents, however, severe limitations. Very often,
small perturbations in the input data produces large, physi-
cally meaningless outputs.

To void these issues, in the last years we have seen
a growing interest in the development of physics-based,
structure-preserving and related techniques. One particularly
appealing approach to this problemassumes a particular form
of f , depending on known properties of the system at hand.
For instance, if the system is conservative, the Hamiltonian
formalism allows us to assume that f takes the form

ż = d z
dt

= L
∂H
∂ z

= L
∂E

∂ z
, (2)

where the Hamiltonian H is the total energy of the system,
E , and L is the Poisson, skew-symmetric matrix. The prob-
lem is then reduced to determine the precise forms of L
and E applying regression to data. While this type of tech-
niques have attracted a lot of interest, purely conservative
(reversible) systems are scarce in nature, where the norm is
the presence of dissipation.

In what followswe briefly review two alternative formula-
tions for the time evolution of closed systemsunder reversible
and irreversible conditions: the generalized Onsager princi-
ple,which is a single-generator formalism, and theGENERIC
framework, which is a double-generator formalism. These
two approaches incorporate dissipative phenomena into the
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Hamiltonian formulation (2) and lead to equivalent dynam-
ics. See [32, 41, 42] for a detailed discussion in the relation
between single and double operator formalisms.

2.1 Generalized Onsager formalism

The generalized Onsager formalism [29–31] is a thermo-
dynamically consistent formulation for the evolution of a
non-equilibrium system. This is a single-generator formu-
lation, which means that both the reversible and dissipative
contributions to the evolution use the same generator,F . The
generator F is a potential function with a thermodynamic
interpretation such as free energy or negated entropy. The
evolution of z is then modeled as

ż = − (L(z) + M(z))
∂F
∂ z

, (3)

where L is a skew-symmetricmatrix andM is symmetric and
positive semi-definite.Matrix Lmodels the conservative part
of the system, while M models the dissipative contribution.

2.2 GENERIC formalism

The General Equation for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC) formalism [21, 22] offers
a general description for the evolution of a system based
on two operators, accounting for conservative and dissipa-
tive phenomena, respectively. Within this approach, the free
energy is assumed to take the form F = E + S. With this
additive decomposition, we have

ż = L(z)
∂E

∂ z
+ M(z)

∂S

∂ z
, (4)

with L the Poisson skew-symetric matrix, modeling the con-
servative part of the evolution, and M a symmetric and
semi-positive definite matrix, responsible for the dissipation
of the system. E stands for the energy of the system and S,
for its entropy. For Eq. (4) to hold, it is necessary that the
so-called degeneracy conditions hold, namely,

L(z)
∂S

∂ z
= 0, (5)

and

M(z)
∂E

∂ z
= 0. (6)

These conditions ensure the fulfillment of the first and sec-
ond laws of thermodynamics, this is, conservation of energy
and non-decrease of entropy. From (5) and (6), it is straight-
forward to prove that

Ė = ∂E

∂ z
ż = 0, (7)

given the skew-symmetry of L, and

Ṡ = ∂S

∂ z
ż = ∂S

∂ z
M(z)

∂S

∂ z
≥ 0, (8)

given the positive semi-definiteness of M. Thus, a regres-
sion of (1) based on the GENERIC formulation guarantees
satisfying the laws of thermodynamics by construction. This
approach is often referred to asmetriplectic, since it combines
a symplectic contribution to enforce energy conservation and
a metric one to enforce entropy production [43, 44].

3 Port-metriplectic formalism for open
systems

The formalisms in Sect. 2 can be extended to describe the
dynamics of open systems, in which the evolution of the state
variables z is affected by external forces. In this framework,
we use the term bulk contribution to refer to the conservative
and dissipative phenomena that are inherent to the system,
and the term port contribution to refer to the external forces.

In this section, we review the port-Hamiltonian extension
of theGENERIC formulation to interacting andopen systems
proposed by Hernández et al [33], called port-metriplectic
formalism. The extension of the generalized Onsager for-
malism to open systems is analogous [31].

The port-metriplectic formulation for the evolution of
state variables z reads

ż = L(z)
∂E

∂ z
+ M(z)

∂S

∂ z
︸ ︷︷ ︸

bulk contribution

+ F
︸︷︷︸

port contribution

, (9)

where we use a GENERIC description of the bulk dynamics
and F accounts for the presence of an external force. In this
case, satisfying the degeneracy conditions is not required:
conservation of energy and increase of entropy cannot be
guaranteed due to the presence of an external port.

In the work by Hernández et al [33], the port contribution
F is also decomposed following the GENERIC structure.
That is,

F = ˜L
∂ ˜E

∂ z
+ ˜M

∂˜S

∂ z
, (10)

with˜L skew-symmetric and ˜M symmetric and positive semi-
definite. ˜E and˜S stand for the contributions to the energy and
entropy of the system which are due to the external force,
respectively.
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Alternatively, we can follow the one-single operator for-
malism (3) to decompose F,

F = − (

˜L + ˜M
) dF̃
dz

, (11)

with ˜L skew-symmetric, ˜M symmetric and positive semi-
definite and F̃ the port addition to the bulk free energy F .
The two descriptions of the port contribution F lead to the
same dynamics.

4 Learning algorithm

For a parametric open system, we denote byD = {z(tn;μ j );
n = 1, . . . , nT , j = 1, . . . , n p} the dataset with obser-
vations of its state variables z at discrete time instants
t1, . . . , tnT , for a representative parametric sampling, μ1,

. . . , μn p . In this section, we present a strategy to approxi-
mate z(tn;μ�), n = 1, . . . , nT , for a parameter μ� which is
not included in the original sampling. The strategy is based on
interpolating the terms in the port-metriplectic formulation
(9) of the problem.

We distinguish two phases in the process: identification
and interpolation. The identification phase consists in the
computation of all the elements in (9) (matrices and gradi-
ents), at every time step and for all the sampled parameters
in the data set. Then, in the interpolation phase, the precom-
puted elements are properly combined to approximate the
port-metriplectic structure for the new parameter μ�. The
details of each phase are discussed next.

4.1 Identification (offline computation)

The first step is computing the value of the matrices and
gradients appearing in the port-metriplectic structure (9) of
the problem for the parameters μ j , j = 1, . . . , n p, in the
data set D. Note that this is an offline computation, to be
performed once at the beginning of the process.

At time step n, the discretization of Eq. (9) leads to

zn+1 − zn
�t

= LnDEn + MnDSn + Fn, (12)

where we use the forward Euler approximation of the deriva-
tive. Although more accurate integration schemes can be
employed tominimize the loss of accuracy during the integra-
tion, the study of the effects of these schemes in the resulting
prediction is not the objective of this work. For a detailed
analysis on the topic, the interested reader is referred to [23].

Assuming that the energy and the entropy depend quadrat-
ically on the state variables, we approximate

DEn = An zn, DSn = Bn zn, (13)

where An and Bn are assumed to be diagonal matrices. Of
course, more general assumptions can be made, as in [17],
but for the examples to follow, this mild simplification has
rendered excellent results.

In the following, we take a GENERIC decomposition of
the port term Fn as in (10), that is, we express

Fn =˜Ln˜An zn + ˜Mn˜Bn zn, (14)

with ˜An and ˜Bn diagonal matrices. The formulation for the
single-generator decomposition of the port (11) is analogous.

The discrete values of the terms in the equation are com-
puted by solving the minimization problem

{Ln,Mn,An, Bn,˜Ln, ˜Mn,˜An,˜Bn} =
arg min

L,M,A,B,˜L,˜M,˜A,˜B

∥

∥

∥

zn+1 − zn
�t

− LAzn−

MBzn −˜L˜Azn − ˜M˜Bzn
∥

∥

∥,

(15)

where we have omitted the dependence onμ j to simplify the
notation. Very often, the Poissson and dissipation matrices
have a known structure that can be fixed beforehand, and
only the gradients (or equivalently, matrices A and B) remain
as unknowns.

4.2 Staggered approach

In cases in which data of the equivalent closed system
(with no external force acting) are available, the min-
imization problem in (15) can be solved by means of
a staggered approach, in order to facilitate its conver-
gence. In particular, the GENERIC formulation (4) of the
closed system is used to determine the bulk contribu-
tion of the port-metriplectic open-system formulation. Let
C = {

zc(tn;μ j ); n = 1, . . . , nT , j = 1, . . . , n p
}

denote
the dataset containing the observations for the closed sys-
tem. In the staggered approach, we take the next two steps:

1. Computation of the terms from the bulk contribution,
using the closed-system data in C. The evolution of the
closed system is captured by the GENERIC formulation
(4) of the problem. The time discretization of (4) leads
to the constrained minimization problem

{Ln,Mn,An, Bn}
= arg min

L,M,A,B

∥

∥

∥

∥

zcn+1 − zcn
�t

− LAzcn − MBzcn

∥

∥

∥

∥
, (16)

subject to

LBzcn = 0,

MAzcn = 0.
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2. Computation of the port contribution, using the open-
system data in D. The discrete terms in the bulk contri-
bution are replaced by the values obtained in (16). Thus,
the remaining terms in Fn+1 are obtained by solving

{˜Ln, ˜Mn,˜An,˜Bn} =
arg min

˜L,˜M,˜A,˜B

∥

∥

∥

zn+1 − zn
�t

− LnAn zn−

MnBn zn −˜L˜Azn − ˜M˜Bzn
∥

∥

∥.

(17)

Note that we are extrapolating the bulk open-system gra-
dientsDEn andDSn from the closed-system gradients, by
using the matrices An and Bn that are obtained from the
data in C.

4.3 Interpolation (online computation)

For a new parameter μ�, we approximate the time evolution
of the corresponding state variables, z(tn;μ�), using the dis-
crete port-metriplectic formulation (12). That is, given the
initial state variables z1,

zn+1 = zn+
�t

(

L�
nA

�
n zn + M�

nB
�
n zn +˜L�

n
˜A�
n zn + ˜M�

n
˜B�
n zn

)

,
(18)

for n = 1, . . . , nT − 1, with the matrices in the expression
to be determined.

Here, we propose to approximate the unknown matrices
in the formulation by linear interpolation on the manifold
of GENERIC terms. Let N denote the set of indices of the
neighboring parametric solutions inD, enclosing the value of
μ� in the parametric space. Recall that the port-metriplectic
terms corresponding to time evolution for μi , i ∈ N , are
precomputed and stored in the identification phase. Then, at
time step n, we approximate

L�
n �

∑

i∈N
wiL(i)

n , (19)

for some weights wi , i ∈ N . The approximation for all
unknown matrices in (18) in terms of precomputed matri-
ces for neighboring solutions is analogous.

The weights wi are here computed from a linear interpo-
lation in the parametric space ofμ, withwi ≥ 0 for all i ∈ N
and

∑

i∈N wi = 1. That is, the regression is performed glob-
ally for all parameters.

5 Numerical results

In what follows, we show the performance of the methodol-
ogy proposed in Sect. 4 in three different examples involving

different physics.Recall thatwedistinguish twophases: iden-
tification and interpolation. In the identification phase we
approximate the discrete port-metriplectic structure (12) for
a given dataset. In the interpolation phase, we use the learned
numerical integrator to predict the evolution of the system in
unseen scenarios.

5.1 Damped harmonic oscillator

We consider a one-dimensional harmonic oscillator in the
presence of friction [45]. The system can be interpreted as
an open system, in which a perfect harmonic oscillator (bulk)
is damped because of the action of an external force (port).

We take the independent state variables z = (q, p, S),
with q the position of the particle, p its momentum and S
the entropy of a homogeneous medium causing the friction
of the particle. The motion is described by

dq

dt
= 1

m
p,

dp

dt
= −kq − γ p,

dS

dt
= γ

mT
p2,

(20)

where m is the mass of the particle, T is the temperature, k
is the spring constant and γ is the damping coefficient. The
initial condition is of the form (q0, 0, 0). We set m = 1 kg,
T = 25 K and k = 2250 N/m.

The evolution of the state variables can be modelled by a
GENERIC structure (4), with known Poisson and dissipative
matrices [45]. In particular,

L =
⎛

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎠ ,

M = y y� with y =
√

γ

mT

⎛

⎝

0
mT
−p

⎞

⎠ .

(21)

Here, we aim to model the system by the port-metriplectic
formulation (9), through its discretized version (12). The
Poisson and dissipative matrices from both the bulk and port
contributions are predefined as

L =˜L =
⎛

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎠ , M = ˜M =
⎛

⎝

0 0 0
0 1 1
0 1 1

⎞

⎠ , (22)

where we take the Poisson matrix of the GENERIC formula-
tion, and for the dissipative matrix, we only indicate the zero
coefficients and let the gradient matrices B and˜B acquire the
constants.
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Fig. 1 Damped harmonic
oscillator. Evolution of the
position q for the snapshots in
the datasets with (i) damping
coefficient γ ∈ [0.2, 2] Ns/m,
and (ii) initial position
q0 ∈ [−0.15,−0.075] m

Fig. 2 Damped harmonic
oscillator. Boxplots for the
relative L2 errors in the
interpolation of all the snapshots
in the two datasets with (i)
parametrized damping
coefficient γ , and (ii)
parametrized initial position q0.
The state variables are position
q, momentum p and entropy S

We account for two different datasets, obtained by inte-
grating the equations for (i) 10 different values of the
damping coefficient γ , uniformly distributed in [0.2, 2]
Ns/m, and fixed initial position q0 = −0.075 m, and (ii) 11
different values of the initial position q0 ∈ [−0.15,−0.075]
m and fixed γ = 1 Ns/m. The snapshots in the datasets are
depicted in Fig. 1.

The time discretization is uniform in the interval [0, 10] s,
with time increment �t = 10−3 s. The evolution of the cor-
responding closed system (undamped harmonic oscillator) is
also integrated for all cases, with γ = 0. The terms in the
port-metriplectic formulation are then obtained by following
the staggered approach described in Sect. 4.1.

To test the learning algorithm, we interpolate the inter-
mediate elements of the datasets using the GENERIC terms
arising from two neighboring snapshots. Since the paramet-
ric discretizations are uniform, we have w1 = w2 = 0.5 in
the linear combinations in (19). The obtained errors are sum-
marized in Fig. 2. For the first dataset, with parametrized
damping coefficient, we obtain relative L2 errors around
10−2. For the second one, with parametrized initial position,
errors are of the order of 10−3.

5.2 Vertical sloshing tank

In this example, we use experimental data from the SLOWD
database [46, 47]. The experimental setup is a liquid-filled
tank, which is attached to a spring-damper system. Figure 3

shows an scheme of the setting. This experiment was thought
to characterize the effects of the fuel sloshing in airplane
tanks. This fuel acts as a dampener for the wing vibration.

The structure is deflected for the tank to start the motion
from an initial position q0. Then, the tank is released and
starts oscillating in the vertical direction. The liquid that
fills the tank acts as an external force that interacts with the
dynamics.

The available data contains measurements of the verti-
cal position and acceleration of the tank and the load cell
force for several configurations. As a post-process, we are
able to obtain additional variables such as the momentum,
the entropy, and the sloshing force. For the specifications on
the setup and the measuring system we refer to Martínez-
Carrascal and González-Gutiérrez [46].

The chosen state variables to describe the system are
z = (q, p, S), with q the vertical position of the tank, p
its momentum and S the entropy.

We test the proposed learning methodology for two dif-
ferent datasets. In the first set, we account for 9 different
filling levels of liquid, from 10 to 90% of the capacity of the
tank, starting the motion from the position q0 = −0.075 m.
The time interval is [0, 6.5] s and it is discretized with time
increment �t = 9.8 · 10−4 s.

In the second set, we consider the observations for
10 different initial positions q0 distributed in the interval
[−0.055,−0.011] m, and a fixed filling level of 50%. The
time interval is [0, 4.5] s and it is discretized with time incre-
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b1 k1

Sloshing fluid q

b2 k2

Fig. 3 Vertical sloshing tank. Experimental setup for the data in the
SLOWD database [46, 47]. The setup consists of a rigid tank, attached
to thewalls by two spring-damper systems.One of them is also equipped
with a load cell, not represented for simplicity
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Fig. 4 Vertical sloshing tank. Evolution of the position q for the snap-
shots in the datasets with parametrized (i) liquid filling level, and (ii)
initial position q0

ment �t = 9.4 · 10−4 s. The position evolution for the
experiments included in the datasets are shown in Fig. 4.

For all considered configurations, measurements for the
equivalent experiments with the dry tank are also available.
This enables the use of the staggered scheme in the identifica-
tion phase of our algorithm.Due to the oscillating behavior of
the observations, the Poisson and dissipative matrices in the
port-metriplectic formulation are predefined as in Eq. (22).

For previously unseen situations (filling level or initial
position as parameters), interpolation is performed using

the GENERIC constituents coming from two neighboring
snapshots. Figures 5 and 6 show the state variables position
and entropy for previously unseen situations using the two
datasets. Time integration is performed in the whole time
intervals, and is zoomed at [1.6, 1.9] s for illustration pur-
poses. The learned solutions are able to capture the oscillating
behavior of the system and, as expected, are located some-
where between the neighboring solutions. This motivates the
use of enclosing solutions as neighbors. Figure 7 summarizes
the L2 relative errors for interpolation of all available exper-
iments. In both cases, the obtained errors are slightly larger
than the errors for the synthetic damped harmonic oscilla-
tor example in Sect. 5.1. However, the mean of the errors
is below 10% even in the presence of noise in experimental
data.

The strategy performs robustly despite the presence of
experimental noise in the data. It is worth mentioning that
a naive approach based on pure interpolation of the results
by taking the amount of filling of the tank as the governing
variable does not lead to any meaningful result.

5.3 Fluid-structure interaction in an oscillating tank

In this case we analyze data coming from a fluid-structure
interaction problem taken from [48]. In it, see Fig. 8, a cylin-
drical tank is attached to a cantilevered beam. Both the solid
and fluid dynamics in this experiment share similar char-
acteristics, leading to strong couplings. In the experimental
setting, two piezoelectric actuators are attached to the beam,
near the encastre. These cause the beam to oscillate in tor-
sion. The motion of the set is captured with the help of two
accelerometers at the free edge of the beam.

The movement of the tank in the horizontal direction
causes the beam to bend along its weak axis of inertia, while
the weight of the tank and the liquid make it bend in the ver-
tical direction. Additionally, oscillations of the tank cause
torsion in the beam. On top of all these physical phenom-
ena (two bending directions, torsion and sloshing; the tank is
assumed to be perfectly rigid), sloshing of the fluid dampers
the dynamics of the tank.

The tank is 0.5 m wide, with an internal cavity of 0.470 m
and an internal diameter of 0.105 m. It is made of a material
with mass density 1180 kg/m3 and filled with water. The
beam is assumed to be made of aluminum, with Young’s
modulus 75 GPa, Poisson’s ratio 0.33 and mass density
2970 kg/m3. Its dimensions are 1.36 × 0.15 × 0.005 m3.

To obtain synthetic data, the same method developed in
[48] is employed. It uses a port-Hamiltonian approach and
an appropriate discretization for each physics. The interested
reader is referred to this article for more details about the
particular implementation. In essence, the beam is assumed
to follow a classic Euler-Bernoulli-Navier model for the
bending phenomenon, the fluid is assumed to follow the
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Fig. 5 Vertical sloshing tank. (i)
Parametrized liquid filling level.
Learned solution for filling level
of 70%, interpolating the
structures of neighboring
snapshots with 60% and 80% of
liquid. Plot of the position q and
entropy S at time interval
[1.6, 1.9] s
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Fig. 6 Vertical sloshing tank.
(ii) Parametrized initial position.
Learned solution for initial
position of −0.0334 m,
interpolating the structures of
neighboring snapshots with
initial positions −0.0281 m and
0.0384 m. Plot of the position q
and entropy S at time interval
[1.6, 1.9] s
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shallow-water equations and, finally, torsion is assumed to be
of Saint Venant type. The tankmoves as a rigid body. Numer-
ical results obtained under these assumptions are assumed to
be the ground truth for our method.

Our vector of (synthetic) measurements is composed by
z = [xB, xT , xF , xRB]�, where

• xB ∈ R
2NB represents the degrees of freedom related to

beam bending,
• xT ∈ R

2NT represents the degrees of freedom related to
beam torsion,

• xF ∈ R
2NF represents the degrees of freedom on the

fluid’s free surface and
• xRB ∈ R

6 represents the degrees of freedom of the
rigid-bodymotion of the tank (three displacements, three
rotations of the center of mass).

In the simulations taken as ground truth, NB = NT = NF =
10.

The system is analyzed for different degrees of filling of
the tank, following a staggered approach, as introduced in
Sect. 4.2. Two different data sets are considered, one with
40, 50, …, 80% of filling, and a more detailed one, with 40,
45, 50,…, 80% of filling. Following the staggered approach,
we first determine the time evolution of each sub-system by
identifying the elements of their GENERIC description,

ż = L(z)
∂E

∂ z
+ M(z)

∂S

∂ z
, (23)

and then we identify the contribution of each port, F,

ż = L(z)
∂E

∂ z
+ M(z)

∂S

∂ z
+ F. (24)

The error in the reconstruction of a previously unseen degree
of filling is evaluated as the �2-norm error in the fluid surface.
Thus, assuming that there are nnodes discretizing the fluid
surface, this error is computed as

e = 1

nsteps

∑

nsteps

(

1

nnodes

∑

nnodes

‖zGT − zapp‖2
‖zGT‖2

)

, (25)

where zGT refers to the height at a given nodal position in the
ground truth and zapp its approximated counterpart, provided
by our method.

With these settings, we obtained the errors reported in
Table 1 for different filling levels. The reader can notice the
excellent degree of accuracy obtained for both datasets. In
practice, it seems that the refined dataset does not always
provide a substantial increase in accuracy.

In order to ascertain if a more elaborated interpolation
scheme could provide with more accurate results, we have
also tested a quadratic scheme, that employs three neighbor-
ing snapshots to determine the GENERIC structure of the
problem.As an example, the 61%filling provides 0.487036%
error for the coarse dataset and 0.411062% for the detailed
dataset.
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Fig. 7 Vertical sloshing tank. Boxplots for the relative L2 errors in the
interpolation of all the snapshots in the two datasets with parametrized
(i) liquid filling level, and (ii) initial position. The state variables are
position q, momentum p and entropy S

Beam

Tank

Free surface

Fig. 8 Oscillating tank.Sketch of the experimental setup. The actuation
on the beam causes the tank to rotate (depicted in dashed line) but also
to oscillate in the horizontal direction. Its weight also causes the beam
to bend in the vertical direction (not represented for simplicity). The
movement in the tank causes the fluid to slosh

The evolution in time of the error is depicted in Fig. 9 for
the 47% of filling example.

Finally, for a qualitative evaluation of the error, some snap-
shots are provided in Fig. 10.

Table 1 Oscillating tank. Errors in L2 norm in the approximation of
the liquid free surface by employing the detailed and coarse datasets,
respectively

Filling (%) Detailed dataset (%) Coarse dataset (%)

42 0.24122 0 0.248572

47 0.278169 0.270149

53 0.339042 0.380250

58 0.370434 0.412029

61 0.445868 0.466474

63 0.351901 0.392356

67 0.424947 0.419198

72 0.560914 0.494248
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Fig. 9 Oscillating tank. Evolution in time of the L2-norm error of the
position of the free surface of the fluid

6 Conclusions

We developed a method able to provide with accurate
estimates of the dynamics of coupled, multi-physics and
parametric systems from data. The method is based first on
the regression from experimental or synthetic data of the
terms of an assumed port-metriplectic structure for the prob-
lem at hand. This ensures that the learnt evolution of the
systemwill satisfy by construction the first and second princi-
ples of thermodynamics, even for dissipative, open systems.
Then, in a second step, for previously unseen situations, the
method interpolates each term of the metriplectic description
from neighboring parametric data.

Unlike previous approaches, the just developed method
does not employ neural networks, that have demonstrated
to be a powerful tool, but classical constrained regression
techniques. It nevertheless offers competitive results. The
method is robust for synthetic as well as experimental (noisy)
datasets, and is able to provide with complete rollouts of
the evolution of the different systems tested until stop by
dissipation.

It remains as a topic for future analysis wether the employ
of existing neural network architectures could offer competi-
tive advantages over the just presented constrained regression
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Fig. 10 Oscillating tank. Snapshots 1, 100 and 200 for the learned prediction (left column) and reference solution (right column). Case with 47%
of filling
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approach. In any case, the assumed port-metriplectic struc-
ture of the evolution of the different considered systems has
shown to be a powerful inductive bias for learning complex,
multi-physics systems from data.
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