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Resumen

La evolución de la computación clásica en las últimas décadas ha estado mar-
cada por el desarrollo de componentes cada vez más pequeños y rápidos. Sin
embargo, este proceso de miniaturización tiene un límite en las escalas en las
que los efectos cuánticos empiezan a ser relevantes. Este problema es una opor-
tunidad para desarrollar un nuevo tipo de computación, la computación cuán-
tica, que toma precisamente como elemento básico un sistema con propiedades
cuánticas. Este elemento básico es el bit cuántico o qubit, el análogo cuántico
del bit clásico. Mientras un bit clásico solo puede estar en uno de dos estados,
0 o 1, un qubit puede estar en cualquier superposición |ψ⟩ := α |0⟩ + β |1⟩
de dos estados base |0⟩ y |1⟩, donde α y β son dos números complejos. Esta
propiedad de superposición permite hacer operaciones paralelas de manera nat-
ural. Además, también son posibles los estados de superposición de más de
un qubit, conocidos como estados entrelazados. De esta manera, un conjunto
de qubits tiene acceso a un número de estados exponencialmente mayor que
el mismo número de bits clásicos. Las posibilidades de procesamiento de in-
formación que introducen los estados de superposición permitirían a un futuro
ordenador cuántico resolver ciertos problemas complejos como la factorización
de números primos muy grandes, la búsqueda en grandes bases de datos o la
simulación de sistemas cuánticos. Algunos de estos problemas están lejos de
las capacidades de los ordenadores clásicos en tiempo y recursos finitos.

Desde finales del siglo pasado se han propuesto diversos sistemas cuánticos
como realizaciones físicas del concepto de qubit. A día de hoy, el abanico de
sistemas es amplio: circuitos superconductores, defectos de espín en semicon-
ductores, fotones, átomos ultrafríos, y más, cada uno con sus ventajas y sus in-
convenientes. Uno de los retos más importantes a los que se enfrenta cualquiera
de estos dispositivos es el fenómeno de decoherencia, en el que la interacción
del qubit con su entorno destruye la información que éste almacena, generando
errores de computación. Incluso los ordenadores cuánticos más avanzados y
sofisticados están limitados por errores al manipular un número considerable
de qubits. Una solución para mitigar estos errores es la implementación de
códigos de corrección de errores basados en un almacenamiento redundante de
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la información. Para cada qubit lógico protegido frente a errores se necesitan
qubits físicos adicionales, lo que genera un nuevo problema asociado a tener
que controlar un número mucho mayor de qubits. Una alternativa promete-
dora es pasar de la lógica binaria de los qubits, con dos estados base, a sistemas
cuánticos más complejos con d > 2 estados base, conocidos como qudits. Los
estados adicionales de los que dispone un qudit se han propuesto como una
plataforma para codificar una unidad de corrección de errores.

Los espines presentes en las moléculas magnéticas pueden codificar tanto
qubits como qudits. Como unidades básicas de un ordenador cuántico, las
moléculas magnéticas destacan por su pureza y reproducibilidad, ya que las
características de todas quedan definidas por las mismas propiedades químicas.
La principal fuente de decoherencia en estos sistemas es la interacción dipolar
magnética, ya que los espines son relativamente inmunes a las fluctuaciones del
campo eléctrico. Esto hace que los tiempos de coherencia de los qubits de espín
puedan ser mucho más largos que en otros tipos de qubits, con valores récord
de más de 30 segundos. El reto de desarrollar un procesador cuántico basado
en qubits de espín molecular es diseñar una plataforma escalable en la que
el estado de espín de cada molécula magnética puede ser inicializado, contro-
lado y medido con pulsos de microondas. Una propuesta prometedora, basada
en la electrodinámica cuántica de circuitos (Circuit Quantum Electrodynamics
o circuit-QED), integra los qubits de espín molecular en circuitos supercon-
ductores, donde el espín interacciona con el campo magnético de microondas
generado por fotones individuales confinados en resonadores.

Un elemento crucial en la manipulación del estado del espín es la frecuencia
de Rabi, ΩR, que establece la velocidad a la que se produce el cambio de es-
tado. Esta frecuencia, que depende de la potencia de los pulsos de microondas,
debe ser lo suficientemente alta como para controlar el estado del espín antes
de que su coherencia decaiga con un tiempo característico T2. Esta condición
viene dada por ΩRT2 ≫ 1. De la misma forma, el acoplo espín-resonador G1

también debe cumplir G1T2 ≫ 1. Por desgracia, conseguir detectar moléculas
individuales acopladas a resonadores es todavía una tarea desafiante, tanto por
la deposición como por la detección de éstas (G1 es demasiado pequeño). Los
avances más recientes en este aspecto exploran la fabricación de una nanocon-
stricción en el inductor del resonador superconductor, la cual concentra y am-
plifica el campo magnético de microondas en un pequeño volumen en el que se
depositan moléculas con nanolitografía ‘dip pen’ (DPN).

Los hitos experimentales en el camino hacia un procesador cuántico basado
en qubits o qudits de espín molecular pueden resumirse en:

• Acoplar moléculas individuales a resonadores individuales. Este requi-
sito, como ya se ha comentado, es bastante complicado actualmente, pero
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los experimentos de prueba de concepto pueden realizarse con muestras
con volúmenes cada vez más pequeños.

• Controlar coherentemente el estado de los qubits/qudits de espín molécu-
lar con pulsos de microondas. Caracterizar el efecto del acoplo de los
qubits/qudits a resonadores en sus tiempos de relajación y coherencia.

• Leer el estado de los qubits/qudits tras modificar su estado. Esto puede
hacerse a través de su acoplo a resonadores superconductores, trabajando
en el régimen dispersivo en el que las frecuencias asociadas a qubit y
resonador son suficientemente distintas. En concreto, su diferencia de
frecuencias debe ser mucho mayor que el acoplo espín-fotón.

• Explorar moléculas magnéticas capaces de codificar qudits y con un buen
acoplo a campos de microondas generados por resonadores.

• Caracterizar el efecto de las interacciones entre espines en el acoplo de és-
tos a los fotones de microondas en los circuitos superconductores. Mien-
tras no se llegue al límite de trabajar con moléculas individuales, estas
interacciones estarán presentes, y pueden ser muy relevantes en algunos
sistemas al disminuir la temperatura para inicializar los qubits/qudits en
el estado fundamental (T ≪ 1 K).

• Diseñar y fabricar distintos tipos de resonadores superconductores. En
concreto, los resonadores de elementos concentrados (Lumped-element
resonators o LERs) son interesantes por sus propiedades de multiplexación
en frecuencia y su libertad de diseño. Integrar un SQUID en el inductor
de estos resonadores para tener una inductancia modulable.

A continuación, se resumen los experimentos presentados en esta tesis, los
cuales constituyen los primeros pasos hacia la realización de algunos de los
hitos descritos arriba.

Acoplo fuerte de conjuntos de qubits de espín molecular basados en
radicales orgánicos a LERs

El radical libre DPPH, con espín electrónico 1/2, es un marcador común
en experimentos de resonancia paramágnética. El régimen de acoplo fuerte de
muestras en polvo de DPPH a resonadores coplanares, fabricados a partir de
una línea de transmisión superconductora, se había conseguido ya previamente.
Este régimen se obtiene gracias a que el acoplo colectivo de N espines idénticos
escala con

√
N respecto del acoplo de un único espín. Se ha depositado el

mismo tipo de muestras sobre LERs para comprobar que este nuevo diseño de
resonador también permite acceder al régimen de acoplo fuerte.
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Lectura del estado de qubits de espín molecular basados en radi-
cales orgánicos con la técnica de lectura dispersiva. Primeros ex-
perimentos de manipulación coherente de qubits de espín molecular
acoplados a circuitos superconductores.

La técnica de lectura dispersiva del estado de un qubit molecular de espín
consiste en inferir este estado a partir de su efecto en la resonancia de un
LER al que está acoplado. El sistema híbrido qubit-resonador debe estar en el
régimen dispersivo, en el que la diferencia ∆ = ωq − ωr entre la frecuencia de
operación del qubit, ωq, y la frecuencia del resonador, ωr, es mucho mayor que
el acoplo colectivo entre ambos subsistemas, GN (∆ ≫ GN ). Los experimentos
excitación-lectura (pump-probe) están compuestos de un pulso de manipulación
del qubit con frecuencia cercana a ωq (pump pulse) y uno o varios pulsos
con frecuencias cercanas a ωr que reconstruyen el cambio en la resonancia del
LER (probe pulse(s)). Los primeros experimentos excitación-lectura con qubits
moleculares de espín se han realizado con muestras de PTMr, un radical libre
con espín electrónico 1/2.

Estudio del complejo [173Yb(trensal)] como qudit electronuclear con
12 estados. Alta cooperatividad en transiciones nucleares acopladas
a fotones en resonadores superconductores.

El complejo [173Yb(trensal)], una molécula con un ion Yb3+ con espín elec-
trónico S = 1/2 y el espín nuclear I = 5/2 del isótopo 173Yb, puede codificar
un qudit electronuclear con d = (2S+1)× (2I +1) = 12 estados. El diseño de
resonadores con frecuencias de resonancia cercanas a las de las transiciones de
espín nuclear permite estudiar si la presencia del espín electrónico optimiza el
acoplo del espín nuclear a campos magnéticos de microondas.

Competición entre interacciones espín-espín y espín-fotón en conjun-
tos de radicales libres (moleculas con espín 1/2) acopladas a líneas
de transición superconductoras. Efecto de introducir anisotropía
magnética al sustituir los radicales por [Ni(2-Imdipa)], con espín 1

A muy baja temperatura, las interacciones entre espines en muestras con-
centradas pueden cambiar las propiedades de la interacción de la muestra con
fotones en circuitos superconductores. Se ha estudiado este efecto con dos
tipos de moléculas: DPPH, con espín 1/2, y [Ni(2-Imdipa)], con espín 1. Esta
última, con S > 1/2, añade un ingrediente adicional, la anisotropía magnética.
La transición entre su estado fundamental y su primer estado excitado es una
‘transición de reloj’, más robusta frente a fluctuaciones del campo magnético
que una transición normal. De esta manera, el acoplo de [Ni(2-Imdipa)] a
circuitos superconductores permite explorar la competición entre interacciones
entre espines y el gap de energía asociado a la transición de reloj.



Chapter 1

Introduction

Since the invention of the first working transistor in 1947 [1], the evolution of
classical computation has been driven by the constant development of smaller
and faster components. The corresponding exponential growth of computa-
tional power was predicted by Gordon Moore in 1965 [2]. Remarkably, his
prediction has held true for decades, but eventually it may run into fundamen-
tal size limitations and the emerging quantum effects in very small physical
systems. Quantum computing aims to transform this threat into an opportu-
nity.

In 1982, Richard Feynman proposed the concept of a quantum generaliza-
tion of classical computing, addressing the challenge of efficiently simulating
quantum systems [3]. In a quantum computer, the classical bit is replaced
by the quantum bit or qubit. The former can be only in one of two classi-
cal states, either 0 or 1, while a qubit can exist in any superposition state
|ψ⟩ := α |0⟩+β |1⟩ of two quantum states |0⟩ and |1⟩, enabling natural parallel
operations. Moreover, multiple qubits can form collective superposition states
known as entangled states. A collection of qubits has therefore access to an ex-
ponentially larger set of states than the same number of classical bits [4]. The
additional possibilities that superposition states introduce to process informa-
tion allow a quantum computer to efficiently solve certain complex problems
such as the prime factorization of large numbers with Shor’s algorithm [5], data
search in large databases with Grover’s algorithm [6], and the aforementioned
simulation of real quantum systems proposed by Feynman. Some of these tasks
are beyond the capability of classical computers in reasonable times and with
finite resources.

Cold trapped ions were the first proposed physical system to encode qubits
able to perform universal quantum operators, back in 1995 [7]. Nowadays,
various contenders for qubits exist, such as superconducting circuits [8–10], spin
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defects in semiconductors [11], photons [12], ultracold atoms [13, 14], and more,
each presenting distinct strengths and weaknesses. A significant challenge in
quantum computation is the phenomenon of decoherence [15], in which the
interaction of the qubit with its environment destroys the information encoded
in its quantum state and generates errors in the computation. Even the most
advanced quantum computers, e.g. those based on superconducting circuits,
are limited by unavoidable errors in manipulating a substantial number of
qubits [16]. Thus, the realization of a universal, error-corrected hardware still
remains distant from current capabilities.

A solution to mitigate errors is the implementation of error correction
codes, which are based on redundancy. Fault-tolerant quantum computing
requires additional physical qubits to encode each single logical qubit. For ex-
ample, the implementation of Shor’s algorithm with the surface code, a robust
error correction code based on encoding logical qubits with nearest-neighbours
superposition states of physical qubits in a 2-D lattice, would require as many
as 108 physical qubits [17]. A promising alternative involves transitioning from
binary qubit logic to multilevel logical units known as qudits [18]. The addi-
tional quantum states in a qudit (with d quantum states) have been proposed
as a suitable platform to encode an error correction unit [19, 20].

A different approach that partially avoids the problem of decoherence is
quantum simulation, which needs less accuracy and does not require explicit
quantum gates or error correction [21]. Quantum simulators, answering the
proposal by Feynman, are controllable quantum systems designed to mimic
specific quantum systems of interest [22]. This is, in principle, less demanding
than building a fault-tolerant quantum computer.

Microscopic spins found in molecular magnets are capable of encoding both
qubits and qudits [23–26]. In addition, they are interesting due to their easily
controllable purity and reproducibility, as the individual qubit/qudit properties
are governed by chemistry. In the context of spin qubits, the magnetic dipolar
interaction is the main source of decoherence, as spins are relatively immune
to electric field fluctuations. This makes spin qubits distinct from other qubit
candidates like superconducting circuits or trapped ions [27], where decoher-
ence is mainly due to their coupling to electric fields. As a result, spin qubits
can exhibit much longer coherence times, with record values beyond tens of µs
for molecular spins [28, 29] and up to 30 s for impurity spins in semiconductors
[30].

The challenge of developing a quantum processor based on molecular spin
qubits is designing a scalable platform where the spin of each individual molecule
can be initialized, controlled, and read out. A promising approach, based on
circuit quantum electrodynamics (circuit-QED), involves coupling molecular
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spin qubits to individual photons confined within on-chip superconducting res-
onators [31–33]. A proposal for the most basic quantum processor based on
molecular spin qudits coupled to superconducting circuits is shown in Fig. 1.1
[34]. Two GdW30 molecules [35], each encoding a qudit with d = 8 states, are
coupled to a lumped-element resonator with a tunable inductance L(Φ). The
tuning of L(Φ), which modulates the photon-mediated coupling between the
two qudits, is introduced by changing the magnetic flux Φ through a SQUID
with an auxiliary transmission line. Each qudit has an excitation line that
inputs the microwave pulses that control the qudit state, whereas its coupling
to the resonator inductor allows reading out the results and introduces an
effective communication channel between different qudits.

Figure 1.1: Scheme of a proposal for the most basic quantum processor based on
molecular spin qudits coupled to superconducting circuits.

The crucial element is to establish a Rabi frequency ΩR, which depends
on the microwave power of control pulses, and a qubit-resonator (or qudit
resonator) coupling G1 significantly exceeding the inverse of the spin coher-
ence time T2. This ensures that the spin state is changed sufficiently fast
(ΩRT2 ≫ 1) and that the resulting state can be readout (G1T2 ≫ 1). Unfortu-
nately, pushing the boundaries from molecular ensembles to single molecules
remains a challenging task. Recent advancements explore the fabrication of
a nano-constriction in the inductor [36], which concentrates and enhances the
microwave magnetic field in a very small volume, combined with small molecu-
lar deposits with Dip Pen Nanolithography (DPN) [37]. This proposal mirrors
that of detecting single electron-spins in doped inorganic crystals used as sub-
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strates for low-inductance superconducting resonators [38].

An alternative to enhance both the spin-photon coupling and the coherence
time is based on chemical design, tailoring the spin wavefunctions encoding the
qubit/qudit states to enhance their coupling to electromagnetic radiation and
protect the spin states from decoherence. An interesting case is that of ‘clock
transitions’ between spin superposition states that can arise in molecular spin
systems with integer electronic spin and/or non-zero nuclear spin, which show
a remarkable stability against magnetic field fluctuations [39].

Several experimental milestones are still in the way towards a physical
realization of the proposal in Fig. 1.1:

• Coupling single molecular spin qubits/qudits to superconducting res-
onators.

• Controlling the state of molecular spin qubits/qudits.

• Reading the state of molecular spin qubits/qudits through their coupling
to superconducting resonators.

• Exploring other magnetic molecules encoding molecular spin qudits.

• Characterizing the light-mediated spin-spin interactions.

• Fabricating and testing lumped-element resonators with an integrated
SQUID.

In this thesis, I take the first steps towards realizing the basic ingredients of
the hybrid scheme in Fig. 1.1. For this, I study experimentally some of these
requirements. The outline of this work is:

• First, the experimental techniques used throughout this work are pre-
sented in chapter 2.

• Chapters 3 and 4 introduce the theoretical framework that describes the
elements of the quantum processor, namely the molecular spins and the
superconducting resonators, their coupling, and their measurement with
microwave experiments.

• The coupling of free radical molecules with S = 1/2 to superconduct-
ing lumped-element resonators (LERs) is studied in chapters 5 and 6.
In chapter 5, the coupling of DPPH ensembles to LERs is characterized
with continuous wave experiments. Chapter 6 focuses instead on pulsed
experiments on PTMr in the dispersive regime. In these experiments,
first the state of the molecular spin state is controlled with microwave
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pulses, then the resulting state is read out by measuring the LER reso-
nance frequency, which depends on the qubit state.

• Chapter 7 generalizes the experiments in chapters 5 and 6 to molecular
spin qudits, with d > 2 spin states. In particular, the [Yb(trensal)]
complex with 173Yb, with electronic spin S = 1/2 and nuclear spin I =

5/2 is studied as an electro-nuclear qudit with d = 12 states.

• Finally, chapter 8 explores the competition of spin-spin interactions, in-
herent to spin ensembles unless diamagnetically diluted samples are used,
with the interaction of spins with photons travelling through a waveguide
and with clock transitions.

In addition to the conclusions of each individual chapter, a summary of the
general conclusions is included at the end.
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Chapter 2

Experimental setup and
techniques

This chapter presents the experimental setup and techniques used throughout
this work. Most experiments here are focused on manipulating and reading
molecular spin qubits and qudits coupled to superconducting resonators. The
setup for these experiments consists of a superconducting chip with the molec-
ular samples inside a dilution refrigerator, which is probed with microwaves. A
transmission line and several lumped-element resonators (LERs) are patterned
on the surface of the chip, on top of which the molecular spin qubits/qudits
are deposited. This is the quantum processor (see section 2.1).

A dilution refrigerator cools down the processor to as low as 7 mK. In-
side, a superconducting magnet generates the DC magnetic field that tunes
the frequencies of the molecular spin qubits to match those of the resonators
(see section 2.2). Section 2.3 introduces the microwave setup for pulse genera-
tion and detection, comprising all instruments needed to control and read the
molecular spin qubit state through the LERs with microwave photons. Other
complementary experimental techniques used throughout this thesis can be
found in section 2.4.

2.1 Superconducting chip

Electronic Paramagnetic Resonance (EPR) is a well-established control and
characterization technique of molecular electronic spins coupled to 3D cavities
[1]. However, in the context of quantum computation this 3D cavity poses a
problem of scalability, and it is more interesting to use instead 2D microwave
integrated circuits in superconducting chips as cavities [2]. Single photons can
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be confined in these systems, increasing the spin-photon coupling. The cou-
pling enhancement moves the hybrid spin-photon system away from the weak
coupling regime characteristic of EPR experiments, into the strong coupling
regime that is achieved in circuit-QED.

The first proposals for coupling molecular spin qubits to superconducting
circuits were based on coplanar resonators [3, 4]. These are fabricated by in-
terrupting a transmission line patterned in a superconducting chip with gap
capacitors so that the dimensions match the wavelength of microwave modes.
However, with this design it is not possible to have several resonators with
slightly different frequencies in the same transmission line. Each resonator is
essentially a filter that reflects any microwaves with frequencies out of its band-
width. Then, the first resonator from the input port hinders the transmission
of microwaves probing the rest of resonators. Also, the design of a coplanar
resonator is constrained to an interrupted line: its capacitance and inductance
must be tailored so that the resonator impedance Z =

√
L/C matches the

impedance of the transmission line, Z0. This last condition limits the tunabil-
ity of the frequency of the resonator, which is given by ωr = 1/

√
LC.

A different chip design in which all resonators can be measured through a
single transmission line is desired. This would allow, for example, the charac-
terization of a qudit in a single chip by matching different resonators to the
different transition frequencies of the qudit. The property of probing resonators
with different ωr coupled to the same transmission line is known as frequency
multiplexing. A proposal for a quantum processor with this property couples
the molecular spin qubits/qubits to lumped-element resonators (LERs). LERs
are side coupled to the transmission line, which makes them transparent to
microwaves out of their bandwidth and allows frequency multiplexing. They
consist of an inductive meander and an inter-digitated capacitor patterned in
the surface of a superconducting chip, as shown in Fig. 2.1.

Figure 2.1: Two lumped element resonators (LERs) side coupled to a transmission line
in a superconducting chip, each with two distinct parts: an inter-digitated capacitor
on the left and an inductor on the right.
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The inductance L and capacitance C of the LER can be tuned indepen-
dently by changing the design of each of the two parts of the circuit. On
top, they achieve very high quality factors (Q ∼ 104 to 105) and, therefore,
long coherence times (κ−1 > µs) [5]. Resonance frequencies are usually in the
range of 1-10 GHz, matching the frequencies of the electronic spin transitions
in our molecules. Inductor and capacitor are clearly separated in space in each
resonator (see Fig. 2.1). This potentially allows choosing either magnetic or
electric spin-photon coupling in resonance depending on where the sample is
deposited.

2.1.1 Design and fabrication

Each superconducting chip consists of a transmission line with several side-
coupled LERs (see Fig. 2.2). These chips were designed by Alicia Gomez and
Marina Calero, from CAB (Centro de Astrobiología de Madrid), and then fab-
ricated by Maite Magaz at Center for Nanofabricaction of IMDEA-Nanoscience
[6]. They are made on 100 nm thick niobium (Nb) films deposited on top of
350 µm thick Si substrate wafers. Niobium is a superconductor below Tc =
9.26 K, with low dielectric losses.

Figure 2.2: Example of a superconducting chip with ten side-coupled LERs. On top
of each LER there is a sample of magnetic molecules. The chip is connected to a PCB
with the wire bonding technique detailed in section 2.1.2.

First, the geometries of the transmission line and lumped-element res-
onators are designed with CAD software. The output vector files with the
design are fed to the commercial software Sonnet for the RF simulations. An
example is shown in Fig. 2.3. In these simulations, the Nb film has no thick-
ness, but the Si substrate thickness is included. With the combination of these
two software tools it is possible to tailor the parameters and characteristics of
the resonators (resonance frequency, quality factors, size and shape of inductor
and capacitor) so that they suit best the experiments.
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Figure 2.3: (a) Vector design of one of the LERs in Fig. 2.2. In this design, most
of the LER area is the capacitor, while the inductor is only a strip at the bottom
close to the transmission line. (b) Distribution of currents in the transmission line
and the lumped-element circuit, simulated with Sonnet. Current is concentrated in
the inductor strip. (c) Distribution of magnetic fields in a plane 100 nm above the
chip surface, calculated from the simulated currents.

The fabrication process begins with the deposition of the Nb film on the Si
substrate by means of DC magnetron sputtering (Fig. 2.4a). The transmission
line and the LERs are then patterned in the Nb film by ultra-violet (UV) laser
lithography and reactive ion etching (RIE) techniques. UV laser lithography
is a maskless circuit fabrication technique to pattern a photosensitive polymer
or photoresist on top a substrate with laser UV irradiation. In this case, a 405
nm wavelength laser is used to irradiate a negative photoresist deposited on
top of the Nb film. The laser is fed with the vector files containing the design
of the transmission line and the lumped-elements resonators.

Figure 2.4: AJA Orion-5 DC magnetron sputtering system (a) and Heidelberg Mask-
less DWL66fs laser lithography system (b) at Center for Nanofabricaction of IMDEA-
Nanoscience [7].
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The non-irradiated areas of the photoresist are removed with acetone, ex-
posing areas of the Nb film below that are then removed by RIE (Reactive Ion
Etching). A beam of accelerated ions composed of a mix of SF6 and argon
gases is sent to the sample, and provides energy to drive a chemical etching
reaction in the exposed Nb film. The combination of physical and chemical
etching of RIE confers both good selectivity and directionality to the etching
process [8]. Once the pattern is transferred to the Nb film, the remaining pho-
toresist is removed with successive cleanings with acetone, isopropyl alcohol
(IPA) and pressurized N2 gas. The final device is then tested at room and low
temperatures to check the expected properties.

2.1.2 Interface with microwave coaxial lines: PCBs and wire
bonding

The transmission line in the superconducting chip is interfaced with the input
and output microwave lines inside the cryostat with a PCB (Printed Circuit
Board). The PCB consists of several layers of electrical conductors separated
by an insulating material, with its conducting surface patterned so that it has
a central line and two ground plates as in a transmission line. The supercon-
ducting chip is placed in a rectangular hole in the centre of the PCB, with its
central line and grounds electrically connected to those of the PCB using �25
µm 1% SiAl wires (see Figs. 2.2 and 2.5a).

Figure 2.5: (a) PCB with the superconducting chip placed in the rectangular hole
in its centre. Figure 2.2 is a close up of this image. The PCB acts as a ground
plate, except the patterned transmission line that connects the line of the chip with
two female SMA adapters. First, the chip is placed on top of a oxygen-free copper
holder with GE low temperature varnish to ensure good a thermal connection. Then
the PCB is screwed to the holder as shown in the image. Finally, chip and PCB
are electrically connected with wire bonding. (b) Hybond model 572A wire bonding
machine at INMA.

Wires are bonded to the chip surface and PCB with a Hybond model 572A
wire bonding machine at INMA (Instituto de Nanociencia y Materiales de
Aragón) based on the wedge bonding technique (see Fig. 2.5b). The clamped
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wire is first welded to the PCB and then to the chip applying ultrasounds
and pressure. The capillary that holds the wire can be moved between the two
bonding sites in the three spatial directions with three independent controllers.

The interface of the PCB to the coaxial lines inside the cryostat are two
female SMA adapters (input and output). SMA are used instead of SMP
adapters, as the former are more robust against tensions in the coaxial cables
and temperature changes. These adapters are placed far from the supercon-
ducting chip, with the PCB being much larger in size than the chip. This large
design keeps ground voltage inhomogeneities away from the central line and
reduces their effect on the transmission.

2.2 Cryogen-free dilution refrigerator

A qubit is initialized in its ground state by cooling it far below ℏωq/kB, where
ωq is the qubit operation frequency. From this initial state, the qubit state
is controlled with different quantum gates. Similarly, an ensemble of quan-
tum systems cooled to temperatures below ∆E/kB, where ∆E is the energy
difference between the initial and final states, is initialized in the sense that
different populations in equilibrium are obtained according to the Boltzmann
distribution (∝ 1− e−∆E/kBT ). Without this non-negligible difference in pop-
ulation there is no significant change in the system: according to the detailed
balance of absorption and stimulated emission in thermodynamic equilibrium,
the rates of the two processes are the same for any transition in our quantum
system if its initial and final states have the same degeneracy [9, 10]. This is
sketched in Fig. 2.6.

Figure 2.6: Population inversion with resonant microwave radiation at high temper-
atures (a), T ≫ ∆E/kB, and low temperatures (b), T < ∆E/kB. The absorption
and stimulated emission rates are the same, it is the difference between the initial
populations of the states that makes the population inversion non negligible.
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The energy differences in a magnetic molecule, when converted to transi-
tion frequencies, range from tenths of MHz in nuclear splittings to a few GHz
in electronic Zeeman and zero-field splittings [11]. This demands cooling tem-
peratures ranging from a few mK to hundreds of mK for initialization. That
is, temperatures which can only be provided continuously by 3He-4He dilution
refrigerators.

2.2.1 Operating principle of a 3He-4He dilution refrigerator

A dilution refrigerator is based on the cooling properties of the phase separation
of a mixture of the two stable helium isotopes, 3He and 4He, at very low
temperatures. To start the cooling cycle, an auxiliary cooling mechanism is
needed to get the mixture around the temperature of liquid helium (4.2 K) or
below. In a standard, not cryogen-free dilution refrigerator, this temperature
is obtained by inserting the dilution circuit inside a vacuum can surrounded
by a liquid helium bath. The mixture is cooled to 4.2 K with small volumes of
liquid helium from the bath, and then it can be cooled further by using a 1 K
pot.

The dilution refrigerator used in this work is a BlueFors LD250 Dilution
Refrigerator System (Fig. 2.7), managed as a service by the Servicio de Apoyo
a la Investigación (SAI) of the University of Zaragoza and accessible to all
researchers [12]. It is a cryogen-free dilution refrigerator that does not need
a liquid helium bath. All cooling stages of the cryostat are inside a vacuum
can in order to suppress heat conduction and convection, and to thermally
isolate the circuit from the environment. The vacuum can is also enclosed by
a radiation shell that protects the stages from incident radiation that would
otherwise heat them.

The different stages are separated by a stainless steel tubes with poor ther-
mal conductivity, and heat switches filled with helium gas and active carbon.
While the heat switch heaters are on, the helium gas thermally connects the
stages. When they are turned off, helium gas is absorbed by active carbon and
the stages are isolated.

To attain liquid helium temperatures, the outer stage (50 K plate) is cooled
by a Cryomech Inc. Pulse Tube (PT) cooler. During this process, all cooling
stages of the cryostat, from the 50 K plate to the mixing chamber, are ther-
mally connected by heating the heat switches. After 20 hours, or 30 if the
superconducting magnet is installed, a temperature of around 4.2 K si reached
in the still and the mixing chamber. The heaters of the heat switches are then
turned off to isolate the different stages.
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Figure 2.7: (a, b) BlueFors LD250 Dilution Refrigerator System closed (a) and open
(b) to see its different cooling stages (or plates). These stages are, from highest to
lowest temperature, the 50 K plate (not visible), the 4 K plate, the still, the cold plate
and the mixing chamber. (c) Scheme and close-up of the dilution circuit in Fig. 2.7.
The temperature of the incoming 3He-rich gas flow in the condensing line decreases
as it transfers heat to the 3He-poor column between the mixing chamber and the still.
At the mixing chamber, 3He atoms borrow energy from the mixing chamber structure
to cross the phase boundary, cooling it. The main limitation to the cooling power of
the circuit are the heat exchangers. This is due to the thermal boundary resistance
between liquid helium and the exchanger walls, known as Kapitza resistance, which
increases with decreasing temperature [13, 14].

After this pre-cooling process is completed, the 3He-4He mixture starts
flowing through the dilution circuit. The incoming mixture is pre-cooled below
4.2 K by different heat exchangers, and then compressed 2 bar to condense it.
This compression is needed in cryo-free systems because 3He has a condensation
temperature below 4 K at atmospheric pressure. The liquid mixture fills the
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circuit up to the still, with the gaseous phase of the mixture being constantly
pumped out it. This evaporative cooling process lowers the temperature below
800 mK.

Below that temperature, the mixture is separated into a 4He-rich (or dilute)
phase and an almost pure 3He gaseous phase. As 4He is heavier than 3He, the
dilute phase remains at the bottom of the mixing chamber, while 3He gas
continues to flow through the dilution circuit (see Fig. 2.7c). When 3He gas is
pumped into the mixing chamber, it is forced to go through the phase boundary
with the diluted phase to complete the circuit, taking some energy from the
mixing chamber and cooling it along the samples to as low as 7 mK.

2.2.2 Superconducting magnet

The cryostat has an uniaxial superconducting magnet by American Magnetics
mounted below the mixing chamber, which applies magnetic fields up to 1 T
parallel to the vertical axis of the cryostat with a resolution of 10−4 T. The
magnet is thermally connected to the 4.2 K plate and isolated from the mixing
chamber. An oxygen-free copper cold finger extends below the mixing chamber
and into space inside the magnet coils, placing the superconducting chip in the
center of the magnet while thermalizing the sample with the mixing chamber
(see Fig. 2.8a-b). A 430 power supply programmer controlling a 4Q06125PS-
430 power supply outputs the current in the magnet. This programmer can be
controlled from the computer.

2.2.3 Microwave coaxial lines and cryogenic amplifier

The input and output semi-rigid coaxial lines inside the cryostat send the input
microwave signals to the chip and receive its transmission (see Fig. 2.8c). The
input coaxial lines are made of stainless steel (SS) down to the 4 K plate, and
then of a CuNi alloy down to the mixing chamber. At each cooling stage, a
10 dBm attenuator is installed in the input coaxial line, for a total of 50 dBm
attenuation, limiting the input power that reaches the chip.

The output coaxial lines connecting the mixing chamber and the 4 K plate
are made of a superconducting NbTi alloy. At the latter stage, they are con-
nected to a LNF 0.3-14 GHz cryogenic Low Noise Amplifier (LNA) [15]. Su-
perconducting coaxial lines allow a close to perfect propagation of the often
very weak output signals while maintaining a proper thermal isolation. The
LNA then amplifies these signals by 30 dBm at cryogenic temperatures, when
the thermal noise is still low. The rest of the output coaxial lines is made of a
metallic CuNi alloy.
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Figure 2.8: Input and output microwave coaxial lines inside the dilution refrigerator.
The LNA in the output line is thermally anchored to the 4 K plate.

2.3 Microwave setup for pump-probe experiments

In pump-probe experiments, two pulse sequences are sent to the chip: the
pump sequence, with short, high-power pulses exciting transitions in the spin
system, and the probe sequence, with long, low-power pulses that measure the
resonator frequency shift due to its strong coupling to the spins. This method
of reading the spin state by measuring the resonance of the coupled resonator
is known as dispersive readout. The microwave setup for these experiments
has changed in the course of this thesis, the different setups will be detailed
in chapter 6. All of them consist of two parts: a pulse generation stage and a
readout stage.

2.3.1 Characterization with continuous wave experiments

The LER resonance and the collective spin-photon coupling must be charac-
terized before any dispersive readout experiment. A vector network analyser
(VNA) was used for this purpose, which measures the effect of frequency-swept
or power-swept radio-frequency and microwave signals on the amplitude and
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phase of the chip transmission. In particular, I used a Rohde & Schwarz ZVB14
model (Fig. 2.9a) provided by the Electronic Engineering and Communications
Department of the University of Zaragoza, which can send and measure signals
ranging from 10 MHz to 14 GHz [16].

Figure 2.9: (a) Rohde & Schwarz ZVB14 model vector network analyser. (b) Defi-
nition of the inputs and outputs from the point of view of the DUT (Device Under
Test) with four ports: (Vin)i is the input wave from port i into the DUT, (Vout)i is
the output wave from the DUT into port i. (c) Module of the transmission S21 and
reflection S11 scattering parameters of a transmission line with four lumped-element
resonators. S11 and S21 are complex quantities that can be expressed by their module
and phase or by their in-phase (I) and quadrature (Q) components (real and imag-
inary components). It is common to write the scattering parameters in dB units,
defined as Sij(dB) := 20 log10(Sij). (d) IQ plot of the calibration of the resonator at
443 MHz in (c).

The ZVB14 model has four ports, which can act both as emitters and re-
ceivers. This allows measuring the transmitted or reflected signals of a ‘Device
Under Test’, or DUT, with up to four ports. Here, the DUT is a superconduct-
ing chip hosting LERs coupled to a single transmission line (two ports) or two
transmission lines (four ports). The result of a measurement are the complex



24 Chapter 2. Experimental setup and techniques

quantities Sij , the ratio between the measured signal at port i and the signal
sent from port j while the other ports are decoupled from the system (see Fig.
2.9b):

Sij =
(Vout)i
(Vin)j

∣∣∣∣
(Vin)k ̸=j=0 .

(2.1)

In a simple transmission experiment with two ports and the input signal at
port 1, the transmission and reflection of the system are given by S21 and S11.
An example of these measurements is shown in Figs. 2.9c-d.

2.3.2 Pulse generation

The pulse generation stage is a Keysight M9180A Arbitrary Waveform Gener-
ator (AWG), shown in Fig. 2.10a, with an amplifying stage [17]. It generates
arbitrary pulses with a bandwidth of 5 GHz and a maximum amplitude of 1
V (10 dBm). The pulses are generated as a digital signal in the computer and
then converted to an analog signal by the DAC (Digital-Analog Converter) of
the AWG with a sampling rate of 12 GSa/s (12 · 109 samples per second).

Figure 2.10: (a) Keysight M9180A AWG. (b) Keysight MSOS404A oscilloscope. (c)
Raw pulse data acquired by the oscilloscope. The transmission of a pulse with carrier
frequency matching the resonance frequency ωr of a LER (yellow trace) is compared to
the same pulse sent directly to the oscilloscope (green trace), showing the absorption
of microwave power by the resonator. The envelope of the signal can be averaged
in the oscilloscope (pink trace). The blue trace is the TTL signal that triggers the
oscilloscope. (d) Same measurements for a pulse with carrier frequency detuned from
ωr.
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The AWG also sends, with the same sampling rate, a pulsed TTL signal
that can be used to trigger other instruments. In particular, this signal controls
the microwave switch that routes the pump pulse to an additional amplifying
stage, while the probe pulse is routed to an IQ mixer as the local oscillator
(LO) signal and then attenuated. Both pulses are combined again in a single
line before entering the cryostat.

2.3.3 Readout

After the high power excitation pulses and the low power readout pulses in-
teract with the spins and resonators in the chip, the transmitted signals exit
the cryostat and arrive at the detection stage. Before this stage, a second
microwave switch separates the transmitted high power excitation pulses from
the low power readout pulses. The latter are routed to the IQ mixer again,
now as the RF signal.

The IQ mixer outputs two signals, I and Q (in-phase and quadrature),
which are the product of the RF and LO signals, the latter shifted by 90◦

for the Q channel. Each of the I and Q channels outputs the sum of two
signals: a high-frequency signal which oscillates with the sum of the RF and
LO frequencies, and a low-frequency signal which oscillates with their absolute
difference. The high-frequency signal is filtered by the bandwidth of the mixer,
leaving only the low-frequency or ‘demodulated’ signal.

The I and Q outputs of the mixer are acquired by a Keysight MSOS404A
oscilloscope shown in Fig. 2.10b. This instrument has a bandwidth of 8 GHz
and is triggered by the pulsed TTL signal generated by the AWG [18]. The raw
acquired data can be processed and averaged in the oscilloscope before sending
it to the computer (see Fig. 2.10c-d). All microwave instruments described
above, from characterization and pulse generation to measurement and data
acquisition, are controlled from the computer with homemade Python scripts.

2.4 Complementary experimental techniques

Characterizing a new molecule in a microwave setup is not always a straightfor-
ward process. First, there is a limitation in frequency, as only spin transitions
in the frequency range of the microwave instruments can be probed. In addi-
tion, the coupling between microwaves and the target spin system depends on
the orientation of the microwave field generated by the resonator or transmis-
sion line. These limitations do not pose a problem when dealing with simple
non-interacting S = 1/2 systems, but they become very relevant in the case
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spin systems with magnetic anisotropy or when spin-spin interactions are rel-
evant.

This section, details some experimental techniques that complement mi-
crowave experiments. Heat capacity and magnetic properties measurements
were performed in services provided by the SAI (Servicio General de Apoyo a
la Investigación) of the University of Zaragoza.

2.4.1 SQUID magnetometry

Magnetic measurements down to 1.9 K were carried out in a Magnetic Prop-
erties Measurement System (MPMS) by Quantum Design [19] operated by the
Servicio de Apoyo a la Investigación (SAI) of the University of Zaragoza (see
Fig. 2.11). The MPMS is a commercial magnetometer based on a dc-SQUID
(Superconducting Quantum Interference Device) detector, which acts as a very
sensitive magnetic flux to voltage transducer that allows the determination of
the magnetization M of small samples at very low temperatures. Its oper-
ation is based on two quantum properties of superconductor materials: the
quantization of the magnetic flux and the Josephson effect [20].

Figure 2.11: (a) MPMS-XL at SAI. (b) PPMS-9T at SAI. (c) Measurement probe of
the PPMS-9T.

The sample is placed inside superconductor coils that couple the magnetic
flux of the sample to the superconductor ring of the SQUID. The MPMS has
a sensitivity better than 10−7 emu (1 emu ↔ 10−3 A/m2). The system has a
liquid Helium cryostat that hosts the sample chamber, which allows varying
temperature between 1.8 K and 350 K, and a superconducting magnet, which
can generate DC magnetic fields up to 5 T.

A dc-SQUID consists of two superconductors connected in parallel by two
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Josephson junctions, forming a ring (see Fig. 2.12a). Both junctions have
almost the same critical intensity Ic. In the presence of a magnetic field, a
magnetic flux ϕ goes through the ring, causing the phase of each junction to
evolve differently. If the SQUID is polarized with an external electric current
Ib > 2Ic, a difference of electric potential V appears between its ends, which
is modulated by the net current in the ring due to phase imbalance generated
by ϕ. V is an oscillating function of ϕ with a period ϕ0, the magnetic flux
quantum (ϕ0 = h/2e ≃ 2 · 10−15 Wb). In order to measure the magnetic flux
ϕ generated by the sample, a feedback loop introduces an external magnetic
flux ϕV ∝ V opposite to ϕ which tries to maintain ϕ+ ϕV = 0. Provided that
the feedback loop keeps this condition, measuring V gives the magnetic flux
ϕ = −ϕV ∝ V . The proportionality constant G := ϕ/V , which depends on the
geometry of the SQUID, is a known calibration parameter.
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Figure 2.12: (a) Scheme of a SQUID. (b) Scheme of ‘cross’ magnetometer device
designed to measure the Hall voltage induced by a magnetic sample.

In this thesis I carried out DC magnetic measurements, in which the MPMS
applies a constant magnetic field so that sample gets a net magnetization M

and generates a dipolar field. If the sample is moved across the SQUID pick-up
coils, the magnetic flux changes and can be distinguished from that originated
by other sources.

2.4.2 Micro-Hall magnetometry

Micro-Hall magnetometry experiments were carried out in a Physical Prop-
erties Measurement System (PPMS). The PPMS is a commercial system by
Quantum Design [19] that allows performing measurements of different phys-
ical properties in a wide range of temperatures (down to 350 mK) and fields
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(up to 9 or 14 T, depending on the model). In order to reach these low tem-
peratures and high fields, the main body of the PPMS is a liquid helium dewar
with a superconducting magnet, in which a measurement probe with the sam-
ple chamber and a 3He cryostat is inserted.

The Micro-Hall magnetometry technique is based on the Hall effect [21].
Electrons in an electric current are deviated by a magnetic field B⃗ perpen-
dicular to their propagation direction (defined by their velocity v⃗) via the
(magnetic) Lorentz force F⃗ = qv⃗ × B⃗ = −|e|v⃗ × B⃗. This generates a electric
current perpendicular to both v⃗ and B⃗ with an associated voltage VHall, which
is the quantity that is measured.

The Micro-Hall magnetometer, sketched in Fig. 2.12b, consists of two lay-
ers of semiconductors, GaAs and Al1−αGaαAs, shaped in the form of a cross
[22]. A two dimensional electron gas is confined at the interface between the
two materials. The electrons behave as high-mobility charge carriers, which
increases the Hall coefficient and the measured signal, reduces the resistivity
of the device and improves the sensitivity. A current flow is introduced be-
tween two opposite ports of the ‘cross’ magnetometer, with a magnetic field
B⃗ applied parallel to the direction of propagation of the electrons. This field
does not produce a Hall voltage, as it is parallel to v⃗. Its role is to generate a
magnetization M⃗ in a magnetic sample deposited on top of the magnetometer,
which in turn generates an additional magnetic field B⃗M . Part of this field
is perpendicular to the device (and v⃗), producing a Hall voltage VHall propor-
tional to the induced magnetization M⃗ in the sample between the other two
ports of the magnetometer.

2.4.3 Heat capacity experiments

Heat capacity experiments were carried out in the PPMS described in the
previous section. The measurements are performed with controlled pressure
conditions in the sample chamber, that is, the PPMS measures the constant-
pressure heat capacity, Cp:

Cp :=
dU

dT

∣∣∣
p.

(2.2)

The sample chamber hosts a calorimeter for low-temperature heat capac-
ity measurements [23] that consists of a sapphire disc (the sample holder), on
which the sample is placed, with an integrated heater and thermometer. Sam-
ple and holder are put in mutual thermal contact with apiezon N grease. The
holder is connected to a thermal reservoir with constant temperature T0 by
thin gold wires (see Fig. 2.13).
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The heat capacity of the sample is measured using a relaxation technique
[24]. A controlled quantity of heat power P0 is introduced through the heater
for a time t0, which increases the temperature T1 of both the holder and the
sample. Part of the heat is transferred through the gold wires, modeled with a
thermal conductivity K1, to the thermal reservoir. The whole process is gov-
erned by the following differential equation relating the heat and temperature
variation rates:

∂Q(t)

∂t
:= P0θ(t− t0) = Ctotal

∂T1(t)

∂t
+K1 [T1(t)− T0] , (2.3)

where Ctotal = Cholder + Csample is the combined heat capacity of the holder
and the sample, and θ(t) is the step function.
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Figure 2.13: (a) Scheme of the sample holder (blue) connected to the reservoir (ma-
genta) by thin gold wires. (b) Photo of the bulk of the calorimeter (the reservoir) with
the square sample holder suspended in its centre. (c) Response of the temperature
T1 of the sample to a heat pulse at constant power P0.

Figure 2.13c shows the solution to Eq. (2.3). It consists of an increase
in the sample temperature T1 during the heat pulse, followed by a relaxation
to T0. Both the increase and decrease are exponential functions with a time
constant τ1 = Ctotal/K1. Knowing K1 from calibration experiments, the total
heat capacity Ctotal is calculated from the measurement of τ1. The different
holders are regularly calibrated, that is, measured without sample, so that
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their heat capacity Cholder can be subtracted from Ctotal to obtain the sample
heat capacity Csample.

2.4.4 Electron Paramagnetic Resonance

Electron Paramagnetic Resonance (EPR) is a spectroscopy technique in which
an oscillating magnetic field induces magnetic dipole transitions between en-
ergy levels of a system of spins in a paramagnetic sample [1, 11, 25]. EPR
experiments were performed in a commercial Elexsys E-580 by Brucker Cor-
poration [26] operating in the X-band, property of the INMA (see Fig. 2.14a).
The spectrometer consists of a resonant cavity that is irradiated with a mi-
crowave source. X-band cavities, which are the most common setup, have a
resonance frequency around 9.8 GHz. The paramagnetic sample is placed in-
side the cavity, which in turn is located at the center of an electromagnet. The
external DC magnetic field generated by the magnet tunes the spin transitions
in the sample to the cavity frequency, which results in a resonant absorption
of microwave power by the paramagnetic sample.
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Figure 2.14: (a) Elexsys E-580 spectrometer. The bulk of the device is the electro-
magnet. (b) A Gaussian absorption line, measured as a function of the DC magnetic
field B0. The relation between the intensity I(B0) of the absorption line and the
change ∆I(B0) induced by the modulation field Bmod is shown for three fields. (c)
The derivative-like lineshape that is obtained by detecting ∆I(B0) with a lock-in am-
plifier. Figures (b) and (c) were taken from [1, Ch.1].

In continuous wave EPR (cw-EPR) experiment, the cavity is continuously
irradiated while the DC magnetic field is swept slowly. Around each resonance
condition where a spin transition frequency of the sample matches the cavity
frequency, the incoming microwave radiation is absorbed by the sample. The
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absorption signal is obtained with a field-modulation detection, in which a set
of small coils apply a radio-frequency (RF) magnetic field modulation that
results in derivative-like lineshape for each absorption signal (Figs. 2.14b-c).
The cw-EPR spectrum of the sample gives information about the energies
and states in the spin system and about the effective spin Hamiltonian that
generates them.

A complementary technique is pulsed EPR, which measures the signal emit-
ted by a spin system after interacting with a series of microwave pulses. This
gives information on the relaxation and coherence of the spin system, as the
detected signal depends on the dynamics of the spin state prepared by the
pulses. The simplest pulsed EPR experiment is the measurement of the Free
Induction Decay (FID), which is the signal that the spin system induces in
the cavity after a microwave pulse generates a coherence between the two spin
states of a given transition. This signal decays with a characteristic time T ∗

2

that is shorter that the phase memory time Tm of the individual spins if there
is a distribution of Larmor frequencies at which the spins precess around the
DC magnetic field B0. This effect, pictured in Fig. 2.15, is known as inhomo-
geneous broadening. The FID measurement is usually limited by a dead time
of the spectrometer after the pulse, which is needed to protect the detection
circuit from the high power signal.

Figure 2.15: FID measurement. A microwave pulse with carrier frequency tuned to
the spin transition frequency (the Larmor frequency) changes the state of the spins
in the ensemble into the the xy-plane. After the pulse, spins start precessing around
z with the Larmor frequency, inducing the FID signal. If there is a distribution of
Larmor frequencies, the spin packet spreads in the plane (here the frame of reference
is rotating around z with the average Larmor frequency). This eventually leads to a
dephasing of the spins in the plane, and the decay of the FID signal. Figure taken
from [1, Ch.11].
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The two-pulse echo sequence, or Hahn-echo sequence, adds a second pulse
that refocuses the FID signal after removing the effect of inhomogeneous broad-
ening (see Fig. 2.16). If the second pulse is delayed by a time τ , the revival of
the FID signal happens at a time τ after the second pulse (2τ from the first
pulse). This revival is known as the echo signal, which decays with the single
spin memory time Tm > T ∗

2 (if spin-spin interactions are neglected). This time
is obtained by measuring the echo for different delay times τ between the two
pulses. The limitation of the dead time of the spectrometer is removed by
choosing a long enough τ .

Figure 2.16: Hahn-echo experiment. A second pulse is inserted after a time τ . This
pulse takes a spin state with phase ϕ(τ) (in the rotating frame) into a state with
phase −ϕ(τ). Then, at a time 2τ from the first pulse, all spins refocus: ϕ(2τ) =

−ϕ(τ) + ϕ(τ) = 0. This generates a revival of the FID signal, known as the echo
signal. Figure taken from [1, Ch.11].
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Chapter 3

Background on spin systems
coupled to superconducting
resonators

This chapter summarizes the theoretical framework needed to describe the
quantum processor. First, an effective Hamiltonian is defined for the molecular
spin qubits, and their decoherence and relaxation processes are discussed (see
section 3.1). A model of the lumped-element resonator that is used to read,
drive/excite and control these qubits is also needed (see section 3.2).

These two quantum systems are not isolated, but coupled and entangled.
The nature of this coupling and the implications of its strength compared to
the qubit and resonator relaxation rates are discussed in section 3.3. Finally,
section 3.4 describes the theory of the dispersive regime, when the detuning be-
tween the transition frequencies of the spin system and the resonator frequency
is larger than the coupling between the two systems.

3.1 Molecular spin systems

When using molecular spin systems, the qubit/qudit states are encoded in
the low energy spin states of a magnetic molecule. At very low temperatures,
these are the only significantly populated states in the system. Therefore,
the effective spin Hamiltonian HS needs to account only for the low energy
level structure and spin states of the molecular ground spin multiplet of the
molecule. This is sketched in Fig. 3.1. The nature of the ground multiplet for
each magnetic ion and the typical terms in the effective spin Hamiltonian HS

are discussed below.
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Figure 3.1: Sketch of the description of the relevant spin states of a magnetic molecule.
At very low temperatures, only the ground state and a few excited states of the full
Hamiltonian describing the molecular quantum states are populated. The high energy
level structure is neglected, leaving an effective ground spin multiplet whose states
energies depend on the applied magnetic field B. The energies of these spin states
at zero field and their magnetic field dependence are described by an effective spin
Hamiltonian HS.

3.1.1 The ground spin multiplet

The core of a magnetic molecule is composed of one or several transition metal
or lanthanide magnetic ions. The ground multiplet of an isolated ion is deter-
mined by the Coulomb interaction of its electrons with the electric field of the
nucleus and the repulsive interaction between electrons, as well as the spin-
orbit coupling between the orbital angular momentum and the spin of each
electron.

The magnetic core is surrounded by non-magnetic ligands that stabilize
it and isolate from neighbouring molecules in the same crystal. The local
coordination of each ion generates an electric field, known as the crystal field
or ligand field, which splits the atomic orbitals and modifies the wavefunctions.
The competition between the crystal field and spin-orbit interactions gives
rise to a different character of the ground multiplet for transition metal and
lanthanide ions.

The crystal field is the dominant interaction in transition metal ions [1,
Ch.7]. The orbital contribution to the angular momentum L in these ions
is largely quenched due to the crystal field splittings, which leads to a small
magnetic anisotropy. In most cases, this means that the total spin S is a
good quantum number for the ground multiplet, and the effective spin vector
operator is just spin vector operator S. The crystal field does not affect the
spin states in the ground multiplet directly, but it manifests itself through
spin-orbit coupling.

Lanthanide ions have large orbital angular momentum (L = 3), and there-
fore a strong spin-orbit coupling and large magnetic anisotropy. In addition,
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the crystal field interaction is relatively small, as the 4f orbitals of lanthanide
ions are closer to the nucleus than 3d orbitals. Following Hund’s rules, the
ground electronic state of a free lanthanide ion is a multiplet with a well de-
fined total angular momentum J = L+S. The vector operator J is treated as
an effective spin, and it will be labeled S in what follows keeping in mind that
it has an orbital angular momentum component.

3.1.2 Effective spin Hamiltonian

The effective Hamiltonian HS describes the magnetic states of a molecular spin
within its ground multiplet. It comprises the electronic Zeeman interaction
Hel,Z, the magnetic anisotropy contribution arising from the crystal field and/or
spin-orbit interactions, Hma, and, if the nuclear spin I of the ion is non zero, the
hyperfine (Hhf), nuclear Zeeman (Hnu,Z) and quadrupolar (Hqp) interactions.
The latter two are usually negligible. The resulting Hamiltonian is [1, Ch.3]:

HS = Hel,Z+Hma+Hhf +Hnu,Z+Hqp

= µBB · g · Ŝ +
∑
k, q

BkqÔ
q
k + Ŝ ·A · Î − µNgIB · Î + P∥

(
Î2z − 1

3I(I + 1)
)

,

(3.1)

with the meaning of the quantities and parameters detailed below.

At high magnetic fields, the electronic Zeeman interaction between the
magnetic moment of the electronic shell and the external magnetic field is the
dominant term in the Hamiltonian. In a free ion, this term is µBgeB · Ŝ,
where µB is the Bohr magneton and ge ≃ 2.0 is the free electron g-factor.1

The effect of the magnetic anisotropy on the Zeeman interaction is modeled
by replacing ge with a ‘tensor’ g.2 In the most general case this gives all the
different products of the components of B and Ŝ:

Hel,Z = µBB · g · Ŝ ≡ µB
(
Bx By Bz

)gxx gxy gxz
gyx gyy gyz
gzx gzy gzz


ŜxŜy
Ŝz


.

(3.2)

1The Bohr magneton is proportional to the electron charge, and therefore a negative
quantity. However, it is common practice to cancel out the negative sign of µB with the
negative sign of the Zeeman interaction and define µB as positive. Note that this is not done
for the nuclear magneton µN , which is defined to be positive (with gI positive or negative
depending on the nucleus).

2Although g is usually called a tensor, it is not a tensor in general. The same can be
said for the hyperfine ‘tensor’ A. The only thing that matters is whether the same choice of
principal axes and basis states can be used to keep only the diagonal terms in both g and
A [1, Ch.15].
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In most cases the cross terms can be eliminated working in a suitable frame
of reference — the principal axes — and it is enough to describe the interaction
using only the diagonal terms:

Hel,Z = µB

(
gxBxŜx + gyByŜy + gzBzŜz

)
. (3.3)

The deviation of gx = gxx, gy = gyy and gz = gzz from ge depends on the
strength of the magnetic anisotropy. If there is axial symmetry, which is usually
assigned to the principal axis z, there are only two distinct values: the parallel
g-factor g∥ ≡ gz and the perpendicular g-factor g⊥ ≡ gx = gy.

If the nucleus of the ion has a magnetic moment, there is also a nuclear
Zeeman interaction between this moment and the magnetic field:

Hnu,Z = −µNgIB · Î = −µNgI
(
BxÎx +By Îy +Bz Îz

)
. (3.4)

Here µN is the nuclear magneton and gI , the g-factor of the nucleus, is a
dimensionless constant of the order of unity which can be positive or negative.
The nuclear Zeeman interaction is much smaller than the electronic Zeeman,
as the nucleus is much heavier than the electron: µN

µB
∝ me

mN
∼ 10−3.

At low fields, and in particular at zero field, magnetic anisotropy is the
dominant term in the Hamiltonian. This term groups together the effects
coming from the crystal field and the spin-orbit coupling. It is written as a
combination of the Stevens operators Ôq

k, which take into account the several
symmetries in the coordination sphere and how they affect the spin states,
with coefficients Bkq:

Hma =
∑
k, q

BkqÔ
q
k ≡

∑
k=2,4,6

 ∑
−k≤q≤k

BkqÔ
q
k


.

(3.5)

Each Stevens operator Ôq
k is a combination of powers of the spin operators Ŝx,

Ŝy and Ŝz up to order k (see table 3.1).

For an effective spin S, only operators with k ≤ 2S have non-zero matrix
elements. If S is small and with low symmetry, Hma can be written with only
two k = 2 terms:

Hma = B20Ô
0
2 +B22Ô

2
2 ≡ D

(
Ŝ2
z − 1

3S(S + 1)
)
+ E

(
Ŝ2
x − Ŝ2

y

)
, (3.6)

where D = 3B20 and E = B22 are the tetragonal and orthorhombic distortion
parameters.
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k q Ôq
k

2 0 3Ŝ2
z − sI

±1 c± {Ŝz, Ŝ+ ± Ŝ−}+
±2 c± (Ŝ2

+ ± Ŝ2
−)

4 0 35Ŝ4
z − (30s− 25) Ŝ2

z +
(
3s2 − 6s

)
I

±1 c± {7Ŝ3
z − (3s+ 1) Ŝz, Ŝ+ ± Ŝ−}+

±2 c± {7Ŝ2
z − (s+ 5) I, Ŝ2

+ ± Ŝ2
−}+

±3 c± {Ŝz, Ŝ3
+ ± Ŝ3

−}+
±4 c± (Ŝ4

+ ± Ŝ4
−)

6 0 231Ŝ6
z − (315s− 735) Ŝ4

z +
(
105s2 − 525s+ 294

)
Ŝ2
z−

−
(
5s3 − 40s2 + 60s

)
I

±1 c± {33Ŝ5
z − (30s− 15) Ŝ3

z +
(
5s2 − 10s+ 12

)
Ŝz, Ŝ+ ± Ŝ−}+

±2 c± {33Ŝ4
z − (18s+ 123) Ŝ2

z +
(
s2 + 10s+ 102

)
I, Ŝ2

+ ± Ŝ2
−}+

±3 c± {11Ŝ3
z − (3s+ 59) Ŝz, Ŝ

3
+ ± Ŝ3

−}+
±4 c± {11Ŝ2

z − (s+ 38) I, Ŝ4
+ ± Ŝ4

−}+
±5 c± {Ŝz, Ŝ5

+ ± Ŝ5
−}+

±6 c± (Ŝ6
+ ± Ŝ6

−)

Table 3.1: Stevens operators from EasySpin documentation [2]. {A,B}+ indicates
the symmetrized product (AB +BA)/2, and s = S(S + 1), c+ = 1/2, c− = 1/2i.

According to Kramers theorem, at zero magnetic field, systems with half-
odd electronic spin form doublets of spin states related by time-reversal symme-
try [1, Ch.15]. This degeneracy, which can not be lifted by magnetic anisotropy,
can be lifted in turn by the hyperfine interaction between the electronic and
nuclear magnetic moments of the ion. It is in this situation when the hy-
perfine interaction becomes more relevant. Due to magnetic anisotropy, this
interaction is mediated by a ‘tensor’ A:3

Hhf = Ŝ ·A · Î ≡
(
Ŝx Ŝy Ŝz

)Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz


ÎxÎy
Îz


.

(3.7)

In most cases the principal axes for the hyperfine interaction are the same as
those for the electronic Zeeman interaction, and only the diagonal terms are
needed:

Hhf = AxŜx ⊗ Îx +AyŜy ⊗ Îy +AzŜz ⊗ Îz , (3.8)

with Ax ≡ Axx, Ay ≡ Ayy and Az ≡ Azz. For axial symmetry there are

3The hyperfine interaction term contains products of electronic and nuclear spin opera-
tors, which belong to different subspaces. The product of these operators is then a tensor
product that is omitted here: ŜiÎj ≡ Ŝi ⊗ Îj .
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only two hyperfine constants, which, following the notation for the electronic
Zeeman interaction, are labeled A∥ = Az and A⊥ = Ax = Ay.

Finally, a quadrupolar nuclear term may be needed if I ≥ 1:

Hqp = P∥

(
Î2z − 1

3I(I + 1)
)

. (3.9)

3.1.3 Decoherence and relaxation processes

The molecule is surrounded by an environment that interacts with it. Then,
the full Hamiltonian must include additional degrees of freedom from the envi-
ronment. The decoherence and relaxation rates of the spin system are obtained
by including all relevant interactions in the Hamiltonian and then tracing out
all degrees of freedom except those of the spins [3, Ch.8].

The simplest case is a single spin with S = 1/2. Its state at a given time t
is written as:

|ψ(t)⟩ = cos (θ(t)) |0⟩+ eiϕ(t) sin (θ(t)) |1⟩ , (3.10)

where |0⟩ and |1⟩ are eigenstates of Ŝz. The ground state |0⟩ and the excited
state |1⟩ are separated by an energy difference ℏωq, where ωq is the frequency
of operation of the qubit. The states described by Eq. 3.10 can be plotted in
the Bloch sphere, as shown in Figs. 3.2a and 3.2b: |0⟩ is the north pole of the
sphere, |1⟩ its south pole. The state of a single spin rotates around the z-axis
of its Bloch sphere at a rate ωq.

Longitudinal spin relaxation is the relaxation process between different
energy states of the Hamiltonian of the isolated spin system. As the total
energy changes, energy conservation requires that the same energy is absorbed
or provided by the environment. In a single spin S = 1/2, this means a jump
from a state |ψ(t)⟩ to the ground state |0⟩ at an arbitrary time (see Fig. 3.2a).

Transverse spin relaxation is the loss of coherence of the spin system, that is,
the decay of the non-diagonal terms of the density matrix ρ(t) = |ψ(t)⟩ ⟨ψ(t)|,
where ⟨ψ(t)| is the Hermitian conjugate of the state |ψ(t)⟩. In a single spin
S = 1/2, this means a jump to another state |ψ′(t)⟩ with the same θ(t) but
different ϕ(t) at an arbitrary time (see Fig. 3.2b). There is no energy exchange
between the spin system and the environment, although the interaction with
the environment is still needed.
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𝜃 𝑡 → 0

𝜓′ =

𝜓 𝜓

𝜓′ 𝜙 𝑡 ?

Figure 3.2: Relaxation and decoherence processes in the Bloch sphere. In the top row
(a,b), the single spin description. (a) Longitudinal relaxation, where the state |ψ⟩
jumps to the ground state |ψ′⟩ = |0⟩. That is, θ(t) → 0, and the information in ϕ(t)

is also lost. (b) Transverse relaxation, where the state |ψ⟩ jumps to another state |ψ′⟩
with the same θ(t) but different ϕ(t). The information in ϕ(t) is lost. In the bottom
row (c,d), the ensemble description. The mixed state is described by a Bloch vector.
(c) Longitudinal relaxation, where the z component of the Bloch vector decays with
T1. Note that the x and y components also decay (see Eq. (3.11)). (d) Transverse
relaxation, where the x and y components decay with T ′

2.

There is a probability for these processes to occur at a given time. This
probability can be recovered by either measuring the same qubit multiple times
or having several identical copies of it. The measurement of the ensemble
averages of Ŝx, Ŝy or Ŝz yields exponential decays. These three averages form
the Bloch vector: (⟨Ŝx⟩, ⟨Ŝy⟩, ⟨Ŝz⟩). The evolution of this vector in the Bloch
sphere is traced for the two types of relaxation processes in Figs. 3.2c and
3.2d.

Longitudinal spin relaxation is characterized by T1, the decay time of ⟨Ŝz⟩,
or, alternatively, its relaxation rate T−1

1 . In solids, the dominant contribution
to T−1

1 is spin-lattice relaxation, driven by the interaction between the spins
and electric field fluctuations caused by lattice vibrations (phonons). Besides,
if the spin system is strongly coupled to a resonator, it is possible that T−1

1 is
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enhanced by the spin-photon interaction at energies (or frequencies) close to
the spin-resonator resonance. This is known as the Purcell effect [4, Ch.4].

Transverse spin relaxation is characterized by the decay rate of ⟨Ŝx⟩ and
⟨Ŝy⟩. One decoherence mechanism is provided by the energy conserving flip-
flop process: two spins exchange states, destroying phase (ϕ(t)) correlation.
The contribution by flip-flop processes is measured by T ′

2. The total trans-
verse spin relaxation rate T−1

2 includes also the contribution from longitudinal
spin relaxation, which is half as efficient in destroying coherence than flip-flop
processes as it only involves one spin:4

1

T2
=

1

T ′
2

+
1

2T1 .
(3.11)

In solid state systems T2 is often not well defined, as the number of coher-
ently coupled spins can change depending on the experiment that is performed.
Instead of using T2, it is common practice to define characteristic transverse
decay times associated to each experiment. One of these parameters is the
phase memory time Tm, the inverse of the homogeneous half-width of the spin
transition. It is measured as the decay time of the echo signal after a Hahn
echo sequence (π/2 and π pulses, see section 2.4.4) as a function of the delay
time τ between the two pulses.5 Another relevant parameter is T ∗

2 , which is the
inverse of the inhomogeneous half-width of the transition and can be measured
directly from the spectrum.

3.1.4 The molecular spin qubit

The Hamiltonian of a two-level system encoding a qubit with a frequency of
operation ωq is:

Hq =
ℏωq

2
σ̂z. (3.12)

Here σ̂z is one of the three Pauli matrices:

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
, (3.13)

which obey σ̂j σ̂k = δjkI+ iϵjklσ̂l.6

4Note in Fig. 3.2c that the longitudinal spin relaxation process implies a decay in ⟨Ŝx⟩
and ⟨Ŝy⟩.

5Tm is often called T2, but in general Tm is a lower bound to T2 as it includes the
instantaneous diffusion effect during the pulses.

6ϵjkl is the Levi-Civita symbol.
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The simplest physical system with this Hamiltonian is the spin of a free
electron biased with an static magnetic field B. The isotropic Zeeman inter-
action of its spin 1/2 with the magnetic field gives the Hamiltonian:

HS = µBgeBŜz =
µBgeB

2
σ̂z, (3.14)

where ge is the g-factor of the free electron and ẑ is the orientation of the
magnetic field (B := B ẑ). Here Ŝz = σ̂z/2 is a dimensionless spin operator.7

The frequency of operation of the free electron qubit is then ωq = µBgeB/ℏ.

Free-radicals provide the closest example of a free electron in an organic
molecule. One atom in these molecules loses an electron, leaving an unpaired
electron with spin 1/2 and almost no anisotropy. This situation is described
by Hamiltonian (3.14), now with a g-factor gS that will be very similar to but
not exactly ge.

In a more complex molecule, like an organic ligand hosting a magnetic
ion with effective spin 1/2, the most general case is an anisotropic Zeeman
interaction with the magnetic field. This sets two different frames of reference
in an experiment: the principal axes of the magnetic anisotropy of the molecule
(xmol, ymol and zmol) and the laboratory axes defined by the magnetic field
(xlab, ylab and zlab, with zlab parallel to B).

The effect of the magnetic anisotropy on the spin Hamiltonian for a spin
1/2 is that there may be different g-values for the three principal axes in
the diagonal tensor g of the Zeeman interaction. The simplest setup is then
applying the magnetic field along one of the principal axes, replacing ge by
the corresponding g-value in Eq. (3.14). If the magnetic field is applied in
any other direction, either g is written in the laboratory frame of reference
(which will be non-diagonal) or zlab is written in the frame of reference of the
principal axes in order to find the effective g-value for zlab.

3.1.5 The molecular spin qudit

A molecular spin qudit is encoded in a magnetic molecule with more than two
spin states. This can be achieved by using a magnetic ion with electronic spin
greater than 1/2 or using a magnetic ion with non-zero nuclear spin. Each
value of the magnetic field B yields a set of d eigenstates {|α⟩}. In this basis,
the qudit Hamiltonian (the spin Hamiltonian of the magnetic molecule, with

7The true spin operators Ŝj = ℏσ̂j/2 (with j = x, y, z) fulfill the angular momentum
algebra and represent a spin 1/2. Using dimensionless spin operators (dividing by ℏ) is just
a convention to have the spin Hamiltonian parameters in units of energy
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all necessary terms) takes the simple diagonal form:

Hq =
d−1∑
α=0

EαX̂
α,α, (3.15)

Here X̂α,α ≡ |α⟩ ⟨α| is the projector of the eigenstate |α⟩ with energy eigenvalue
Eα. States are labeled in increasing order in energy so that Eβ > Eα if β > α.

3.2 Lumped-element resonators

Lumped-element resonators or LERs can be seen as superconducting LC cir-
cuits, with two well defined parts: an inductor and a capacitor (see Fig. 2.1
in chapter 2). The inductor is composed of either a single straight conductor
or a conductor with several turns in one side of the resonator, which give rise
to an inductance L. The inter-digitated capacitor has a capacitance C. The
resonance frequency of the circuit is given by:

ωr =
1√
LC .

(3.16)

The quantization of a LER as an LC circuit is obtained starting at classical
circuit theory, expressed in terms of flux ϕ or charge q, which derives from an
effective Lagrangian. The associated Hamiltonian is quantized using canoni-
cally conjugate variables [5].

3.2.1 The classical LC resonator

The Kirchhoff’s voltage and current laws for the LC resonator are (see Fig.
3.3a):

V (t)− Lİ(t) = 0 ,

I(t) + CV̇ (t) = 0 .
(3.17)

Integrating in time the voltage law and combining it with the current law
yields a single equation in terms of the flux ϕ, which is related to V as ϕ̇ = V :

ϕ̈(t) = −ω2
rϕ(t). (3.18)

This is the equation of motion of a resonator with frequency ωr. It can be
derived from the classical Lagrangian for the LC circuit:

LR =
1

2
Cϕ̇2 − 1

2L
ϕ2, (3.19)
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or the associated Hamiltonian:

HR = qϕ̇− LR =
1

2C
q2 +

1

2L
ϕ2, (3.20)

where the charge q = ∂ LR /∂ϕ̇, defined in terms of current as q̇ = I, is the
canonical conjugate variable of ϕ.8

ȁ ۧ𝑛

ȁ ۧ3

ȁ ۧ2

ȁ ۧ1

ȁ ۧ0
ℏ𝜔r

ℏ𝜔r

ℏ𝜔r

…

𝜔r =
1

𝐿𝐶

Figure 3.3: (a) Parallel LC circuit representing a lumped-element resonator with
frequency ωr. V (t) is the voltage in the capacitor and in the inductor. Taking I(t)
as the current in the inductor, the current in the capacitor is −I(t). (b) Energy
spectrum of the quantized resonator. The eigenstates |n⟩ of the system are labeled by
the number of photons confined in the resonator, n. The energy difference associated
to adding one photon to the system is always ℏωr.

3.2.2 Quantization of the LC resonator

The LC circuit can be quantized as the harmonic oscillator. The canonical
conjugate variables ϕ and q are now two non-commuting operators ϕ̂ and q̂,
with [ϕ̂, q̂] = iℏ.9 From ϕ̂ and q̂, the dimensionless annihilation â and creation
â† operators are defined as:

â :=

√
1

2ℏZ

(
ϕ̂+ iZq̂

)
, â† :=

√
1

2ℏZ

(
ϕ̂− iZq̂

)
. (3.21)

Here Z =
√
L/C is the impedance of the resonator, and

√
ℏZ has flux units.

These operators obey bosonic commutation rules, with [â, â†] = 1. Using â and
â†, the textbook Hamiltonian of the quantum harmonic oscillator is obtained:

HR = ℏωr

(
â†â+

1

2

)
. (3.22)

8The Poisson bracket of ϕ and q gives {ϕ, q}PB = 1. The bracket is defined, for any pair
of variables A(ϕ, q) and B(ϕ, q) that are functions of the canonical conjugate variables ϕ and

q, as {A(ϕ, q), B(ϕ, q)}PB =
∂A

∂ϕ

∂B

∂q
− ∂A

∂q

∂B

∂ϕ
.

9The Poisson bracket of two canonical conjugate variables is promoted to the commutator
of the operators that represent them (with a factor iℏ): {ϕ, q}PB = 1 → [ϕ̂, q̂] = iℏ
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The eigenstates |n⟩ of HR are Fock states labeled by non-negative integer
numbers n indicating the number of excitations — confined photons — in
the resonator. These excitations are annihilated and created by â and â†,
respectively:

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ , (3.23)

and the number operator n̂ = â†â has the number of excitations as eigenvalues:
n̂ |n⟩ = n |n⟩. The energies En of the system are then:

En =

(
n+

1

2

)
ℏωr. (3.24)

The energy spectrum is shown in Fig. 3.3b. Note that in the absence of
excitations (n = 0), the energy of the resonator is not zero: E0 = ℏωr/2. This
is the energy of the quantum fluctuations associated to the vacuum state |0⟩.

The time evolution of the expectation value of â is given by ⟨â⟩ = ⟨ψ| a |ψ⟩,
where |ψ⟩ is the wavefunction of the resonator. It can also be written as
⟨â⟩ = ⟨ψ| a |ψ⟩ = Tr âρ, where ρ = |ψ⟩ ⟨ψ| is the density matrix.10 Then, the
time evolution of ⟨â⟩ reads:

d
d t

⟨â⟩ = − i

ℏ
Tr (â [HR, ρ]) = −iωr⟨â⟩ ⇒ ⟨â⟩(t) = ⟨â⟩(0)e−iωrt. (3.25)

Here I used the Schrödinger picture, where only the density matrix is time
dependent obeying the von Neumann equation ρ̇ = −i [HR, ρ] /ℏ.11 If the
resonator is not completely isolated there will be a leaking of photons to the
environment. This is modeled with a decay rate κ for ⟨â⟩ (and ⟨â†⟩):12

d
d t

⟨â⟩ = −iωr⟨â⟩ − κ⟨â⟩ ⇒ ⟨â⟩(t) = ⟨â⟩(0)e−(iωr+κ)t. (3.26)

The relative strength of ωr and the decay rate of photons in the cavity (asso-
ciated to n̂), which is twice the decay rate κ for ⟨â⟩ and ⟨â†⟩, is encapsulated
in the quality factor Q:

Q :=
ωr

2κ .
(3.27)

3.3 Coupling molecular spin qubits to lumped-element
resonators

If molecular spin qubits were directly coupled to the transmission line, their
interaction time with the photons sent through the line would be too short

10Given a matrix A, TrA is the sum of its diagonal elements: TrA =
∑

i Aii.
11 d

d t
⟨â⟩ = Tr âρ̇ = − i

ℏ Tr â [HR, ρ] = −iωr⟨
[
â, â†] â⟩ = −iωr⟨â⟩

12This decay is justified with a quantum master equation in the next chapter.
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for them to interact coherently. In order to have longer interaction times,
spins are coupled to photons inside a cavity or resonator. Section 3.3.1 models
the interaction between a single molecular spin qubit and a lumped element
resonator.

Unfortunately, this model can not be applied directly to describe the ex-
periments, as they are not performed on single molecules yet. The coupling
G1 of each molecular spin to the resonator is still too weak for quantum ap-
plications, its enhancement being a subject of current research [6]. However,
it is still possible to test large ensembles of molecules. This gives a collective
coupling GN that enhances the single molecule coupling by a factor

√
N , where

N is the number of spins in the ensemble. The simplest case is an ensemble of
spin 1/2 molecules, like in free radicals, which were reviewed in section 3.3.2.
Finally, section 3.3.3 generalizes the results for higher spin ensembles.

3.3.1 Molecular spin qubit-resonator coupling

A molecular spin qubit couples to a resonator via the interaction of the mag-
netic moment of the molecule with the zero-point magnetic field B0 of the
resonator, that is, the field generated by the vacuum state |0⟩ of the resonator
[7]. Both subsystems exchange excitations at the single qubit-resonator cou-
pling rate G1, with ℏG1 being the matrix element of the Zeeman interaction
(see Eq. (3.2)) generated by the field B0 at the position r of the molecule [8]:

ℏG1 := ⟨g|µBB0(r) · g · Ŝ |e⟩ . (3.28)

Here |g⟩ (ground state) and |e⟩ (excited state) are the eigenstates of the qubit
Hamiltonian of Eq. (3.12), with new labels in order to avoid confusion between
qubit and resonator states. The z axis is defined by the orientation of the static
magnetic field B.

The simplest case is an isotropic spin 1/2, with qubit frequency ωq =

µBgSB/ℏ and coupling:

ℏG1 :=
µBgS
2

⟨g| [B0, x(r)σ̂x +B0, y(r)σ̂y +B0, z(r)σ̂z] |e⟩

=
µBgS
2

[B0, x(r)− iB0, y(r)] ,
(3.29)

that is, only the components of B0(r) perpendicular to B contribute to the
complex coupling. In the case of a single qubit, there is freedom to choose
molecular x axis as the orientation of B0(r) and write a real G1:

ℏG1 :=
µBgSB0,⊥(r)

2
, (3.30)
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where B0,⊥(r) is the projection of B0(r) in the plane perpendicular to B.

Another common situation with a simple description is a molecule with
axial symmetry, with a longitudinal g-value g∥ and a perpendicular g-value g⊥
(see section 3.1.2). If the magnetic field B is applied parallel to the symmetry
axis with g∥, the qubit frequency is ωq = µBg∥B, and the qubit-resonator
coupling is:

ℏG1 :=
µBg⊥B0,⊥(r)

2
. (3.31)

While qubit and resonator exchange excitations at the rate G1, each sub-
system looses coherence. The qubit coherence decays at a rate γ (the inverse
of T2 or Tm, see section 3.1.3) and the resonator field at a rate κ (see section
3.2.2). This is sketched in Fig. 3.4. In order to use the qubit-resonator system
for quantum computing, the qubit must be operated coherently. This requires
that G1 ≫ κ, γ so that both qubit and resonator field remain coherent for long
enough time for G1 to perform the operation. When this condition is fulfilled,
the qubit-resonator system is said to be in the strong coupling regime.

|g⟩

|e⟩

|0⟩

|1⟩

…

|𝑛⟩

…

𝜔q

𝜔r

qubit-resonator 
coupling

𝐺1

decay rate of 
the qubit state

𝛾

Transmissiondecay rate of 
the resonator 

state

𝜅

Figure 3.4: Scheme of the qubit-resonator coupling. The spin/qubit can be in any
complex superposition of its two eigenstates |g⟩ (ground) and |e⟩ (excited). The
energy difference ℏωq between |g⟩ and |e⟩ determines the frequency of operation ωq

of the qubit. The coherence of the encoded state decays with γ (without including
the interaction with the resonator). The resonator can be in any superposition of
its eigenstates, labeled by the number n of photons in the cavity. The state of the
resonator decays into the transmission line at a rate κ. The two subsytems, qubit
and resonator, exchange excitations at a rate G1.
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The quantum Rabi model gives a Hamiltonian for the closed (lossless)
qubit-resonator system [5]:

HRabi =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏσx
(
G1â+G∗

1â
†
)

, (3.32)

where σ̂x and σ̂z are the Pauli matrices from Eq. (3.13). Here I keep a complex
coupling G1 that can be extended to qubit ensembles.

Typically, the qubit-resonator coupling rate |G1| is much lower than both
ωq and ωr. Using the rotating wave approximation, which neglects the counter-
rotating terms in Eq. (3.32) that do not preserve the number of excitations in
the qubit-resonator system,13 yields the so-called Jaynes-Cummings Hamilto-
nian [9, Ch.2]:

HJC =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏ
(
G1σ̂+â+G∗

1σ̂−â
†
)

. (3.33)

Hamiltonian (3.33) is the starting point for any description of the system.
The ground state of the JC model is |ψ0, g⟩ ≡ |0⟩ ⊗ |g⟩, the tensor product of
the Fock state of zero photons in the resonator, |0⟩, and the ground state of
the qubit, |g⟩.14 with energy E0, g = −ℏωq

2 . The excited states are pairs of
hybridized qubit-resonator states |ψn,±⟩, known as polaritons.15 These states
are symmetric (+) and antisymmetric (−) superpositions of the |ψn, g⟩ ≡ |n⟩⊗
|g⟩ and |ψn−1, e⟩ ≡ |n− 1⟩ ⊗ |e⟩ states, where |e⟩ is the excited state of the
qubit.16

The energy gap between the polaritonic states is ℏ times the Rabi frequency
Ωn. Shifting the zero of energy to E0, g, this gives [9, Ch.6]:

En,± = nℏωr +
ℏ∆
2

± ℏΩn

2
, Ωn ≡

√
∆2 + 4n|G1|2. (3.34)

These energies are controlled by the frequency detuning ∆ = ωq − ωr between
the spin and resonator characteristic frequencies. The corresponding polari-
tonic states |ψn,±⟩ are (see Fig. 3.5):

|ψn,±⟩ =
1√
2

(√
1∓ ∆

Ωn
|ψn, g⟩ ±

√
1± ∆

Ωn
|ψn−1, e⟩

)
.

(3.35)

13Writing σ̂x = σ̂+ + σ̂−, this means dropping terms with σ̂+â
† or σ̂−â and keeping the

terms with σ̂+â or σ̂−â
†.

14Obeying σ̂z |g⟩ = − |g⟩ ⇒ |g⟩ =
(
0

1

)
.

15The total number of excitations in the qubit-resonator system, given by the number
operator N̂ := â†â + σ̂+σ̂−, label the pairs of polaritonic states. However, it is common
to find the states labeled with the same letter n as for the number of excitations in the
resonator, instead of a new letter N for the total number of excitations.

16Obeying σ̂z |e⟩ = + |e⟩ ⇒ |e⟩ =
(
1

0

)
.



50 Chapter 3. Background on spin systems coupled to superconducting resonators

In resonance (∆ = 0), these are symmetric and antisymmetric superpositions:

|ψn,±⟩ =
1√
2
(|ψn, g⟩ ± |ψn−1, e⟩)

.
(3.36)
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Figure 3.5: Scheme of the Jaynes-Cummings ‘ladder’. Ignoring the coupling, the
energy of the system is increased by either exciting the resonator with frequency ωr

(up and right in the ladder) or the qubit with frequency ωq (up and left in the ladder).
States with the same total number of excitations, N , are drawn at the same height
in the ladder. In general, these states will have different energies if ∆ = ωq − ωr ̸= 0,
but have the same energy in the resonant case (∆ = 0). This two-fold degeneracy is
lifted if the systems are coupled, with a pair of polaritonic states forming for each N .

3.3.2 Spin 1/2 ensembles

In current experiments, an ensemble of molecules is deposited on the resonator
in order to have an enhanced collective spin-resonator coupling. The case of an
ensemble of magnetic molecules with spin 1/2, like in free radicals, is described
by extending the Jaynes-Cummings model to N qubits:17

HTC =

N∑
i=1

ℏωq, i

2
σ̂z, i + ℏωrâ

†â+
N∑
i=1

ℏ
(
G1, i σ̂+, i â+G∗

1, i σ̂−, i â
†
)

.
(3.37)

17Here, a single-spin operator (like σ̂z, i) written alone is omitting the tensor product
with the identities of the subspaces of the spins with labels different than i: σ̂z, i → σ̂z, i ⊗
(...⊗ Ij ̸=i ⊗ ...).
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This is the Tavis-Cummings Hamiltonian [10]. Imposing that all qubits share
the same frequency of operation ωq and qubit-resonator coupling G1 yields:

HRWADicke =
ℏωq

2
Ŝz + ℏωrâ

†â+ ℏ
(
G1Ŝ+â+G∗

1Ŝ−â
†
)

, (3.38)

with the collective spin operators Ŝz =
∑N

i=1 σ̂z, i and Ŝ± =
∑N

i=1 σ̂±, i. Hamil-
tonian (3.38) can be also seen as the result of using a rotating wave approxi-
mation in the Dicke model [11].

Because these collective operators fulfill the angular momentum algebra,
the Holstein-Primakoff [12, Ch.6] approximation can be applied in the limit
of large N , defining the bosonic operators b̂ := 1√

N
Ŝ− and b̂† := 1√

N
Ŝ+. The

resulting Hamiltonian is just that of two coupled resonators [9, Ch.2]:

Heff = ℏωrâ
†â+ ℏωqb̂

†b̂+ ℏGN

(
â†b̂+ âb̂†

)
, (3.39)

with an enhanced coupling:

GN ≡ |G1|
√
N . (3.40)

Note that if there are any inhomogeneities in the magnetic field felt by each
spin, the decay rate of the spin ensemble coherence will be the inverse of T ∗

2

(see section 3.1.3), which is larger than the rate γ of each individual spin.
Then, the strong coupling condition compares an enhanced GN with an also
larger Γ := 1/T ∗

2 .

Hamiltonian (3.39) can be rewritten in terms of the normal modes ĉ+ and
ĉ−:

Heff = ℏω+ĉ
†
+ĉ+ + ℏω−ĉ

†
−ĉ−, (3.41)

with:

ω± = ωr +
∆

2
± Ω

2
, Ω ≡

√
∆2 + 4G2

N ,

ĉ± =
1√
2

(√
1∓ ∆

Ω
â ±

√
1± ∆

Ω
b̂

)
.

(3.42)

The system is characterized by two frequencies, ω+ and ω−, which are shown
in Fig. 3.6 as a function of the detuning ∆ = ωq − ωr.
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𝜔q

𝜔r

𝐵

𝜔

Figure 3.6: Frequency spectrum relevant to transmission experiments, plotted against
applied magnetic field B. The two branches correspond to transitions with excitation
energies ℏω± (see Eq. (3.42)). When the qubit and the resonator are in resonance
(ωq = ωr), the two frequencies are just ω± = ωr ±GN . The ensemble frequency ωq is
tuned by varying B.

The ground state of the system is |ψ0, g⟩ ≡ |0⟩⊗ |g⟩1⊗ ...⊗ |g⟩N . Similarly,
the |ψn, g⟩ states are the product of the ensemble ground state with the Fock
state of n photons in the resonator. For each n there is also the product of the
resonator state with an excited state of the ensemble, which is a completely
symmetric state in the excitation of any qubit (recall that b̂† = 1√

N

∑
i σ̂+, i):

|ψn,e⟩ ≡ b̂† |ψn, g⟩ = |n⟩ ⊗ 1√
N

N∑
i=1

|e⟩i ⊗
(
...⊗ |g⟩j ̸=i ⊗ ...

)
. (3.43)

These are known as Dicke states, or superradiant modes, which couple to cavity
photons. As in the Jaynes-Cummings Hamiltonian (3.33), the spin-photon
coupling generates two polaritonic states |ψn,±⟩ for each n ≥ 1, superpositions
of |ψn, g⟩ and |ψn−1, e⟩, with the their corresponding creation operators ĉ†+ and
ĉ†−.

Higher excitations of the spin ensemble, which are obtained with the cre-
ation operator b̂† ∝ Ŝ+, are completely symmetric states of more than one
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excited spin. The k-th excitation of the ensemble of N spins is then the com-
pletely symmetric state with mS = −S + k, where S = N/2 is the total spin
of the ensemble. The remaining degrees of freedom of the ensemble, which do
not couple to the resonator, are the 2N − (N + 1) non-symmetric dark states,(
N
k

)
− 1 for each k-th excited symmetric state [11]. This description is valid as

long as N is kept much larger than the number of photons, n [4, Ch.4].

The action of b̂† on the k-th excitation |k⟩ ≡ |S,mS = −S + k⟩ is similar
to the action of the creation operator a† of a quantum harmonic oscillator,
provided that k ≪ N (see Fig. 3.7).

b̂† |k⟩ ≡ 1√
N
Ŝ+ |S,mS = −S + k⟩

=
1√
N

√
S(S + 1)− (−S + k)(−S + k + 1) |S,mS + 1 = −S + k + 1⟩

≡
√
N − k

N

√
k + 1 |k + 1⟩ →

√
k + 1 |k + 1⟩ if k ≪ N .

(3.44)

At low temperatures, k ≪ N when n≪ N , as the origin of the excitations are
the photons in the resonator. Then, the harmonic description for the ensemble
is valid. This is typically the case in microwave transmission experiments.

Figure 3.7: Squared matrix element of b̂† between the k-th and (k+1)-th excitations,
as a function of k/N . The true parabolic dependence (blue solid line) is closely
matched by that of the creation operator (red dashed line) only for small k/N (≤ 0.1).

Let us return again to the Tavis-Cummings Hamiltonian (3.37). It is worthy
pointing out that, even with an inhomogeneous coupling, it is possible to arrive
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at the simple Hamiltonian (3.39) [13]. Assuming again that there is at least a
homogeneous qubit frequency ωq, the collective operators b and b† are redefined
for inhomogeneous coupling as:

b̂ :=
1

GN

N∑
i=1

G∗
1,i σ̂−, i

,
b̂† :=

1

GN

N∑
i=1

G1,i σ̂+, i
,

(3.45)

with GN ≡ G1,RMS

√
N . G1,RMS is the root mean square of the absolute values

of the N different couplings:18

GN ≡ G1,RMS

√
N , G1,RMS =

√√√√ 1

N

N∑
i=1

|G1,i|2

.

(3.46)

Working in the limit of few excited qubits, and restricting the excitations
to generalized Dicke states, the operators b and b† in Eq. (3.45) fulfill ap-
proximately the bosonic commutation relations, arriving again at Hamiltonian
(3.39). This time the superradiant modes are generalized Dicke states of the
form:

|ψn,e⟩ ≡ |n⟩ ⊗ 1

G

N∑
i=1

G1,i |e⟩i ⊗
(
...⊗ |g⟩j ̸=i ⊗ ...

)
.

(3.47)

3.3.3 Generalization to a higher spin ensemble

Let us consider now a spin system with more than two states (d > 2), coming
from either a magnetic ion with electronic spin S > 1/2 or the coupling to a
nuclear spin. The results from previous sections are generalized by working
in the eigenbasis {|α⟩} of the spin Hamiltonian [14]. In this basis, the spin
Hamiltonian takes the simple diagonal form of Eq. (3.15), and the Jaynes-
Cummings Hamiltonian (3.33) is extended to an arbitrary spin system as:

HJC =

d−1∑
α=0

EαX̂
αα + ℏωrâ

†â

+ ℏ
d−1∑
α=0

∑
β>α

(
(G1)βαX̂

βα â+ (G1)αβX̂
αβ â†

)
,

(3.48)

where G1 is an Hermitian matrix encoding the coupling strengths of the dif-
ferent transitions, and X̂αβ ≡ |α⟩ ⟨β| are Hubbard operators, also known

18If the absolute values of all couplings are the same in Eq. (3.46), the definition from Eq.
(3.40) is recovered.
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as level-shift operators [15, Ch.I.3], a generalization of the projection oper-
ators. For instance, for S = 1/2 (d = 2): X̂1,0 = |1⟩ ⟨0| = |e⟩ ⟨g| = σ̂+ and
X̂0,1 = |0⟩ ⟨1| = |g⟩ ⟨e| = σ̂−.19

Similarly, the Tavis-Cummings Hamiltonian (3.37) can be generalized for
an ensemble of arbitrary spin systems:

HTC =
N∑
i=1

d−1∑
α=0

EαX̂
α,α
i + ℏωrâ

†â

+ ℏ
N∑
i=1

d−1∑
α=0

∑
β>α

(
(G1, i)βαX̂

β,α
i â+ (G1, i)αβX̂

α,β
i â†

)
,

(3.49)

where all spins are assumed to have the same energy spectrum {Eα}, but the
spin-index dependence in the couplings (G1, i)αβ is kept.

3.4 Dispersive regime

Consider now the situation in which qubit and resonator have very different
frequencies, hindering the exchange of excitations between them and therefore
suppressing a decoherence mechanism of the qubit. This regime is known as
the dispersive regime [16]. Taking the limit |G1/∆| ≪ 1 in the definition of
the eigenstates of the Jaynes-Cummings Hamiltonian (3.35) gives:

|ψn,+⟩ ≃


∣∣∣∣G1

√
n

∆

∣∣∣∣ |ψn, g⟩+ |ψn−1, e⟩ if ∆ > 0

|ψn, g⟩+
∣∣∣∣G1

√
n

∆

∣∣∣∣ |ψn−1, e⟩ if ∆ < 0

|ψn,−⟩ ≃


|ψn, g⟩ −

∣∣∣∣G1
√
n

∆

∣∣∣∣ |ψn−1, e⟩ if ∆ > 0∣∣∣∣G1
√
n

∆

∣∣∣∣ |ψn, g⟩ − |ψn−1, e⟩ if ∆ < 0 .

(3.50)

In resonance (∆ = 0), these states were the completely hybridized qubit-
resonator states from Eq. (3.36), with a decay rate (κ+ γ)/2. Conversely, the
states in Eq. (3.50) have predominantly an excitation in either the qubit or
the resonator.

Let us assume ∆ > 0 in what follows. The state |ψn,+⟩ becomes mainly
a qubit-only excitation in the dispersive regime, while the state |ψn,−⟩ is in

19Following the notation used in previous sections for the ground and excited states of
a spin 1/2. Note that in that case G1 was already Hermitian, with (G1)10 → G1 and
(G1)01 → G∗

1
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turn mainly a resonator-only excitation. Then |ψn,+⟩ has a decay rate Γn,+ ≃

γ+
(
g1

√
n

∆

)2
κ, while |ψn,−⟩ has a decay rate Γn,− ≃ κ+

(
g1

√
n

∆

)2
γ, with γ and

κ exchanging roles [17, 18]. |ψn,+⟩ has an enhanced lifetime in the dispersive
regime compared to the resonant case. This is known as the Purcell effect [19].
Besides, the qubit has a small influence on state |ψn,−⟩. The following sections
describe how the state of the qubit can be inferred by measuring its effect on
|ψn,−⟩.

3.4.1 Qubit coupled to a resonator

Using the rotating wave approximation, the starting point is Hamiltonian
(3.33). In the dispersive regime, the spin-resonator coupling is a perturba-
tion V̂ of the Hamiltonian H0 describing the two isolated systems:

HJC ≡ H0+V̂ ,

H0 =
ℏωq

2
σ̂z + ℏωrâ

†â,

V̂ = ℏ
(
G1σ̂+â+G∗

1σ̂−â
†
)

.

(3.51)

Now, a Schrieffer-Wolff transformation H ′ = eθ̂SW H e−θ̂SW is applied, chang-
ing to a basis where H becomes diagonal to first order in the perturbation V̂ .
The anti-Hermitian20 generator θ̂SW of the transformation is chosen so as to
fulfill the condition V̂ +

[
θ̂SW,H0

]
= 0, obtaining [20]:

H ′ = H0+
1

2

[
θ̂SW, V̂

]
+

1

3

[
θ̂SW,

[
θ̂SW, V̂

]]
+ ... (3.52)

In this case, the condition is fulfilled by (note the minus sign) [16]:

θ̂SW =
1

∆

(
G1σ̂+â−G∗

1σ̂−â
†
)

, (3.53)

where ∆ ≡ ωq − ωr is the frequency detuning between the qubit and the
resonator. In the dispersive regime, this detuning is much larger than the
qubit-resonator coupling (|G1| ≪ |∆|). Therefore, the expansion of H ′ can be
truncated to the lowest order in θ̂SW (lowest order in G1/∆):

H ′ ≃ H0+
1

2

[
θ̂SW, V̂

]
, (3.54)

giving (plus an omitted constant term):21

H ′
JC ≃ ℏ

2
(ωq + χ) σ̂z + ℏ (ωr + χσ̂z) â

†â, (3.55)

20The generator θ̂SW is anti-Hermitian to render eθ̂SW unitary.
21I used Eq. (3.54) combined with [â, â†] = 1, [σ̂+, σ̂−] = σ̂z, 2σ̂+σ̂− = I + σ̂z and

2σ̂−σ̂+ = I− σ̂z.
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with:

χ :=
|G1|2

∆ .
(3.56)

The term (ωr+χσ̂z)â
†â implies that the frequency of the resonator depends

on the state of the qubits: the bare resonator frequency ωr is shifted by either
+χ or −χ. Thus, the state of the qubits can be inferred from a measurement
of the resonator. The frequency of operation of the qubit is also shifted by the
coupling: ωq 7→ ωq + χ. However, this shift does not depend on the state of
the resonator.

Equation (3.55) is valid as long as the condition for the rotating wave
approximation (|∆| ≪ ωq + ωr) assumed in the Jaynes-Cummings model (Eq.
(3.33)) is fulfilled. However, a system with a large qubit-resonator coupling
requires an also large detuning to be in the dispersive regime, and this may not
be a good approximation anymore. A similar derivation that is valid for the
whole dispersive regime is obtained by including the counter-rotating terms
from the Rabi Hamiltonian (3.32) in the perturbation V̂ [21]:

V̂ = ℏ (G1σ̂+ +G∗
1σ̂−)

(
a+ a†

)
. (3.57)

Using the extended generator:

θ̂SW =
1

∆

(
G1σ̂+â−G∗

1σ̂−â
†
)
+

1

∆+ 2ωr

(
G1σ̂+â

† −G∗
1σ̂−â

)
, (3.58)

yields:22

H ′
Rabi ≃

ℏ
2

(
ωq + χ′) σ̂z + ℏ

(
ωr + χ′σ̂z

)
â†â+

ℏ
2
χ′σ̂z

[
a2 + (a†)2

]
, (3.59)

with:

χ′ := |G1|2
(

1

∆
+

1

∆+ 2ωr

)
=:

|G1|2

∆′ .
(3.60)

Here ∆′ = F (∆/ωr)∆ is a modified detuning, with:

F (x) :=
1 + 1

2x

1 + x .
(3.61)

If the cavity photons are weakly perturbed by the interaction with the
spins, second-order photons processes can be neglected [14], dropping the term
with a2 and (a†)2 in Hamiltonian (3.59). This leaves the same terms obtained
with the rotating wave approximation, now with a modified detuning ∆′ (and
dispersive shift χ′). For a small detuning ∆ ≪ ωr (x = ∆/ωr ≪ 1), ∆′ is
similar to ∆. However, a very large detuning (x ≫ 1) gives ∆′ ≃ ∆/2, and
the rotating wave approximation may overestimate |G1| by a factor

√
2.

22Same as for Eq. (3.55). I also used that σ̂2
+ = σ̂2

− = 0.
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3.4.2 Spin 1/2 ensembles

This section extends the description of the dispersive regime to ensembles of
many spin 1/2 systems. Assuming the rotating wave approximation is valid,
the starting point is the Tavis-Cummings Hamiltonian (3.37):

HTC ≡ H0+V̂ ,

H0 =

N∑
i=1

ℏωq, i

2
σ̂z, i + ℏωrâ

†â ,

V̂ =
N∑
i=1

ℏ
(
G1,iσ̂+, iâ+G∗

1,iσ̂−, iâ
†
)

.

(3.62)

The generator of the Schrieffer-Wolff transformation for the Tavis-Cummings
Hamiltonian is [21]:

θ̂SW =
N∑
i=1

1

∆i

(
G1,iσ̂+, iâ−G∗

1,iσ̂−, iâ
†
)

,
(3.63)

where ∆i ≡ ωq, i − ωr is the frequency detuning between the qubit and the
resonator. Using once more Eq. (3.54) yields the generalization to N qubits
of Hamiltonian (3.55):

H ′
TC ≃ ℏ

2

N∑
i=1

(ωq, i + χi) σ̂z, i + ℏ

(
ωr +

N∑
i=1

χiσ̂z, i

)
â†â

+ ℏ
N∑
i=1

∑
j>i

(
Jij σ̂+, iσ̂−, j + J∗

ij σ̂−, iσ̂+, j

)
,

(3.64)

with the parameters:

Jij :=
G1,iG

∗
1,j

2

(
1

∆i
+

1

∆j

)
,

χi := Jii ≡
|G1,i|2

∆i .
(3.65)

If all qubits have roughly the same coupling G1,i, the dispersive shift is
enhanced by the number of qubits N . Also, a new term appears: a transverse
exchange interaction between the qubits of strength |Jij | just by being coupled
to the same resonator [16, 22].

As with single qubits, a Hamiltonian that is valid for the whole dispersive
regime is obtained by including the counter-rotating terms in the perturbation
V̂ :

V̂ = ℏ
N∑
i=1

(
G1,iσ̂+, i +G∗

1,iσ̂−, i

) (
a+ a†

)
. (3.66)
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The generator is now:

θ̂SW =

N∑
i=1

[
1

∆i

(
G1,iσ̂+, i â−G∗

1,iσ̂−, i â
†
)

+
1

∆i + 2ωr

(
G1,iσ̂+, i â

† −G∗
1,iσ̂−, i â

)]
,

(3.67)

giving:

H ′ ≃ ℏ
2

N∑
i=1

(
ωq, i + χ′

i

)
σ̂z, i + ℏ

(
ωr +

N∑
i=1

χ′
iσ̂z, i

)
â†â

+
ℏ
2

N∑
i=1

χ′
iσ̂z, i

[
a2 + (a†)2

]
+ 4ℏ

N∑
i=1

∑
j>i

(
2Jij − J ′

ij

)
σ̂x′, i(φi) σ̂x′, j(φj)

,

(3.68)

with:

σ̂x′, i(φi) := cos (φi) σ̂x, i − sin (φi) σ̂y, i , G1,i := |G1,i|eiφi , (3.69)

and:

Jij :=
|G1,i||G1,j |

2

(
1

∆i
+

1

∆j

)
,

J ′
ij :=

|G1,i||G1,j |
2

(
1

∆i
+

1

∆j
+

1

∆i + 2ωr
+

1

∆j + 2ωr

)
=:

|G1,i||G1,j |
2

(
1

∆′
i

+
1

∆′
j

)
,

χ′
i := J ′

ii = |G1,i|2
(

1

∆i
+

1

∆i + 2ωr

)
=:

|G1,i|2

∆′
i .

(3.70)

Here a modified detuning ∆′
i := F (∆i/ωr)∆i was defined for each qubit (recall

the definition of F (x) in Eq. 3.61)).

Equation (3.68) is similar to the single qubit Hamiltonian (3.59), but with
an enhanced dispersive shift and a qubit-qubit interaction mediated by the
resonator. As in the single qubit case, the use of the rotating wave approx-
imation changes the dispersive shift. The type of photon-mediated spin-spin
interactions is also different [21].23

23An isotropic XY interaction in Eq. (3.64) if the rotating wave approximation is assumed.
An ‘Ising-like’ interaction in Eq. (3.68) without it.
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3.4.3 Generalization to higher spin systems

For a higher spin system (d > 2), only a single qudit is considered in order to
simplify the calculation (see Eq. (3.48)). The previous section already showed
that the effect of having multiple particles is that the total dispersive shift
increases linearly with the number of spins, N , and that these N spins are
effectively coupled through the resonator.

A qudit with d states can have up to d(d− 1) different non-zero transition
frequencies (positive and negative), and up to the same number of detunings
from the resonator frequency ωr. For the transition between states |α⟩ and |β⟩,
this detuning is:

∆αβ =
Eα − Eβ

ℏ
− ωr. (3.71)

In general, the condition for the rotating wave approximation will not hold
simultaneously for all transitions. The ensemble-resonator coupling of Eq.
(3.48) must be rewritten to include the counter-rotating terms:

V̂ = ℏ
d−1∑
α=0

∑
β ̸=α

ΛαβX̂
α,β
(
a+ a†

)
,

(3.72)

with Λαβ Hermitian. The generator of the Schrieffer-Wolff transformation is
now [14]:

θ̂SW =
d−1∑
α=0

∑
β ̸=α

ΛαβX̂
α,β

(
1

∆αβ
â+

1

∆αβ + 2ωr
â†
)

,
(3.73)

and one obtains:

H′ ≃
d−1∑
α=0

EαX̂
α,α + ℏωrâ

†â

+ ℏ
d−1∑
α=0

∑
β1 ̸=α

∑
β2 ̸=α

(
Jαβ1β2 + J ′

αβ1β2
â†â
)
X̂β1,β2

+
ℏ
2

d−1∑
α=0

∑
β1 ̸=α

∑
β2 ̸=α

(
1

∆β1α
+

1

∆β2α + 2ωr

)(
Λβ1αΛαβ2 â

2X̂β1,β2 + h.c.
)

.

(3.74)
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Here I defined the parameters:

Jαβ1β2 :=
Λβ1αΛαβ2

2

(
1

∆β1α
+

1

∆β2α

)
,

J ′
αβ1β2

:=
Λβ1αΛαβ2

2

(
1

∆β1α
+

1

∆β2α
+

1

∆β1α + 2ωr
+

1

∆β2α + 2ωr

)
=:

Λβ1αΛαβ2

2

(
1

∆′
β1α

+
1

∆′
β2α

)
,

(3.75)

with the modified detunings ∆′
βα := F (∆βα/ωr)∆βα.

An ensemble weakly perturbed by the interaction with the cavity can be
described by keeping only the dominant diagonal terms with â†â over â2 or
(â†)2, and with β1 = β2:

H′ ≃
d−1∑
α=0

(Eα + χα) X̂
α,α + ℏ

(
ωr +

d−1∑
α=0

χ′
αX̂

α,α

)
â†â , (3.76)

with the dispersive shifts χα and χ′
α defined in terms of Jαβ1β2 and J ′

αβ1β2
:

χα :=
∑
β ̸=α

|Λαβ|2

∆αβ
=
∑
β ̸=α

Jβαα ,

χ′
α :=

∑
β ̸=α

|Λαβ|2

∆′
αβ

=
∑
β ̸=α

J ′
βαα .

(3.77)

The results obtained for a qubit in section 3.4.1 are retrieved by taking
d = 2 (which implies that β1 = β2) and following the definitions for a spin 1/2:
X̂1,0 = σ̂+, Λ1,0 = G1, ωq = E1−E0

ℏ .
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Chapter 4

Measurement of the quantum
processor

The quantum processor described in the previous chapter is not completely
isolated: it interacts with its environment. In particular, a description of its
interaction with the microwave photons that are sent through the transmission
line to measure the properties of the circuit is needed. This is the focus of this
chapter.

First, a brief description of the transmission line is given in section 4.1.
Input-output theory (section 4.2) relates the signals that are sent through
the line to the evolution of some coupled quantum system. The effect of the
transmission line in this evolution is modeled with a quantum master equation
(section 4.3). In the remaining sections, this formalism is applied to different
quantum systems, from lumped-element resonators to spin ensembles.

4.1 Transmission line

A coplanar transmission line consists of a central line with a ground plane at
each side (see Fig. 4.1). This is modeled as two parallel conductors — central
line and ground — with voltages and currents varying in magnitude and phase
over their length. An infinitesimal piece of this conductor pair, with length
∆z, can be treated as a lumped element with infinitesimal changes in voltage
and current (see Fig. 4.2). Each of these pieces is assigned a series resistance
and inductance, and shunt conductance and capacitance per unit length.

In a superconducting line, the series resistance and shunt conductance can
be considered to be small, and it can be described by an ideal lossless line.
This is modeled with a series inductance l per unit length, representing the
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total self-inductance of the two conductors, and a shunt capacitance c per
unit length between them if they are in close proximity (see Fig. 4.2). The
impedance of this line is Z0 =

√
l/c.

Figure 4.1: Drawing of a superconducting transmission line. The central line and the
ground planes at the sides are made of a superconducting material deposited on top
of an isolating substrate (blue).

Figure 4.2: Lumped element circuit representing an infinitesimal segment of the trans-
mission line of Fig. 4.1.



4.1. Transmission line 67

4.1.1 The classical transmission line

The Kirchhoff’s voltage and current laws for each lumped element are:

v(z, t)− l∆z
∂i(z, t)

∂t
− v(z +∆z, t) = 0,

i(z, t)− c∆z
∂v(z +∆z, t)

∂t
− i(z +∆z, t) = 0.

(4.1)

Taking the limit ∆z → 0 yields a pair of differential equations — the telegra-
pher equations of a lossless line — for voltage and current in the line:

∂v(z, t)

∂z
= −l ∂i(z, t)

∂t
,

∂i(z, t)

∂z
= −c ∂v(z, t)

∂t
,

(4.2)

which for solutions of the form v(z, t) = V (z)eiωt and i(z, t) = I(z)eiωt gives:

∂2V (z)

∂z2
= −|k|2 V (z),

∂2I(z)

∂z2
= −|k|2 I(z),

(4.3)

where |k| = ω
√
lc is the wave vector modulus. This means that the one-

dimensional line has two solutions with ±|k| and phase velocity vp = ±ω/|k| =
±1/

√
lc for each frequency ω.

Kirchhoff’s laws (Eq. (4.1)) can be rewritten in terms of the flux ϕ(z, t) and
the charge q(z, t), which are related to v(z, t) = ϕ̇(z, t) and i(z, t) = q̇(z, t), by
integrating in time the voltage law, and then combined into a single equation
for ϕ(z, t):

ϕ̈(z, t) =
( vp
∆z

)2 {
[ϕ(z +∆z, t)− ϕ(z, t)] + [ϕ(z −∆z, t)− ϕ(z, t)]

}
.

(4.4)

This is just the discrete version of a wave equation for ϕ(z, t) with phase
velocity vp:

∂2ϕ(z, t)

∂t2
= v2p

∂2ϕ(z, t)

∂z2 .
(4.5)

Defining ϕn(t) = ϕ(z, t) and ϕn±1(t) = ϕ(z ±∆z, t), Eq. (4.4) is now:

ϕ̈n(t) =
( vp
∆z

)2 {
[ϕn+1(t)− ϕn(t)] + [ϕn−1(t)− ϕn(t)]

}
.

(4.6)
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These are the equations of motion that can be derived from the Lagrangian LB

or Hamiltonian HB of an array of N coupled resonators with periodic boundary
conditions (ϕN+1 = ϕ1):

LB =
1

2
c∆z

N∑
n=1

ϕ̇2n − 1

2

1

l∆z

N∑
n=1

(ϕn+1 − ϕn)
2 ,

HB =
1

2

1

c∆z

N∑
n=1

q2n +
1

2

1

l∆z

N∑
n=1

(ϕn+1 − ϕn)
2 ,

(4.7)

where the charge qn := ∂ LB /∂ϕ̇n is the conjugate canonical variable of the
flux ϕn.

Let us consider the limit ∆z → 0. The charge density ρ(z) is defined as:

ρ(z) := lim
∆z→0

qn
∆z .

(4.8)

Taking the limit ∆z → 0 in Eq. (4.7) gives [1, Ch.11]:1

LB =

∫
dz LB(z) =

∫
dz

[
1

2
c ϕ̇2(z)− 1

2l

(
∂ϕ(z)

∂z

)2
]

,

HB =

∫
dzHB(z) =

∫
dz

[
1

2c
ρ2(z) +

1

2l

(
∂ϕ(z)

∂z

)2
]

,

(4.9)

where LB(z) and HB(z) are the Lagrange and Hamilton densities. ϕ(z) and
ρ(z) are canonically conjugate fields related by ρ(z) = δ LB /δϕ̇(z).2

4.1.2 Quantization of the transmission line

The quantization of the LC resonator was described in section 3.2.2. Similarly,
here the pairs of conjugate canonical variables ϕn and qn are promoted to
pairs of non-commuting operators ϕ̂n and q̂n with [ϕ̂m, q̂n] = iℏδmn. In the
limit ∆z → 0, the pair of ϕ̂(z) and ρ̂(z) fulfills that [ϕ̂(z), q̂(z′)] = iℏδ(z− z′),3

1Rewrite LB and HB in Eq. (4.7) in terms of ϕ̇n, (ϕn+1 − ϕn)/∆z and qn/∆z. This
leaves a factor ∆z inside the sums in n. Taking the limit ∆z → 0 gives

∑
n(∆z) →

∫
dz

and: ϕ̇n → ϕ̇(z),
ϕn+1 − ϕn

∆z
→ ∂ϕ(z)

∂z
,

qn
∆z

→ ρ(z).

2 δ LB

δϕ̇(z)
is a functional derivative, defined as lim∆z→0

(
LB[ϕ̇(z +∆z)]− LB[ϕ̇(z)]

∆z

)
.

3[ϕ̂(z), ρ̂(z′)] = lim∆z→0

[
ϕ̂m,

q̂n
∆z

]
= lim∆z→0

(
iℏδmn

∆z

)
= iℏδ(z − z′).
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and the Hamilton density HB(z) reads:

HB(z) =
1

2c
ρ̂2(z) +

1

2l

(
∂ϕ̂(z)

∂z

)2

. (4.10)

Let us define the Fourier transforms of the field operators ϕ̂(z) and ρ̂(z):

ϕ̂k :=
1√
L

∫ l

0
dz eikzϕ̂(z), ρ̂k :=

1√
L

∫ l

0
dz e−ikz q̂(z), (4.11)

where L = N∆z is the length of the line. Then:

ϕ̂(z) =
1√
L

∑
k

e−ikzϕ̂k, q̂(z) =
1√
L

∑
k

eikzρ̂k, (4.12)

with k = 2πm/L, where m is an integer. Inserting the definitions of Eq. (4.12)
in Eq. (4.10) gives a Hamiltonian that is a sum of independent oscillators with
different k:

HB =

∫
d z HB(z) =

∑
k

(
1

2c
ρ̂kρ̂−k +

1

2l
k2ϕ̂kϕ̂−k

)
. (4.13)

The creation and annihilation operators â†k and âk can be defined for each
oscillator:

âk :=

√
|k|

2ℏZ0

(
ϕ̂k + i

Z0

|k|
ρ̂−k

)
, â†k :=

√
|k|

2ℏZ0

(
ϕ̂−k − i

Z0

|k|
ρ̂k

)
, (4.14)

to obtain:
HB =

∑
k

ℏωk â
†
kâk + constant. (4.15)

The sum in k includes positive and negative wave numbers. Each pair +|k|,
−|k| shares the same positive frequency ωk = |k|/

√
lc. Then the sum in k can

be rewritten as a sum in frequency:4

HB =
∑
ω

ℏω
(
r̂†ω r̂ω + l̂†ω l̂ω

)
+ constant, (4.16)

where the subscript k in ωk has been dropped. Hamiltonian (4.16) distinguishes
between right- (âk → r̂ω , k > 0) and left-moving (âk → l̂ω, k < 0) photons
with different operators to highlight that they commute ([r̂ω, l̂

†
ω] = [âk, â

†
−k] =

4The constant in HB (the zero-point energy) diverges because there are infinitely many
modes. This does not matter in an experiment, where only energy differences are measured
[2, Ch.4].
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0): the two types of photons have the same frequency but opposite momentum,
therefore they are represented by different quantum states.

An infinite transmission line will have all possible values for k (and ω)
instead of just those that fulfill the condition k = 2πm/L. Then, the sum in
Eq. (4.16) is replaced by an integral over ω:5

HB =

∫
dω ℏω

(
r̂†ω r̂ω + l̂†ω l̂ω

)
+ constant. (4.17)

4.2 Input-output theory

In the superconducting chip, the transmission line is coupled to a quantum
system like a superconducting resonator or an ensemble of magnetic molecules
(see Fig. 4.3a). This quantum system is probed by sending photons through
the line, which are scattered by the system. The effect that this has on the
dynamics of the outgoing photons in the system-line setup is obtained by mea-
suring the transmission and reflection of the chip.

𝐽(𝜔)

𝐽(𝜔)

Quantum

system

𝐽(𝜔)
𝜔

𝑟in

𝑟in

𝑙in

𝑙in

𝑙out

𝑙out

𝑟out

𝑟out

𝑟out

𝑟out

𝑟in
𝑙in 𝑙out

𝑙out𝑟in
𝑙in

Figure 4.3: (a) Drawing of a quantum system coupled to a transmission line with a
spectral function J(ω). (b, c) Input-output for (b) side coupled and (c) interrupting
systems. Note that in the case of interrupting systems the roles of ⟨r̂out⟩ and ⟨l̂out⟩
are exchanged in Eq. (4.24). Lumped-element resonators read out via a transmission
line are an example of a side coupled system.

5With r̂ω and l̂ω redefined as lim∆ω→0

(
r̂ω
∆ω

)
and lim∆ω→0

(
l̂ω
∆ω

)
.
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The general Hamiltonian describing a quantum system and a discrete col-
lection of resonant modes in waveguide, with an interaction between the two
subsystems, can be written as:

H = HS+HB+H1

= HS+
∑
n

ℏωn

(
r̂†ωn

r̂ωn + l̂†ωn
l̂ωn

)
+ ℏŜ

∑
n

G1(ωn)
(
r̂†ωn

+ l̂†ωn
+ r̂ωn + l̂ωn

)
,

(4.18)

where the index n labels the modes (ωn) of the waveguide. Ŝ is the system
coupling operator, with a non-chiral — the same for both types of photons —
coupling G1(ωn).6 In the continuous limit, a spectral function J(ω) is defined
[3, Ch.17]:7

J(ω) = lim
∆ω→0

(
1

∆ω

∑
ω<ωn<ω+∆ω

|G1(ωn)|2
)

.
(4.19)

With this definition, the continuous limit of Eq. (4.18) reads:

H = HS+HB+H1

= HS+

∫
dω ℏω

(
r̂†ω r̂ω + l̂†ω l̂ω

)
+ ℏŜ

∫
dω

√
J(ω)

(
r̂†ω + l̂†ω + r̂ω + l̂ω

)
,

(4.20)

4.2.1 Input-output relations

The time evolution of the expectation values of r̂ω and l̂ω are computed as-
suming decoupled initial conditions:

d
d t

⟨r̂ω⟩(t) = −iω⟨r̂ω⟩(t)− i
√
J(ω)⟨Ŝ⟩(t),

d
d t

⟨l̂ω⟩(t) = −iω⟨l̂ω⟩(t)− i
√
J(ω)⟨Ŝ⟩(t).

(4.21)

The solutions to these equations are:

⟨r̂ω⟩(t1)eiωt1 = ⟨r̂ω⟩(t0)eiωt0 − i
√
J(ω)

∫ t1

t0

d τ⟨Ŝ⟩(τ)eiωτ ,

⟨l̂ω⟩(t1)eiωt1 = ⟨l̂ω⟩(t0)eiωt0 − i
√
J(ω)

∫ t1

t0

d τ⟨Ŝ⟩(τ)eiωτ ,
(4.22)

where t0 marks the time in which the incident wave packet is injected in the
line, and t1 is any time after the interaction between the wave packet and

6The subscript in G1(ωn) indicates that it is the coupling for a single system, similar to
the single spin-resonator coupling that was derived in section 3.3 of chapter 3.

7In reference [3, Ch.17] the spectral function J(ω) is called the ‘strength function’ g(ω).
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the scatterers has already occurred. The expectation values of the input and
output fields are defined as [4, Ch.3]:

⟨r̂in⟩(t) :=
∫ ∞

0

dω√
2π

⟨r̂ω⟩(t0)e−iω(t−t0),

⟨l̂in⟩(t) :=
∫ ∞

0

dω√
2π

⟨l̂ω⟩(t0)e−iω(t−t0),

⟨r̂out⟩(t) :=
∫ ∞

0

dω√
2π

⟨r̂ω⟩(t1)e−iω(t−t1),

⟨l̂out⟩(t) :=
∫ ∞

0

dω√
2π

⟨l̂ω⟩(t1)e−iω(t−t1).

(4.23)

Then, taking t0 → −∞ and t1 → ∞, Eq. (4.22) reads:

⟨r̂out⟩(t) = ⟨r̂in⟩(t)− i

∫ ∞

0

dω√
2π
e−iωt

√
J(ω)

∫ ∞

−∞
d τeiωτ ⟨Ŝ⟩(τ),

⟨l̂out⟩(t) = ⟨l̂in⟩(t)− i

∫ ∞

0

dω√
2π
e−iωt

√
J(ω)

∫ ∞

−∞
d τeiωτ ⟨Ŝ⟩(τ).

(4.24)

Equation (4.24) is a central result, linking the input and output fields through
the dynamics of the operator Ŝ that describes a system that is side coupled to
the transmission line. If the system interrupts the line, then the roles of ⟨r̂out⟩
and ⟨l̂out⟩ are exchanged (see Figs. 4.3b-c).

Port 1 in Figs. 4.3b-c is the input port. The scattering parameters S21
(transmission) and S11 (reflection) from Eq. (2.1) in chapter 2 can be written
in terms of the input and output fields as:

S21(t) :=
⟨r̂out⟩(t)
⟨r̂in⟩(t) ,

S11(t) :=
⟨l̂out⟩(t)
⟨r̂in⟩(t) ,

(4.25)

with ⟨l̂in⟩(t) = 0 (no input in port 2). Then, from Eq. (4.24) it follows that
S21 = 1 + S11.

4.2.2 Coherent drive

A simple form of the input-output relations in Eq. (4.24) is obtained if the
input field is a coherent drive of frequency ωd:

⟨r̂in⟩(t) = αine
−iωdt. (4.26)

The coupling of Ŝ to this field is:8

H1 = ℏ Ŝ
(√

2πJ(ωd)αine
−iωdt

)
. (4.27)

8Comparing with the coupling term in Hamiltonian (4.20), note the
√
2π factor here from

the definition of the input fields in Eq. (4.23).
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Once the transient state of ⟨Ŝ⟩ decays, only the driven state remains:

⟨Ŝ⟩(t) ≃ χŜ(ωd)
√
2πJ(ωd)αine

−iωdt, (4.28)

where the susceptibility χŜ(ωd) encodes the frequency dependence of the sys-
tem response to the coherent driving. Inserting this expression for ⟨Ŝ⟩(t) in
the input-output relations yields:

⟨r̂out⟩(t) = ⟨r̂in⟩(t)− 2πJ(ωd)χŜ(ωd)⟨r̂in⟩(t),

⟨l̂out⟩(t) = ⟨l̂in⟩(t)− 2πJ(ωd)χŜ(ωd)⟨r̂in⟩(t),
(4.29)

where J(ωd) is considered to be a smooth function. Then J(ωd) ≃ J(ΩS) for
driving frequencies ωd close to a resonant frequency ΩS of the system.

A typical experiment inputs a coherent drive into the system, obtaining the
input-output relations from Eq. (4.29). All that is needed is the susceptibility
χŜ(ωd) for each particular system and coupling operator Ŝ. Ignoring the dissi-
pation of the quantum system into the line (or other pathways of dissipation),
the function χŜ(ωd) diverges whenever ωd is in resonance with a frequency
ΩS of the system. However, this is not what happens in experiments: every
resonance has a finite height and width due to dissipation. The next section
describes how this dissipation is modeled in a quantum system.

4.3 Dissipation of the quantum system through the
transmission line

Hamiltonian (4.20) allows calculating the time evolution of the density matrix
ρ that describes the coupled waveguide and quantum system:

ρ̇ = − i

ℏ
[H, ρ] = − i

ℏ
[HS, ρ]−

i

ℏ
[HB, ρ]−

i

ℏ
[H1, ρ] . (4.30)

A description of the evolution of the quantum system needs a self-contained
equation for the density matrix of the quantum system alone (ρS) — the quan-
tum master equation — which will inevitably be approximate. The effect of
the coupling to the transmission line will enter in this equation as a decay of
the elements of ρS to those in thermal equilibrium at the temperature T of the
transmission line.



74 Chapter 4. Measurement of the quantum processor

4.3.1 Time-dependent perturbation theory in the interaction
picture

The unperturbed Hamiltonian H0 contains only the terms of the quantum
system (HS) and the transmission line (HB):

H0 := HS+HB . (4.31)

The evolution of the density matrix is then given by:

ρ̇ = − i

ℏ
[H0, ρ]−

i

ℏ
[H1, ρ] . (4.32)

The interaction picture defines a new density matrix ρ(I):

ρ(I)(t) := eiH0 t/ℏρ(t)e−iH0 t/ℏ. (4.33)

This change removes the first term from Eq. (4.32):9

ρ̇(I) =
i

ℏ

[
H0, ρ

(I)
]
+ eiH0 t/ℏρ̇ e−iH0 t/ℏ = − i

ℏ

[
H1(t), ρ

(I)
]
,

(4.34)

but now H1 evolves, according to the interaction picture, with H0:

H1(t) = eiH0 t/ℏ H1 e
−iH0 t/ℏ. (4.35)

The formal solution to Eq. (4.34) is found by integration:

ρ(I)(t) = ρ(I)(t0)−
i

ℏ

∫ t

t0

d t′
[
H1(t

′), ρ(I)(t′)
]
.

(4.36)

9This step uses the product rule of differentiation combined with the fact that H0 com-
mutes with e±iH0 t/ℏ (which are only functions of H0 and time) but not with ρ or ρ̇:

ρ̇(I) =
d
d t

(
eiH0 t/ℏρ(t)e−iH0 t/ℏ

)
= (iH0)ρ

(I) + eiH0 t/ℏρ̇ e−iH0 t/ℏ + ρ(I)(−iH0)

=
i

ℏ

[
H0, ρ

(I)
]
+ eiH0 t/ℏρ̇ e−iH0 t/ℏ.

Inserting Eq. (4.32) in the second term and using again that H0 commutes with e±iH0 t/ℏ

but not with ρ̇ or H1 gives:

eiH0 t/ℏρ̇ e−iH0 t/ℏ = − i

ℏ
eiH0 t/ℏ [H0, ρ] e

−iH0 t/ℏ − i

ℏ
eiH0 t/ℏ [H1, ρ] e

−iH0 t/ℏ

= − i

ℏ

[
H0, ρ

(I)
]
− i

ℏ

[
eiH0 t/ℏ H1 e

−iH0 t/ℏ, ρ(I)
]
.
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This equation can be approximated by an infinite series of powers of H1 by
iteration.10 If the interaction term is assumed to be small, the series can be
truncated to second order in H1:

ρ(I)(t) = ρ(I)(t0)−
i

ℏ

∫ t

t0

d t′
[
H1(t

′), ρ(I)(t0)−
i

ℏ

∫ t′

t0

d t′′
[
H1(t

′′), ρ(I)(t′′)
]]

≃ ρ(I)(t0)−
i

ℏ

∫ t

t0

d t′
[
H1(t

′), ρ(I)(t0)
]

− 1

ℏ2

∫ t

t0

d t′
∫ t′

t0

d t′′
[
H1(t

′),
[
H1(t

′′), ρ(I)(t0)
]]

,
(4.37)

where ρ(I)(t′′) was approximated by ρ(I)(t0) in the last term to keep an equation
of second order in H1. The time derivative of Eq. (4.37) is:

ρ̇(I)(t) = − i

ℏ

[
H1(t), ρ

(I)(t0)
]
− 1

ℏ2

∫ t

t0

d t′
[
H1(t),

[
H1(t

′), ρ(I)(t0)
]]

,
(4.38)

where all the time-dependence is inside the evolution of H1.

4.3.2 Tracing the line

The trace of ρ̇(I) is the sum of all diagonal elements of ρ̇(I) in any basis:

Tr ρ̇(I) =
∑
n

∑
m

ρ̇(I)nmδnm =
∑
n

ρ̇(I)nn , (4.39)

where n (m) is an index that labels the basis states. An equation for the
density matrix of the system alone is obtained by tracing out the degrees of
freedom of the line. Let us label the basis states with the pair of indices nS,
nB (mS, mB), one for the system and the other for the line. Then, the trace
over the line is:

(ρ̇
(I)
S )nSmS = (Tr

B
ρ̇(I))nSmS

=
∑
nB

∑
mB

ρ̇(I)nSnBmSmB
δnBmB

=
∑
nB

ρ̇(I)nSnBmSnB
.

(4.40)

Equation (4.38) needs to be written in such a way that it can be easily
traced over the line states. Consider that H1 is of the form H1 := Ŝ⊗ B̂, where

10A ‘Dyson-like’ series is built for ρ(I)(t) similar to the Dyson series for the time-evolution
operator in the interaction picture.
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Ŝ is an operator of the system and B̂ is an operator of the line. This is true
for Hamiltonian (4.20), with:

B̂ = ℏ
∫

dω
√
J(ω)

(
r̂†ω + l̂†ω + r̂ω + l̂ω

)
.

(4.41)

Besides, the line is in its thermal equilibrium state, with:

ρeB = Z−1e
−β

∫
dω ℏω

(
r̂†ω r̂ω+l̂†ω l̂ω

)
, (4.42)

where β = 1/kBT , and Z is a normalization factor, the partition function.
Assuming decoupled initial conditions, that is, that at the initial time t0 the
system-line density matrix is the product ρS(t0)⊗ρB(t0) of the density matrix
of the system times the density matrix of the line, generates products of line
operators with ρeB that can be traced out. The time evolution of the interaction
term can be then written as H1(t) = Ŝ(t)⊗ B̂(t), with:

Ŝ(t) = eiHS t/ℏŜe−iHS t/ℏ,

B̂(t) = eiHB t/ℏB̂e−iHB t/ℏ,
(4.43)

where Ŝ evolves with HS and B̂ with HB because each term of the unperturbed
Hamiltonian H0 acts on a different Hilbert space.

Defining ⟨θ⟩e :=Tr
B

(θρeB), where θ is any combination of line operators,

tracing the degrees of freedom of the line from ρ̇(I)(t) reads:

ρ̇
(I)
S (t) = Tr

B

(
ρ̇(I)(t)

)
=− i

ℏ

[
Ŝ(t), ρ

(I)
S (t0)

]
⟨B̂(t)⟩e

− 1

ℏ2

∫ t

t0

d t′
[
Ŝ(t), Ŝ(t′)ρ

(I)
S (t0)

]
⟨B̂(t)B̂(t′)⟩e

+
1

ℏ2

∫ t

t0

d t′
[
Ŝ(t), ρ

(I)
S (t0)Ŝ(t

′)
]
⟨B̂(t′)B̂(t)⟩e.

(4.44)

For the line operator considered in Eq. (4.41), ⟨B̂(t)⟩e = 0.11 The remaining
terms have the two-time correlators ⟨B̂(t)B̂(t′)⟩e:12

⟨B̂(t)B̂(t′)⟩e = 2ℏ2
∫

dωJ(ω)
[
n̄(ω, T )eiω(t−t′)

+ (n̄(ω, T ) + 1)e−iω(t−t′)
]
.

(4.45)

11The density matrix of the line in equilibrium, ρeB, is diagonal in the basis of eigenstates
of HB, while the coupling line operator B̂ from Eq. (4.41) does not have any terms in the
diagonal in this same basis. It follows that the trace of the product of B̂ times ρeB is zero.

12Actually they depend only on the time difference.
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Here n̄(ω, T ) is the bosonic occupation number for thermal photons of fre-
quency ω in the transmission line at temperature T :

n̄(ω, T ) ≡ ⟨l̂†ω l̂ω⟩e = ⟨r̂†ω r̂ω⟩e =
1

eβℏω − 1 .
(4.46)

4.3.3 Secular and rotating wave approximations

The evolution of Ŝ can be written using its spectral decomposition in the
frequencies ΩS [4, Ch.3]. Each component Ŝ(ΩS) evolves with frequency ΩS:

Ŝ =
∑
ΩS

Ŝ(ΩS) → Ŝ(t) =
∑
ΩS

Ŝ(ΩS)e
iΩSt, (4.47)

and the commutators in Eq. (4.44) read:[
Ŝ(t), Ŝ(t′)ρ

(I)
S (t0)

]
=
∑
ΩS

∑
Ω′

S

[
Ŝ(ΩS), Ŝ(Ω

′
S)ρ

(I)
S (t0)

]
eiΩS(t−t′)ei(ΩS+Ω′

S)t
′
,

[
Ŝ(t), ρ

(I)
S (t0)Ŝ(t

′)
]
=
∑
ΩS

∑
Ω′

S

[
Ŝ(ΩS), ρ

(I)
S (t0)Ŝ(Ω

′
S)
]
eiΩS(t−t′)ei(ΩS+Ω′

S)t
′
.

(4.48)

They contain fast oscillating terms except when Ω′
S ≃ −ΩS. In the secular

approximation, only terms with Ω′
S = −ΩS are kept. If the spectral decompo-

sition of Ŝ is non-degenerate, that is, if all frequencies ΩS are different:[
Ŝ(t), Ŝ(t′)ρ

(I)
S (t0)

]
≃
∑
ΩS

[
Ŝ(ΩS), Ŝ(−ΩS)ρ

(I)
S (t0)

]
eiΩS(t−t′),[

Ŝ(t), ρ
(I)
S (t0)Ŝ(t

′)
]
≃
∑
ΩS

[
Ŝ(ΩS), ρ

(I)
S (t0)Ŝ(−ΩS)

]
eiΩS(t−t′).

(4.49)

Inserting the commutators above and the expression for the two-time cor-
relators (see Eq. (4.45)) back in Eq. (4.44) for ρ̇(I)S (t) gives fast oscillating
terms except for ΩS ≃ ω in ei(ΩS−ω)(t−t′), and ΩS ≃ −ω in ei(ΩS+ω)(t−t′). In
the rotating wave approximation, these fast oscillating terms are neglected,
leaving only terms with e±i(ΩS−ω)(t−t′), where ΩS, ω > 0.

4.3.4 Markovian regime

The memory function of the line is defined as the Fourier transform of the
spectral function J(ω). If J(ω) is a smooth function over a broad range of
frequencies around each ΩS, this memory function decays with a very short
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characteristic time τc [5, App.B].13 In the Markovian regime, the timescale of
the decay of the memory function of the line is smaller than any timescale of
the system (given by the different times Ω−1

S ). That is, the line immediately
loses all memory of its interaction with the system.

In this regime, the integrand of the time integral vanishes quickly for τ =

t′ − t0 ≫ τc, and the upper limit of the integral can be extended to infinity:14∫ ∞

t0

d t′ e±i(ΩS−ω)t′ = e±i(ΩS−ω)t0

∫ ∞

0
d τ e±i(ω−ΩS)τ

= e±i(ΩS−ω)t0
[
πδ(ΩS − ω)± iPV

( 1

ΩS − ω

)]
,

(4.50)

with PV the principal value [6, App.7]. The principal value generates a shift —
the Lamb shift — that diverges with the previous approximations. In practice,
this shift is small, and can be included in the frequencies ΩS. This leaves only
the term with δ(ΩS − ω), which gives the master equation for ρ(I)S :

ρ̇
(I)
S (t) =

∑
ΩS>0

Γ(ΩS)
[
n̄(ΩS, T )D(ΩS) + (n̄(ΩS, T ) + 1)D(−ΩS)

]
,

(4.51)

with Γ(ΩS) = 2πJ(ΩS) and:

D(ΩS) := 2Ŝ(ΩS)ρ
(I)
S (t0)Ŝ(−ΩS)−

{
Ŝ(−ΩS)Ŝ(ΩS), ρ

(I)
S (t0)

}
,

(4.52)

where {Â, B̂} = ÂB̂ + B̂Â is the standard anti-commutator of Â and B̂.

4.3.5 Back to the Schrödinger picture

Equation (4.51) is a master equation for the density matrix of the system in the
interaction picture. However, a master equation in the Schrödinger picture,
with all the time dependence encoded in the density matrix ρS and not in the
system operators, is desired instead. Inserting ρS(t) = e−iHS t/ℏρ

(I)
S (t)eiHS t/ℏ

in Eq. (4.51) gives the quantum master equation in the Schrödinger picture:

ρ̇S(t) =− i

ℏ
[HS, ρS(t)] + e−iHS t/ℏρ̇

(I)
S (t)eiHS t/ℏ

=− i

ℏ
[HS, ρS(t)] +R(t),

(4.53)

13Consider that the spectral function is a very wide resonance. Its Fourier transform —
the memory function — is an exponential decay with a very short characteristic time that
is inversely proportional to the width of the spectral function.

14The integration variable is changed from t′ to τ = t′ − t0, the elapsed time since the
interaction started.
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with the relaxation operator:

R(t) :=
∑
ΩS>0

Γ(ΩS)
(
n̄(ΩS, T )D(ΩS, t) + (n̄(ΩS, T ) + 1)D(−ΩS, t)

)
,

(4.54)

and the dissipators:

D(ΩS, t) := e−iHS t/ℏD(ΩS)e
iHS t/ℏ

= 2Ŝ(ΩS)ρS(t)Ŝ(−ΩS)−
{
Ŝ(−ΩS)Ŝ(ΩS), ρS(t)

}
.

(4.55)

Here I used that the phases from Ŝ(ΩS) and Ŝ(−ΩS) in each term cancel out
and that, at the time t0 when the interaction started, ρS(t0) = ρ

(I)
S (t0).

4.4 Measurement of a lumped-element resonator

4.4.1 Dynamics of a resonator without driving

One of the simplest applications of the quantum master equation is a resonator
coupled to a transmission line. The system coupling operator of Hamiltonian
(4.20) is now Ŝ = â + â†. The time-evolution of ⟨Ŝ⟩ without interactions is
⟨Ŝ⟩(t) = ⟨â⟩e−iωrt + ⟨â†⟩eiωrt (see section 3.2.2), where ωr is the resonator
frequency as defined in Eq. (3.16). The spectral decomposition of Ŝ is then
given by Ŝ(ωr) = â† and Ŝ(−ωr) = â. The sum in ΩS in Eq. (4.54) has only
one term with ΩS = ωr:

R(t) = Γ(ωr)
[
n̄(ωr, T )D(ωr, t) + (n̄(ωr, T ) + 1)D(−ωr, t)

]
,

(4.56)

with:

D(ωr, t) = 2â†ρ(t)â−
{
ââ†, ρ(t)

}
,

D(−ωr, t) = 2âρ(t)â† −
{
â†â, ρ(t)

}
,

(4.57)

where ρ(t) is the density matrix of the resonator. The time evolution of the
expectation value of the annihilation operator is then given by the Hamiltonian
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of the resonator, HR = ℏωrâ
†â, and the relaxation operator R(t):15

d
d t

⟨â⟩(t) = Tr (âρ̇(t))

= − i

ℏ
Tr (â [HR, ρ(t)]) + Tr (âR(t))

= −iωr⟨â⟩(t)− κc⟨â⟩(t),

(4.58)

with κc := Γ(ωr) = 2πJ(ωr), having the dimensions of frequency.

In practice, there are also internal losses (κi), giving a total decay rate
κ := κi + κc. The complete time evolution reads (recall Eq. (3.26) in chapter
3):

d
d t

⟨â⟩ = −iωr⟨â⟩ − κ⟨â⟩ ⇒ ⟨â⟩(t) = ⟨â⟩(0)e−(iωr+κ)t. (4.59)

Sometimes, the dimensionless quality factors Q, Qi and Qc are used instead of
the decay rates κ, κi and κc:

Q :=
ωr

2κ ,
Qi :=

ωr

2κi ,
Qc :=

ωr

2κc .
(4.60)

The time evolution of the expectation value of the number of photons in
the cavity, n̂ = â†â, is:16

d
d t

⟨n̂⟩ = −2κ [⟨n̂⟩ − n̄(ωr, T )] ⇒

⇒ ⟨n̂⟩(t) = ⟨n̂⟩(0)e−2κt + n̄(ωr, T )
(
1− e−2κt

)
,

(4.61)

with a decay rate that is twice the decay rate of ⟨â⟩. At very long times
(t ≫ κ−1), ⟨n̂⟩ → n̄(ωr, T ), and ⟨â⟩ → 0. That is, the number of photons in
the resonator will be the number of thermal photons, and the coherence of the
state of the resonator will be zero.

4.4.2 Driving the resonator

Following the definitions in section 4.2.2, the coupling Hamiltonian of the res-
onator to a coherent drive field reads:

Hdrive = ℏ
√
κcαin(â+ â†)e−iωdt. (4.62)

Including this term in the quantum master equation of ⟨â⟩ gives:

d
d t

⟨â⟩ = − (iωr + κ) ⟨â⟩ − i
√
κcαine

−iωdt, (4.63)

15Tr âD(ωr, t) and Tr âD(−ωr, t) can be easily computed by using the commutation rule[
â, â†] = 1 to transform the sums of products of â and â† into only â.
16Again, using

[
â, â†] = 1.



4.5. Measurement of a spin 1/2 ensemble 81

with the solution:

⟨â⟩(t) = ⟨â⟩(0)e−(iωr+κ)t − i
√
κc

1− e−(i(ωr−ωd)+κ)t

i(ωr − ωd) + κ
αine

−iωdt. (4.64)

The first term in Eq. (4.64) is the transient state of the resonator. If the
coherent drive signal starts long enough (t≫ κ−1) since the last excitation of
the resonator, then ⟨â⟩(0) = 0. The remaining term is the emerging driven
state with frequency ωd:

⟨â⟩(t) ≃ χâ(ωd)
√
κc⟨r̂in⟩(t) , χâ(ωd) =

−i
i(ωr − ωd) + κ ,

(4.65)

where χâ is the susceptibility of â.

Substituting Eq. 4.65 in the input-output relations (Eq. (4.29)):

⟨r̂out⟩(t) = ⟨r̂in⟩(t) (1− iκcχâ(ωd)) ,

⟨l̂out⟩(t) = ⟨r̂in⟩(t) (−iκcχâ(ωd)) ,
(4.66)

and using the definition of scattering parameters from Eq. (4.25) yields:

S21(ωd) = 1− iκcχâ(ωd) = 1− κc
i(ωr − ωd) + κ ,

S11(ωd) = −iκcχâ(ωd) = − κc
i(ωr − ωd) + κ .

(4.67)

4.5 Measurement of a spin 1/2 ensemble

Before diving into the model for the measurement of a hybrid system of a spin
ensemble coupled to a resonator, let us describe a simpler case in which the
ensemble is directly coupled to the transmission line.

4.5.1 Dynamics of a single spin without driving

Consider a single spin coupled to the transmission line. The system coupling
operator of Hamiltonian (4.20) is now Ŝ = σ̂+ + σ̂−. The evolution of the
expectation value of σ± with the Hamiltonian of a single spin, HS = ℏωqσ̂z/2,
is:

d
d t

⟨σ̂±⟩ = − i

ℏ
Tr (σ̂± [HS, ρ]) = ±ωq⟨σ̂±⟩ → ⟨σ̂±⟩(t) = ⟨σ̂±⟩(0)e±iωqt,

(4.68)
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where ρ(t) is the density matrix of the spin. Then, the time-evolution of
⟨Ŝ⟩ without interactions is ⟨Ŝ⟩(t) = ⟨σ̂+⟩eiωqt + ⟨σ̂−⟩e−iωqt, and its spectral
decomposition is given by Ŝ(ωq) = σ̂+ and Ŝ(−ωq) = σ̂−. The sum in ΩS in
Eq. (4.54) has only one term with ΩS = ωq:

R(t) = Γ(ωq)
[
n̄(ωq, T )D(ωq, t) + (n̄(ωq, T ) + 1)D(−ωq, t)

]
,

(4.69)

with the dissipators:

D(ωq, t) = 2σ̂+ρ(t)σ̂− −
{
σ̂−σ̂+, ρ(t)

}
,

D(−ωq, t) = 2σ̂−ρ(t)σ̂+ −
{
σ̂+σ̂−, ρ(t)

}
.

(4.70)

The time evolution of the coherences σ̂± reads:17

d
d t

⟨σ̂±⟩ = Tr (σ̂±ρ̇(t))

= − i

ℏ
Tr (σ̂± [HS, ρ(t)]) + Tr (σ̂±R(t))

= ±iωq⟨σ̂±⟩ − Γ⊥⟨σ̂±⟩,

(4.71)

with Γ⊥ := (2n̄(ωq, T ) + 1)G
(line)
1 , where G

(line)
1 := Γ(ωq) = 2πJ(ωq). In

practice, there are also internal losses (γ⊥ = T−1
2 ), for a total decay rate

Γ⊥ := γ⊥+(2n̄(ωq, T )+1)G
(line)
1 . Solving the differential equation, one obtains:

⟨σ̂±⟩(t) = ⟨σ̂±⟩(0)e(±iωq−Γ⊥)t. (4.72)

Similarly, the time evolution of ⟨σ̂z⟩ is:

d
d t

⟨σ̂z⟩ = Tr (σ̂zR(t)) = −Γ∥ (⟨σ̂z⟩+ (∆P )e) , (4.73)

where internal losses (γ∥ = T−1
1 ) are already included in Γ∥ := γ∥+2(2n̄(ωq, T )+

1)G
(line)
1 . Only the relaxation term of the quantum master equation is relevant

here, as σ̂z commutes with HS. (∆P )e = (2n̄(ωq, T )+1)−1 = tanh (ℏωq/2kBT )

is the population difference between the ground and excited spin states in ther-
mal equilibrium. At long times (t ≫ Γ−1

⊥ ,Γ−1
∥ ), the coherences ⟨σ̂±⟩ vanish

and ⟨σ̂z⟩ decays to its value in thermal equilibrium, −(∆P )e.

17The time evolution of σ̂± is encoded in the off-diagonal terms of the density matrix, that
is, the spin coherence.
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4.5.2 Driving a single spin

The interaction of a spin with the coherent drive of Eq. (4.26) is:

Hdrive = ℏ
√
G

(line)
1 αine

−iωdt(σ̂+ + σ̂−). (4.74)

Including this term in the quantum master equations of ⟨σ̂±⟩ and ⟨σ̂z⟩ one
obtains:

d
d t

⟨σ̂±⟩ =± iωq⟨σ̂±⟩ − Γ⊥⟨σ̂±⟩ ∓ i

√
G

(line)
1 αine

−iωdt⟨σ̂z⟩,

d
d t

⟨σ̂z⟩ =− Γ∥ (⟨σ̂z⟩+ (∆P )e)

− i

√
G

(line)
1 αine

−iωdt⟨σ̂+⟩+ i

√
G

(line)
1 αine

−iωdt⟨σ̂−⟩.

(4.75)

Instead of solving these equations, let us consider the typical transmission
experiment. By the time the driving starts, the free evolution of the spin has
relaxed to ⟨σ̂±⟩ = 0 and ⟨σ̂z⟩ = −(∆P )e. Also, the spin-line coupling G(line)

1

is very small compared to the decay rates Γ⊥ and Γ∥. It can be assumed then
that ⟨σ̂z⟩(t) ≃ −(∆P )e at all times. With this approximation, the equation
for ⟨σ̂±⟩ reads:

d
d t

⟨σ̂±⟩ = ±iωq⟨σ̂±⟩ − Γ⊥⟨σ̂±⟩ ± i

√
G

(line)
1 (∆P )eαine

−iωdt. (4.76)

In particular, for positive ωd I am interested in the expectation value of σ̂−.
Assuming that ⟨σ̂−⟩(0) = 0:

⟨σ̂−⟩(t) = −i
√
G

(line)
1 (∆P )e

1− e−(i(ωq−ωd)+Γ⊥)t

i(ωq − ωd) + Γ⊥
αine

−iωdt, (4.77)

and at long times (t≫ Γ−1
⊥ ):

⟨σ̂−⟩(t) ≃ χσ̂−(ωd)

√
G

(line)
1 ⟨r̂in⟩(t) , χσ̂−(ωd) =

−i(∆P )e
i(ωq − ωd) + Γ⊥ ,

(4.78)

where χâ is the susceptibility of â.

The equations for the outputs of the coherent drive are:

⟨r̂out⟩(t) = ⟨r̂in⟩(t)
(
1− iG

(line)
1 χσ̂−(ωd)

)
,

⟨l̂out⟩(t) = ⟨r̂in⟩(t)
(
−iG(line)

1 χσ̂−(ωd)
)

.

(4.79)
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Following the definitions from Eq. (4.25), the scattering parameters S21 and
S11 are given by:

S21(ωd) = 1− iG
(line)
1 χσ̂−(ωd) = 1− G

(line)
1 (∆P )e

i(ωq − ωd) + Γ⊥ ,

S11(ωd) = −iG(line)
1 χσ̂−(ωd) = − G

(line)
1 (∆P )e

i(ωq − ωd) + Γ⊥ .

(4.80)

4.5.3 Driving a spin 1/2 ensemble

Obtaining similar expressions for the reflection and transmission of a spin 1/2
ensemble is not as simple as taking the product of the single-spin scattering
parameters S11 or S21 of all spins in the ensemble. These parameters were
defined with an input field coming from port 1, ⟨r̂in⟩, and no input field from
port 2. Conversely, S12 and S22 consider only an input from port 2, ⟨l̂in⟩.
Assuming a non-chiral coupling, S12 = S21 and S22 = S11. Together, these
four parameters form the two-port scattering matrix S:

S =

(
S11 S12
S21 S22

)
,

(4.81)

which relates the outputs from both ports to their inputs:(
⟨l̂out⟩
⟨r̂out⟩

)
= S

(
⟨l̂in⟩
⟨r̂in⟩

)
.

(4.82)

The scattering matrix S relates the inputs and outputs of the system. In
order to see the effect of the reflection and transmission of each spin on the
reflection and transmission of other spins in the ensemble, a description with
the transfer matrix T in needed. The transfer matrix relates the input and
output in port 1 to those of port 2 (see Fig. 4.3):(

⟨r̂out⟩
⟨l̂in⟩

)
= T

(
⟨r̂in⟩
⟨l̂out⟩

)
=

(
T11 T12
T21 T22

)(
⟨r̂in⟩
⟨l̂out⟩

)
.

(4.83)

The elements of the transfer matrix are related to those of the scattering ma-
trix. Defining θ := S11/S21:

θ(ωd) :=
S11(ωd)

S21(ωd)
=

−G(line)
1 (∆P )e

i (ωq − ωd) +
[
Γ⊥ −G

(line)
1 (∆P )e

]
,

(4.84)
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the single spin transfer matrix T is written as:

T =

(
1 + θ θ

−θ 1− θ

)
= I+ θϵ, ϵ =

(
1 1

−1 −1

)
,

(4.85)

where I used that S21 = 1 + S11.

The ensemble is modeled as an array of N spins. Their collective transfer
matrix is just the product of all the single-spin transfer matrices: T =

∏N
j=1 Tj .

That is, the fields in port 2 for one spin become the fields in port 1 for the next
one. For N spins, T will be a series of powers of ϵ up to order N . However,
ϵ2 = 0, and only terms up to first order in ϵ are non-zero. The collective
transfer matrix is then similar to that of a single spin:

T = I+

 N∑
j=1

θj

 ϵ ≡ I+ θϵ, (4.86)

with:

θ(ωd) :=
N∑
j=1

θj(ωd) = −
N∑
j=1

G
(line)
1, j (∆P )e

i (ωq − ωd) +
[
Γ⊥, j −G

(line)
1, j (∆P )e

]
.

(4.87)

S11 and S21 are retrieved using again that S21 = 1 + S11 and θ = S11/S21:

S21(ωd) =
1

1− θ(ωd) ,
S11(ωd) =

θ(ωd)

1− θ(ωd) .
(4.88)

At very low temperatures (T ≪ ℏωq/kB), the population difference between
the ground and excited states is approximately one, (∆P )e ≃ 1. Then, using
that Γ⊥, j = γ⊥ +G

(line)
1, j :

θ(ωd) ≃ −
G

(line)
N (∆P )e

i (ωq − ωd) + γ⊥ ,
(4.89)

with:

G
(line)
N =

N∑
j=1

G
(line)
1, j . (4.90)

In practice, if there is inhomogeneous broadening the coherence time T2 is sub-
stituted by T ∗

2 in γ⊥. Inserting θ(ωd) back in the expressions for the scattering
parameters gives:

S21(ωd) = 1−
G

(line)
N (∆P )e

i(ωq − ωd) + γ⊥ +G
(line)
N (∆P )e ,

S11(ωd) = −
G

(line)
N (∆P )e

i(ωq − ωd) + γ⊥ +G
(line)
N (∆P )e .

(4.91)
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4.6 Measurement of a spin 1/2 ensemble-resonator
system

The previous sections described the measurement of a lumped-element res-
onator and the measurement of a spin 1/2 ensemble. This section describes
the measurement of the hybrid system of a spin 1/2 ensemble coupled to a
lumped-element resonator. This system is modeled by the Tavis-Cummings
Hamiltonian (3.37). However, let us consider first the single spin case.

4.6.1 Spin-resonator system

For a single spin, the spin-resonator system is described by Jaynes-Cummings
Hamiltonian (3.33). I assume that there is no direct coupling between the spin
and the transmission line, only a resonator-line coupling. The quantum master
equations for ⟨â⟩, ⟨σ̂−⟩ and ⟨σ̂z⟩ without driving read:18

d
d t

⟨â⟩ = −(iωr + κ)⟨â⟩ − iG∗
1⟨σ̂−⟩,

d
d t

⟨σ̂−⟩ = −(iωq + γ⊥)⟨σ̂−⟩+ iG1⟨σ̂zâ⟩,

d
d t

⟨σ̂z⟩ = −γ∥ (⟨σ̂z⟩+ (∆P )e)− 2iG1⟨σ̂+â⟩+ 2iG∗
1⟨σ̂−â†⟩,

(4.92)

where I wrote γ⊥ and γ∥ instead of Γ⊥ and Γ∥ because now the spin is not
coupled to the transmission line. The coupling of the spin with its environment
takes ⟨σ̂z⟩ to its equilibrium value −(∆P )e at long times (t≫ γ−1

∥ = T1).

These equations look very similar to Eq. (4.75) for a spin coupled to a line
with coherent driving, now with the resonator field playing the role of the input
field on the spin. However, there is an important difference: spin and resonator
are entangled, so this drive is entering into the spin equations as the correlators
⟨σ̂zâ⟩, ⟨σ̂+â⟩ and ⟨σ̂−â†⟩. In fact, computing the quantum master equations for
these correlators generates an infinite hierarchy of coupled equations for higher
order correlators of spin and resonator operators. Thus, the infinite system of
equations must be truncated in order to obtain approximate solutions.

4.6.2 Ensemble-resonator system

Luckily, there is a justification for the truncation of the system of equations
if an ensemble of N spins coupled to the resonator is considered instead of

18The equations for ⟨â†⟩ and ⟨σ̂+⟩ are just the Hermitian conjugates of those of ⟨â⟩ and
⟨σ̂−⟩.
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a single spin, with a quantum master equation for every single spin in the
ensemble [7]:

d
d t

⟨â⟩ = −(iωr + κ)⟨â⟩ − i

N∑
k=1

G∗
1, k⟨σ̂−, k⟩,

d
d t

⟨σ̂−, k⟩ = −(iωq + γ⊥)⟨σ̂−, k⟩+ iG1, k⟨σ̂z, kâ⟩,

d
d t

⟨σ̂z, k⟩ = −γ∥ (⟨σ̂z, k⟩+ (∆P )e)− 2iG1, k⟨σ̂+, kâ⟩+ 2iG∗
1, k⟨σ̂−, kâ

†⟩,

(4.93)

where γ⊥ is now the inverse of T ∗
2 if there is inhomogeneous broadening. In

the semi-classical limit (N → ∞), the correlators ⟨σ̂z, j â⟩, ⟨σ̂+, j â⟩ and ⟨σ̂−, j â
†⟩

can be approximated by the factorizations ⟨σ̂z, j⟩⟨â⟩, ⟨σ̂+, j⟩⟨â⟩ and ⟨σ̂−, j⟩⟨â†⟩
[8]:

d
d t

⟨â⟩ =− (iωr + κ)⟨â⟩ − i
N∑
j=1

G∗
1, j⟨σ̂−, j⟩,

d
d t

⟨σ̂−, j⟩ =− (iωq + γ⊥)⟨σ̂−, j⟩+ iG1, j⟨σ̂z, j⟩⟨â⟩,

d
d t

⟨σ̂z, j⟩ =− γ∥ (⟨σ̂z, j⟩+ (∆P )e)

− 2iG1, j⟨σ̂+, j⟩⟨â⟩+ 2iG∗
1, j⟨σ̂−, j⟩⟨â†⟩.

(4.94)

At long times all the coherences ⟨σ̂−, j⟩ vanish, and therefore all ⟨σ̂z, j⟩ relax
to their equilibrium value −(∆P )e.

4.6.3 Driving the ensemble-resonator system

Let us assume that ⟨â⟩ = ⟨σ̂−, j⟩ = 0 and ⟨σ̂z, j⟩ = −(∆P )e when the driving
starts. Also, if the single spin-photon couplings G1, k are small enough, each
⟨σ̂z, j⟩ remains close to its equilibrium value during all the measurement. Then,
introducing the driving only in the resonator (see Eq. (4.27)) yields:

d
d t

⟨â⟩ = −(iωr + κ)⟨â⟩ − i
N∑
j=1

G∗
1, j⟨σ̂−, j⟩ − i

√
κcαine

−iωdt,

d
d t

⟨σ̂−, j⟩ = −(iωq + γ⊥)⟨σ̂−, j⟩ − iG1, j(∆P )e⟨â⟩.

(4.95)

A collective ladder operator σ̂− can be defined as (recall the operator b̂ in
Eq. (3.45) of chapter 3):

σ̂− :=
1

GN

N∑
j=1

G∗
1,j σ̂−, j , (4.96)
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with GN = G1,rms

√
N . G1,rms is the root mean square of the N different

couplings as defined in Eq. (3.46) of chapter 3. Substituting in Eq. (4.95), one
finds:

d
d t

⟨â⟩ = −(iωr + κ)⟨â⟩ − iGN ⟨σ̂−⟩ − i
√
κcαine

−iωdt,

d
d t

⟨σ̂−⟩ = −(iωq + γ⊥)⟨σ̂−⟩ − iGN (∆P )e⟨â⟩,
(4.97)

or, in matrix form:
d
d t

x(t) = Mx(t) + f(t)e−iωdt, (4.98)

with the definitions:

x(t) :=

(
⟨â⟩(t)
⟨σ̂−⟩(t)

)
, f(t) :=

(
−i√κcαin(t)

0

)
(4.99)

and:

M := −
(

(iωr + κ) iGN

iGN (∆P )e (iωq + γ⊥)

)
. (4.100)

The solution of Eq. (4.98) is:

x(t) = eMtx(0) +

∫ t

0
dτeM(t−τ)e−iωdτf(τ) . (4.101)

As in the dynamics of the bare resonator, see Eq. (4.64), the first term of the
solution is the transient state of the system, and the second term that is the
emerging driven state with frequency ωd. The driving f(t) is time-dependent
in general, with αin(t) being the envelope of the input signal. For a square
pulse, f(t) is constant, and the response can be easily obtained by computing
the eigenvalues λn and eigenvectors qn of M :

xpulse(t) =
∑
n=1,2

qnq
∗
n

(
eλntx(0) +

e(λn+iωd)t − 1

λn + iωd
f

)
,

xdecay(t) =
∑
n=1,2

qnq
∗
ne

λntxpulse(T ) .
(4.102)

For long times only the driven state remains, yielding the scattering pa-
rameters S11 and S21:

S21(ωd) = 1− κc

i(ωr − ωd) + κ+
G2

N (T )

i(ωq − ωd) + γ⊥
,

S11(ωd) = − κc

i(ωr − ωd) + κ+
G2

N (T )

i(ωq − ωd) + γ⊥
,

(4.103)
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with a temperature dependent coupling GN (T ):

G2
N (T ) := G2

N (∆P )e. (4.104)

GN ≡ GN (T = 0) is the limit of the coupling at zero temperature. At very
low temperatures, (∆P )e ≃ 1, and the ensemble-resonator is equivalent to a
system of two coupled resonators with a coupling rate GN .

4.6.4 Weak and strong coupling

Section 3.3 in chapter 3 described how the qubit-resonator (or spin-resonator,
or spin ensemble-resonator) system formed pairs of polaritonic states, that is,
superpositions of qubit/spin/ensemble states and resonator states. In reso-
nance, the energies of the states of each pair are split by twice the coupling
between the subsystems.

Consider the case of the ensemble-resonator system. The strength of the
coupling gives two distinct regimes, defined by opposite limits of the ratio be-
tween GN

√
(∆P )e and γ⊥. In the strong coupling regime (GN

√
(∆P )e/γ⊥ >

1), the ensemble-resonator coupling is faster than the decoherence rate of the
ensemble, which is typically much faster than the decoherence rate of the res-
onator, κ. Conversely, the decoherence of the ensemble is the dominant process
in the weak coupling regime (GN

√
(∆P )e/γ⊥ ≪ 1).

Let us study S21(ωd) in these two regimes. The transmission is minimum
when the imaginary part of the denominator in Eq. (4.103) vanishes. That is,
when:

(ωr − ωd)(ωq − ωd)
2 + (ωr − ωd)γ

2
⊥ + (ωd − ωq)G

2
N (∆P )e = 0 . (4.105)

In the strong coupling regime, strong enough so that GN

√
(∆P )e/γ⊥ ≫ 1, the

second term in Eq. (4.105) is neglected:

(ωr − ωd)(ωq − ωd) ≃ G2
N (∆P )e , (4.106)

which gives:

ωd,± =
ωr + ωq

2
±

√(
ωr − ωq

2

)2

+G2
N (∆P )e

.
(4.107)

In resonance (ωr = ωq), the system has two normal modes with frequencies
ωd,± = ωr±GN

√
(∆P )e. The transmission shows two minima at ωd,± (see Eq.

(3.42) and Fig. 3.6 in chapter 3). Substituting ωd,± as the driving frequency
in the real part of the denominator gives that the half width of each of the two
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peaks in resonance is κ + γ⊥. For any ωr and ωq, the two minima appear at
the frequencies defined by Eq. (3.42) and shown in Fig. 3.6.

In the weak coupling regime, only a minimum of the transmission is found
instead of two, with resonance frequency and half width similar to those of
the bare resonator. Substituting ωq − ωd by ωq − ωr in the transmission, the
imaginary part of the denominator vanishes when ωd = ω̃r, while the half width
κ̃ of the resonance is given by the real part of the denominator:

ω̃r :=ωr +

[
G2

N (∆P )e
(ωq − ωr)2 + γ2⊥

]
(ωr − ωq),

κ̃ :=κ+

[
G2

N (∆P )e
(ωq − ωr)2 + γ2⊥

]
γ⊥.

(4.108)

In many transmission experiments, the hybrid system is in between these
two regimes (GN

√
(∆P )e/γ⊥ ∼ 1), with the coupling slightly below γ⊥ but

large enough to reach the high-cooperativity regime. In this regime, defined
by a cooperativity C := G2

N (∆P )e/γ⊥κ larger than one, the coupling is strong
in the sense that at resonance nearly every photon entering the cavity is co-
herently transferred into the qubits/spins [9]. While strong coupling ensures
a double peak in the transmission, this is not necessarily the case for high-
cooperativity (see Fig. 4.4).

𝛾⊥/𝜅 = 10

(𝜔
−
𝜔
𝑟
)/
𝜅

𝐺𝑁/𝜅

𝐺
𝑁
/𝜅

𝛾⊥/𝜅

Double peak

Single peak

𝐺
𝑁
/𝛾

⊥
=
1
/
2

𝐺
𝑁
/𝛾

⊥
=
1

𝐶
=
1

Figure 4.4: (a) Transmission of the spin ensemble-resonator system as a function of
the couplingGN (including (∆P )e, that is, GN ∝

√
(∆P )e) and the detuning from the

frequency of the resonator, ωr, both normalized by the resonator decoherence rate κ.
The ratio of the spin decoherence rate γ⊥ to κ is 10. The minima of the transmission
at different values of GN trace the solid black lines, with the points at half height of
the peaks trace the dashed lines. Note the bifurcation point at GN/γ⊥ = 1/

√
2. (b)

Number of transmission minima for different values of GN/κ and Γ/κ. The single
peak and double peak regions are separated by the GN/γ⊥ = 1/

√
2 line.
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4.7 Generalization to high spin systems

This last section generalizes the transmission formulas from previous sections
to higher spin ensembles. The simplest case is a single spin S > 1/2 directly
coupled to a transmission line.

4.7.1 Single spin S > 1/2 coupled to a transmission line

The system coupling operator of Hamiltonian (4.20) is now:

Ŝ =
2S∑
α=0

∑
β>α

(
X̂αβ + X̂βα

)
.

(4.109)

Computing the time evolution of the expectation value of each X̂αβ with the
Hamiltonian of a single spin S > 1/2 (recall Eq. (3.15) in chapter 3) gives:

d
d t

⟨X̂αβ⟩ = − i

ℏ
Tr
(
X̂αβ [HS, ρ]

)
= − i

ℏ
Tr

X̂αβ
2S∑
γ=0

Eγ

[
X̂γγ , ρ

]
= i

Eα − Eβ

ℏ
⟨X̂αβ⟩,

(4.110)

where ρ(t) is the density matrix of the spin. The solution of this equation for
⟨X̂αβ⟩ is just:

⟨X̂αβ⟩ = ⟨X̂αβ⟩(0)ei
Eα−Eβ

ℏ t, (4.111)

as expected from the definition of the level shift operators X̂αβ . The time-
evolution of ⟨Ŝ⟩ without interactions is then:

⟨Ŝ⟩(t) =
2S∑
α=0

∑
β>α

(
⟨X̂αβ⟩e−iωαβt + ⟨X̂βα⟩eiωαβt

)
,

(4.112)

with the (positive) frequencies ωαβ :19

ωαβ =
Eβ − Eα

ℏ .
(4.113)

Assuming a non-degenerate frequency spectrum, that is, that all frequencies
ωαβ are different, the spectral decomposition of Ŝ is given by all Ŝ(ωαβ) = X̂βα

19Remember that α and β were chosen in Ŝ so that Eβ > Eα.
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and Ŝ(−ωαβ) = X̂αβ . The sum in ΩS in Eq. (4.54) runs over all the different
frequencies ωαβ :

R(t) =

2S∑
α=0

∑
β>α

Γ(ωαβ)
(
n̄(ωαβ, T )D(ωαβ, t)

+ (n̄(ωαβ, T ) + 1)D(−ωαβ, t)
)
,

(4.114)

with:20

D(ωαβ, t) = 2X̂βαρ(t)X̂αβ −
{
X̂αα, ρ(t)

}
,

D(−ωαβ, t) = 2X̂αβρ(t)X̂βα −
{
X̂ββ , ρ(t)

}
,

(4.115)

where ρ(t) is again the density matrix of the spin. Let us consider first the
time evolution of the expectation value of the coherence X̂αβ (with β > α):

d
d t

⟨X̂αβ⟩ = Tr
(
X̂αβ ρ̇(t)

)
= − i

ℏ
Tr
(
X̂αβ [HS, ρ(t)]

)
+Tr

(
X̂αβR(t)

)
= −iωαβ⟨X̂αβ⟩ − Γ⊥,αβ⟨X̂αβ⟩,

(4.116)

with Γ⊥,αβ := γ⊥,αβ + Γα + Γβ , where γ⊥,αβ is the inverse of the coherence
time T2 of the α→ β transition without coupling to the transmission line. The
decay rates Γα are:

Γα :=
∑
γ<α

(G
(line)
1 )γα(n̄(ωγα, T ) + 1) +

∑
γ>α

(G
(line)
1 )αγn̄(ωαγ , T ). (4.117)

Here the couplings (G
(line)
1 )αβ were identified to the rates Γ(ωαβ) = 2πJ(ωαβ)

in R(t). Solving the differential equation, one obtains:

⟨X̂αβ⟩(t) = ⟨X̂αβ⟩(0)e(−iωαβ−Γ⊥,αβ)t. (4.118)

The same derivation can be done for ⟨X̂βα⟩:

⟨X̂βα⟩(t) = ⟨X̂βα⟩(0)e(iωαβ−Γ⊥,αβ)t, (4.119)

with the same decay rate Γ⊥,αβ .

20The last term of the dissipators D(±ωαβ , t) was written using that X̂αβX̂βα = X̂αα and
X̂βαX̂αβ = X̂ββ .
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The quantum master equation for the population ⟨X̂αα⟩ gives:21

d
d t

⟨X̂αα⟩ =Tr
(
X̂ααρ̇(t)

)
=Tr

(
X̂ααR(t)

)
= 2

∑
γ<α

(G
(line)
1 )γα(n̄(ωγα, T ) + 1)⟨X̂γγ⟩

+ 2
∑
γ>α

(G
(line)
1 )αγn̄(ωαγ , T )⟨X̂γγ⟩

− 2Γα⟨X̂αα⟩.

(4.120)

This is a system of 2S + 1 coupled first order linear differential equations. In
general, ⟨X̂αα⟩(t) will not be an exponential decay but a sum of exponential
decays. Still, the steady state ⟨X̂αα⟩ss, the value to which ⟨X̂αα⟩ decays at
long times, can be easily obtained. Taking d

d t⟨X̂
αα⟩ = 0, one finds that the

steady states of the populations are related by:

⟨X̂αα⟩ss =
1

Γα

(∑
γ<α

(G
(line)
1 )γα(n̄(ωγα, T ) + 1)⟨X̂γγ⟩ss

+
∑
γ>α

(G
(line)
1 )αγn̄(ωαγ , T )⟨X̂γγ⟩ss

)
,

(4.121)

with the solution:

⟨X̂αα⟩ss =
e−Eα/kBT

Z(T )
=: ⟨X̂αα⟩e, (4.122)

with Z(T ) =
∑

γ e
−Eγ/kBT . That is, the population ⟨X̂αα⟩ relaxes to its value

⟨X̂αα⟩e in thermal equilibrium, as expected.

4.7.2 Driving a single spin S > 1/2 through the transmission
line

The interaction of a single spin S > 1/2 with a coherent drive is given by:

Hdrive = ℏ
2S∑
α=0

∑
β>α

(√
(G

(line)
1 )αβ⟨X̂αβ⟩

+

√
(G

(line)
1 )βα⟨X̂βα⟩

)
αine

−iωdt.

(4.123)

As with a spin 1/2, let us assume that the populations have already de-
cayed to their values in thermal equilibrium before the driving starts, and

21Only the relaxation term of the quantum master equation remains, as X̂αα commutes
with HS.
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that the couplings (G(line)
1 )αβ are small enough so the deviation from these val-

ues is negligible. Defining the difference of population in thermal equilibrium
(∆Pαβ)e := ⟨X̂αα⟩e − ⟨X̂ββ⟩e, one obtains for the coherences ⟨X̂αβ⟩:

d
d t

⟨X̂αβ⟩ =Tr
(
X̂αβ ρ̇(t)

)
=− i

ℏ
Tr X̂αβ [HS, ρ(t)] + Tr X̂αβR(t)

− i

ℏ
Tr
(
X̂αβ [Hdrive, ρ(t)]

)
=− (iωαβ + Γ⊥,αβ)⟨X̂αβ⟩

− i

√
(G

(line)
1 )αβ(∆Pαβ)eαine

−ωdt

− iαine
−ωdt

∑
γ ̸=α,β

√
(G

(line)
1 )βγ⟨X̂αγ⟩

+ iαine
−ωdt

∑
γ ̸=α,β

√
(G

(line)
1 )γα⟨X̂γβ⟩.

(4.124)

In a transmission measurement probing the transition α ↔ β, the driving
frequency ωd will be close to the transition frequency ωαβ and far from the
frequencies of other spin transitions, assuming that the spin frequency spec-
trum is non-degenerate. Then, none of the terms in the last two rows of Eq.
(4.124) oscillate with frequencies close to ωd or ωαβ . Dropping these terms,
one obtains:

d
d t

⟨X̂αβ⟩ ≃ −(iωαβ +Γ⊥,αβ)⟨X̂αβ⟩ − i

√
(G

(line)
1 )αβ(∆Pαβ)eαine

−ωdt, (4.125)

and, if all coherences have already decayed to zero before driving the system,
the following scattering parameters S21 and S11 are obtained at long times
(t≫ 1/Γ⊥,αβ):

S21(ωd ≃ ωαβ) = 1−
(G

(line)
1 )αβ(∆Pαβ)e

i(ωαβ − ωd) + Γ⊥,αβ ,

S11(ωd ≃ ωαβ) = −
(G

(line)
1 )αβ(∆Pαβ)e

i(ωαβ − ωd) + Γ⊥,αβ .

(4.126)
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4.7.3 Driving a spin S > 1/2 ensemble through the transmis-
sion line

Following the steps in section 4.5.3, the transmission and reflection scattering
parameters for a higher spin ensemble coupled to the transmission line are:

S21(ωd ≃ ωαβ) =
1

1− θ(ωd ≃ ωαβ) ,

S11(ωd ≃ ωαβ) =
θ(ωd ≃ ωαβ)

1− θ(ωd ≃ ωαβ) ,

(4.127)

with:

θ(ωd ≃ ωαβ) =
N∑
j=1

θj(ωd ≃ ωαβ)

= −
N∑
j=1

(G
(line)
1, j )αβ(∆Pαβ)e[

(Γ⊥, j)αβ − (G
(line)
1, j )αβ(∆Pαβ)e

]
+ i (ωαβ − ωd) .

(4.128)

This can be simplified if (∆Pαβ)e ≃ 1, which will not hold in general for tran-
sitions between excited states, or if the coupling (G

(line)
1, j )αβ to the transmission

line is much smaller than the total losses (Γ⊥, j)αβ :

θ(ωd ≃ ωαβ) ≃ −
(G

(line)
N )αβ(∆Pαβ)e

γ⊥, αβ + i (ωαβ − ωd) ,
(4.129)

with:

(G
(line)
N )αβ =

N∑
j=1

(G
(line)
1 )αβ . (4.130)

Substituting in Eq. (4.127), the transmission and reflection parameters read:

S21(ωd ≃ ωαβ) =
γ⊥, αβ + i (ωαβ − ωd)

γ⊥, αβ + (G
(line)
N )αβ(∆Pαβ)e + i (ωαβ − ωd) ,

S11(ωd ≃ ωαβ) = −
(G

(line)
N )αβ(∆Pαβ)e

γ⊥, αβ + (G
(line)
N )αβ(∆Pαβ)e + i (ωαβ − ωd) .

(4.131)

4.7.4 Driving a spin S > 1/2 ensemble-resonator system

As with spin 1/2 ensembles, a large number of spins is needed in order to
factorize the correlators that appear in the equations of the time evolution
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of the expectation values of the resonator and the spin operators in a hy-
brid ensemble-resonator system (see sections 4.6.1 and 4.6.2). This system is
described by the generalized Tavis-Cummings Hamiltonian (3.49). Assuming
that the ensemble is not directly coupled to the transmission line, sending a
coherent drive to the resonator gives the following quantum master equations
for ⟨â⟩ and each ⟨X̂αβ

j ⟩:

d
d t

⟨â⟩ =− (iωr + κ)⟨â⟩ − i

N∑
j=1

2S∑
α=0

∑
β>α

(G1, j)αβ⟨X̂αβ
j ⟩ − i

√
κcαine

−iωdt,

d
d t

⟨X̂αβ
j ⟩ ≃ − (iωαβ + γ⊥,αβ)⟨X̂αβ

j ⟩ − i(G1, j)βα(∆Pαβ)e⟨â⟩.
(4.132)

Here the populations ⟨X̂αα
j ⟩ have been replaced by their values in thermal

equilibrium, which is valid for small single spin couplings (G1, j)βα.

For each transition, a collective operator X̂αβ can be defined:

X̂αβ :=
1

(GN )αβ

N∑
j=1

(G1, j)αβ X̂
αβ
j , (4.133)

with (GN )αβ = (G1, rms)αβ
√
N :

(G1, rms)αβ =

√√√√ 1

N

N∑
j=1

|(G1, j)αβ|2

.

(4.134)

Substituting in Eq. (4.132), one obtains:

d
d t

⟨â⟩ =− (iωr + κ)⟨â⟩ − i

2S∑
α=0

∑
β>α

(GN )αβ⟨X̂αβ⟩ − i
√
κcαine

−iωdt,

d
d t

⟨X̂αβ⟩ ≃ − (iωαβ + γ⊥,αβ)⟨X̂αβ⟩ − i(GN )αβ(∆Pαβ)e⟨â⟩.
(4.135)

At long times, these equations yield the following scattering parameters [10]:

S21(ωd) = 1− κc

i(ωr − ωd) + κ+
2S∑
α=0

∑
β>α

(GN )2αβ(∆Pαβ)e

i(ωαβ − ωd) + γ⊥,αβ ,

S11(ωd) = − κc

i(ωr − ωd) + κ+
2S∑
α=0

∑
β>α

(GN )2αβ(∆Pαβ)e

i(ωαβ − ωd) + γ⊥,αβ .

(4.136)
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Or, driving a resonator close to resonance with an specific transition α↔ β:

S21(ωd ≃ ωαβ) = 1− κc

i(ωr − ωd) + κ+
(GN )2αβ(∆Pαβ)e

i(ωαβ − ωd) + γ⊥,αβ ,

S11(ωd ≃ ωαβ) = − κc

i(ωr − ωd) + κ+
(GN )2αβ(∆Pαβ)e

i(ωαβ − ωd) + γ⊥,αβ .

(4.137)

The discussion of Eq. (4.137) in the weak and strong regimes is similar to the
one in section 4.6.4.
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Chapter 5

Strong coupling of organic
free-radical molecules to
lumped-element resonators

Chapter 2 introduced superconducting lumped-element resonators (LERs) as
a suitable platform for controlling and measuring molecular spin qubits. LERs
have several interesting properties as compared to coplanar resonators. Several
LERs with different resonance frequencies ωr can be coupled to the same read-
out transmission line, which allows measuring them independently (frequency
multiplexing). Also, the impedance Z =

√
L/C of the LER is independent

from the transmission line impedance Z0 = 50 Ω. This gives more freedom
in the fabrication of low-inductance LERs (small L) in order to enhance the
spin-photon coupling [1, 2].

While coplanar resonators have been already used to reach the strong cou-
pling regime with molecular spin ensembles [3–5], with LERs this regime has
been achieved only with non-molecular spin ensembles [6]. In this chapter I
explore whether strong coupling can be achieved with molecular spin qubits
coupled to LERs, in particular organic free radicals that realize model S = 1/2

systems [7]. These experiments illustrate the basic characteristics of a hybrid
spin-LER platform.
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5.1 Chip design and characterization

5.1.1 Chip design

I have used two superconducting chips, labeled Test 1 and Test 2, made of a 100
nm-thick niobium (Nb) film deposited on top of a silicon substrate (see section
2.1.1 in chapter 2). Niobium is superconducting below Tc = 9.26 K. Twelve
LERs with different resonance frequencies ωr were patterned in the surface of
each chip, side-coupled to the same transmission line. I labeled them from 1
to 12 from lowest to highest ωr. Figure 5.1 shows both chip designs.

Port 1

Port 1

Port 2

Port 2

Figure 5.1: Vector file design of (a) Test 1 and (b) Test 2. All twelve LERs (black) in
each chip are side-coupled to a single transmission line (blue), and labeled in increasing
ωr. The ordering in the top row in Test 2 is different from the ordering in Test 1 so
that some pairs of resonators with similar frequencies (LERs 1 and 2, and LERs 3
and 4) are farther apart.

Chips Test 1 and Test 2 were fabricated to explore different LER designs
and test how different parameters affect the spin-photon coupling and the
transmission characteristics. LER designs are shown in Figs. 5.2 and 5.3.
Most of the resonators have both inductive and capacitive coupling to the
transmission line, that is, they have parts of both the meandering inductor
and the inter-digitated capacitor very close to the line (Fig. 5.2). The rest
are placed so that only the inductor or the capacitor is close to the line, which
gives either an inductive or capacitive resonator-line coupling (Fig. 5.3).
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There also LERs with different geometric inductance Lgeo in order to see its
effect on the spin-resonator coupling. Between resonators with a similar design,
their resonance frequency is tuned by increasing or decreasing the length of the
last finger of the inter-digitated capacitor.

Test 1 & 2 ൝

.

.

.

LERs 1 & 2: 𝑠 = 38 𝜇m

LERs 3 & 4: 𝑠 = 50 𝜇m

LERs 5 & 6: 𝑠 = 70 𝜇m

𝐿geo = 14 nH 𝑠 = 44 𝜇m

Test 2 ൝

.

.

.

LERs 9 & 10:   𝐿geo = 6 nH

LERs 11 & 12: 𝐿geo = 5 nH

𝑠

Figure 5.2: Examples of resonator designs having both inductive and capacitive cou-
pling to the transmission line. The magnitude of this coupling is controlled by s,
the shortest distance between the borders of the resonator and the central line of the
transmission line. Higher line-resonator couplings are expected for shorter s. There
are LERs with high (a) and low (b) geometric inductance Lgeo.

Test 1, LERs 7 & 8

𝑠 = 70 𝜇m, 𝐿geo = 14.5 nH

𝑠 = 70 𝜇m

Test 1 ൝

.

.

.

LERs 9 & 10:   𝐿geo = 6 nH

LERs 11 & 12: 𝐿geo = 5 nH

Test 2, LERs 7 & 8

𝑠 = 38 𝜇m, 𝐿geo = 14 nH

Figure 5.3: Examples of resonator designs with only capacitive coupling (a, b) or with
only inductive coupling (c) to the transmission line. Designs (a) and (c) have a higher
geometric inductance Lgeo than design (b).
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The ensemble-resonator coupling depends on the microwave magnetic field
generated by the resonator, which in resonance is concentrated around the in-
ductor. I used the 3D-MLSI software [8], which solves London equations for
thin superconducting films with a finite element method, to compute the cur-
rent distribution in the inductor in resonance. The magnetic field distribution
on top of the inductor is computed using this current distribution. It is mainly
contained within the plane perpendicular to the longer induction lines of the
LER (see Fig. 5.4a). In a sample of free-radicals molecules with spin 1/2,
only the microwave magnetic field perpendicular to the static magnetic Bdc

contributes to the coupling (see section 3.3.1, and in particular Eq. (3.30)).
Then, the best configuration in the experiment is to apply Bdc parallel to the
longer inductor lines, as shown in Fig. 5.4a.

Figure 5.4: (a) Orientation of the plane containing the microwave magnetic field
generated by the longer inductor lines with respect to the resonator design. The
coupling is maximum if the static field Bdc is applied perpendicular to this plane
(parallel to the inductor lines). (b-d) Maps showing the amplitude of the magnetic
field within this plane generated by vacuum fluctuations in the resonator at the reso-
nance frequency ωr. The field distributions of three resonators in Test 2 with different
geometric inductance Lgeo are shown: LER 1 (b), LER 9 (c), and LER 11 (d). Maps
are normalized by the maximum field within the plane in each case: 3.05 nT for LER
1, 4.22 nT for LER 9 and 3.08 nT for LER 11. White solid lines show the field lines.

Figures 5.4b, 5.4c and 5.4d show the distribution of the magnetic field
in the plane perpendicular to the inductor lines above LERs 1, 9 and 11 of
Test 2. These resonators have different geometric inductance Lgeo: 14 nH for
LER 1, 6 nH for LER 9 and 5 nH for LER 11. The magnetic field generated
by LER 1 is localized within a few microns above the inductor lines. This
small mode volume is better suited for samples place very close to the chip
surface. Conversely, LERs 9 and 11, with lower Lgeo, generate a magnetic field
distribution that spreads further from the surface (large mode volume), which
is better for larger samples.
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5.1.2 Characterization of Test 1

Prior to the experiments with spin samples, LERs in Test 1 were characterized
with transmission experiments at 17 mK and zero magnetic field. Each LER
has a resonance, that is, a dip in transmission (S21) centered around its reso-
nance frequency ωr. Figure 5.5) shows all the resonances in this chip except
for LER 10. The results were fitted with the model for S21 around ωr given by
Eq. (4.67) in chapter 4, which is reproduced here for clarity:

S21(ωd) = 1− κc
i(ωr − ωd) + κ ,

(5.1)

where ωd is the input (driving) frequency and κ comprises the total losses of
the photon mode, including internal losses (κi) and the line-resonator coupling
(κc). Figures showing experimental results are shown in terms of the regular
input frequency f = ωd/2π.

LER 1 LER 2 LER 3 LER 4 LER 5 LER 6

LER 7 LER 8 LER 9 LER 11 LER 12

Figure 5.5: Module of the microwave transmission S21 (light blue dots) of Test 1,
measured at 17 mK and zero magnetic field near the resonance frequency ωr of each
LER (except LER 10). Solid blue line shows the fit of the resonances of each pair of
LERs, ordered in increasing resonance frequency: LERs 1 to 6 (a), and LERs 7 to 12
(b).

The asymmetry of the resonances arises from the coupling of the mode
of the resonator to modes in a slightly mismatched transmission line [9, 10],
in which is known as a Fano resonance [11], or due to memory effects of the
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transmission line beyond the Markovian regime (see section 4.3.4) [12]. Instead
of including a description of the modes in the line, a simpler model can be used:
the Diameter Correction Method (DCM), which describes the asymmetry in
S21 with only one additional parameter [13]. In the DCM model the line-
resonator coupling rate κc is a complex quantity with module |κc| and argument
ϕc. Only the real part of κc contributes to κ:

κ := Re(κc) + κi = |κc| cosϕc + κi, (5.2)

while its imaginary part accounts for the resonance asymmetry. The resonance
visibility is defined as the ratio:

η := Re(κc)/κ = 1− κi/κ. (5.3)

The results of the fit of the resonances with Eq. (5.1) yields the parameters
listed in table 5.1. All the resonance frequencies are shifted to lower frequen-
cies (between 70 and 120 MHz) compared to the results from simulations with
Sonnet (see table A.1 in Appendix A). This shift is associated with contribu-
tions to the resonator inductance and capacitance that these simulations do
not take into account. The inductance of the resonator is increased by the
kinetic inductance Lk due to the inertia of superconducting electrons at high
frequencies. The capacitance is also increased due to parasitic capacitances
with other elements in the chip (the ground planes or the transmission line).
All resonances are also broadened, with higher κi, in the experimental setup
compared to the simulations.

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.7506246 ± 2 · 10−7 89.3 ± 0.2 84.7 ± 0.3 −8.5 ± 0.1
2 1.7524814 ± 2 · 10−7 70.7 ± 0.2 68.7 ± 0.3 −18.5 ± 0.1
3 1.78065512 ± 7 · 10−8 42.7 ± 0.1 37.6 ± 0.1 −8.6 ± 0.1
4 1.78223735 ± 6 · 10−8 38.2 ± 0.1 33.8 ± 0.1 −13.7 ± 0.1
5 2.1740753 ± 4 · 10−7 199.6 ± 0.4 124.6 ± 0.3 −13.3 ± 0.1
6 2.1776990 ± 2 · 10−7 74.5 ± 0.2 47.3 ± 0.2 −21.9 ± 0.1
7 2.30489941 ± 7 · 10−8 12.7 ± 0.1 4.57 ± 0.03 −30.1 ± 0.2
8 2.31021363 ± 8 · 10−8 10.0 ± 0.1 2.67 ± 0.03 −28.5 ± 0.3
9 3.66747128 ± 6 · 10−8 22.1 ± 0.1 12.70 ± 0.04 11.0 ± 0.1

10 − − − −
11 4.0772129 ± 2 · 10−7 61.6 ± 0.2 31.4 ± 0.1 15.9 ± 0.1
12 4.0826920 ± 2 · 10−7 42.3 ± 0.2 21.6 ± 0.1 33.8 ± 0.2

Table 5.1: Fitting parameters of the experimental results of Fig. 5.5 with Eq. (5.1).
ωr is the resonance frequency of the LER. κ is the decay rate of the photon mode and
comprises the total losses of the resonator. These include internal losses (κi) and the
line-resonator coupling (κc). Using DCM, κc is complex-valued with module |κc| and
argument ϕc.
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Figure 5.6 shows the module of the line-resonator coupling, |κc| for each
resonator. LERs with inductive coupling (LERs 1 to 6) display higher line-
resonator coupling rates than those with only capacitive coupling (LERs 7 to
12). The magnetic field generated by the inductor extends farther than the
electric field, which is typically confined close to the superconducting surface of
the capacitor fingers, enhancing the line-resonator coupling. In fact, LERs 1 to
6 are over-coupled, with a visibility larger than 0.5 (η > 0.5), while those with
only capacitive coupling are either critically coupled (η = 0.5) or under-coupled
(η < 0.5). In particular, LERs 7 and 8 have by far the lowest line-resonator
coupling rates and are clearly under-coupled.

Figure 5.6: Absolute value of the complex line-coupling κc of LERs in Test 1.

Resonators LERs 1 and 2, which are closer to the transmission line than
LERs 3 and 4, show higher line-resonator coupling rates than the latter. How-
ever, there is no clear dependence on the resonator-line distance s if LERs
5 and 6 are included, which have also the same design. This broadening of
LER 5 (or LER 6, depending on the design) has been repeatedly observed in
experiments with chip designs akin to Test 1 or Test 2.

5.1.3 Characterization of Test 2

The resonances in Test 2 span a much narrower frequency range than those in
Test 1. As with Test 1, these resonances were characterized with transmission
experiments at 17 mK and zero magnetic field and fitted with Eq. (5.1). This
chip was also characterized at 4.2 K in order to see the effect of temperature
on the resonances. Figures 5.7 and 5.8 show the resonances at 17 mK at 4.2
K respectively, with the fitting parameters listed in tables 5.2 and 5.3.
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LER 1 LER 2 LER 3 LER 4 LERs 5 & 6

LER 7 LER 8 LERs 9 & 10 LERs 11 & 12

Figure 5.7: Microwave transmission (light blue dots) of Test 2 measured at 17 mK near
the resonance frequencies of all LERs. Solid blue line shows the fit of the resonances
of each pair of LERS, ordered in increasing resonance frequency: LERs 1 to 6 (a),
and LERs 7 to 12 (b).

LER 1 LER 2 LER 3 LER 4 LERs 5 & 6

LER 7 LER 8 LERs 9 & 10 LERs 11 & 12

Figure 5.8: Microwave transmission (light blue dots) of Test 2 measured at 4.2 K
near the resonance frequencies of all LERs. The solid blue line shows the fit of the
resonances of each pair of LERs, ordered in increasing resonance frequency: LERs 1
to 6 (a), and LERs 7 to 12 (b).



5.1. Chip design and characterization 107

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.60416155 ± 1 · 10−8 16.51 ± 0.01 13.87 ± 0.01 4.92 ± 0.03
2 1.60651821 ± 1 · 10−8 18.17 ± 0.01 15.08 ± 0.02 −0.45 ± 0.03
3 1.66357945 ± 1 · 10−8 24.10 ± 0.01 21.86 ± 0.02 −5.54 ± 0.02
4 1.66543185 ± 1 · 10−8 23.72 ± 0.01 21.07 ± 0.02 0.25 ± 0.02
5 1.73334419 ± 5 · 10−8 33.4 ± 0.1 31.5 ± 0.1 15.0 ± 0.1
6 1.7337608 ± 1 · 10−7 152.4 ± 0.1 149.0 ± 0.2 −14.14 ± 0.03
7 1.81141912 ± 3 · 10−8 9.75 ± 0.03 7.62 ± 0.03 −9.5 ± 0.1
8 1.81619219 ± 2 · 10−8 8.82 ± 0.02 6.88 ± 0.03 −10.3 ± 0.1
9 1.98042651 ± 3 · 10−8 11.68 ± 0.03 10.56 ± 0.04 27.1 ± 0.1

10 1.98071604 ± 4 · 10−8 34.94 ± 0.04 34.2 ± 0.1 7.94 ± 0.05
11 2.08114007 ± 1 · 10−8 21.65 ± 0.01 20.04 ± 0.02 1.72 ± 0.02
12 2.08235739 ± 1 · 10−8 36.75 ± 0.02 35.10 ± 0.03 4.80 ± 0.01

Table 5.2: Parameters from the fit of the experimental results in Fig. 5.7 with Eq.
(5.1).

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.59847075 ± 6 · 10−8 99.7 ± 0.1 14.91 ± 0.01 7.11 ± 0.03
2 1.60081773 ± 6 · 10−8 102.3 ± 0.1 15.62 ± 0.01 4.29 ± 0.03
3 1.65759532 ± 9 · 10−8 112.4 ± 0.1 19.74 ± 0.02 −7.89 ± 0.03
4 1.65944270 ± 8 · 10−8 113.6 ± 0.1 20.85 ± 0.02 −4.24 ± 0.03
5 1.7270242 ± 3 · 10−7 132.7 ± 0.2 33.9 ± 0.1 16.5 ± 0.1
6 1.7274524 ± 2 · 10−7 238.7 ± 0.2 132.3 ± 0.1 −10.98 ± 0.04
7 1.8045798 ± 1 · 10−7 121.7 ± 0.1 7.00 ± 0.01 −2.02 ± 0.05
8 1.8093356 ± 2 · 10−7 119.1 ± 0.2 5.83 ± 0.01 −2.7 ± 0.1
9 1.9744671 ± 6 · 10−7 144.3 ± 0.6 16.7 ± 0.1 26.2 ± 0.3

10 1.9747926 ± 3 · 10−7 137.7 ± 0.3 33.2 ± 0.1 4.2 ± 0.1
11 2.0753418 ± 1 · 10−7 127.6 ± 0.1 18.36 ± 0.03 1.81 ± 0.05
12 2.0765439 ± 1 · 10−7 142.8 ± 0.1 32.49 ± 0.03 3.83 ± 0.03

Table 5.3: Parameters from the fit of the experimental results in Fig. 5.8 with Eq.
(5.1).

The changes in transmission with temperature are those expected for su-
perconducting lumped-element resonators [14]. Although the DC-resistance of
a superconductor is zero below Tc (∼ 9.2 K for Nb), its AC-impedance can
be still non-zero. In particular, this impedance increases with frequency and
temperature, even below Tc, and makes for the increase of around one order
of magnitude in the internal losses of the resonator, κi, between 17 mK and
4.2 K (from 10–35 kHz to 100–145 kHz). This increase in κi accounts for the
wider line-shapes — higher κ — with lower visibility, while κc is temperature-
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independent. There is also a decrease in ωr of about 6 MHz in all resonances as
temperature is increased. The penetration depth of the superconducting ma-
terial increases with temperature, which in turn increases the resonator induc-
tance L. The magnitude of the shift in the resonance frequency ωr = 1/

√
LC

depends on the contribution of this effect to the total L.

5.2 DPPH samples

5.2.1 The DPPH radical

2,2-diphenyl-1-picrylhydrazyl (DPPH) is an organic free radical molecule with
spin 1/2 that is widely used as an standard in Electron Paramagnetic Reso-
nance (EPR) [15]. Each DPPH molecule consists of a hydracyl radical bridging
a picryl group and two phenyl groups (see Fig. 5.9). The spin 1/2 of the un-
paired electron of the radical behaves nearly as the spin of a free electron. It
is described by a spin Hamiltonian that is just an isotropic electronic Zeeman
term with a g-factor gS = 2.004 just above the value for a free electron [16]:

H = µBgSBŜz =
µBgSB

2
σ̂z. (5.4)

Hydracyl

Phenyl

Picryl

N
N

N

N

N

-

-

-

O
O

O

O

O

O
+

+

+

Figure 5.9: Chemical structure of DPPH, adapted from [17]. The unpaired electron,
pictured as a black dot, that gives the effective spin 1/2 of the molecule is localized
in the nitrogen atom of the hydracyl group closest to the picryl group.

The spin 1/2 is biased by a static field Bdc of magnitude B, which tunes
its transition frequency ωq = µBgSB/ℏ. As stated in section 5.1.1, a spin 1/2
couples only to oscillating fields perpendicular to Bdc. The coupling is the
modulation of the isotropic electronic Zeeman term by these components.
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5.2.2 Sample characterization

All experiments in this chapter used DPPH in powder form, as purchased
from Sigma Aldrich (reference D9132), pressed into a 1 mm wide, 0.2 mm
thick pellets. Solvent-free DPPH is known to have at least two different crys-
tal structures, usually labeled DPPH-I and DPPH-III. Information on their
crystal lattice parameters was reported in 1965 [18, 19], but a full structural
determination was not performed until 2010 [16]. The results of X-ray diffrac-
tion experiments on these samples, shown in Fig. 5.10a, suggest that they
exhibit the DPPH-III structure (Fig. 5.10b).

Figure 5.10: (a) X-ray diffraction experiment on our powder samples (blue solid
line) and calculated spectrum for DPPH-III (red solid line). (b) Picture of the two
subspecies, labeled A and B, present in the structure of the sample (DPPH-III).
They are distinguished by the formation of dimers (A) or spin chains (B) at low
temperatures.

Information on the magnetic response of DPPH was obtained by a combi-
nation of magnetic, heat capacity and magnetic resonance experiments. In all
these, the DPPH powder pellets were glued to the sample holder with apiezon
N grease in order to improve its thermalization.

Magnetic measurements were performed between 1.7 K and 300 K using a
commercial SQUID magnetometer. The dc susceptibility χ was measured with
a magnetic field B = 0.1 T. Magnetization isotherms were also measured at
fixed temperatures by varying B from 0 to 5 T. Measurements for temperatures
lower than 1.7 K were performed with a home-made micro-Hall magnetometer,
based on a high-mobility 2D electron gas created at the interface between
GaAs and GaInAs semiconducting layers, coupled to a 3He cryostat. A few
microns wide DPPH sample was placed close to one of the three Hall crosses
patterned onto the device. The net Hall voltage, proportional to the sample
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magnetic moment, was recorded between 0.35 K and 5 K with a B = 0.1 T
magnetic field applied along the plane of the sensor. The bare device signal
was measured independently and then subtracted from the experimental data,
with the results showing no thermal hysteresis.

The dc-magnetic susceptibility χ and heat capacity cP of powdered DPPH
samples are shown in Figs. 5.11a and 5.11b. From room temperature down
to about 35 K, χ follows a Curie-Weiss law χ = C/(T − θ), with C the Curie
constant and θ the Weiss temperature, see the inset of Fig. 5.11a. The constant
C = 0.320 ± 0.001 emu K/mol Oe measured in this region is smaller, by a
factor x ≡ C/CS=1/2

∼= 0.85, than the value CS=1/2 = NAg
2
S/4kB = 0.375 emu

K/mol Oe that would be expected for isolated S = 1/2 with gS = 2.004. This
suggests that a fraction of DPPH molecules are in their oxidized form, which
is diamagnetic (S = 0).

Type A

(52 %)

Type B

(48 %)

Figure 5.11: (a) Dependence of the χT product (where χ is magnetic susceptibility)
of a DPPH powder sample with temperature, measured at µ0H = 0.1 T. Hollow
blue dots are SQUID measurements, while solid blue dots are Hall voltage measure-
ments. Solid lines consist of the contribution from a model of AF dimers from type A
molecules and the contribution from type B molecules. For the latter, the cyan solid
line is a model of AF dimers, while the red solid line is a model of AF chains. As a ref-
erence, the dashed black line shows the expected χT for a fully paramagnetic DPPH
sample. Inset: χ vs. temperature. (b) Temperature dependence of the heat capacity
at µ0H = 0 T of a powder sample of DPPH (blue dots). The contribution from type
B molecules appears at low temperatures. A model of infinite AF chains (red solid
line) follows the experimental data much better than the model of AF dimers (cyan
solid line). Black dashed line is the Debye model for the lattice heat capacity, with
θD = 47 K.
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The finite negative θ = −21 K reflects the existence of relatively strong
antiferromagnetic (AF) interactions. These interactions lead to the drop in
the χT product, proportional to the effective magnetic moment squared, which
is observed experimentally (Fig. 5.11a). A quite similar behaviour has been
observed in diverse DPPH derivatives [16, 20, 21]. It is associated with the
coupling between nearest neighbour molecules, which tend to form AF dimers
with an S = 0 ground state. In the DPPH-III structure, such spin dimers are
formed by DPPH molecules belonging to the A crystal sublattice [16].

This picture agrees also with the results of magnetic resonance experiments.
Continuous wave EPR measurements (cw-EPR) were performed with a Bruker
Biospin ELEXSYS E-580 spectrometer operating in the X-band (9–10 GHz).
A DPPH pellet was glued with vacuum grease onto a diamagnetic holder and
introduced in the EPR cavity. A single narrow line was measured, shown in
Fig. 5.12a, in agreement with a spin S = 1/2 and gS = 2.004. The line intensity
I shows a paramagnetic behaviour, with the IT product behaving very much
as χT (see Fig. 5.12b). The spin resonance line is homogeneously broadened
as temperature is decreased from room temperature to 4 K. It is known that,
in the paramagnetic phase of DPPH, exchange interactions tend to suppress
the inhomogenous broadening associated with dipole-dipole interactions [22]
via the exchange narrowing mechanism [23].

Figure 5.12: (a) cw-EPR of a powder sample of DPPH at 4, 15, 20, 30, 100 K. The
complete set of measurements span from 4 K to room temperature. (b) Product of
absorption area and temperature. The cw-EPR spectra were initially measured going
from room temperature down to 4 K (blue dots), then a few measurements were
carried out at high temperatures going back to room temperature (red dots). No
hysteresis is observed.

Time-domain EPR measurements of the Free Induction Decay (FID) were
carried out at 7.7 K (Fig. 5.13a) and at room temperature (Fig. 5.13b). This
signal is the decay of the magnetization of the sample after a single excitation
pulse, without refocusing. When homogeneous broadening is dominant, there
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is no echo signal, and Tm is obtained as the characteristic time constant of the
decay of the FID. The fit of the two signals is compatible with a homogeneous
broadening γ⊥/2π = 1/2πTm ∼= 4.8 MHz at 7.7 K, and γ⊥/2π = 4.3 MHz at
room temperature, which correspond to phase memory times Tm = 33.5 ns
and 37 ns respectively.

Figure 5.13: FID signal of a DPPH powder sample measured at 7.7 K (a) and at
room temperature (b). Experimental data (blue dots) is fitted with an oscillating
decay with two decay rates (bi-exponential). I assign the faster rate with Tm, yielding
Tm = 33.5 ns at 7.7 K and 37 ns at room temperature.

Below 10 K, χT shows a second drop, as seen in Fig. 5.11a. In this tem-
perature region, χ follows also a Curie-Weiss law, but with a smaller C and
a much smaller θ = −0.65 K. This behaviour probably reflects the weaker in-
teractions between spins in sublattice B of DPPH-III. The response remains
paramagnetic down to very low-T , with no clear indication of a phase transi-
tion. It is consistent with the formation of either AF dimers or low dimensional
(1D) antiferromagnetic chains.

In order to decide between these two alternatives, the specific heat of the
samples was measured with a commercial physical properties measurement
platform that uses the relaxation method [24]. The temperature was varied
between 0.35 K and 200 K and magnetic fields between 0 and 2 T were applied
parallel to the sample plane. Above 2 K, specific heat data measured at zero
field (Fig. 5.11b) are dominated by a large contribution arising from lattice
and molecular vibrations. At lower temperatures, an additional contribution
shows up, which depends on magnetic field as shown in Fig. 5.14. Therefore,
it reflects spin excitations. The broad shape of this anomaly confirms that no
phase transition to long-range magnetic order takes place in this temperature
region. The data agree well with predictions for the specific heat of infinite
AF chains at zero magnetic field [25], and seem to rule out the formation of
dimers within the B sublattice of DPPH.
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Figure 5.14 shows the temperature dependence of the heat capacity at
increasing magnetic fields. Without an extension of the model of infinite AF
chains to include an applied magnetic field, the measured heat capacity was
tentatively described with a model of finite AF chains. At low fields, this
model fits the measured heat capacity, while the paramagnetic theory fails.
Conversely, for µ0H > 1 T the paramagnetic theory is a good description of
the system: magnetic order is broken by the application of a strong enough
magnetic field. At intermediate fields (µ0H = 1 T), a model of finite AF chains
is not enough to represent accurately the measured heat capacity.

Figure 5.14: Molar specific heat of a powder DPPH sample measured at 0.25, 0.5,
1, 2, 3 and 5 T. The experimental results (dots) are compared with a theory of AF
chains (solid lines) and the paramagnetic theory for spin 1/2 (dashed lines).

The above interpretation is also compatible with the magnetic susceptibil-
ity data. The dc susceptibility of finite chains of N S = 1/2 spins coupled
by a Heisenberg AF coupling was calculated. Figure 5.11a shows how the ex-
perimental χT can be described by the combination of two contributions: one
arising from AF dimers of A-type DPPH molecules and another one resulting
from AF chains formed within the B sub-lattice. The low-T susceptibility can
be accounted for with a model that considers only small-N chains because the
contribution per spin to the total susceptibility tends to vanish as N → ∞.
The uncompensated spins in odd-N chains are responsible for the incomplete
cancellation of χT as T → 0. The origin of finite size chains can be associated
with the presence of about 15 % of diamagnetic DPPH molecules, which are
randomly distributed over the crystal lattice.

Finally, for completeness, Fig. 5.15a shows the magnetization isotherms
that were measured in the same experiment as the dc-magnetic susceptibility
from Fig. 5.11a. The magnetization of each spin 1/2 is expected to saturate
to µB at high fields. However, as discussed in the measurement of χT , ∼ 15%
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of the sample is already diamagnetic at high temperatures, and at 10 K the A-
type DPPH molecules have already formed diamagnetic dimers. Normalizing
by the total number of molecules in the sample, a lower saturation value for the
magnetization is obtained. The remaining contribution from B-type DPPH
molecules is fitted with a scaled paramagnetic theory for spins 1/2. At the
lower measured temperatures (0.5, 1 and 2 K) and low fields, this theory fails
due to the onset of antiferromagnetic interactions in lattice B, which oppose
the onset of magnetization due to the applied magnetic field see (5.15b).

Figure 5.15: (a) Field-dependent magnetization isotherms of a DPPH powder sample
measured at 0.5, 1, 2, 5 and 10 K (dots), in units of Bohr magnetons (µB) per
molecule. The dashed line is the saturation value of the magnetization per molecule
taking into account that a 15% of the sample is diamagnetic. Solid lines are the
paramagnetic theory of a spin 1/2. (b) Difference between measured magnetization
and the predicted magnetization with the paramagnetic theory of a spin 1/2 at 0.5,
1 and 2 K.

5.3 Coupling of DPPH to LERs in Test 1

5.3.1 Effect of the resonator geometry and orientation on its
visibility

The transmission experiments to study the coupling of DPPH samples to LERs
were carried out at 4.2 K. At this temperature, A-type DPPH molecules have
formed AF dimers, but B-type DPPH molecules still remain paramagnetic.
However, LERs in Test 1 were only characterized at 17 mK right after fabri-
cation. Figure 5.16 shows the transmission of these resonators at 4.2 K. Only
the resonances of LERs 1 to 6 were detected at zero magnetic field, which were
fitted with Eq. (5.1). The fitting parameters are listed in table 5.4.
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LERs 1 & 2 LERs 3 & 4 LER 5 LER 6

Figure 5.16: Transmission (light blue dots) of the lumped-element resonators in chip
Test 1 at 4.2 K and zero magnetic field. The solid blue line shows the fit of the
resonances of LERs 1 to 6, ordered in increasing resonance frequency.

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.736763 ± 2 · 10−6 273.2 ± 1.9 93.7 ± 0.8 9.6 ± 0.3
2 1.738524 ± 2 · 10−6 243.0 ± 2.2 65.3 ± 0.7 1.1 ± 0.4
3 1.767044 ± 2 · 10−6 219.15 ± 1.98 36.3 ± 0.4 9.4 ± 0.4
4 1.769291 ± 2 · 10−6 214.7 ± 2.2 31.2 ± 0.4 2.6 ± 0.4
5 2.156230 ± 6 · 10−6 636.8 ± 5.5 20.3 ± 0.2 26.4 ± 0.4
6 2.161580 ± 6 · 10−6 608.7 ± 5.6 18.9 ± 0.2 −6.6 ± 0.4

Table 5.4: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 1 at 4.2 K and zero magnetic field.

The resonances are shifted to lower frequencies by ∼ 14 MHz as the tem-
perature increases from 17 mK to 4.2 K. They are also broadened, with κ

increasing by one order of magnitude with respect to to its value at 17 mK
in every resonator. These are the same features observed in the temperature
dependence of the resonances in Test 2 (see section 5.1.3). It is not surpris-
ing then that the resonances of LERs 7 to 12 in Test 1 at 4.2 K may be too
weak to be detected: their visibility at 17 mK was already much smaller than
that of their counterparts in Test 2, and now they are further broadened by
temperature.

Note that LERs 7 to 12 are rotated 90◦ with respect to LERs 1 to 6 in Test
1 (see Fig. 5.1), with only capacitive line-resonator coupling. This suggests
that this kind of coupling alone is not enough to measure the resonators far
from the millikelvin regime (4.2 K, in this case). For that reason, Test 2 was
designed with only two rotated LERs (7 and 8), both of them with inductive
resonator-line coupling.
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5.3.2 Strong coupling of a DPPH ensemble to a LER

LERs 1 to 6 can be grouped in three pairs with similar frequencies: LERs 1
and 2, LERs 3 and 4, and LERs 5 and 6. They all share the design of type (a)
resonators in Fig. 5.2. In this section I present the transmission of one LER
of each pair coupled to the same DPPH sample, which was moved from one
resonator to the next between experiments (see Fig. 5.17).

3 5

Figure 5.17: Photo of the same sample of DPPH powder placed on top of the inductor
LER 3 (a) and then on top of the inductor of LER 5 (b).

The sample is a DPPH powder pellet with a thickness of ∼100 µm and an
area (∼ 1 mm2) slightly larger than the size of the resonators, covering the
whole inductor. This large sample can be easily handled and moved between
LERs. With a molecular density of ∼ 2 × 1027 molecules/m3 for DPPH-III
[26], there are roughly N ∼ 1017 spins in this sample. The sample was initially
placed on top of LER 1 with Paratone oil.

Figure 5.18a shows the hybrid spins-LER system resonance around the
resonator frequency ωr of LER 1 for different magnetic fields. The coupling
between the sample spins and the resonator mode becomes apparent when the
field-dependent transition frequency of a spin 1/2, ωq = µBgSB/ℏ, is close
to ωr. The spin-photon resonance field Bres is defined by the condition ωr =

ωq = µBgSBres/ℏ. The experiment is modeled as the transmission (S21) of a
resonator coupled to an ensemble of non-interacting spins. This is described
in Eq. (4.103) from chapter 4, which is reproduced here for clarity:

S21(ωd) = 1− κc

i(ωr − ωd) + κ+
G2

N∆P

i(ωq − ωd) + γ⊥ .

(5.5)

Apart from the previously characterized LER parameters (ωr, κ, and κc),
Eq. (5.18) depends on the spin transition frequency, ωq, the decoherence rate
of the spin ensemble, γ⊥, and the collective spin-photon GN . The population
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difference ∆P between the spin down and spin up states at temperature T is
included in what follows in a temperature dependent coupling GN ∝

√
∆P .

In a microwave transmission experiment, S21 is measured for different regular
input frequencies f = ωd/2π and magnetic fields B (tuning ωq). LER param-
eters resulting from the least-squares fit are listed in table A.2 in Appendix A.
The g-factor gS and the coupling GN for γ⊥/2π = 6.5± 0.5 MHz are reported
in table 5.5. This value of γ⊥ is consistent with previous reported values for
DPPH pellets coupled to superconducting resonators [27, Ch.7].

Figure 5.18: Transmission of Test 1 LER 1 (a), LER 3 (b) and LER 5 (c) coupled to
the same DPPH powder sample (see Fig. 5.17).
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LER gS GN/2π (MHz) GN/γ⊥ C

1 2.02058 ± 5 · 10−5 2.586 ± 0.003 0.40 ± 0.03 4.0 ± 0.3
3 2.01953 ± 5 · 10−5 3.758 ± 0.003 0.58 ± 0.04 10.6 ± 0.8
5 2.01928 ± 4 · 10−5 12.491 ± 0.004 1.9 ± 0.1 57.9 ± 4.5

Table 5.5: Parameters from the fit of the magnetic field dependent resonances of
LERs 1, 3 and 5 in chip Test 1 at T = 4.2 K shown in Fig. 5.18. The same
DPPH was coupled to each of the three resonators. GN is the collective spin-photon
coupling defined by Eq. (4.104), measured at 4.2 K. The cooperativity is defined as
C = G2

N/γ⊥κ (see section 4.6.4).

The same sample was moved to LERs 3 and 5 (see Fig. 5.17), and trans-
mission experiments were carried out the same way around their corresponding
ωr and Bres (Figs. 5.18b and 5.18c). These experiments were fitted with Eq.
(5.5), see table A.2 in Appendix A and table 5.5. All measurements were fitted
with the same decoherence rate γ⊥, which is intrinsic to the sample.

The collective spin-photon coupling of LER 5 reaches both the strong
coupling and high cooperativity regimes, defined by GN/γ⊥ > 1 and C =

G2
N/γ⊥κ > 1 respectively. The strong spin-photon coupling of LER 5, to-

gether with the high coupling of the resonator to the readout line, enables the
detection of two transmission dips in resonance (B = Bres). Figure 5.19 shows
these two dips at the measured field closest to the resonance field.

In LERs 1 and 3, the collective spin-photon coupling is nearly high enough
to achieve the strong collective coupling regime, with GN/γ⊥ close to one.
High cooperativity is achieved, with C = G2

N/γ⊥κ = 4 and 10.6 respectively.
A single broadened dip in transmission is observed, as GN/γ⊥ < 1/

√
2 (see

Fig. 4.4 in chapter 4). Both LERs have an inductor design similar to that
LER 5,1 therefore one would expect a similar collective spin-photon coupling
GN to that of LER 5. Instead, the measured GN for LER 5 is significantly
higher.

A possible explanation for the different GN values could be associated to
the magnitude of the microwave field, rather than with the its distribution,
which depends only the inductor design. This field scales with the square
root of the resonance frequency ωr [6, App.]. However, this effect alone cannot
explain the change in GN . Let us take the resonators with highest (LER 5) and
lowest (LER 1) spin-resonator coupling. The effect of their different resonance
frequencies accounts for an increase by a factor 1.13 in GN from LER 1 to LER
5. Instead, an increase by a factor 4.83 is measured. Therefore, other effects

1Figure 5.4 shows the field distribution for LER 1 in chip Test 2. The design of this
resonator is similar to the design of the resonators that are being discussed here (LERs 1 to
6 in chip Test 1 ).
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may be more relevant to the change in GN .

Figure 5.19: Transmission of Test 1 LER 5 coupled to a DPPH sample for three
different detunings ∆ = ωq − ωr (blue dots). ∆ is given in units of the collective
coupling GN . The theoretical transmission with the fit parameters from table A.2
in Appendix A and table 5.5 is also shown (red solid lines). The ensemble-resonator
coupling of LER 5 is high enough to be in the strong coupling regime. Two peaks can
be seen in the transmission for |∆/GN | < 1. These two peaks look slightly different
because ∆ ̸= 0.

In this experimental setup, the position of the sample has a large effect
on the coupling: it determines which volume of the inhomogeneous magnetic
field generated by the resonator is actually filled with spins. The reason for
this is that the intensity of the microwave field decays very rapidly as the
sample moves away from the surface (see Fig. 5.4) [28]. Any irregularities in
the sample, as well as the layer of oil that is needed to stick the samples to
the surface of the chip, create a gap of the order of a few micrometres at the
sample-chip interface [29]. In these measurements, the rapid increase in the
coupling suggests that the gap was closing as the sample was moved from the
first resonator (LER 1) to the last one (LER 5), see Fig. 5.20. This can be
explained by the sample leaving part of the oil layer between the sample and
the chip surface as it was moved from one resonator to the next. Still, there is
a non-negligible gap in LER 5 that might be due to irregularities in the sample
surface.
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Figure 5.20: Simulation of the coupling of the magnetic field generated by the inductor
of resonators 1, 3 and 5 to a sample of DPPH as a function of the sample-resonator
gap (solid lines). A comparison with the experimental GN (horizontal dashed lines)
gives an estimation of the gap in each LER (vertical dashed lines). The gap decreases
as the sample is moved from LER 1 to 3 and then to 5 as part of the oil layer between
sample and chip surface remains attached to the chip surface.

5.3.3 Effect of the magnetic field orientation

Three different DPPH samples were deposited on LERs 7, 8 and 9. Only one
of the six missing resonators (7 to 12) was identified, most probably LER 7
(labeled LER 7 in what follows), through its coupling to the DPPH sample
(see Fig. 5.21, the largest sample is on top of LER 7). This resonator has a
very small coupling κc to the transmission line compared to its total losses κ,
which explains why its visibility is so low at T ≃ 4.2 K.

The design of LER 7 is rotated 90◦ with respect to the design of LERs
1 to 6. The microwave magnetic field generated by its inductor has then
some components parallel to the readout transmission line (the chip axis).
Therefore, the geometry that was used to measure the spin-photon coupling
in the case of LERs 1, 3 and 5, with the magnetic field applied along the chip
axis, is not ideal. For this reason, the resonance of LER 7 was measured with
magnetic fields applied at various angles θ from the chip axis. The results are
shown in Figs. 5.22 and 5.23. The parameters obtained from the fit of these
measurements with Eq. (5.5) are given in table 5.6).
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Figure 5.21: Photo of three DPPH powder samples on top of LERs 7 (below the
largest sample), 8 and 9. Only one resonance was measured (attributed to LER 7 or
8, based on their expected resonance frequency). From the large ensemble coupling it
can be assumed that it belongs to LER 7, which hosts the largest sample. The other
two resonances are difficult to measure due to the combination of low resonator-line
coupling (like LER 7) and low ensemble-resonator coupling (smaller samples). The
direct spin ensemble to transmission line coupling observed for low θ values comes
from the large sample located on LER 7, which covers part of the transmission line.

Figure 5.22: Transmission of LER 7 of chip Test 1 coupled to a DPPH sample when
the magnetic field is applied parallel to the transmission line of the chip (a) or at an
angle of 22.5◦ from the transmission line (b). See table 5.6 for the fit parameters.
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Figure 5.23: Transmission of LER 7 of chip Test 1 coupled to a DPPH sample when
the magnetic field is applied at an angle of 45◦ (a), 67.5◦ (b) or 90.0◦ (c) from the
transmission line. See table 5.6 for the fit parameters.

The ensemble-resonator coupling is in the strong regime (GN > γ⊥). GN

increases as the magnetic field is rotated from θ = 0◦, when it is parallel to the
transmission line, to θ = 90◦, when it is parallel to the resonator inductor lines.
The microwave magnetic field generated by the inductor lines lies mainly in the
plane perpendicular to them (see Fig. 5.4), and only the components of this
oscillating field perpendicular to the static field contribute to the coupling. The
maximum coupling is obtained then for θ = 90◦. At θ = 0◦, when part of the
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microwave magnetic field is parallel to the static magnetic field, the ensemble-
resonator coupling is lower. It is still non-zero thanks to the microwave field
component perpendicular to the surface of the chip. A sufficiently large sample
covers enough of the resonator field volume so that the in-plane and out-plane
components of the microwave field contribute equally to the coupling. From
the definition of the ensemble-resonator coupling (Eq. (3.46) in chapter 3),
losing half of the contributions when the in-plane componenents are parallel to
static magnetic field should give rise to a factor 1/

√
2 (∼70%) of the maximum

coupling. This agrees very well with the measured GN (see Fig. 5.24), and it
is an effect that was also observed with DPPH pellets on coplanar resonators
[27, Ch.7].

θ (◦) gS GN/2π (MHz) GN/γ⊥ C

0.0 2.03001 ± 2 · 10−5 7.53 ± 0.01 1.032 ± 0.004 8.87 ± 0.04
22.5 1.97559 ± 7 · 10−5 7.43 ± 0.01 1.017 ± 0.004 8.62 ± 0.04
45.0 1.90015 ± 7 · 10−5 8.47 ± 0.01 1.160 ± 0.004 11.21 ± 0.05
67.5 1.88166 ± 6 · 10−5 9.19 ± 0.01 1.259 ± 0.005 13.2 ± 0.1
90.0 1.87924 ± 6 · 10−5 10.15 ± 0.01 1.39 ± 0.01 16.1 ± 0.1

Table 5.6: Parameters from the fit of the transmission of LER 7 in chip Test 1 at
different orientations of the magnetic field. All experiments were fitted with the same
ensemble decoherence rate γ⊥ = 7.30±0.03 MHz, and the same resonator parameters
except the resonance frequency ωr: κ/2π = 876.22 ± 0.96 kHz, |κc|/2π = 2.175
± 0.003 kHz and ϕc = (-4.05 ± 0.05)◦. The average fitted resonance frequency is
ωr/2π = 2.2838 ± 7 · 10−4 GHz.

Figure 5.24: Collective spin-photon coupling between LER 7 and the DPPH sample
as a function of the angle θ that the static magnetic field Bdc makes with the trans-
mission line (see Fig. 5.21). Blue dots mark the values obtained from the fit of the
experiments. Red solid lines are the estimated coupling from the simulation of the
microwave magnetic field generated by the resonator.
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At θ = 0◦ and θ = 22.5◦, the contribution from spins in the ensemble
that are directly coupled transmission line can be also seen clearly. Figure
5.25 shows how subtracting the fit of the ensemble-resonator coupling from
the experimental data leaves only the absorption signal of DPPH coupled the
transmission line. The ensemble-line coupling is maximum for θ = 0◦, as the
transmission line is perpendicular to the inductor lines of LER 7. From the
simulation of the field generated by the waveguide, the same dependence with
θ as in the case of the resonator was expected, only switching the roles of
the orientations defined by θ = 0◦ and θ = 90◦. Instead, the line-resonator
coupling vanished quickly for θ > 0◦ (see Fig. 5.26).

Figure 5.25: Absolute value of the difference between experimental transmission and
its fit with the model, for G(line)

N ̸= 0 and G
(line)
N = 0. The two angles θ with higher

G
(line)
N are compared: (a) θ = 0◦ and (b) θ = 22.5◦. Subtracting the transmission

of the fitted model with G
(line)
N = 0 removes only the transmission of the coupled

resonator and leaves the transmission of the line coupled to the ensemble.

A tentative explanation to this unexpectedly drastic angular dependence
of the ensemble-line coupling is the competition between the coupling rates of
spins to the resonator field and the line field. Where the line field is higher,
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the direct coupling of the spins to the input signal through the line is observed.
However, if the resonator field is higher, then the hybrid spin-resonator system
is measured (as an ensemble-resonator system). The line field is in general
much weaker than the resonator field, and it is only stronger in the part of
the sample that sits just on top of the central line of the waveguide. In this
region, there is only an in-plane oscillating magnetic field perpendicular to the
line. The out-of-plane component does not contribute to the coupling, which
explains the vanishing of the coupling when the static magnetic field is aligned
with the in-plane component.

Figure 5.26: Collective spin-photon coupling of the DPPH sample to the transmission
line as a function of the angle θ that the static magnetic field Bdc makes with the
transmission line (see Fig. 5.21). Blue dots mark the values obtained from the fit of
the experiments. Red solid lines are the estimated coupling from the simulation of
the microwave magnetic field generated by the transmission line. A lower bound was
imposed to the microwave magnetic field of the line that contributes to the coupling.
This is a simple model for the suppression of the direct ensemble-line coupling where
the resonator field is higher than the line field.

There is another effect that the orientation of the static magnetic field has
on the transmission: for each θ, a different resonance field Bres is measured.
The drift in Bres is shown in Fig. 5.27 by plotting the effective g-value at
each angle θ. The change in the resonator characteristic frequency between
different angles is not more than 0.1%, thus not enough to account for the
dispersion of 7% in the effective g-factor. This is unexpected, as the effect of
anisotropy in the g-tensor of free-radical electrons is usually very small, and
I am using a powder sample. The comparison of the experimental effective
g-values with those expected if magnetic anisotropy is introduced (neglecting
that the sample is a powder) rules out that the change in the g-values is due
to an anisotropic g-tensor.
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Another possible source of the error is the vector magnet. In particular, I
suspect it is a problem of the magnet axis that is used to rotate the static field
in the plane of the chip surface (x-axis in the magnet frame of reference). It is
not a current to field conversion error, which would appear as an anisotropic
g-tensor. The results from Fig. 5.27 can be explained with a zero-point error
of around 7 mT in the magnet x-axis due to an error in the magnet calibration.
This problem has been previously reported in previous experiments with the
x-axis of the magnet [27, Ch.7]. These experiments have therefore allowed us
to detect it and correct it.

Figure 5.27: (a) g-factor (blue dots) for different angles θ between the static magnetic
field Bdc and the orientation of the transmission line. Solid lines are the g-factor
that would be measured with an anisotropic g-tensor (neglecting that the sample is a
powder) or if there was a scale error in one of the components of the field generated
by the vector magnet (cyan), or a zero-point error in this same field component (red).
(b) The same plot in polar coordinates, with the zero-point error marked with a red
cross.

5.4 Coupling of DPPH to LERs in Test 2

5.4.1 Testing the bare resonator response with magnetic field

The resonators of chip Test 2 were measured at 4 K before depositing the
DPPH samples. Note that in this chip LERs 7 and 8 are in the same orientation
in which their resonances could not be initially detected in Test 1 (see Fig.
5.1), but now with the inductor placed closer to the transmission line. This
geometry provides a higher coupling of the resonator to the transmission line,
improving the visibility of the resonator response. Still, the resonator-line
coupling in this configuration is much smaller than that obtained with the
longer parts of the inductor lines placed parallel to the transmission lines.

The bare resonator responses were measured for magnetic fields up to 100
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mT (see Fig. 5.28), which are enough to perform the coupling experiments
shown below. The effect of high static magnetic fields parallel to the chip
surface in the resonances is akin to an increase in temperature (see section
5.1.3) [30]. As the magnetic field increases, the resonances shift towards lower
frequencies. Also, the resonances of LERs 7 and 8 broaden with magnetic field,
but the line-resonator coupling rate κc remains nearly constant. Therefore, the
increase in κ is associated with an increase in the internal decay rate κi.

Figure 5.28: (a) Drift with magnetic field of the resonance frequencies of Test2 LERs.
(b) Change with magnetic field of the total decay rate κ and the module of the line-
resonator coupling rate κc for the same set of resonators.

5.4.2 Frequency shift by sample deposition

In the first run of experiments with the Test 2 chip, a DPPH powder sample
was placed on top of six of the twelve resonators: LERs 1, 4, 5, 8, 10 and
12, as shown in Fig. 5.29. The resonance frequencies measured at zero field
for all twelve resonators are listed in table A.4 in Appendix , with the relative
shift from the resonance frequencies of the bare resonators plotted in Fig. 5.30.
LERs hosting a DPPH sample show larger frequency shifts, enough to swap
the order in frequency in each pair of LERs.2 LERs 4, 8, 10 and 12 show the
largest shifts. Figure 5.29 shows that the samples on these resonators were
deposited with more oil. I therefore assign the shift to the increase in the
resonator capacitance as the space between capacitor fingers is filled with the
oil (with a relative permittivity ϵr > 1).

2I know that there is a swap in some pairs because only one resonator of each pair is
coupled to an ensemble in the transmission measurements around the resonance field Bres.
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Figure 5.29: Locations of DPPH samples in the first run of experiments with chip
Test 2. Samples where placed on LERs 1, 4, 5, 8, 10 and 12.

Figure 5.30: Relative shift of the resonance frequency of each LER in chip Test 2
after the deposition of DPPH samples on LERs 1, 4, 5, 8, 10 and 12 (in red). Shift
for the six empty resonators (LERs 2, 3, 6, 7, 9 and 11) in blue.

A frequency shift is observed too in the empty resonators, although smaller
than in the resonator of each pair that is coupled to a magnetic sample. Part
of the resonator capacitance comes from the parasitic capacitance between the
whole lumped-element circuit and the ground plane, which can be partially
filled by oil from the samples in neighbouring resonators. The shifts of LERs
9 and 11, which sit next to the two resonators with the largest shifts (LERs
10 and 12), are examples of this effect.

5.4.3 Spin-photon coupling in chip Test 2 : coupling to remote
resonators and dependence on ωr

Chip Test 2 has pairs of resonators with very close frequencies (a few MHz
between their resonance frequencies): LERs 1 and 2, LERs 3 and 4, and so on.
DPPH samples were deposited only in one resonator of each pair. This was
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done as an attempt to detect the coupling of the spin ensemble to the ‘empty’
resonator through its coupling to the other resonator of the pair. This remote
coupling would be mediated by the transmission line. The transmission of Test
2 was measured near the resonances of LERs 1, 4, 5, 8, 10 and 12, which were
coupled to DPPH samples, and also near the resonances of two of the other six
‘empty’ resonators (LERs 2 and 3), for magnetic fields around their respective
resonance fields Bres. The experimental results and their fits are shown in Figs.
5.31, 5.32 and 5.33. The fitting parameters are listed in table A.5 in Appendix
A and table 5.7. The remote coupling effect could not be detected, as no
coupling was observed for LERs 2 and 3 (see Fig. 5.31). This means that the
line-mediated coupling between resonators in this setup is too small. Current
research on this topic is focused on improving resonator-resonator coupling by
reducing the distance between the capacitors of the LERs in each pair.

Figure 5.31: (a) Transmission of LERs 1 and 2 of chip Test 2, with a DPPH sample
on LER 1. (b) Transmission of LERs 3 and 4 of chip Test 2, with a DPPH sample on
LER 4. See table A.5 in Appendix A and table 5.7 for the fit parameters.
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Figure 5.32: (a) Transmission of LER 1 of chip Test 2 coupled to a DPPH sample.
Below, transmission of LER 4 (b) and LER 5 (c) of the same chip, each coupled to a
DPPH sample. See table A.5 in Appendix A and table 5.7 for the fit parameters.
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Figure 5.33: Transmission of LER 8 (a), LER 10 (b) and LER 12 (c) of chip Test 2,
each coupled to a DPPH sample. See table A.5 in Appendix A and table 5.7 for the
fit parameters.
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LER gS GN/2π (MHz) GN/γ⊥ C

1 1.98818 ± 3 · 10−5 2.530 ± 0.002 0.35 ± 0.02 6.2 ± 0.3
4 1.9928 ± 1 · 10−4 2.10 ± 0.01 0.29 ± 0.01 4.5 ± 0.2
5 1.98965 ± 3 · 10−5 1.819 ± 0.002 0.25 ± 0.01 2.0 ± 0.1
8 1.98878 ± 4 · 10−5 2.555 ± 0.004 0.35 ± 0.02 4.8 ± 0.2

10 1.99324 ± 2 · 10−5 7.395 ± 0.002 1.0 ± 0.1 29.9 ± 1.5
12 1.99829 ± 2 · 10−5 4.670 ± 0.002 0.64 ± 0.03 13.7 ± 0.7

Table 5.7: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K.

All experiments were fitted with the same ensemble decoherence rate γ⊥ =

7.30±0.03 MHz. The collective spin-photon coupling is largest for LERs 10 and
12. The former lies just in the limit of strong coupling (GN = γ⊥). For these
two resonators, the spin-photon coupling is enhanced by their larger resonance
frequency (see section 5.3.2) and lower inductance. This can be seen with a
simple description of the conversion of the energy in the resonator in resonance
into the amplitude of its oscillating magnetic field. The energy of the vacuum
fluctations of the resonator is E0 = ℏωr/2, with half of this energy is stored in
the inductor in resonance. Then the RMS (root mean square) current in the
inductor is IRMS =

√
ℏωr/2L. The oscillating field, and therefore the spin-

photon coupling, is proportional to this current. It increases with increasing
ωr and decreases with increasing L.

The ensemble-line coupling was not included in the fit of these experiments,
although in some of the resonators with larger ensemble-resonators coupling
(LERs 10 and 12, see Fig. 5.33) it seems that it could be present. The coupling
should be present in all measurements, but a consistent value of G(line)

N for all
of them was not found.

5.4.4 Effect of the magnetic field inhomogeneity: coupling to
small spin ensembles

For the the second run of experiments with chip Test 2, the DPPH samples
were moved to the previously empty resonators (more details in Fig. 5.34):
LERs 2, 3, 6, 7, 9 and 11. Only the transmission of the pairs of LERs 1 and
2, 7 and 8, and 11 and 12, was measured. Results are shown in Fig. 5.35.
The fit parameters are listed in table A.6 in Appendix A and table 5.8. Both
resonators in each pair are coupled to an ensemble, one of them with higher
coupling (presumably the one with the DPPH sample on top).
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Figure 5.34: Deposition of DPPH samples in the second run of experiments with chip
Test 2. Samples on LERs 2, 3, 6, 7, 9 and 11. Each sample was moved from its
position in Fig. 5.29 to the closest empty resonator. Small pieces of DPPH powder
remain in the resonators where the samples were previously placed, most noticeably
in LER 8. However, samples that were originally deposited with more oil could be
moved more easily and left almost no powder behind (see LERs 10 and 12).

LER gS GN/2π (MHz) GN/γ⊥ C

1 2.04501 ± 4 · 10−5 1.166 ± 0.001 0.16 ± 0.01 1.9 ± 0.1
2 2.04407 ± 3 · 10−5 3.343 ± 0.002 0.46 ± 0.02 10.8 ± 0.5
7 2.04529 ± 6 · 10−5 5.437 ± 0.004 0.75 ± 0.04 20.06 ± 0.99
8 2.04209 ± 8 · 10−5 2.020 ± 0.004 0.28 ± 0.01 3.7 ± 0.2

11 2.03565 ± 2 · 10−5 4.812 ± 0.001 0.66 ± 0.03 19.0 ± 0.9
12 2.0336 ± 1 · 10−4 0.515 ± 0.003 0.071 ± 0.004 0.24 ± 0.01

Table 5.8: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K. All experiments were fitted with the same ensemble
decoherence rate γ⊥/2π = 7.30± 0.03 MHz.

Let us focus first in the ensemble-resonator coupling of resonators hosting
a large DPPH sample. These are LERs 2, 7 and 11. The coupling observed
for samples on LERs 2 and 7 is higher than in the previous run for the same
samples on LERs 4 and 8. This increase in the coupling is due to the smaller
gap between the chip and sample surface as some oil is lost during sample
transfer, the same effect already discussed in section 5.3.2. In the case of
the sample on LER 11, the coupling remains similar to the one measured for
LER 12 in the previous section. This sample was deposited with more oil, so
the relative change in the gap as the sample is moved is smaller. Also, the
increase in the coupling is probably compensated by the slight shift in the
sample location with respect to the inductor, which leaves half a turn of the
inductor without sample on top (check the upper part of LER 11 in Fig. 5.34).
This highlights the importance of the filling factor, that is, how much of the
resonator mode volume is covered by the sample.



134
Chapter 5. Strong coupling of organic free-radical molecules to lumped-element

resonators

Figure 5.35: Transmission of LERs 1 and 2 (a), LERs 7 and 8 (b), and LERs 11 and
12 (c) of chip Test 2, with DPPH samples on top of LERs 2, 7 and 11. See table A.6
in Appendix A and table 5.8 for the fit parameters.
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In the case of the seemingly empty resonators (LERs 1, 8 and 12), it is
possible that the small observed coupling is due to their coupling to samples
on other resonators through a resonator-resonator coupling. However, this
effect is ruled out by the measurements in the previous section, where it was
not present. The resonator-resonator coupling in this chip is too low. If it is
smaller than the resonator bandwidth, then the effect its hardly detectable. A
closer inspection of Fig. 5.34 shows that small pieces of DPPH powder have
remained stuck on the oil layer when the samples were moved, which make
for the coupling that is observed in the otherwise empty resonators (see Fig.
5.36a).

Figure 5.36: (a) Scheme of the DPPH sample transfer (not to scale). A layer of
oil remains in the first resonator with small pieces of DPPH embedded in it. The
bulk of the sample is transferred to the second resonator, taking part of the oil layer
with it. (b) Collective spin-resonator coupling computed from the simulation of the
distribution of fields generated by the inductor of LERs 7 and 8 of chip Test 2 (blue
solid lines) as a function of the gap (the height of the oil layer) between the chip surface
and the surface of the bulk of the DPPH sample. Cyan solid line is the simulation of
the coupling for small sample pieces covering a 5% of the gap volume in LER 8. The
gap in each resonator can be estimated from the measured couplings (dashed lines).

The coupling to the pieces is smaller than for whole samples, yet of the
same order of magnitude. Let us focus on LER 8, where there are clearly
DPPH pieces on top of the resonator after sample transfer (see Fig. 5.34).
Comparing the area of its inductor covered by these pieces with that of the
original sample (100 % of the inductor), an upper bound N/10 to the number
N ′ of remaining DPPH spins is estimated. The measured coupling GN ′/2π =

2.020 ± 0.004 MHz is about 80 % of that obtained with the whole sample,
GN/2π = 2.555 ± 0.004 MHz. This is more than two times larger than what
one would expect by simply scaling the spin-photon coupling using the upper
bound to N ′ (GN ′ = GN

√
N ′/N < GN/

√
10, which gives GN ′/2π < 0.8

MHz). This suggests that, due to the inhomogeneity of the resonator field,



136
Chapter 5. Strong coupling of organic free-radical molecules to lumped-element

resonators

a small sample volume close to the resonator surface contributes more to the
collective coupling than large volumes farther from it. Figure 5.36b shows the
result of the simulation of the collective spin-photon coupling in LERs 7 and
8 for a bulk sample of DPPH, together with the simulation for small pieces of
DPPH embedded in the oil layer on top of LER 8, covering a 5% of the gap
volume. The results are consistent with a gap of 26 µm in LER 8 that closes
to 16 µm in LER 7 after sample transfer.

5.5 Conclusions

The coupling of free-radical molecular spin ensembles to the photon modes of
lumped-element superconducting resonators has been explored. The collective
coupling GN of relatively large samples (N ∼ 1017) was found to be at least of
the same order of the spin decoherence rate γ⊥, reaching the high cooperativity
regime for all resonators. In one case, the signatures that characterize the
strong, or coherent, coupling regime (GN > γ⊥) between the spins and the
photons, and the existence of hybrid polaritonic excitations were also observed.
The results show also that the spin-photon coupling can be tuned, in situ, by
modifying the orientation of the magnetic field that polarizes the molecular
spins. In this way, we have been able to detect the direct coupling of the spins
to the transmission line. Taken together, these results show that these circuits
provide a suitable basis for combining a broadband control of the spin states
with the possibility of dispersively reading out the results; i.e. they provide
the basic ingredients for performing the basic operations of a hybrid molecular
spin quantum processor [31].

Before depositing the samples, the resonators were tested with different
temperatures and magnetic fields. It was found, as expected for these super-
conducting circuits, that at higher temperatures and magnetic fields both the
resonance frequency ωr and the internal quality factor Qi = ωr/2κi of the res-
onators decrease. Different orientations of the resonators with respect to the
transmission line were tested. The dominant mechanism of the line-resonator
coupling is inductive coupling. Upon the deposition of the DPPH samples, the
capacitance of the resonators increases due to the oil layer used to stick the
samples to the chip surface. This further decreases the resonance frequency of
the LERs.

I tested how changing the experimental setup or the properties of the res-
onator affects the coupling. By changing the orientation of the static magnetic
field, different components of the oscillating field generated by the resonator
contribute to the coupling. Also, the coupling is enhanced by using resonators
with higher resonance frequency and lower geometric inductance. However,
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the dominant effect on the coupling is the location of the spins above the res-
onator. Due to the inherently inhomogenous distribution of the microwave
magnetic field that the LERs generate, the attainable coupling is, to a large
extent, determined by how closely the sample can be placed above the sur-
face of the chip. The need of fixing, and thermalizing, the samples with the
help of some intermediate agent, in this case paratone oil, limits the maximum
coupling that can be achieved in practice. The results in this chapter provide
also some practical tricks to minimize this effect when dealing with macroscopic
molecular samples. Still, it is clear that fully exploiting the possibilities offered
by lumped element resonators to maximize their coupling to molecular spins,
e.g. by reducing their impedance and/or their mode volume [32–35], must go
hand in hand with methods that allow optimizing the chip-molecules interface.
The results show that this second aspect can contribute very significantly to
enhance the coupling to very small spin ensembles.

The fact that many molecular nanomagnets are stable in solution provides
an alternative to the use of bulk samples. The combination of this method
and of soft nanolithography techniques with a high spatial resolution, like Dip
Pen Nanolithography, has enabled reaching very high single spin-photon cou-
plings with coplanar superconducting resonators [36]. However, this idea is
only applicable whenever the molecular orientation does not play a major role,
e.g. when one deals with isotropic spins such as those in DPPH. The case
of anisotropic molecular spins, which are very interesting to encode spin qu-
dits, requires a different approach. Interesting possibilities are based on the
application of molecular self-organization techniques, which can be assisted by
previously deposited mono-layers of non-magnetic molecules acting as grafting
centers [37], or by employing chemical tools that allow transferring a preformed
molecular lattice onto the device [38]. In these cases, the strong inhomogene-
ity of the microwave magnetic field can be advantageously exploited to address
certain molecular spins from the lattice, via a proper circuit design, thus help-
ing to circumvent the need of positioning the molecules one by one. Even
though still challenging, the results suggest that lumped element resonators
are very promising for the control and readout of molecular spin qubits.
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Chapter 6

Dispersive qubit readout:
pump-probe experiments on
PTM organic free radicals

The experimental results from the previous chapter demonstrate that the high
cooperativity and strong coupling regimes can be attained with molecular spin
qubits coupled to lumped-element resonators (LERs). The experiments de-
scribed in it measure the response of the hybrid spin-LER system to low mi-
crowave power excitations and for long times. These conditions keep the system
in equilibrium or stationary conditions. The goal in a quantum processor like
that shown in chapter 1 is however very different from this: the qubits are
firstly set out of equilibrium (or away from the initialized ground state in a
single qubit) with microwave pulses that represent the quantum gates, then
their final state is measured.

This chapter is dedicated to the first experiments towards qubit manipu-
lation with microwave pulses combined with quantum non-demolition (QND)
measurements performed by coupling the molecular spin qubits to LERs. For
this, the hybrid spin-LER system must be set in the dispersive regime (see
section 3.4 in chapter 3 for a proper definition), where the spin transition
frequency ωq — the qubit frequency — and the resonator frequency ωr are suf-
ficiently detuned so that no real exchange of excitations occurs between both
systems. This condition is met for a qubit-resonator detuning ∆ = ωq − ωr

much larger than the collective spin-photon coupling GN (in absolute value,
that is, |∆| ≫ GN ). The interest of the dispersive regime lies in that, even
if the resonator and spin states are effectively decoupled, their frequencies ωq

and ωr are still modulated — or ‘dressed’ — by the coupling. In particular,
ωr is shifted to lower or higher frequencies depending on the state of the spins,
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and the spin state can be inferred from the response of the resonator. This
‘dispersive readout’ of the qubit state is a well established technique in su-
perconducting qubits [1, 2], nowadays extended to other qubit realizations in
circuit-QED platforms [3].

6.1 Experimental setup for pulse experiments

6.1.1 Chip design

Two superconducting chips were designed for pulse experiments, labeled Test
3 and Test 4. Test 3 hosts 10 superconducting LERs coupled to a single
transmission line, with resonance frequencies between 1.7 and 2.9 GHz. Test
4 is an evolution of Test 3 with an additional transmission line, and hosts
10 lumped-element resonators with resonance frequencies between 1.4 and 2.8
GHz. In both chips, LERs are labeled from highest resonance frequency to
lowest (that is, in increasing order of resonator area). The designs of both
chips are shown in Fig. 6.1.

Port 1

Port 1

Port 2

Port 2

Port 3 Port 4

Figure 6.1: Vector file design of Test 3 (a) and Test 4 (b). LERs (black) are side-
coupled to either a single transmission line (Test 3, blue) or two transmission lines
(Test 4, red), and labeled in order of decreasing resonance frequency ωr.

The first tests of the microwave setup for pulse experiments were performed
with Test 3. This chip was originally intended for achieving the highest possi-
ble single spin-photon coupling strength [4, Ch.5], which calls for the highest
possible current at the inductor in resonance, thus the smallest possible in-
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ductance L. Thus, the design of these resonators is radically different from
those in the previous chapter: most of the LER area is now taken by the
inter-digital capacitor, with the inductor being just a short superconducting
strip connecting the two ends of the capacitor (see Fig. 6.2). In addition, a
nano-constriction was fabricated in the inductor by FIB lithography in order
to locally increase the microwave magnetic field, thus further enhancing the
spin-photon coupling for molecules sitting just above the constriction.

851 µm
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 µ
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Figure 6.2: Design of a low inductance (low-L) LER with a nano-constriction, adapted
from [4, Ch.5]. The inductor is the strip at the top of the figure. The frequency of
the resonator is tuned by changing the size of the capacitor, thus the different lengths
in the dimension perpendicular to the inductor (ranging from 690 to 1245 µm). The
inductor has a 2 µm wide constriction that is further narrowed to tens of nm by FIB
lithography.

Test 4 introduces an additional transmission line, which allows sending
excitation and readout signals separately via different lines. LERs are coupled
to both lines. The excitation line goes from port 1 to port 2 in Fig. 6.1b.
This line is coupled to the inductor of the LERs. The readout line connects
ports 3 and 4 in Fig. 6.1b, and it is capacitively coupled to the opposite side
of the resonators. The weak capacitive coupling between this line and the
resonator does not pose a limitation to the visibility of the resonances if the
measurements are carried out in the millikelvin regime. None of the resonators
in this chip has a nano-constriction in the inductor.

6.1.2 Molecular spin samples

Free radicals provide the simplest systems to test the pump-probe microwave
setup. Hosting a spin 1/2, each radical molecule has a single spin transition
that is easily tunable with magnetic field (ωq ∝ B). For clarity, the Hamilto-
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nian of a free radical is reproduced here:

H = µBgSBŜz =
µBgSB

2
σ̂z, (6.1)

which contains just the Zeeman term of the interaction of the S = 1/2 spin
with the magnetic field. The spin transition frequency is ωq = µBgSB/ℏ.

If gS is isotropic and the radicals can be considered as non-interacting
spin systems, all of them are identical from a magnetic point of view. This
makes DPPH an unsuitable candidate for pulse experiments, as it exhibits
antiferromagnetic interactions at very low temperatures. This will be discussed
further in chapter 8.

A different free radical molecule, the PTM radical or PTMr, was chosen as
the molecular spin qubit for the first tests with pulsed experiments. PTMr is
composed of three fully chlorinated phenyl groups bridged by a central carbon
atom with an unpaired electron (see Fig. 6.3) [5, 6]. The spin 1/2 of this
electron is the spin of the molecule.

Cl Cl

Cl Cl
Cl Cl

Cl Cl

Cl Cl

Cl Cl

Cl Cl

Cl

Figure 6.3: Chemical structure of the PTM radical, adapted from [6]. The unpaired
electron (pictured as a black dot) that gives the effective spin 1/2 of the molecule is
localized in the carbon atom that bridges the three fully chlorinated phenyl groups.

A sample of PTMr and polystyrene (PS) in chlorobenzene (CB), with a
mass ratio of 0.1% between PTMr and PS, was measured with conventional
EPR by the group of Joris van Slageren (University of Stuttgart). The spec-
trum showed a broadening of its resonance at low temperatures [4, Ch.5]. Their
tentative explanation is that this spectrum is a convolution of unresolved hy-
perfine splittings due to the interaction of this spin 1/2 with the nuclear spin
I = 3/2 of the chlorine atoms. Despite these interactions, they measured a
memory time Tm = 4 µs at 15 K. The relaxation time T1, which limits the
repetition time of the experiments, is quite long (tens of milliseconds at 15
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K). These times are expected to become even longer in the millikelvin regime.
More recent measurements by the same group yielded spin coherence values as
high as Tm = 123 µs for PTMr in CS2 at 7 K [7].

The samples for the experiments in these chapter were drops of PTMr/PS
in 0.1 µl of CB, with different PTMr/PS mass ratios. PTM radical molecules
were synthesized by Imma Ratera, Nuria Crivillers and Nerea González from
the Nanomol-Bio group at ICMAB-CSIC (Barcelona). Drops were deposited
on top of the surface of the lumped-element resonators by Anabel Gracia Lostao
and Mari Carmen Pallarés from INMA (Instituto de Nanociencia y Materiales
de Aragón) and LMA (Laboratorio de Microscopía Avanzada), Zaragoza. After
chlorobenzene evaporates, a solid ∼7 µm thick film of PTMr/PS remains,
covering an area similar to that of a resonator (∼ 1 mm2).

Figure 6.4 shows an example of these deposits on Test 3. The deposi-
tion process ensures that PTMr molecules are homogeneously distributed and
placed very close to the chip surface, thus avoiding the effect of the sample-
resonator gap observed in chapter 5 (see the SEM image in Fig. 6.2).

Figure 6.4: Optical close-up of the PTMr/PS films deposited on top of Test 3 LERs.

6.1.3 Microwave setup for pulse experiments

The microwave setup for pulse experiments can be divided into three main
stages: the generation stage, the cryogenic stage, and the detection stage (see
Fig. 6.5). The cryogenic stage includes the superconducting chip (Test 3 or
Test 4 ) with the PTMr deposits on the LERs, which has been already dis-
cussed. The chip is placed in the center of a superconducting magnet inside
a cryostat (see section 2.2 in chapter 2 for more details), which generates the
magnetic field that tunes the qubit frequency ωq. The input lines of the cryo-
stat incorporate either 0 dB or 10 dB attenuators at each constant temperature
plate (see Fig. 6.5). Therefore, different net attenuations can be chosen for
the excitation and readout lines. (the same in the case of Test 3, different for
Test 4 ). The output readout line is amplified at T = 4 K with a Low Noise
Factory (LNF) cryogenic amplifier with a gain of ∼30 dB.
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The generation and detection stages depend on each specific experiment.
The output of the generation stage is a sequence of excitation pulses with fre-
quencies close to ωq that goes to the excitation line of Test 4 or the single
line of Test 3. An optional reference signal can be set to the readout stage for
synchronization. This stage is composed of a Keysight M9180A single-channel
Arbitrary Waveform Generator (AWG), see section 2.3.2, plus all the necessary
microwave elements (attenuators, amplifiers, switches, splitters/combiners) to
have the desired power for each of the pulses. For Test 4, each signal (excita-
tion/readout) generated by the AWG must be routed to its corresponding line
in the chip.

The detection stage is either a Keysight MSOS404A oscilloscope or a ZVB14
VNA from R&S (see sections 2.3.1 and 2.3.3). The oscilloscope reads the in-
phase (I) and quadrature components (Q) of the transmission of the resonator
generated by an IQ mixer with a reference LO (local oscillator) signal from
the generation stage. Alternatively, the VNA can be used to detect the output
signal in those cases in which it also generates the readout pulses. For Test 3,
excitation and readout signals must be separated with microwave switches in
order to protect the readout stage from too high power inputs.

+30dB

50 K

4 K

700 mK

50 mK

7 mK

Detection
stage

Generation
stage

𝐵

Readout line in Readout line out

Excitation line in Excitation line out

Figure 6.5: Schematic microwave setup for pulse experiments. Input excitation and
readout lines have 10 dB attenuators in each plate of the cryostat, for a total of 50
dB of attenuation. The power of the excitation pulses that reach the superconducting
chip can be increased by replacing some attenuators from the excitation line with
0 dB DC blocks. The readout line is amplified 30 dB at 4 K. The schemes of the
generation and detection stages will be detailed below for each particular experiment.
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6.2 Characterization of the collective spin-resonator
coupling

This section explores the effect of using different PTMr/PS samples on the
collective spin-photon coupling GN . The effect of changing the PTMr/PS
ratio between 0.01% (N = 1011 spins) and 0.5% (N = 5 · 1012 spins) has been
already determined. The results, reported in [4, Ch.5], show that GN scales
with

√
Neff , where Neff ∼ N/100 is the effective number of spins that actually

couple significantly to the microwave magnetic field generated by the resonator
inductor (with or without constriction).

Here, I take the sample with the highest PTMr/PS ratio (0.5%) and explore
the effect of increasing the spin concentration even further by reducing the
amount of PS in the solution in CB. The idea is to have more PTM radical
molecules closer to the inductor by removing part of the PS matrix. The
details of the samples are listed in table 6.1. Figures 6.6 and 6.7 show the
resonances of the 10 Test 3 LERs measured with these deposits at 10 mK and
as a function of magnetic field. S21 is measured for different regular input
frequencies f = ωd/2π and magnetic fields B (tuning the qubit frequency
ωq = µBgSB/ℏ). The input power was chosen in order to feed less than −70

dBm into the chip. For higher input powers, the collective spin-photon coupling
was observed to decrease in some of the resonators.

LERs 1 and 2 3 and 4 5 and 6 7 and 8 9 and 10
PS concentration (g/l) 0 6.3 6.3 12.6 12.6
PTMr/PS mass ratio (%) – 1 0.5 1 0.5
N (1012 spins) 5 5 2.5 10 5

Table 6.1: Properties of the 0.1 µl PTMr/PS solutions in CB that were deposited on
each of the 10 Test 3 LERs. I list the PS concentration in the 0.1 µl solution before
the evaporation of CB, as well as the PTMr/PS mass ratio and the estimated number
N of spins in the sample.

The characterization of the resonances follows a similar procedure to that
described in the previous chapter for the case of DPPH samples. The chip
transmission is measured with input frequencies around the resonance fre-
quency ωr of each resonator, for different fields around the resonance condition
ωr = ωq. The experimental data are fitted with Eq. (4.103) from chapter 4:

S21(ωd) = 1− κc

i(ωr − ωd) + κ+
G2

N∆P

i(ωq − ωd) + γ⊥ .

(6.2)
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Figure 6.6: Transmission of LERs 1 to 6 of chip Test 3 coupled to PTM samples.
Left: Experimental results. Right: Theoretical simulations based on Eq. (6.2) with
the parameters given in tables 6.2 and 6.3.
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Figure 6.7: Transmission of LERs 7 to 10 of chip Test 3 coupled to PTMr samples.
Left: Experimental results. Right: Theoretical simulations based on Eq. (6.2) with
the parameters given in tables 6.2 and 6.3.

The resonance frequency ωr, the photon mode decay rate κ, and line-
coupling rate κc of each LER are listed in table 6.2. The resonators show
remarkably high quality factors Q = ωr/2κ ≦ 105, i.e. small widths, which
makes them well suited to perform dispersive readout experiments. Table 6.3
reports the parameters related to the sample: the g-factor gS, the decoherence
rate of the spin ensemble, γ⊥, and the temperature dependent collective spin-
photon GN (T ) ∝

√
∆P . The population difference ∆P between the spin down

and spin up states at a temperature T ∼ 10 mK and ωq ≃ ωr ∼ 1–3 GHz can
be safely assumed to be nearly 1.

Collective spin-photon couplings up to 3.42 MHz are reached, almost as
high as in the previous chapter with DPPH, but with the number N of spins
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being 5 orders of magnitude smaller. The fact that such a large GN can be
attained with much smaller spin ensembles is due to the low-inductance design
of these LERs, and to the reduction of the sample-chip gap. That is, there are
less spins, but they are closer to an inductor that generates a much stronger
magnetic field that scales with L−1/2. GN is also enhanced as temperature
is decreased from 4 K in the last chapter to 10 mK in these measurements.
However, this would only account for an increase in the coupling by a factor√
(∆P )T=10mK/(∆P )T=4K < 3. In comparison, reducing the number of spins

from NDPHH ∼ 1017 to NPTM ∼ 1012 in the same experimental conditions
decreases GN by a factor

√
NDPHH/NPTM > 300.

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 2.777535 ± 2 · 10−6 85.8 ± 1.6 23.4 ± 0.9 −10.1 ± 0.3
2 2.5921684 ± 9 · 10−7 56.9 ± 0.5 20.1 ± 0.3 27.4 ± 0.3
3 2.473073 ± 3 · 10−6 48.4 ± 1.8 5.1 ± 0.3 −9.5 ± 1.2
4 2.318961 ± 2 · 10−6 50.3 ± 1.1 9.7 ± 0.4 28.3 ± 0.7
5 2.2191717 ± 9 · 10−7 46.9 ± 0.6 12.2 ± 0.3 −29.4 ± 0.4
6 2.100022 ± 1 · 10−6 53.7 ± 0.8 15.0 ± 0.4 −2.5 ± 0.5
7 1.998962 ± 1 · 10−6 39.8 ± 0.8 10.7 ± 0.4 −29.8 ± 0.6
8 1.900192 ± 1 · 10−6 46.1 ± 0.7 12.8 ± 0.3 14.8 ± 0.4
9 1.823173 ± 1 · 10−6 58.5 ± 0.6 26.6 ± 0.5 −1.2 ± 0.3

10 1.7659920 ± 9 · 10−7 55.5 ± 0.6 30.2 ± 0.6 24.9 ± 0.3

Table 6.2: Parameters of the resonances of the 10 Test 3 LERs, obtained by fitting
the transmission through the device at 10 mK.

LER gS GN / 2π (MHz) γ⊥ / 2π (MHz)
1 2.0030 ± 4 · 10−4 3.16 ± 0.04 34.4 ± 1.0
2 2.0029 ± 3 · 10−4 2.21 ± 0.01 15.7 ± 0.4
3 1.999 ± 1 · 10−3 2.37 ± 0.03 8.3 ± 0.9
4 1.9994 ± 3 · 10−4 3.31 ± 0.02 7.1 ± 0.4
5 1.9996 ± 2 · 10−4 2.08 ± 0.01 7.1 ± 0.3
6 1.9998 ± 4 · 10−4 1.72 ± 0.01 8.9 ± 0.5
7 2.0010 ± 3 · 10−4 3.27 ± 0.01 5.9 ± 0.3
8 1.9997 ± 2 · 10−4 3.42 ± 0.01 6.1 ± 0.2
9 2.0052 ± 2 · 10−4 3.36 ± 0.01 6.6 ± 0.2

10 2.0046 ± 2 · 10−4 3.08 ± 0.01 5.8 ± 0.2

Table 6.3: Parameters from the fit of the magnetic field dependent resonances of LERs
1, 3 and 5 in chip Test 3 at T = 10 mK shown in Figs. 6.6 and 6.7.

The collective spin-LER coupling GN scales with the square root of the
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numberN of spins (see Fig. 6.8a). This coupling does not seem to get enhanced
by reducing the PS concentration. In fact, the main consequence of removing
the PS matrix is a broadening of the spin spectrum, as shown in Fig. 6.8b.
First, there is an increase from γ⊥/2π = 5.8-6.6 MHz (LERs 7 to 10) to
γ⊥/2π = 7.1-8.9 MHz (LERs 3 to 6) as the original PS concentration of 12.6 g/l
is halved. Then, a sharp increase to γ⊥/2π = 34.4 and 15.7 MHz is observed
in LERs 1 and 2, where PTMr was deposited without PS. The broadening
can be attributed to the onset of spin-spin interactions that were previously
suppressed by the dilution of PTMr in the diamagnetic PS matrix. From this
results I decided to keep the parameters of the deposits on LERs 9 and 10
for the pulsed experiments, as the broadening overcomes any gain achieved in
GN by removing part of the PS matrix. Figure 6.8c shows the GN/γ⊥ ratio
and the cooperativity C = G2

N/γ⊥κ for each LER. None of the hybrid spins-
LER systems is in the strong coupling regime (GN/γ⊥ > 1), but the high
cooperativity regime (C > 1) is achieved for all of them.

Figure 6.8: (a) Collective spin-photon coupling GN as a function of the square root of
the number of spins in the sample. (b) Γ⊥ as a function of the PS concentration in the
PTMr/PS solution in CB. (c) The ratios GN/γ⊥ (red closed dots) and C = G2

N/γ⊥κ

(blue open dots) for each resonator. These quantities define the strong coupling
(GN/γ⊥ > 1) and the high cooperativity (C > 1) regimes. Only the latter is attained
with this experimental setup.

6.3 Testing pulse generation and the resonator dy-
namics

The pulse generation system was tested by measuring the response of a LER to
20 µs long pulses with driving frequencies ωd close to its resonance frequency
ωr. Figure 6.9a shows the output signal transmitted by the bare resonator.
The transmitted signal was fitted with the theory that describes the dynamics
of a LER, the details of which can be seen in section 4.4.2 from chapter 4. The
resonator evolution under a coherent drive bin(t) = αine

−iωdt is given by Eq.
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(4.64), reproduced here for clarity:

⟨â⟩(t) = ⟨â⟩(0)e−(iωr+κ)t − i
√
κc

1− e−(i(ωr−ωd)+κ)t

i(ωr − ωd) + κ
αine

−iωdt. (6.3)

From input-output theory, the transmitted signal is:

bout(t) = bin(t)− i
√
κc⟨â⟩(t). (6.4)

Figure 6.9: Comparison between the maps of the experimental and theoretical ampli-
tude of the transmission of 20 µs long pulses microwave pulses with driving frequencies
ωd close to the resonance frequency ωr of a LER, measured at zero field. At this field,
the resonator is completely decoupled from the spins. Both maps show the absolute
value of the output signal normalized by the amplitude of the input pulse, αin.

The LER response can be analyzed in two stages. The first comprises the
duration of the pulse, described by the equations above with ⟨â⟩(0) = 0. That
is, the resonator is assumed to be initially discharged. It then follows that:

⟨â⟩(t) = −i
√
κc

1− e−(i(ωr−ωd)+κ)t

i(ωr − ωd) + κ
αine

−iωdt for t < tpulse , (6.5)

which yields:

bout(t) =

(
1− κc

1− e−(i(ωr−ωd)+κ)t

i(ωr − ωd) + κ

)
αine

−iωdt for t < tpulse , (6.6)

with tpulse = 20 µs. After the pulse, the driving amplitude αin becomes zero,
and the time reference is shifted to T = 20 µs: t → t′ = t − tpulse. For this
second part, ⟨â⟩(t′ = 0) equals ⟨â⟩(t = tpulse) computed with Eq. (6.5):

bout(t) = −i
√
κc⟨â⟩(t = tpulse)e

−(iωr+κ)(t−tpulse) for t > tpulse . (6.7)
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The experiment was repeated with the qubit frequency ωq tuned with the
magnetic field to lie at ∆/2π = (ωq − ωr)/2π = 30 MHz from ωr. With
this detuning, the ensemble-LER system is in the dispersive regime (∆ ∼
10GN ≫ GN ). Figure 6.10b shows the transmission of 20 µs pulses with
driving frequencies ωd close to ωr in this new experimental condition.

Figure 6.10: Comparison between the maps of the experimental and theoretical am-
plitude of the transmission of 20 µs long pulses microwave pulses sent with drive
frequencies ωd close to the LER resonance frequency ω̃r. The qubit frequency ωq was
tuned with the static magnetic field to set a detuning (ωq−ωr)/2π = 30 MHz between
ωq and the resonator frequency ωr. ω̃r is the resonance frequency for this detuning
(see Eq. (6.8) in chapter 4). Both maps show the absolute value of the output signal
normalized by the amplitude of the input pulse, αin.

In this case, the output signal should be computed using the input-output
theory for the dynamics of the hybrid spin ensemble-resonator system, which is
described in section 4.6.3 from chapter 4. However, the characterization of the
collective spin-LER coupling in the previous sections sets the hybrid system in
the weak coupling. In this regime, the coupled resonator can be described as
a bare resonator with effective resonance frequency ω̃r and effective decay rate
κ̃ modified by the spin-photon coupling (see section 4.6.4):

ω̃r := ωr +

[
G2

N (∆P )e
(ωq − ωr)2 + γ2⊥

]
(ωr − ωq),

κ̃ := κ+

[
G2

N (∆P )e
(ωq − ωr)2 + γ2⊥

]
γ⊥,

(6.8)

which depend on the (uncoupled) LER resonance frequency ωr, its photon de-
cay rate κ, the magnetic field dependent qubit frequency ωq, the spin decoher-
ence rate γ⊥, the collective spin-photon coupling GN , and the spin population
difference in equilibrium (∆P )e.



154
Chapter 6. Dispersive qubit readout: pump-probe experiments on PTM organic free

radicals

Tables 6.4 and 6.5 list the fit parameters of the resonance for the bare
and coupled resonators respectively. The coupling of the LER photons to the
PTMr/PS sample broadens the resonance, with κ increasing from 35.4 to 67.6
MHz. That is, the photon lifetime (1/κ) in the resonator is reduced, even in
the dispersive regime, as can be seen by comparing Figs. 6.9 and 6.10. The
line-resonator coupling, κc, does not depend on the presence of the sample and
its absolute value remains in the 30–33 MHz range. Assuming (∆P )e ≃ 1 and
γ⊥/2π ∼ 6 MHz, a collective spin-photon coupling GN/2π ∼ 2 MHz can be
estimated from the expression of κ̃ (see Eq. (6.8)).1

ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
2.2515944 ± 2 · 10−7 35.4 ± 0.2 30.6 ± 0.2 −29.0 ± 0.2

Table 6.4: Fit parameters of the dynamics of the bare resonator with 20 µs long
pulses.

ω̃r/2π (GHz) κ̃/2π (kHz) |κc|/2π (kHz) ϕc (◦)
2.2510931 ± 5 · 10−7 67.6 ± 0.5 33.3 ± 0.4 −23.0 ± 0.3

Table 6.5: Fit parameters from the fit of the dynamics of the resonator coupled to
a PTMr/PS sample with 20 µs long pulses and a detuning (ωq − ωr)/2π = 30 MHz
between the qubit frequency ωq and uncoupled LER resonance frequency ωr.

Figure 6.11 highlights the fit of the dynamics of the resonator for a selec-
tion of detunings between the driving frequency of the input pulse, ωd, and the
LER resonance frequency (ωr or ω̃r). It is remarkable that the model defined
by Eq. (6.6) and (6.7) provides a good account of the dynamical response of
the uncoupled or coupled LER for all detunings ωd − ωr (or ωd − ω̃r) with a
common set of parameters. Note that the asymmetry of the resonance line-
shape, encoded in the argument of the complex-valued resonator-line coupling
κc, leads also to an asymmetry in the dynamics.

These results show clearly the strong effect of collective spin-photon cou-
pling in reducing the photon lifetimes that was mentioned before. The lifetime
reduction is parametrized by the increase in κ̃ predicted by Eq. (6.8). The
coupled resonator in the dispersive regime is already in its steady-state at the
end of the pulse, while the uncoupled resonator is still charging. That is, there
is a dead time before the steady-state can be probed that is reduced by de-
creasing the detuning between ωq and ωr (in absolute value). This shortening
of the dead time will be relevant for the readout of the resonator state that is
described in the following sections.

1See the reported γ⊥ for LERs 9 and 10 in table 6.3. The PTMr/PS sample in this
experiment is the same 0.5% PTMr/PS deposit.
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Figure 6.11: Comparison between the experimental (dots) and theoretical (solid lines)
amplitudes of the chip output signal resulting from the application of 20 µs long
microwave pulses with driving frequencies ωd close to the LER resonance frequency
ωr. Two cases are illustrated: the uncoupled resonator at 0 mT (a) and the resonator
coupled to a PTMr/PS sample in the dispersive regime (b). The absolute value of
the output signal is shown, normalized by the amplitude of the input pulse, αin.

6.4 First pump-probe experiments on PTM radicals:
measurement of the spin ensemble absorption
spectrum and relaxation time T1

The first pump-probe experiments on PTM radicals were performed with the
Test 3 chip, with only one transmission line coupled to the LERs. The
PTMr/PS samples were the 0.5% PTMr/PS (in mass) deposits on LERs 9 and
10 (see section 6.2). Therefore, a collective spin-photon coupling GN/2π ∼ 3.2
MHz is expected, with an ensemble decoherence rate γ⊥/2π ∼ 6 MHz. There
are N ∼ 5·1012 spins on each PTMr/PS sample. This gives a root mean square
(RMS) single spin-photon coupling G1,RMS/2π = GN/2π

√
N ∼ 1.4 Hz. How-

ever, a better estimate considers only the effective number of coupled spins,
Neff ∼ N/100, giving G1,RMS/2π ∼ 10.4 Hz.

6.4.1 Basics of dispersive readout with pump-probe experi-
ments

The theory of the dispersive regime of an ensemble of spins 1/2 coupled to a
resonator is described in section 3.4.2 from chapter 3. The resonance frequency
ωr of the uncoupled LER is shifted to higher or lower frequencies depending



156
Chapter 6. Dispersive qubit readout: pump-probe experiments on PTM organic free

radicals

on the state of the spins in the ensemble:

ωr → ωr +

N∑
i=1

χi⟨σ̂z, i⟩, (6.9)

which depends on the expectation value ⟨σ̂z, i⟩ for each spin. Each weight χi

in the sum is the single spin dispersive shift, defined as:

χi :=
|G1,i|2

∆i
=

|G1,i|2

ωq, i − ωr
. (6.10)

Here I do not use the modified detunings ∆′
i discussed in section 3.4.2. They

can be replaced by ∆i = ωq, i − ωr in these experiments, as they are two order
of magnitude smaller than ωr. Having different qubit frequencies ωq, i accounts
for any inhomogeneous broadening of the spin resonance.

At 10 mK all molecular spin qubits are considered to be initialized in their
ground state, with ⟨σ̂z, i⟩ ≃ −1 for every spin. Then, the resonance frequency
that is measured without exciting the spins is not ωr, but the reference fre-
quency ωref :

ωref := ωr −
N∑
i=1

χi = ωr − χ, (6.11)

where χ is the ensemble dispersive shift.

After this initialization by temperature, a control sequence of pump pulses
is sent to excite the spin system, with carrier frequencies ωd close to the qubit
frequency ωq. These pulses induce changes in the expectation values ⟨σ̂z, i⟩.
The resulting new resonance frequency ωshifted is measured by sending probe
pulses with frequencies close to ωr, and then compared to the reference fre-
quency ωref :

δωr := ωshifted − ωref =

N∑
i=1

χi (1 + ⟨σ̂z, i⟩) . (6.12)

The shift δωr contains the information of the changes in the expected values
⟨σ̂z, i⟩ of the spins generated by the excitation pulses. It also gives insight into
the distribution in couplings (G1, i) and in qubit frequencies (ωq, i) through
the dispersive shifts χi. Figure 6.12 summarizes the basic ingredients of the
dispersive readout.
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Figure 6.12: (a) Transmission of LER 10 of chip Test 3 coupled to a PTMr samples.
The coupled LER resonance frequency ω̃r (solid black line) is compared to the un-
coupled LER resonance frequency ωr (dashed black line). At 10 mK, with the spins
initialized in the ground state, the solid black line also marks the position of the
reference frequency ωref for magnetic fields in which the dispersive regime condition
|∆| = |ωq − ωr| ≫ GN is fulfilled. For ∆ > 0 (right hand side), the ensemble disper-
sive shift is positive (χ > 0), and ωref = ω − χ is below ωr. Conversely, for ∆ < 0

(left hand side), χ < 0 and ωref is above ωr. (b) Dispersive shift of ωr for ∆, χ > 0.
The reference frequency ωref (blue resonance) associated with the ground state of the
spins is lower than ωr (black resonance). If all spins were excited, ωr would be shifted
by the same amount to higher frequencies (red resonance). Changes in the spin state
are tracked by measuring the positive shift δωr between the LER resonance (cyan
resonance) and comparing it to ωref . (c) Dispersive shift of ωr for ∆, χ < 0. ωref

is now above ωr, and any excitation of the spins is measured as a negative shift δωr

from ωref .

6.4.2 Microwave generation and detection setups

Two sets of signals are required to measure the shift δωr. First, a sequence of
high power pulses with frequencies ωpump close to ωq are sent to control the
spin state. These pulses change the expectation value ⟨σ̂z, i⟩ of each spin in
the ensemble. Then, low power pulses with frequencies ωprobe close to ωr are
sent to measure the resonance shift δωr. The generation of these two sequences
of pulses, the pump sequence and the probe sequence, their interaction with
the spins and the resonator, and the readout of the transmission probe signal
constitute together what is called here the pump-probe experiment sketched in
Fig. 6.13.
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𝜔pump ∼ 𝜔q 𝜔probe ∼ 𝜔r

𝑡

Figure 6.13: Scheme of a pump-probe experiment with a single high power pump
pulse (magenta) with carrier frequency ωpump close to ωq followed after a time lapse
t by a single low power probe pulse (cyan) with carrier frequency ωprobe close to ωr.

The generation and detection stages for pump-probe experiments are shown
in Figs. 6.14 and 6.15 respectively. The pump (magenta) and probe (cyan)
signals are generated at a 0 dBm power level by the AWG through a single
output line. A reference TTL signal (REF ) generated also by the AWG triggers
a switch that sends the pump signal to the excitation circuit and the probe
signal to the readout circuit. In the former, the pump signal is amplified by
10 dB. The probe signal in the readout circuit is split into a local oscillator
reference for the readout stage (LO) and the signal that goes through the
cryogenic stage, the latter attenuated by 20 dB. The pump and probe signals
are combined again into a single line (IN ) and led through the same port of
the cryostat, as Test 3 has only one transmission line.

IN

Excitation line in

Cryogenic
stage

Readout line in
LOREF

Readout
stage

AWG

-20 dB

+10 dB

Figure 6.14: Generation stage for chip Test 3 using an Arbitrary Waveform Generator
(AWG), and its relation with the cryogenic and readout stages.

The output of the cryogenic stage (OUT ) is the transmission of the pump
and probe signals through Test 3. A second switch triggered by REF at the
start of the detection stage sends the transmitted pump signal to the excitation
line and the transmitted probe signal to the readout line. The transmitted
pump signal is sent to a channel of the oscilloscope.2 The transmitted probe
signal (RF ) is amplified by 40 dB. After this amplification, the power of RF
is roughly 0 dBm. An IQ mixer fed with the LO and RF signals demodulates

2The pump pulse is not measured, it is only sent to the oscilloscope to check it.
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the probe signal, extracting the in-phase (I, green) and quadrature (Q, yellow)
components of RF. The detection stage ends with the acquisition of I and
Q with the oscilloscope. The digitized I and Q signals are then sent to the
computer for post-processing.

Cryogenic
stage

OUT

REF

Readout line out

Excitation line out

LO

RF

Generation
stage

I

Q

OSCILLOSCOPE
+40 dB

Figure 6.15: Detection stage for chip Test 3 using an oscilloscope, and its relation
with the cryogenic and generation stages.

6.4.3 Spin ensemble absorption spectrum and T1 measurements

The qubit frequency was tuned to ωq/2π ≃ 1.83 GHz applying a magnetic
field B = 65 mT. At this field, there is a detuning ∆ / 2π = (ωq − ωr) / 2π ∼
44 MHz between the qubit frequency and the resonance frequency ωr / 2π =
1.7865 GHz of Test 3 LER 10. This detuning fulfills the dispersive regime
condition |∆| ≫ GN . At 10 mK, the reference frequency is ωref = ωr − χ,
which is below ωr (positive dispersive shift χ). Any change in the spins from
their ground state will induce a positive shift δωr from ωref (see Fig. 6.12b).

The pump sequence used here was a 50 µs pulse with a carrier frequency
ωpump close to ωq. After the pulse, the induced shift δω with respect to ωref

immediately starts to decay to zero with a relaxation time T1. In fact, there
may be different times T1, i associated with the ⟨σ̂z, i⟩ of each spin. If some T1, i
are very short, this imposes a limitation on the probe time for measuring δωr.
A simple solution is to calibrate the full resonance of the LER beforehand,
then obtaining δωr from a single pulse at a fixed frequency close to ωr just
after the excitation pulses. The calibration curve translates the IQ data of
the transmission of the probe pulse into a frequency ωcal. This frequency,
compared to the known input probe frequency ωprobe, gives δωr. The procedure
is illustrated in Fig. 6.16a. The difference ωcal − ωprobe has the opposite sign
to δωr:

δωr := − (ωcal − ωprobe) . (6.13)

The minus sign comes from the fact that it is not the input frequency that
shifts to ωcal, but the whole resonance in the opposite direction.
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Figure 6.16: (a) Dispersive shift (red dots) of the point in the IQ plane (in-phase
& quadrature) corresponding to a fixed readout frequency close to the resonance
frequency ωr of Test 3 LER 10 as the drive frequency is swept around the qubit
frequency ωq, measured at 65 mT. In the absence of the pump pulse, the point would
remain still in the plane. Blue dots are the calibration of the full resonance of LER
10 at 65 mT, which traces a circle in the IQ plane. The frequency associated to the
shifted resonance (red dots) is extracted by inverting the parametrized calibration
curve (I(ω), Q(ω)). (b) Measured shift δωr for pump frequencies ωpump around the
qubit frequency ωq, measured at three fields: 62.3 mT (red dots), 63 mT (green dots)
and 65 mT (blue dots). The maximum shift, in absolute value, measured at each
field B is obtained for ωpump = ωq = µBgSB/ℏ. These maximum values (black dots)
follow closely the predicted dependence with 1/∆ (black dashed lines).

With this technique, the ensemble spin spectrum and the relaxation time
T1 of the PTMr/PS samples were measured at 65, 63 and 62.3 mT. See [8]
for an example of this kind of experiments on NV center spins in diamond,
and [9, 10] for similar experiments on other free radical molecules. The latter
two fields, 63 and 62.3 mT, correspond to detunings ∆ / 2π ∼ -12.3 and -27.3
MHz, respectively. That is, at these two fields the qubit frequency ωq is smaller
than the bare resonator ωr. This implies a negative dispersive shift χ, with the
reference frequency ωref above ωr and a negative shift δωr from it if the spins
are excited, in agreement with the experimental results. It was necessary to
use relatively long pulses (50 µs) and remove two 10 dBm attenuators from
the cryostat lines in order to see a significant shift δωr. This pulse length is
much longer than the expected ensemble decoherence time T ∗

2 = 1/γ⊥ ∼ 26.5

ns, which means that the microwave field generated by the line in this setup is
too low to do coherent operations on the spins.

At each field, the ensemble spin spectrum was obtained by scanning over the
pump frequency ωpump and detecting the ensuing δωr. The lineshape of PTMr

is inhomogeneously broadened, with a distribution of qubit frequencies ωq, i.
Each pulse excites only the part of the distribution within its bandwidth, that
is, in a frequency window ∆ωpump ∼ 1/(50µs) = 20 kHz centered at ωpump.
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The sweep in ωpump reconstructs the distribution of spins with different ωq, i.
The spectra measured at 62.3 mT, 63 mT and 65 mT (detunings ∆ ≃ -27.3,
-12.3 and 44 MHz) are shown in Figs. 6.17a-c, respectively. Also, Fig. 6.16b
shows how the peaks of the spectra, i.e. the maximum shifts measured at
each field, follow closely the 1/∆ dependence of the dispersive shift χ (and
δωr) predicted by Eq. (6.10). The width of the spin resonance, in particular
in relation to ∆, puts some spins with frequencies ωq, i too close to ωr, thus
beyond the dispersive regime condition. This can be seen in the high-frequency
end of the 62.3 mT spectrum not going back to δωr = 0 and, most notably,
in the 63 mT spectrum with δωr decreasing sharply as it crosses the LER
frequency ωr. The spectra are fitted to Gaussian profiles with σ/2π = 10.01±
0.24 MHz. The half-width at half maximum (HWHM) of this distribution is√

2 ln (2)σ/2π = 11.79 ± 0.28 MHz. This is consistent with the decoherence
rate γ⊥/2π = 5.8 ± 0.2 MHz estimated for the spin ensemble on LER 10 in
section 6.2, where a Lorentzian profile |1/(γ⊥ + i(ωq − ωd))| with HWHM
=

√
3γ⊥/2π = 10.0± 0.3 MHz is assumed.

Figure 6.17 also shows the measurement of the relaxation time T1 for the
same three fields. The pump frequency ωpump was fixed to the value that
gives the maximum of the spectrum shift at each magnetic field, ωpump = ωq.
The time t between the pump and the probe pulses was varied between a few
milliseconds and several seconds. The shift δωr decays back to ωref as the ⟨σ̂z, i⟩
expectation values relax to -1 with characteristic times T1, i. The distribution
of exponential decays can be fitted with a stretched exponential [10]:

δωr(t) := δωr(0)e
−(t/T1)x , (6.14)

where x is the stretch parameter, which takes here values around ∼ 0.5. T1
stands as an average relaxation time of the sample, with values of a few seconds
for the three measured fields: T1 = 4.9 ± 0.2 s at 62.3 mT, T1 = 6.9 ± 0.2 s
at 63 mT, and T1 = 8.5 ± 0.4 s at 65 mT.

A simple model of the distribution of spin-photon couplings accounts for
the observed distribution in relaxation times. An ensemble of uncoupled spins
would decay to their ground state with a single relaxation time T1. However,
spins coupled to a resonator in the dispersive regime have a small hybridization
(of the order of |G1/∆| ≪ 1) with the wavefunction of a photon in the resonator
(see section 3.4). The relaxation rate of the coupled spins is then:

Γ∥ :=
1

T1
+

(
G1

∆

)2 1

Tκ ,
(6.15)

where Tκ = 1/(2κ) ∼ 1.4 µs is the photon lifetime in LER 10. The hybridiza-
tion with the resonator imparts the distribution of spin-photon couplings G1, i

to the decay times.



162
Chapter 6. Dispersive qubit readout: pump-probe experiments on PTM organic free

radicals

Figure 6.17: The shift δωr in the LER resonance frequency with respect to the refer-
ence frequency ωref , measured for different drive frequencies ωpump of the pump pulse
and different times t between the pump and probe pulses (blue dots). The sweep in t
is shown in linear and logarithmic time scales. These measurements were performed
at three magnetic fields: 62.3 mT (a), 63 mT (b) and 65 mT (c). The sweep in ωpump

gives the inhomogeneously broadened ensemble spin spectrum of PTMr, which is fit
to a Gaussian profile (red solid line). The sweep in t gives the decay of δωr as the spins
relax to their ground state. This decay has been fitted to a stretched exponential (red
solid line, see Eq. (6.14)) that is the result of having a distribution of exponential
decays with different characteristic times T1, i up to seconds. At 63 mT, where ωq is
closer to ωr, an additional decay with a fast T1 ∼ 8.6 ms is observed at very short
times.
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If a single wire is considered, these couplings, which are proportional to the
magnetic field generate by the wire, can be assumed to scale with 1/r, where
r is the distance of the spin to the wire. Integrating in a cylinder or radius R
around the wire, one obtains the following expression for δωr(t):

δωr(t) ∝ e−(t/T1)

∫ R

r=w

d r
r
e−t/TG(r) ∝ e−(t/T1)

∫ TG(R)

TG(w)

dTG
TG

e−t/TG , (6.16)

where TG(r) is the time that characterizes the spin relaxation time induced by
its coupling to photons. It is defined as:

TG(r) :=
( r
w

)2
TG(w) =

( r
w

)2( ∆

G1(w)

)2

Tκ, (6.17)

which scales quadratically with the detuning ∆ [11].

Figure 6.18 compares the decay of δωr measured at 65 mT with the results
of Eq. (6.16) for T1 ∼ 60 s, TG(w) = 0.2 s and TG(R) = 250 s. From these
values, the single spin-photon couplings G1(w) ∼ 116 kHz and G1(R) ∼ 3 kHz
are estimated. These values are of the same order of magnitude of single spin-
photon couplings found in [4] for spins coupled to the inductor constriction.
At 63 mT, where ωq is closer to ωr, the dispersive regime theory starts to fail
and the effect of the coupling to the resonator is more prominent, generating
an additional fast decay with a relaxation time of 8.6 ms (see Fig. 6.17b). This
relaxation corresponds to a spin-photon coupling as high as ∼160 kHz.

Figure 6.18: Decay of the shift ωr in the LER resonance frequency with respect to
the reference frequency ωref with the time t between the pump and probe pulses (blue
dots), measured at 65 mT. The red solid line is the comparison with the model for
the distribution of relaxation time from Eq. 6.16. The cyan dashed line is the fit with
a stretched exponential decay.
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Having very long spin relaxation times, even taking into account that they
are shortened by the coupling to the resonator, places a limitation to the repeti-
tion time of the experiment. Before starting the next pump-probe experiment,
the spins have to relax to their ground state. This means waiting ∼ 5T1, which
in this case amounts to several minutes. However, a long T1 also opens the
possibility of measuring δωr by probing the whole LER resonance after the
pump pulse. This is explored in the next sections.

6.4.4 Modulating T1 with the magnetic field

An alternative, simple setup that allows measuring the LER resonance within
a few milliseconds after the excitation of the spins is shown in Fig. 6.19.
The probe sequence is now a train of pulses generated by a vector network
analyzer (VNA). These pulses have carrier frequencies ωprobe spanning the
whole resonance. The same VNA receives the transmitted signal and compares
it to the sent pulses.

IN

Excitation line in

Readout line in
REF

+10 dB

OUT

Readout line out

Cryogenic
stage

AWG

VNA
OSCILLOSCOPE

Figure 6.19: Generation and detection stages for chip Test 3 using a vector network
analyzer (VNA).

The shift δωr is obtained by comparing the resonance measured after a
pump sequence (ωshifted) with a reference measurement without exciting the
spins (ωref). Figure 6.20 compares the transmission of Test 3 around the res-
onance frequency ωr of LER 10 in these two situations, with the shift δωr

clearly visible in the close-up of the measurement of the phase of the transmis-
sion parameter S21. Even if this shift is small compared to the width of the
resonance, it can be faithfully recovered by fitting both resonances with the
theory for the transmission through the transmission line for frequencies close
to the resonance frequency of a LER, given by Eq. (4.67). The formula for the
transmission parameter S21 is reproduced below:

S21(ωd) = 1− κc
i(ωr − ωd) + κ ,

(6.18)
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where ωd ≡ ωprobe is the carrier frequency of each of the pulses in the probe
sequence. The two resonances are fitted with the same resonator decay rate κ
and line-resonator coupling κc, leaving ωr as the only free parameter for each
resonance.

𝛿𝜔r/2𝜋

Figure 6.20: (a) Normalized module of the complex-valued transmission S21 of Test 3
for probe frequencies close to the LER 10 resonance frequency ωr, measured at B =

65 mT. Two situations are compared: blue dots show the resonance without exciting
the spins, red dots show the same resonance after a pump pulse at the qubit frequency
ωq = µBgSB/ℏ has been applied. (b) Close-up centered at ωr, showing the shift δωr

of the center frequency of the resonance. Figures (c, d) illustrate more clearly this
shift with the measurement of the phase of S21.

The spectrum of the PTMr ensemble was measured with this technique at
two fields with detuning ∆/2π = (ωq−ωr)/2π ≃ ± 40 MHz. Figure 6.21 shows
the change in δωr as the pump frequency is swept in the vicinity of the spin
resonance frequency ωq for each field. As in the previous section, the sign of
the shift δωr follows the sign of ∆, which confirms that the effect is due to the
coupling of the LER to the spin ensemble. Both spectra are fit to a Gaussian
lineshape with σ/2π = 10.01 MHz. This confirms that the results of measuring
the whole resonance are compatible with those obtained from measurements
with a single probe pulse.

Similarly, the decay of the shift δωr with the delay time between the pump
pulse and probe sequence was measured again, now for a wider range of mag-
netic fields. Figure 6.22 shows the results of these measurements, in which
δωr decays faster as the field is brought closer to the spin-LER resonance field
Bres = ℏωr/µBgS. This is the well-known Purcell effect [12–15], the enhance-
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ment of the effective decay rate of the spins due to their coupling to a cavity
(in this case, a superconducting resonator). δωr is normalized at each field by
|δωr|, which is the shift measured by triggering the VNA right after the pump
pulse.

Δ > 0

Δ < 0

Figure 6.21: Shift δωr of the Test 3 LER 10 resonance frequency for pump frequencies
ωpump around the qubit frequency ωq, measured at two magnetic fields with detunings
∆/2π = (ωq − ωr)/2π ≃ ± 40 MHz (blue dots for negative ∆, red dots for positive
∆). The sign of the shift δωr follows the sign of ∆. In both cases, the dependence
of δωr with ωpump traces the absorption spectrum of the spin ensemble, centered at
ωq = µBgSB/ℏ, which is fit to a Gaussian lineshape with σ/2π = 10.01 MHz (solid
lines).

Δ > 0

Δ < 0

Figure 6.22: Shift δωr of the Test 3 LER 10 resonance frequency for different delay
times t between the pump pulse and the probe sequence, measured at several magnetic
field between 59 and 68 mT. This magnetic field includes both positive and negative
detunings ∆/2π = (ωq − ωr)/2π. The decay of δωr is faster for fields associated to
smaller ∆ (in absolute value). Solid (∆ > 0) and open (∆ < 0) are experimental data,
solid line show their fit to a sum of two exponential decays with different characteristic
times (see Eq. (6.19)).
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Obtaining a precise delay time is not possible for measurements with t < 0.1

s, due to the relatively slow VNA measurement compared to the arbitrarily
short pulses generated by the AWG as well as any additional delay introduced
by the triggering of the VNA. Lacking this time range, here I use a simple model
capturing the two timescales observed the experiment instead of explaining
these results with the model of Eq. (6.16) [9]:

δωr(t) = δωr(0)
[
CGe

−t/T1, fast + (1− CG)e
−t/T1, slow

]
, (6.19)

where CG is the ratio of the contribution of spins with the shorter decay time
T1, fast — the faster relaxation induced by resonator — to that of spins with
the longer decay time T1, slow. This ratio can be related to the collective spin-
photon coupling of each set of spins:

CG :=
(δωr)fast
(δωr)slow

≃ χfast

χslow
≃
(
(GN )fast
(GN )slow

)2

. (6.20)

Here I assumed that the distribution in ⟨σz, i⟩ generated by the inhomogeneity
of the microwave magnetic field generated by the line is not correlated to the
distribution of single spin-photon couplings to the resonator, which depends on
the inhomogeneity of the microwave field generated by the resonator inductor.
The same detuning ∆ has been assumed as well.

The CG ratios and the shorter decay times T1, fast that result from the fit
of the decay of δωr for each magnetic field with Eq. (6.19) are shown in Fig.
6.23. All fields were fitted with a longer decay time T1, fast ∼ 15 s associated
to spins in the ensemble that are more weakly coupled to the resonator.

Figure 6.23: Magnetic field dependence of the CG ratio (a) and the shorter decay
time T1, fast (b) that result form the fit of the decay of δωr with Eq. (6.19). All fields
were fitted with a longer decay rate T1, fast ∼ 15 s. Blue dots used for magnetic fields
with negative ∆, red dots for fields with positive ∆. The grey dashed line marks the
spin-LER resonance field Bres = ℏωr/µBgS.
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As the magnetic field is set closer to the spin-LER resonance field Bres =

ℏωr/µBgS, the decay time T1, fast decreases sharply due to the influence of the
resonator. Also, the increase of CG towards 1 means that the resonator-induced
decay of the fast decaying spins provides the dominant contribution to δωr, over
that of the weakly-coupled and slow decaying spins. That is, the relaxation
rate of the isolated spins is so long that any hybridization with the resonator
becomes the faster pathway for relaxation, unless ∆ is made large enough and
the spins become effectively decoupled from the photons. However, increasing
the detuning has the drawback of having a lower shift δωr, which scales with
1/∆. In the end, there is a trade-off between the optimization of magnitude
of the shift by decreasing ∆ and having a sufficiently long effective decay time
by increasing ∆.

6.5 Towards a coherent manipulation of molecular
spin qubits

6.5.1 Testing the setup for shorter pump pulses

The pump-probe experiments described in section 6.4 were carried out with
50 µs long pump pulses in order to see a change in δωr. These pulses are way
too long to coherently manipulate the spins, as they should be shorter than
the decoherence time T ∗

2 = 1/γ⊥ ∼ 26.5 ns (see table 6.3). The duration of
the pump pulse can be reduced by increasing the microwave power.

Test 4 was designed to overcome the power limitation of using a single
transmission line for both pump and probe pulses. With its two lines (see Fig.
6.1b), the pump and probe pulses can be sent through two distinct coaxial
lines in the cryostat. The input readout line keeps the 50 dB attenuation of
the scheme shown in Fig. 6.5, while all the attenuators are removed from the
input excitation line. The amplifier at 4 K is then mounted only at the output
of the readout line.

The main risk of this setup is the possibility of a leaking of the input signal
in the excitation line into the readout line through the resonator, damaging
the cryogenic amplifier and the detection instruments. However, by working
in the dispersive regime (|∆| ≫ GN ∼ 3 MHz) and using high quality factor
resonators (Q ∼ 16000, κ = 55.5 kHz for LER 10), the high power pump signal
is filtered by the resonator bandwidth as long as ∆ ≫ κ. The same PTMr/PS
samples used in Test 3 were deposited on top of each LER in Test 4 (see Fig.
6.24a). The interfacing of the chip with the excitation and readout lines in the
cryostat is shown in Figs. 6.24b-d.
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Figure 6.24: (a) PTMr/PS deposits in Test 4. (b) Interfacing of Test 4 with the exci-
tation and readout lines in the cryostat with flexible cables. Readout and excitation
lines are highlighted in (c, d).

The detection method of δωr in these new experiments with shorter pulses
is a compromise between the techniques used in sections 6.4.3 and 6.4.4. The
former requires a previous fine calibration of the resonance to indirectly obtain
δωr with a single probe pulse, but the pulse can be easily triggered right after
the pump pulse, thus minimizing the decay of δωr. Conversely, the latter
recovers the full shifted resonance, giving a nice visualization of δωr (see Fig.
6.20), but the slow VNA measurement tends to reduce the maximum |δωr|.
Here, the AWG was programmed to generate a train of probe pulses, each of a
different frequency spanning the resonance, in the style of a VNA measurement.
This way, the maximum |δωr| can be optimized by measuring the resonance
much faster with shorter probe pulses, their length limited only by the time it
takes for the resonator to reach its steady state (t ≫ 1/κ̃). In addition, the
AWG generates both the pump and probe pulses, which allows sending with
precision the probe sequence right after the excitation of the spins.

Figure 6.25 summarizes the changes in the microwave setup for the pump-
probe experiments in this section. A microwave switch triggered by the refer-
ence signal of the AWG is needed in the generation stage to send the pump
and probe signals to their corresponding lines (the excitation and the readout
lines). From there on, the design of Test 4 with two transmission lines allows
managing each signal independently.
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Figure 6.25: Generation and detection stages for chip Test 4 using an Arbitrary
Waveform Generator (AWG) and an oscilloscope. The setup is similar to that in
Figs. 6.14 and 6.15, with some small changes. A microwave switch triggered by the
reference signal of the AWG is needed in the generation stage to send the pump and
probe signals to their corresponding lines (the excitation and the readout lines). From
then on, the design of Test 4 with two transmission lines allows managing each signal
independently. The pump signal is amplified before the cryogenic stage to optimize
the microwave power in the excitation line, and therefore the microwave magnetic
field that drives the spins. At the output of the cryogenic stage, only the probe signal
in the readout line is amplified.

The oscilloscope receives the in-phase (I) and quadrature (Q) components
of the transmission of the probe pulses, acquiring the whole train of pulses
in a single shot with a low sampling rate (see Fig. 6.26). The acquired data
are processed by discarding the first 5/κ̃ ∼ 12 µs of each pulse, when the
resonator is charging, then averaging the I and Q levels in the steady state.
The results are analysed as detailed in section 6.4.4: the LER resonance is
fitted with (ωshifted) and without (ωref) exciting the spins, obtaining the shift
of the resonance as δωr = ωshifted − ωref . Figure 6.27 shows an example of the
resonance shift obtained in one of these experiments.

Figure 6.26: Photo of the oscilloscope screen acquiring I (magenta) and −Q (cyan)
signals for a train of probe pulses with carrier frequencies spanning the whole LER
resonance.
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Setting the magnetic field at 99.08 mT, the resonance of Test 4 LER 1 was
measured without the pump pulse (blue dots). The detuning at this field is
∆/2π = (ωq−ωr)/2π ≃ 40 MHz. The same resonance was measured again after
sending a 50 µs long pump pulse with carrier frequency ωq/2π = µBgSB/h =

2.77424 GHz, observing a shift δωr to higher frequencies (red dots). As a
comparison, the resonance was also measured after pumping at a frequency
(ωr−∆)/2π = 2.69424 GHz (cyan dots). This ‘mirror’ frequency is as close to
ωr as ωq, but no shift δωr is observed. This rules out that the shift be associated
to some non-linear effect of the resonator due to the microwave power of the
pump pulse leaking into the resonator.

𝛿𝜔r/2𝜋

Figure 6.27: (a) Normalized module of the complex-valued transmission S21 of Test
4 for probe frequencies close to the LER 1 resonance frequency ωr, measured at B =

99.08 mT. Three situations are compared: blue dots show the resonance without
exciting the spins, red dots show the same resonance measured after a pump pulse at
the qubit frequency ωq = µBgSB/ℏ, and cyan dots are those measured after a pump
pulse at the ‘mirror’ frequency ωr−∆. (b) Close-up picture of the resonance, centered
at ωr, showing its shift δωr. Figures (c, d) illustrate more clearly this shift with the
measurement of the phase of S21.

6.5.2 Parallel pathways to generate the dispersive shift

I consider first experiments in which the excitation of the spins is introduced
with a microwave square pulse. This method introduces two excitation paths
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that generate different dispersive shifts. The results provide an interesting
insight of the nature of the states of the hybrid spin-resonator system. The
magnetic field was set at B = 98.36 mT, with ωq above the resonance frequency
ωr of Test 4. This choice sets the qubit-resonator detuning at ∆/2π = (ωq −
ωr)/2π ≃ 20 MHz. The shift δωr of the resonance of LER 1 was measured for
excitation pulses with carrier frequency ωpump = ωq and pulse lengths between
10 and 500 ns. The results of this experiment are shown as red dots in Fig.
6.28a. As a comparison, blue dots show the result of a measurement performed
with the same pump frequency at zero magnetic field, when the spins and the
resonator are completely decoupled and the pump pulse has no effect on the
resonator frequency.

Figure 6.28: (a) Dependence of δωr on the length of the pump pulse, tpump. Three
experiments are shown. Red dots are the result of pumping at the qubit frequency
ωq at a magnetic field B = 98.36 mT, where the qubit-resonator detuning is ∆/2π ≃
20 MHz. Blue dots show the same experiment carried out at zero magnetic field,
when the spins and the resonator are decoupled. Finally, cyan dots show the result
of pumping at the ‘mirror’ frequency ωr − ∆, again with at B = 98.36 mT. (b)
Dependence of δωr on the length of the pump pulse, tpump. The pump frequency is
in the middle between ωr and ωq, ωpump = (ωr+ωq)/2 = ωr+∆/2, and the magnetic
field was set at B = 98.36 mT.

An oscillation with a period T = 50 ns is observed in the data measured at
B = 98.36 mT pumping with ωpump = ωq. A similar experiment pumping with
the ‘mirror’ frequency ωpump = ωr−∆ yields oscillations with the same ampli-
tude and period, but at over a lower δωr base level (cyan dots in Fig. 6.28b).
This discards that these are Rabi oscillations. An additional experiment was
carried out with ωpump = (ωr+ωq)/2 = ωr+∆/2. In this case, the period dou-
bles to T = 100 ns. These results suggest that the period of the oscillation is
related to the detuning between the pump frequency ωpump and the resonator
frequency ωr. In Fig. 6.28a, the period matches 2π/|ωpump−ωr| = 2π/∆. Sim-
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ilarly, in Fig. 6.28b the period equals 2π/|ωpump − ωr| = 4π/∆. I argue next
that the relation between pump pulse duration and ωpump−ωr is a consequence
of using square pulses.

The Fourier transform of a square pulse of length tpump is the cardinal sine
function function sinc(x) = sin(x)/x, with x = (ω−ωpump)tpump/2. The zeros
of this function are located at x = mπ, that is, (ω − ωpump)tpump/2π = m,
with m ̸= 0 an integer (see Fig. 6.29). This is precisely the condition that
is met by the values of tpump at which the oscillation minima are observed in
δωr, if we set ω = ωr (see vertical dashed lines in Fig. 6.28). The underlying
physical origin of these oscillations is then that a small part of the microwave
power of the pulse with frequency ωr directly drives the resonator except when
this condition is met. The fact that the excitation of the resonator by the
sideband frequencies of the pump pulse leads to changes in δωr shows that it
carries some spin changes with it. As a proof, the measurement performed at
zero field shows no change in δωr (see Fig. 6.28a).

Figure 6.29: The cardinal sine function sinc(x) = sin(x)/x, with x = (ω −
ωpump)tpump/2. The zeros of this function are located at x = mπ, with m ̸= 0

an integer.

The mechanism through which an excitation of the resonator changes δωr

can be understood by recalling what do exciting the qubit or the resonator
actually mean in the context of the dispersive regime. Assuming positive de-
tuning (∆ > 0), the hybrid qubit-resonator excited states can be approximated
by (see section 3.4):

|ψn,+⟩ ≃
G1

√
n

∆

∣∣∣∣ |ψn, g⟩+ |ψn−1, e⟩

|ψn,−⟩ ≃ |ψn, g⟩ −
∣∣∣∣G1

√
n

∆

∣∣∣∣ |ψn−1, e⟩ .
(6.21)

Figure 6.30 shows the energy levels of the spin-resonator system in the disper-
sive regime up to n = 2. From the ground state |ψ0, g⟩, the only transition
with a frequency close to ωr is the |ψ0, g⟩ ↔ |ψ1,−⟩ transition, with frequency
ωref = ωr−χ. This is the resonance that is observed in the absence of a pump
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pulse. The pump pulse, with carrier frequency ωq, generates the qubit excita-
tion |ψ0, e⟩, which is not a stationary state of the system. Using Eq. (6.21),
this state can be written as the superposition |ψ0, e⟩ ≃ |ψ1,+⟩− (G1/∆) |ψ1,−⟩.
From |ψ1,+⟩, the only transition with a frequency close to ωr is the |ψ1,+⟩ ↔
|ψ2,+⟩ transition, with frequency ωr + χ = ωref + 2χ. This is the standard
procedure to measure the dispersive shift of ωr.

ȁ ۧ0, g

𝜔r

𝜔q

𝑛 = 2

𝑛 = 1
𝜔r − 𝜒

ȁeۧ
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Figure 6.30: Energy levels of the spin-resonator system in the dispersive regime up
to n = 2. Stationary states of the hybrid system are shown in magenta, with the
independent excitations of the spin and the resonator in blue and grey for reference.
Transitions between |ψn,−⟩ states resonate at ωref = ωr−χ, while transitions between
|ψn,+⟩ states resonate at ωr + χ = ωref + 2χ.

There is, however, another way of generating the state |ψ1,+⟩. Pumping
at a frequency ωr produces the resonator excitation |ψ1, g⟩. This is not a pure
stationary state of the hybrid system. Inverting the relations in Eq. (6.21), this
state can be written as the superposition |ψ1, g⟩ ≃ |ψ1,−⟩+(G1/∆) |ψ1,+⟩. That
is, |ψ1,+⟩ can be generated by driving at the resonator frequency ωr, although
not efficiently: |ψ1,+⟩ is only a small part, of the order of G1/|∆| ≪ 1, of
the resonator excitation. The resulting contribution to the dispersive shift is
usually negligible, as the pump pulse is sent at ωq, and the probe pulse at ωr has
a very low microwave power. However, the leaking of the square pump pulse
with carrier frequency ωq into the resonator whenever (ωpump−ωr)tpump/2π ̸=
1 has enough power to excite |ψ1,+⟩ significantly. The experiments provide
a direct detection of the degree of ‘mixture’ between the spin and photon
excitations at the given magnetic field (and detuning ∆).
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6.5.3 Detection of damped oscillations

The results shown in Fig. 6.28a are the combination of pumping the spins
at a frequency close to ωq — the main peak of the sinc function — and the
excitation of the resonator with the frequency sidebands of the square pulse.
The latter can be removed by subtracting the measurement of δωr at the
‘mirror’ frequency ωr −∆, which displays the same fast oscillations due to the
resonator excitation but involves no direct spin excitations. Figure 6.31 shows
the hint of a damped Rabi oscillation that is recovered with this subtraction.

Figure 6.31: (a) Difference between the measurement of δωr sending a square pulse at
the qubit frequency ωq = ωr+∆ (red dots in Fig. 6.28a) and at the ‘mirror’ frequency
ωr − ∆ (cyan dots in that same figure). The black solid line is the fit to a damped
oscillation with with decay time τ = 43 ± 4 ns and a period T = 94 ± 6 ns. The
time it takes for the pump pulse to invert the population (π-pulse, maximum δωr)
is tπ = T/2 = 47 ± 3 ns. (b) Dependence of δωr on the length of the pump pulse,
tpump ≡ 2σ, pumping at the qubit frequency ωq with a Gaussian pulse. Two data sets
are show. First, the δωr was measured with increasing tpump up to 250 ns (blue dots).
Then, the time range around the maximum of the oscillation was measured with a
shorter step in the tpump sweep (red dots). The black solid line is the fit to a damped
oscillation with with decay time τ = 37.8± 0.8 ns and π-pulse length tπ = 28.2± 0.2

ns.

The fit of δωr to a damped oscillation gives a period T = 94± 6 ns and a
decay time τ = 43± 4 ns. The time it takes for the pump pulse to invert the
population is half the period, when δωr is maximum (without the damping).
This time is the optimal length of the π-pulse, tπ = T/2 = 47 ± 3 ns. Both
tπ and τ are similar in the experiment. τ is of the same order of the ensemble
decoherence time T ∗

2 = 1/γ⊥ ≃ 26.5 ns. The damping of the oscillation arises
from the comparison between the bandwidth of the pulse and the width of the
spin spectrum. As the length of the pulse increases beyond T ∗

2 , the bandwidth
of the pulse becomes thinner than the width of the spectrum, thus not exciting
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part of the spin ensemble.

A practical removal of the effect of the leakage of the pump pulse into the
resonator is the use of Gaussian pulses. The Fourier transform of a Gaussian
pulse is a Gaussian distribution of frequencies, without the sidebands of the
sinc function that cause the leakage into the resonator. Figure 6.31b shows the
result of repeating the measurement of δωr using Gaussian pulses. The pulse
length is defined in this case as tpump = 2σ. The oscillation with 1/∆ that was
present for square pulses is gone, leaving only the damped Rabi oscillations.
The fit of δωr to a damped oscillation yields a decay time τ = 37.8 ± 0.8 ns
and π-pulse length tπ = 28.2± 0.2 ns.

6.6 Conclusions

The dispersive readout of molecular spin qubits coupled to lumped-element
resonators has been performed in this chapter. The absorption spectrum and
the relaxation time T1 of the spin ensemble can be obtained from the shift
δωr of the LER resonance in pump-probe experiments. In addition, these
measurements give some insight on the role of the resonator on the relaxation
of the spin ensemble. An estimation of the highest single spin-photon couplings
(as high as ∼160 kHz) and their distribution can be obtained as well. With
short pulses (10-500 ns), the first signs of coherent manipulation of the spin
ensemble have been detected in a specific superconducting chip designed for
that purpose (Test 4 ). π-pulse lengths tπ similar to the ensemble decoherence
rate T ∗

2 are obtained.

A limitation of these experiments is the distribution of microwave magnetic
fields in the sample. Each spin is driven by a different field bmw, which reduces
the precision of the experiment compared to the ideal case of all the spins being
driven together. This can be improved in future experiments by designing
an excitation line that generates a more homogeneous microwave field in the
sample. A promising proposal consists on two-sided superconducting chips,
one side with the LERs coupled to the readout line and the other with the
excitation line. This would give freedom to design a excitation line with a loop
at the position of the LER inductor with the sample (on the opposite side),
generating a more homogeneous bmw at the position of the sample. Another
improvement is the use composite pulses like the BB1 sequence, which can
mitigate the error generated by a small microwave field inhomogeneity [16].
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Chapter 7

Circuit QED with
electro-nuclear spin qudits

The previous chapter described pulse experiments performed on ensembles of
simple free radical molecules. With their spin 1/2, these molecules are model
realizations of spin qubits. The next logical step is to extend these experiments
to more complex systems, able to implement richer quantum functionalities. A
promising alternative is to exploit the multiple spin states within a magnetic
molecule hosting multiple magnetic centers. However, synthesizing magneti-
cally diluted crystals made of these molecules, which is necessary to combine a
good protection from the decoherence induced by intermolecular interactions
with the ability to resonantly address each spin transition, has proven quite
challenging [1, 2].

Nuclear spins are interesting candidates to encode qubits or d-dimensional
qudits due to their isolation from magnetic noise and potentially long coherence
times. However, their weak coupling to external stimuli makes them hard to
integrate into superconducting circuits. Conversely, coupling to electronic spins
is easier, but with the drawback of having shorter coherence times. A promising
architecture is based on magnetic ions that combine an electronic spin 1/2 and
a non-zero nuclear spin. The qubit/qudit is encoded in the nuclear spin, but
the readout is performed in the electronic spin: the state of the nuclear spin is
inferred from its coupling to the electronic spin.

The [Yb(trensal)] complex [3], a molecule with a Yb3+ ion with effective
electronic spin 1/2, showcases this electronic spin-nuclear spin architecture.
Two stable isotopes of Yb have non-zero nuclear spin, 171Yb with I = 1/2

and 173Yb with I = 5/2. The large hyperfine coupling in [Yb(trensal)] with
173Yb (∼ 900 MHz) ensures a non-negligible electro-nuclear mixing even for
fields up to 100 mT. The hyperfine-enhanced coupling of 173Yb nuclear tran-
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sitions to LERs has been measured with transmission experiments and pulsed
experiments [4]. Additionally, I describe the first results of dispersive readout
experiments performed on a isotopically enriched crystal of [Yb(trensal)].

7.1 Experimental setup

7.1.1 [Yb(trensal)] samples

[Yb(trensal)] is a coordination complex with an effective electronic spin 1/2
localized in its Yb3+ ion. Here (trensal) is shorthand for the trianionic1 form
of the heptadentate2 ligand H3trensal [5–8]. Figure 7.1a shows the molecular
structure of the complex. It has C3 symmetry, with the symmetry axis — the
C3 axis — defined by the coordination bond between the Yb3+ ion and the
tertiary amine of the triethylamine.

𝐵

Salicylideneimino

(anion form)

Triethylamine

𝐶3, Ƹ𝑧mol

𝐶3, Ƹ𝑧mol

Figure 7.1: (a) Molecular structure of the Yb(trensal) complex, adapted from [6, 7].
The (trensal) trianionic ligand consists of a triethylamine bridging three salicyli-
deneimino groups in anion form. The complex has axial symmetry, with the molecu-
lar z axis being the same as the C3 symmetry axis defined by the coordination bond
between the Yb3+ ion and the tertiary amine of the triethylamine. (b) Scheme of a
[Yb(trensal)] crystal on a lumped-element resonator. The crystal is a hexagonal prism
with the C3 symmetry axis of all molecules perpendicular to the hexagonal faces. The
static magnetic field is applied along the C3 axis, parallel to the transmission line and
the longer resonator inductor lines.

The [Yb(trensal)] samples used in this work are molecular crystals in the
form of hexagonal prisms, see Fig. 7.1b, synthesized by the group of S. Piligkos

1With charge 3−, trensal forms neutral complexes with Ln3+ ions of the lanthanide series.
The neutral H3trensal has a hydrogen atom bonded to each oxygen atom of trensal.

2A heptadentate ligand has seven donor groups that can bind the magnetic ion. In this
case, these donor groups are the tertiary amine of the triethylamine, the three imine groups,
and the three oxygen atoms.
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at the University of Copenhagen. The C3 symmetry axis of all [Yb(trensal)]
molecules is normal to the hexagonal faces of the crystal. In order to miti-
gate the spin-spin interactions between molecules, [Yb(trensal)] is doped into
a matrix of the isostructural diamagnetic host [Lu(trensal)], preserving the
orientation of all [Yb(trensal)] molecules with respect to the applied magnetic
field B and the chip.

Yb3+ is a Kramers ion with a two-fold degeneracy of the ground energy
state at zero magnetic field (see 3.1.2 in chapter 3). Magnetic anisotropy lifts
the energy of other excited states so that at low temperatures this ground
doublet can be considered as an effective two-state system, that is, an effective
spin 1/2 system. The electronic Zeeman term of this spin 1/2 is affected by
magnetic anisotropy: the g-tensor is diagonal but non-isotropic, with gx =

gy ≡ g⊥ = 2.935 and gz ≡ g∥ = 4.225 (axial symmetry). Here the molecular z
axis is the C3 symmetry axis. The resulting spin Hamiltonian is:

H = Hel,Z = µB

[
g⊥

(
BxŜx +ByŜy

)
+ g∥BzŜz

]
. (7.1)

The hyperfine splitting of [Yb(trensal)] with a non-zero nuclear spin Yb
isotope is well described by a diagonal, non-isotropic hyperfine tensor in the
molecular axes defined by the anisotropy Zeeman interaction. In these ex-
periments, I am interested in the 173Yb isotope, with I = 5/2 and a natural
abundance of 16%. Its nuclear spin adds a hyperfine interaction with axial
symmetry, a nuclear Zeeman interaction with gI = −0.02592, and a quadrupo-
lar term with P∥ = 66 MHz to the effective spin Hamiltonian:

H =Hel,Z+A⊥

(
Ŝx ⊗ Îx + Ŝy ⊗ Îy

)
+A∥Ŝz ⊗ Îz

− µNgIB · Î + P∥

(
Î2z − 1

3I(I + 1)
)

.
(7.2)

The hyperfine interaction is the dominant energy scale for the 173Yb nuclear
spin in [Yb(trensal)], [173Yb(trensal)] in what follows, with A⊥/h = −615

MHz and A∥/h = −897 MHz. The magnetic field dependence of the energy
spectrum derived from Eq. (7.2) with these parameters is shown in Fig. 7.2a.
In this figure, the magnetic field is applied along the C3 symmetry axis, that
is, parallel to the molecular z axis.

At high magnetic fields, the twelve spin states in the spectrum are divided
into two subsets: six low-energy states with mS = −1/2, the ground electronic
spin state, and six high-energy states with mS = +1/2, the excited electronic
spin state. For each subset, there are five nuclear spin transitions with fre-
quencies in the range of hundreds of MHz between states with |∆mI | = 1. In
practice, only nuclear spin transitions between states in the low-energy subset
are detected (see Fig. 7.2b), as the population difference between states in the
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high-energy subset is negligible even at very low temperatures. There are also
six electronic spin transitions (|∆mS | = 1) between the two subsets, one for
each value of mI from −5/2 to +5/2. All six transitions, with frequencies in
the range of a few GHz, can be easily detected at low temperatures (see Fig.
7.2c).
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Figure 7.2: (a) Energy spectrum of [173Yb(trensal)] (I = 5/2), with its twelve spin
states split by magnetic field into a low-energy subset with mS = −1/2 and a high-
energy subset with mS = +1/2. The magnetic field is applied along the C3 symmetry
axis of the molecules. (b) Magnetic field dependence of the resonance frequencies of
the transitions between the six low-energy states of [173Yb(trensal)]. From highest to
lowest frequency, these transitions correspond approximately — save for the mixing
introduced by the hyperfine interaction — to the nuclear transitions mI = −5/2 ↔
−3/2 (0 ↔ 1), mI = −3/2 ↔ −1/2 (1 ↔ 2), mI = −1/2 ↔ +1/2 (2 ↔ 3),
mI = +1/2 ↔ +3/2 (3 ↔ 4) and mI = +3/2 ↔ +5/2 (4 ↔ 5) with mS = −1/2.
At low fields (shaded region) these transitions start to mix due to the hyperfine
interaction. (c) Magnetic field dependence of the six transitions between the two
subsets. Left to right, these transitions correspond approximately to different nuclear
spin states: mI = −5/2 (0 ↔ 11), mI = −3/2 (1 ↔ 10), mI = −1/2 (2 ↔ 9),
mI = +1/2 (3 ↔ 8), mI = +3/2 (4 ↔ 7), and mI = +5/2 (5 ↔ 6).

The strong hyperfine interaction and the presence of a sizeable quadrupolar
splitting in [173Yb(trensal)] gives rise to the level of anharmonicity necessary
for addressing its (2S + 1) × (2I + 1) = 12 spin states and, therefore, to
properly encode a d = 12 electronuclear spin qudit. Alternatively, this system
can seen as a d = 6 nuclear spin qudit coupled to an electronic spin ancilla.
This kind of architecture has been proposed to embed quantum error correction
within a single molecule [3, 9].

Nuclear spins were one of the first platforms for quantum technologies that
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were studied experimentally [10, 11]. These experiments focused on nuclear
spins in organic molecules, which show long coherence times. However, nu-
clear spins are also difficult to address due to the weak interaction of nuclear
magnetic moments with electromagnetic radiation fields. The hyperfine cou-
pling of the nuclear and electronic spins in [173Yb(trensal)] could in principle
enhance the coupling of photons to nuclear spin transitions through the mixing
of the electronic spin and nuclear spin wavefunctions [3].

7.1.2 Chip design

In order to obtain the best nuclear spin-photon coupling possible, it is interest-
ing to study the nuclear spin qudits encoded in [Yb(trensal)] in the context of
circuit quantum electrodynamics (c-QED), one of the most reliable platforms
for solid-state quantum technologies [12]. Two superconducting chips were de-
signed for coupling lumped-element resonators (LERs) to electronic spin and
nuclear spin transitions in [173Yb(trensal)], labeled Yb-cw and Yb-pulsed. Fig-
ure 7.3 shows both designs.

Port 1 Port 2

1 3

2 4

5

6

Port 1 Port 2

1 32 4 5 6

Port 3 Port 4

7 8 9 10

3.3 GHz

2.898 GHz

536 MHz

392 MHz

402 MHz

547 MHz

Figure 7.3: (a) Chip Yb-cw, with a single transmission line, designed to measure the
collective spin-photon coupling of LERs to electronic spin and nuclear spin transitions
in [173Yb(trensal)]. LERs 1 and 2, with frequencies ∼ 3 GHz, are designed to couple
to electronic spin transitions. LERs 3 to 6, with frequencies in the range between 400
and 550 MHz, are designed to couple to nuclear spin transitions. (b) Chip Yb-pulsed,
with two transmission lines, designed for pulse experiments. LERs 3 and 4 (4.2-4.5
GHz) are tuned to the 0 ↔ 11 transition (mI = −5/2) with a magnetic field B =

30 mT. At the same magnetic field, LERs 5 and 6 (∼ 3.5 GHz) are tuned to the
1 ↔ 10 transition (mI = −3/2), and LERs 7 and 8 (∼ 3 GHz) are tuned to the 2 ↔ 9

transition (mI = −1/2).
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The design of Yb-cw is similar to the designs of Test 1 and Test 2 for free-
radicals, with 6 LERs consisting of an inter-digital capacitor and a meandering
inductor. All six resonators are side-coupled to the same transmission line with
both inductive and capacitive couplings. The resonance frequencies of the
Yb-cw LERs, shown in Fig. 7.3a, were tailored to match different electronic
spin and nuclear spin transitions. LERs 1 and 2, with a smaller size, have
frequencies in the range of ∼ 3 GHz. These two LERs couple to the electronic
spin transitions in [173Yb(trensal)], see Fig. 7.2c. Conversely, larger resonators
(LERs 3 to 6) couple to the nuclear spin transitions, with frequencies in the
range between 400 and 550 MHz (see Fig. 7.2b).

Yb-pulsed hosts ten LERs, of which only LERs 3 to 8 (see Fig. 7.3b)
were designed for pulsed experiments with [173Yb(trensal)]. Therefore, I will
focus only on these six resonators. They share a similar design with the low-
inductance resonators used in the previous chapter for dispersive readout ex-
periments with PTMr. Most of the resonator area is taken by a large inter-
digital capacitor, with its ends connected by a single strip — the inductor —
close to the transmission line. Each pair of LERs with similar frequencies is
tuned to be close to the frequency of a specific electronic spin transition of
[173Yb(trensal)] when a magnetic field of 30 mT is applied. LERs 3 and 4 are
tuned to the 0 ↔ 11 transition (mI = −5/2), LERs 5 and 6 are tuned to the
1 ↔ 10 transition (mI = −3/2) and LERs 7 and 8 are tuned to the 2 ↔ 9

transition (mI = −1/2).

7.2 High cooperativity coupling to nuclear spin tran-
sitions

A complete characterization of the collective spin-photon coupling of electronic
spin and nuclear spin transitions of [173Yb(trensal)] to the photon modes of
LERs in Yb-cw was performed with single crystals of [Yb(trensal)] having nat-
ural abundances of all Yb isotopes. Each crystal had a different concentration
of [Yb(trensal)] in the diamagnetic [Lu(trensal)] matrix (see Fig. 7.4). With
the sample sizes shown in Fig. 7.4, 1015–1016 [Yb(trensal)] molecules with
173Yb are estimated per crystal.

Crystals were placed on top of the meandering inductor of each LER, with
the C3 symmetry axis of the molecules aligned with both the transmission line
and the inductor lines. The deposition process is detailed in Fig. 7.4. The
magnetic field was also oriented parallel to C3. A previous characterization
based on the coupling to the transmission line provided broadband access to
the different spin transitions. The results can be found in [4].
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Figure 7.4: Superconducting chip with 6 LERs coupled to [Yb(trensal)] crystals. In
the picture, only LERs 1, 2 and 3 have a crystal. Crystals were deposited later in
the remaining resonators, here they are represented with pictures. After placing the
crystals on top of the resonator inductor (see LER 3), crystals were covered with a
Teflon strips stuck to the chip surface with vacuum grease (see LERs 1 and 2). Each
crystal had a different concentration of [Yb(trensal)] in the diamagnetic [Lu(trensal)]
matrix. The % of [Yb(trensal)] in each crystal is shown.

7.2.1 Electronic spin transitions

First, the electronic spin transitions of [Yb(trensal)] were addressed. Electronic
spin transitions are in principle easier to measure than nuclear spin transitions,
as the coupling of an isolated electronic spin to microwave magnetic fields is
higher than that of isolated nuclear spins (the electronic Zeeman interaction
is three orders of magnitude stronger than the nuclear Zeeman interaction).
Moreover, the resonance frequency of an electronic spin transition can be easily
tuned with the magnetic field in order to match the resonance frequency of
LERs 1 and 2 (see Fig. 7.2c).

Figure 7.5 shows the transmission of Yb-cw for regular input frequencies
f ≡ ωd/2π spanning the resonance of LER 2, measured in a range of magnetic
fields for which the frequency of the 1 ↔ 10 transition is close to the reso-
nance frequency ωr of this LER. The 1 ↔ 10 transition corresponds roughly
to the electronic spin transition mS = −1/2 ↔ mS = +1/2 with mI = −3/2.
The transmission data are fitted with the theory for a resonator coupled the
transition between states α and β of a qudit (see Eq. (4.137)), with frequency
ωαβ :

S21(ωd ≃ ωαβ) = 1− κc

i(ωr − ωd) + κ+
(GN )2αβ∆Pαβ

i(ωαβ − ωd) + γ⊥,αβ .

(7.3)

The LER parameters are its resonance frequency ωr and decay rate κ, and the
line-resonator coupling κc. The α↔ β transition has a decoherence rate γ⊥,αβ
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and a population difference ∆Pαβ , and couples to the resonator with a rate
(GN )αβ . In what follows, ∆Pαβ is included in the definition of the coupling:
(GN )αβ ∝

√
∆Pαβ . The data in Fig. 7.5 corresponds to α = 1 and β = 10.

Table 7.1 shows the fit parameters of the resonance of LER 2 with Eq. (7.3).

Figure 7.5: Transmission of Yb-cw for frequencies f ≡ ωd/2π spanning the resonance
of LER 2, measured for magnetic fields between 14 mT and 21 mT at T = 10 mK. In
this field range, LER 2 couples to the 1 ↔ 10 transition of [173Yb(trensal)].

LER 2, 5% [Yb(trensal)]
ωr / 2π (GHz) 2.9306714 ± 4 · 10−7

κ / 2π (kHz) 45.8 ± 0.3
|κc| / 2π (kHz) 14.8 ± 0.2
ϕc (◦) 33.1 ± 0.1
(GN )1 10 / 2π (MHz) 4.67 ± 0.06
γ⊥,1 10 / 2π (MHz) 14.7 ± 0.1

Table 7.1: Fit parameters of the transmission of LER 2 coupled to the 1 ↔ 10

transition of [173Yb(trensal)] at 10 mK.

Since (GN )1 10/γ⊥,1 10 ≃ 0.32 < 1, the hybrid electronic spin-photon system
is in the weak coupling regime. However, the high cooperativity regime is
achieved, with C1 10 = (GN )21 10/γ⊥,1 10κ ≃ 32.5 ≫ 1, thanks to the LER high
quality factor Q ≃ 3 · 104 (κ = ωr/2Q = 45.8 kHz). Note that only 5% of
the molecules in the crystal on top of LER 2 are [Yb(trensal)], and of these
only a 16% contain the 173Yb isotope, that is, less than 1 out of 100 of all the
molecules in the crystal have the 1 ↔ 10 transition measured in Fig. 7.5. Still,
a remarkably high coupling is attained. The full set of electronic transitions
— 6 transitions, one for each value of mI — was studied with [173Yb(trensal)]
isotopically purified samples. The results are described in section 7.4.
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7.2.2 Nuclear spin transitions

The hyperfine interaction in [173Yb(trensal)] dominates over the nuclear Zee-
man interaction, making the frequencies of the nuclear spin transitions almost
magnetic field independent for a wide range of fields (see Fig. 7.2b). This
calls for a careful design of the LER frequencies in order to match the nuclear
spin transition frequencies. Yb-cw LERs 4 and 5, with respective resonance
frequencies ωr = 392 MHz and ωr = 402 MHz, were designed to match the
frequency of the 1 ↔ 2 transition at low fields (B < 20 mT) and the 2 ↔ 3

transition at higher fields (B > 60 mT). These transitions correspond approx-
imately to the mI = −3/2 ↔ −1/2 and mI = −1/2 ↔ +1/2 nuclear spin
transitions with mS = −1/2, respectively (see Fig. 7.6).

𝑚𝐼 = −1/2

𝑚𝐼 = −3/2

𝑚𝐼 = −1/2

𝑚𝐼 = +1/21 ⟷ 2 2 ⟷ 3

Figure 7.6: Picture of the transitions 1 ↔ 2 and 2 ↔ 3 in the energy scheme of Fig.
7.2a. These transitions correspond approximately to the mI = −3/2 ↔ −1/2 and
mI = −1/2 ↔ +1/2 nuclear spin transitions with mS = −1/2.

Figures 7.7a-b show the intersection of the transition frequencies ω12 and
ω23 with the resonator frequencies as the magnetic field is swept between 0
and 75 mT in the case of LER 4, and between 0 and 100 mT for LER 5. The
resonances were measured in these magnetic field ranges and at 10 mK (see
Figs. 7.7c-d). In addition to the couplings associated to the 1 ↔ 2 and 2 ↔ 3

transitions, the couplings to transitions corresponding to other Yb isotopes are
also observed.

Close-up plots of the transmission measured near the spin-photon resonant
conditions for both LERs are shown in Figs. 7.8 (LER 4) and 7.9 (LER 5). The
response of LERs 4 and 5 in the magnetic field ranges around the crossings of
ω12 and ω23 with their resonance frequencies were fitted with the model of an
effective, broadened resonator, valid in the weak spin-photon coupling regime
(see section 4.6.4).
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Figure 7.7: (a, b) Resonance frequencies of the nuclear spin transitions 1 ↔ 2 and
2 ↔ 3. Black horizontal lines are the resonance frequencies of LERs 4 (a) and 5 (b).
(c, d) Transmission through the chip, measured for input frequencies f = ωd/2π close
to the resonance frequencies of LERs 4 (c) and 5 (d) and at T = 10 mK. Couplings
to several transitions of [Yb(trensal)] with different Yb isotopes are observed. Here I
focus on two nuclear transitions of [173Yb(trensal)]: 1 ↔ 2 and 2 ↔ 3.

From weak coupling theory, the magnetic field dependence of ω̃r and κ̃ is
described by:

ω̃r := ωr +

[
(GN )2αβ(∆P )e, αβ

(ωαβ − ωr)2 + γ2⊥,αβ

]
(ωr − ωαβ),

κ̃ := κ+

[
(GN )2αβ(∆P )e, αβ

(ωαβ − ωr)2 + γ2⊥,αβ

]
γ⊥,αβ ,

(7.4)

where ωαβ is either ω21 (for the 1 ↔ 2 transition) or ω32 (for 2 ↔ 3). Each
transition has a collective spin-photon coupling (GN )αβ and a spin decoher-
ence rate γ⊥,αβ . (∆P )e, αβ is the population difference between states α and
β in equilibrium. The fit of ω̃r and κ̃ to Eq. (7.4) yields the collective (GN )αβ
and γ⊥,αβ for spin transition, which are reported in table 7.2. The comparison
between ω̃r, κ̃ and the fit is shown later in section 7.3.2. A consistent simulta-
neous fit of ω̃r and κ̃ with Eq. (7.4) for LER 5 coupled to the 2 ↔ 3 transition
at 10 mK turned out to be impossible. For that reason, the experiment was
repeated at 50 mK (see Fig. 7.9c).
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1 ⟷ 2
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Figure 7.8: Transmission of Yb-cw for input frequencies close to the resonance fre-
quency of LER 4, measured at 10 mK and for magnetic fields in which LER 4 is
coupled to the 1 ↔ 2 (a) and 2 ↔ 3 (b) nuclear spin transitions of [173Yb(trensal)].
The experimental data are compared to simulations for an effective resonance at each
magnetic field, shifted in frequency and broadened by the interaction with the nuclear
spins, which valid in the weak spin-photon coupling regime.

LER 4, 2% [Yb(trensal)]
Transition (temperature) 1 ↔ 2 (10 mK) 2 ↔ 3 (10 mK)
(GN )αβ / 2π (kHz) 68 ± 3 29 ± 2
γ⊥,αβ / 2π (MHz) 2.6 ± 0.2 0.80 ± 0.10
(GN )αβ / γ⊥,αβ 0.026 ± 0.002 0.036 ± 0.005
Cαβ 0.51 ± 0.06 0.31 ± 0.06

LER 5, 8% [Yb(trensal)]
Transition (temperature) 1 ↔ 2 (10 mK) 2 ↔ 3 (50 mK)
(GN )αβ / 2π (kHz) 262 ± 4 71 ± 5
γ⊥,αβ / 2π (MHz) 2.20 ± 0.06 0.39 ± 0.04
(GN )αβ / γ⊥,αβ 0.12 ± 0.04 0.18 ± 0.02
Cαβ 7.8 ± 0.6 3.6 ± 0.8

Table 7.2: Collective spin-photon coupling (GN )αβ of LERs 4 and 5 to transitions 1 ↔
2 (α = 1, β = 2) and 2 ↔ 3 (α = 2, β = 3), with spin decoherence rates γ⊥,αβ . The
population difference in equilibrium, (∆P )e, αβ , is included here in (GN )αβ : (GN )αβ ∝√
(∆P )e, αβ . The ratios (GN )αβ / γ⊥,αβ and the cooperativities Cαβ = (GN )2αβ /

κγ⊥,αβ are also listed.
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Figure 7.9: Transmission of Yb-cw for input frequencies close to the resonance fre-
quency of LER 5, measured at 10 mK and for magnetic fields in which LER 5 is
coupled to the 1 ↔ 2 (a) and 2 ↔ 3 (b) nuclear spin transitions of [173Yb(trensal)].
The experimental data are compared to simulations for an effective resonance at each
magnetic field, shifted in frequency and broadened by the interaction with the nuclear
spins, which valid in the weak spin-photon coupling regime. The coupling of LER 5
to the 2 ↔ 3 transition was also measured at 50 mK (c).

Couplings observed for LER 5 are clearly higher than in LER 4. This is
just a consequence of the increase in the concentration of [Yb(trensal)] from
the sample in LER 4 (2%) to the one in LER 5 (8%). The cooperativity
is also enhanced. High-cooperativity to nuclear spin transitions is achieved
for LER 5 with 8% of [Yb(trensal)] i.e. C21, C32 ≫ 1. Both the couplings
((GN )21, (GN )32), and cooperativities (C21, C32) reported here are about ten
times smaller than what is achieved for the electronic spin transitions in the
same molecular system (compare them to the values reported in section 7.2.1).
They are nevertheless remarkably high. If the nuclear and electronic spins
were uncoupled, the spin-photon coupling mediated by the nuclear Zeeman
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interaction would lead to a ratio of about 10−4 — of the order of µB/µN —
between the coupling rates of nuclear spin and electronic spin transitions. The
fact that much higher couplings are observed for nuclear spin transitions means
that the presence of the electronic spin ancilla acts as an effective mediator
between the nuclear spin qudit and the resonator photons.

In each resonator, the coupling to the 1 ↔ 2 transition is higher than the
coupling to the 2 ↔ 3 transition. The dominant parameter here is temperature.
For LER 4, the difference in population (∆P )e, αβ in transition 1 ↔ 2 at B ≃
15 mT is 15 times higher than in 2 ↔ 3 at B ≃ 63 mT. Similarly, for LER 5
(∆P )e, αβ is 20 times higher in 1 ↔ 2 at B ≃ 17 mT than in 2 ↔ 3 at B ∼
80 mT. A lower decoherence rate is observed for the 2 ↔ 3 transition. I argue
that this is due to the flatness of the nuclear spin transitions at higher fields,
as shown in Figs. 7.7a-b, which makes them more insensitive to magnetic field
fluctuations. Conversely, the 1 ↔ 2 transition couples to LERs 4 and 5 at
lower fields, where the slope of transition frequency ω12 with magnetic field is
still high in comparison.

7.3 Pulse experiments on [Yb(trensal)] molecular spin
qudits

The coupling of Yb-cw LERs to electronic spin and nuclear spin transitions
was also characterized by measuring the transmission of pulses with driving
frequencies ωd close to the resonance frequency ωr of each resonator at different
fields, following the experimental protocols already described for LERs coupled
to PTMr samples (see section 6.3). Measuring the transmission of the pulses
adds a new dimension — time — to each point of the maps in Figs. 7.5, 7.8
and 7.9, and allows tracking the dynamics of the system before reaching the
steady state.

7.3.1 Electronic spin transitions

The transmission of 100 µs long pulses with driving frequencies ωd = 2πf

spanning the resonance of LER 2 was measured at 10 mK for magnetic fields
in the range of Fig. 7.5. Figure 7.10 shows the results for two fields, one at
which the resonator is uncoupled from the transition (a) and one at which it is
coupled (b). The results show that, as observed in stationary state measure-
ments, the spin-photon coupling leads to a shift and broadening of the LER
resonance. Besides, it has a consequence on the photon dynamics. The change
and discharge of the resonator become significantly faster when photons are
close to resonance with an electronic spin transition.
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Figure 7.10: (a, c) Dynamics of LER 2 for two magnetic fields: 15 mT (a), showing
the bare resonator, and 18.6 mT (c), where it is coupled to the 1 ↔ 10 transition. (b,
d) show cuts of Figs. (a, c) at various detunings between the driving frequency ωd

and the effective resonance frequency ω̃r.

The coupling between LER 2 and the 1 ↔ 10 electronic spin transition is
in the weak coupling regime, thus the pulse transmission experiments can be
fitted with the dynamical model of a broadened resonator described in section
6.3. The expression for the dynamics of the broadened resonator during the
pulse is reproduced here for clarity:

bout(t) =

(
1− κc

1− e−(i(ωr−ωd)+κ)t

i(ωr − ωd) + κ

)
αine

−iωdt for t < tpulse , (7.5)

with ωr and κ replaced by the effective effective resonance frequency ω̃r and
decay rate κ̃. Figure 7.11 shows the of ω̃r and κ̃ values obtained from the fit
with Eq. (7.5) of the pulse transmission measurements on LER 2 at difference
magnetic fields. These results are compared with the values predicted by the
weak coupling formulas in Eq. (7.4) using the parameters from continuous
wave experiments (see table 7.1), showing a reasonable good agreement be-
tween the two experimental methods. The effective parameters derived from
pulse transmission experiments are fitted with Eq. (7.4), obtaining the collec-
tive spin-photon coupling (GN )1 10 and decoherence rate γ⊥,1 10 associated to
transition 1 ↔ 10 coupled to LER 2. They are listed in table 7.3. The under-
estimation of ω̃r and κ̃ in pulse transmission measurements can be due to the
fact that the precision of the model of an effective, broadened resonator works
better for (GN )1 10 / γ⊥,1 10 ≪ 1 (here I find 0.1 < (GN )1 10 / γ⊥,1 10 < 1).
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Figure 7.11: Effective resonance frequency ω̃r and effective decay rate κ̃ of LER 2
coupled to the electronic spin transition 1 ↔ 10, extracted from the pulse transmission
experiments at 10 mK (red crosses). The red dashed lines are the fit of these effective
parameters with Eq. (7.4). As a comparison, the blue solid line uses the parameters
from the continuous wave experiment with this same equation.

LER 2, 5% [Yb(trensal)], pulse transmission
ωr / 2π (GHz) 2.930673 ± 8 · 10−6

κ / 2π (kHz) 44 ± 12
|κc| / 2π (kHz) 17 ± 3
ϕc (◦) 35 ± 7
(GN )1 10 / 2π (MHz) 4.3 ± 0.1
γ⊥,1 10 / 2π (MHz) 20.7 ± 1.0
(GN )1 10 / γ⊥,1 10 0.211 ± 0.011
C1 10 21 ± 6

Table 7.3: Parameters of the fit of the effective resonance frequency ω̃r and decay
rate κ̃ of LER 2 coupled to the 1 ↔ 10 transition with Eq. (7.4), obtained from pulse
transmission experiments. The ratio (GN )1 10 / γ⊥,1 10 and the cooperativity C1 10 =
(GN )21 10 / κγ⊥,1 10 are also shown.

7.3.2 Nuclear spin transitions

The transmission of 400 µs long pulses with driving frequencies ωd = 2πf

spanning the resonances of LERs 4 and 5 were measured at 10 mK for magnetic
fields in the range of Figs. 7.8 and 7.9. Figure 7.12 shows the results for LER
4 coupled to the nuclear spin transition 1 ↔ 2 at two magnetic fields, one at
which the resonator is uncoupled from the transition (a) and one at which it is
coupled (b). Similar pulse transmission experiments were carried out for LER
4 coupled to the 2 ↔ 3 transition (Fig. 7.13), LER 5 coupled to 1 ↔ 2 (Fig.
7.14), and LER 5 to the 2 ↔ 3 (Fig. 7.15). As in electronic spin transitions,
the nuclear spin-photon coupling influences both the frequency and width of
the resonance and the decay times of the resonator.
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Figure 7.12: (a, c) Dynamics of LER 4 for two magnetic fields: 16.6 mT (a), showing
the bare resonator, and 14.8 mT (c), where it is coupled to the 1 ↔ 2 transition. (b,
d) show cuts of Figs. (a, c) at various detunings between the driving frequency ωd

and the effective resonance frequency ω̃r.

Figure 7.13: (a, c) Dynamics of LER 4 for two magnetic fields: 67.6 mT (a), showing
the bare resonator, and 63.6 mT (c), where it is coupled to the 2 ↔ 3 transition. (b,
d) show cuts of Figs. (a, c) at various detunings between the driving frequency ωd

and the effective resonance frequency ω̃r.
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Figure 7.14: (a, c) Dynamics of LER 5 for two magnetic fields: 20.0 mT (a), showing
the bare resonator, and 17.2 mT (c), where it is coupled to the 1 ↔ 2 transition. (b,
d) show cuts of Figs. (a, c) at various detunings between the driving frequency ωd

and the effective resonance frequency ω̃r.

Figure 7.15: (a, c) Dynamics of LER 5 for two magnetic fields: 76.0 mT (a), showing
the bare resonator, and 79.6 mT (c), where it is coupled to the 2 ↔ 3 transition. (b,
d) show cuts of Figs. (a, c) at various detunings between the driving frequency ωd

and the effective resonance frequency ω̃r.
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The nuclear spin-photon coupling is also in the weak regime, and the ex-
periments can be fitted with the model of a broadened resonator shown above
in Eq. (7.5). The resulting ω̃r and κ̃ are shown in Fig. 7.16, along with their fit
with Eq. (7.4). Table 7.4 reports the collective spin-photon coupling (GN )αβ
and spin decoherence rate γ⊥,αβ of transitions 1 ↔ 2 (α = 1, β = 2) and 2 ↔ 3

(α = 2, β = 3) for LERs 4 and 5. Figure 7.16 also compares these values with
those obtained from continuous wave experiments (see section 7.2.2).

LER 4, 2% [Yb(trensal)], pulse transmission
Transition (temperature) 1 ↔ 2 (10 mK) 2 ↔ 3 (10 mK)
(GN )αβ / 2π (kHz) 67 ± 6 29 ± 9
γ⊥,αβ / 2π (MHz) 3.0 ± 0.4 0.8 ± 0.4
(GN )αβ / γ⊥,αβ 0.022 ± 0.004 0.035 ± 0.022
Cαβ 0.39 ± 0.09 0.30 ± 0.24

LER 5, 8% [Yb(trensal)], pulse transmission
Transition (temperature) 1 ↔ 2 (10 mK) 2 ↔ 3 (10 mK)
(GN )αβ / 2π (kHz) 244 ± 17 62 ± 9
γ⊥,αβ / 2π (MHz) 2.5 ± 0.3 0.4 ± 0.1
(GN )αβ / γ⊥,αβ 0.097 ± 0.015 0.16 ± 0.05
Cαβ 4.4 ± 1.1 2.7 ± 1.3

Table 7.4: Collective spin-photon coupling (GN )αβ of LERs 4 and 5 to transitions
1 ↔ 2 (α = 1, β = 2) and 2 ↔ 3 (α = 2, β = 3), with spin decoherence rates
γ⊥,αβ , obtained from pulse transmission experiments. The difference in population
in equilibrium, (∆P )e, αβ , is included here in (GN )αβ : (GN )αβ ∝

√
(∆P )e, αβ . These

are the fit parameters for the values of ω̃r and κ̃ in Fig. 7.16 (solid and dashed lines).

Overall, there is a good agreement between the collective couplings and
decoherence rates obtained with continuous wave and pulse transmission ex-
periments, confirming the high cooperativity regime of LERs coupled to nuclear
transitions in [173Yb(trensal)]. The main difference between the two techniques
is that the resonator frequency ωr in pulse experiments is a few kHz above that
observed in continuous measurements. There is also a jump in ω̃r in Fig. 7.16a,
which I attribute to a sudden change in ωr due to the formation of vortices in
the superconducting material as the magnetic field is swept [13]. These jumps
are also visible in the field sweeps of Figs. 7.7c and 7.7d (in addition to the
coupling to other transitions in [Yb(trensal)]).
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Figure 7.16: Effective resonance frequency ω̃r and effective decay rate κ̃ of LER 4
coupled to nuclear spin transitions 1 ↔ 2 (a) and 2 ↔ 3 (b), and of LER 5 coupled to
these same transitions (c, d). Blue dots are the fit parameters from continuous wave
experiments at 10 mK, while red crosses are the fit parameters from pulse transmission
experiments at this same temperature. The solid blue lines and red dashed lines are
fits of these parameters based on Eq. (7.4). The continuous wave measurement of
LER 5 coupled to the 2 ↔ 3 transition was repeated at 50 mK. The fit parameters of
this measurement are the cyan dots in (d), with the cyan solid line being their fit to
Eq. (7.4).

These results show that the decay rate of the resonator is maximum when-
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ever the photons are hybridized with the nuclear spins states. Besides, the
characteristic ensemble coherence time (T ∗

2 )αβ = 1/γ⊥,αβ obtained near reso-
nance is about ten times higher for nuclear spin transitions than for electronic
ones, and agrees well with the value derived from continuous wave measure-
ments. This enhanced coherence compensates for the lower spin-photon cou-
pling of nuclear spin transitions: (GN )αβ(T

∗
2 )αβ = (GN )αβ/γ⊥,αβ ∼ 0.1–0.2 is

achieved for both electronic and nuclear spin transitions.

7.4 Pump-probe experiments with isotopically puri-
fied samples

In pump-probe experiments, the coupling of photons in both the transmission
line and the resonator to transitions in [173Yb(trensal)] must be as large as
possible, as they limit how fast the qudit state can be operated and read out.
For this, the experimental setup in the previous section may be not enough. A
large gap of ∼ 50 µm between the chip surface and the [Yb(trensal)] crystals is
reported [4]. This means that the spins do not couple to the mode volume just
above the inductor or the transmission line, where the microwave magnetic field
is strongest. Furthermore, the number of [Yb(trensal)] molecules is reduced by
diluting them in a diamagnetic matrix, and of these only a 16% has 173Yb in
a crystal with natural isotopical abundances.

Several improvements were carried out for the next experiments. A new
chip, Yb-pulsed (Fig. 7.3b), was used instead of Yb-cw. The low-inductance
design of LERs in Yb-pulses enhances the microwave magnetic field close to
the inductor, which now is just a narrow superconducting strip close to the
transmission line. The mode volume of the LER is much smaller than before.
Microscopic (V ∼ 10−13 m3) [Yb(trensal)] crystals were placed by David Ro-
dríguez (CAB, Madrid) on top of the inductor of LERs in Yb-pulses using a
micro-manipulator. The crystal size matches the mode volume (see Fig. 7.17).
Besides, these crystals were synthesized with isotopically purified 173Yb, op-
timizing the number of [173Yb(trensal)] molecules close to the inductor. The
crystals have a 5% of [173Yb(trensal)] molecules in a diamagnetic [Lu(trensal)]
matrix. This section describes the experiments aimed at measuring the spin-
photon couplings to the different electronic spin transitions in these crystals,
and at performing the first attempts to dispersively read out the spin states.

7.4.1 Characterization of electronic spin transitions

The resonators in Yb-pulsed are designed to couple to the six allowed electronic
transitions of [173Yb(trensal)] (see Fig. 7.2c). In order to characterize the col-
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lective spin-photon coupling of the six transitions, the transmission of the chip
for driving frequencies close to the resonance frequency of LER 6 was measured
for magnetic fields between 0 an 105 mT and at six different temperatures: 11,
25, 50, 100, 150 and 250 mK.

𝐵

100 μm

Figure 7.17: [Yb(trensal)] crystal on top of the inductor of LER 3 of Yb-pulsed. The
crystal size matches the inductor size. The magnetic field B was applied parallel to
the the inductor and transmission lines.

Figure 7.18 shows the results of these experiments. Six clear features in
the resonance of LER 6 are observed, corresponding to the coupling of the
resonator to the six electronic spin transitions (one for each nuclear spin pro-
jection mS = −5/2, −3/2, −1/2, +1/2, +3/2 and +5/2). These couplings
happen approximately at Bres = 23.4, 35.0, 48.7, 64.4, 82.0 and 101.0 mT. As
temperature increases, the effect of the couplings on the resonance of LER 6 is
less prominent, as it is expected from the decrease in the population difference
between the low energy (mS = −1/2) and high energy (mS = +1/2) subsets
of spin states. The highest measured temperature, 250 mK, is of the same
order as the energy difference (in temperature units) between the subsets up
to ∼100 mT, see Fig. 7.2a)).

Close-ups of the measurement at 11 mK around these fields are shown in
Fig. 7.19. The maximum collective spin-photon coupling at 11 mK, GN/2π ≃
12.3 MHz, is obtained for mI = −5/2. This corresponds to the 0 ↔ 11

transition between the ground state and the highest excited state, that is, the
transition with the largest population difference in thermal equilibrium. For
higher mI , the electronic spin transitions are between excited states. The fact
that a change in the coupling is observed means that the temperature of the
system is low enough to generate significant population differences between
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the nuclear states in each of the two subsets with mS = ±1/2. This condition
holds for temperatures below 100 mK (see Fig. 7.2a).

Figure 7.18: Normalized transmission of Yb-pulsed for driving frequencies close to
the resonance frequency of LER 6, measured for magnetic fields between 0 an 105
mT at six different temperatures: 11 mK, 25 mK, 50 mK, 100 mK, 150 mK and 250
mK. Experimental data is compared to the fit of the coupling of LER 6 to the six
electronic spin transitions of [173Yb(trensal)] with Eq. (7.3).
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𝑚𝐼 = −5/2 𝑚𝐼 = −3/2 𝑚𝐼 = −1/2 𝑚𝐼 = +1/2 𝑚𝐼 = +3/2 𝑚𝐼 = +5/2

Figure 7.19: Close up of the experimental (a) and simulated (b) transmission of Yb-
pulsed around each field where LER 6 resonates with an electronic spin transition
(Bres = 23.4, 35.0, 48.7, 64.4, 82.0 and 101.0 mT) associated to a different nuclear
spin projection mI , measured at T = 11 mK.

The experimental maps in Figs. 7.18 and 7.19 were fitted with the trans-
mission of the resonator coupled to each of the electronic spin transitions, given
by Eq. (7.3). The same LER parameters were used to fit the coupling to all
transitions: ωr = 3.821314 ± 1.6 · 10−5 GHz, |κc| ≃ κ = 1.04 ± 0.03 MHz,
ϕc = 15.9◦ ± 0.7◦, with a small drift of ωr with magnetic field (−15.6 ± 0.3
MHz / T).

Figures 7.20a-b show the temperature dependence of the collective spin-
photon coupling (GN )αβ and the decoherence rate γ⊥, αβ associated to each
electronic spin transition. The collective spin-photon coupling is not much
higher that the one obtained for transition 1 ↔ 10 (mI = −3/2) in sections
7.2.1 and 7.3.1. Note, however, that the isotopically purified crystals are much
smaller (V ∼ 10−13 m3, , 1013–1014 [173Yb(trensal)] molecules) than those with
natural abundances (V ∼ 10−10 m3, 1015–1016 [173Yb(trensal)] molecules):
Fig. 7.17 shows how the former fit in the resonator inductor line. Therefore,
a similar collective spin-photon coupling is achieved with a smaller number of
spins thanks to having the microwave field generated by the resonator localized
in a volume around the inductor matching the crystal size.

The inhomogeneous broadenings γ⊥, αβ derived from these experiments are
significantly higher than in crystals with natural abundances [4]. In the latter,
[173Yb(trensal)] molecules were both diamagnetically diluted in a [Lu(trensal)]
matrix and isotopically diluted by their natural abundance. Most Yb nuclei
have zero nuclear spin (I = 0), which leads to a distinct different energy spec-
trum from that of [173Yb(trensal)], where the large hyperfine coupling plays
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an import role. This can hinder the exchange of spin excitations between
[173Yb(trensal)] and other [Yb(trensal)] molecules with I = 0. In the isotopi-
cally purified crystals, however, the density of [173Yb(trensal)] molecules is
higher, which have identical spin excitations. This might lead to the observed
broadening.

Figure 7.20: Collective spin photon coupling (GN )αβ (a), decoherence rate γ⊥, αβ (b),
(GN )αβ/γ⊥, αβ ratio (c) and cooperativity Cαβ = (GN )2αβ/κγ⊥, αβ for each electronic
spin transition in [173Yb(trensal)] at 11, 25, 50, 100, 150 and 250 mK.
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The couplings of all six electronic spin transitions to LER 6 are in the
weak coupling regime, while high cooperativity is achieved for the 0 ↔ 11

(mI = −5/2) and 1 ↔ 10 (mI = −3/2) transitions below 100 mK (see Figs.
7.20c-d). Again, these values have been obtained with a number of spins much
smaller than in previous sections and in spite of the larger γ⊥, αβ values.

7.4.2 Dispersive readout in an electro-nuclear qudit

The theory of a hybrid qudit-resonator system in the dispersive regime is de-
tailed in section 3.4.3. In the case of the electro-nuclear qudit encoded in
[173Yb(trensal)], with d = 12 states, the shift in the resonator frequency is:

ωr → ωr +
11∑
α=0

χ′
α⟨X̂α,α⟩, (7.6)

where ⟨X̂α,α⟩ is the expectation value of the Hubbard operator X̂α,α associated
to each state |α⟩, with a dispersive shift:

χ′
α :=

∑
β ̸=α

|Λαβ|2

∆′
αβ

. (7.7)

Here ∆′
αβ is a modified detuning, related to the actual detuning ∆αβ = ωαβ−ωr

between the frequency of transition α↔ β and the resonator frequency ωr by:

∆′
αβ :=

1 +
∆αβ

2ωr

1 +
∆αβ

ωr

. (7.8)

The resonators in Yb-pulsed are tuned to the electronic spin transitions.
This means that the detuning between ωr and the electronic spin transitions
is much smaller than that between ωr and the nuclear spin transitions. In
addition, sections 7.2 and 7.3 showed how the collective coupling of nuclear
spin transitions to the resonator is at least one order of magnitude smaller than
with electronic spin transitions. This means that the dominant contribution
to the dispersive shift is the one associated to electronic spin transitions, and
Eq. (7.6) can be approximated by:

ωr → ωr + |Λel|2
5∑

α=0

(
⟨X̂α,α⟩
∆′

α,11−α

+
⟨X̂11−α,11−α⟩

∆′
11−α,α

)
, (7.9)

where Λel is the coupling of the resonator to the electronic spin transitions.
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In an ensemble of [173Yb(trensal)] molecules at very low temperatures, the
populations of the states in the high energy subset (⟨X̂11−α,α⟩e) in thermal
equilibrium can be neglected. Then, the reference frequency ωref for pump-
probe experiments is:

ωref := ωr + |Λel|2
5∑

α=0

⟨X̂α,α⟩e
∆′

α,11−α

. (7.10)

There are two types of pump-probe experiments that can be performed in
this setup, depending on whether the electronic spin transitions or the nuclear
spin transitions are driven (see Fig. 7.21). The simplest experiment consists
on pumping at the frequency of one of the electronic spin transitions, say
β ↔ 11−β, as if it were the transition between the two states of a qubit, then
measuring the resonator coupled to that same transition. The shift δωr from
ωref after pumping at the frequency ωβ,11−β of the β ↔ 11− β transition is:

δωr =|Λel|2
(
⟨X̂β,β⟩ − ⟨X̂β,β⟩e

∆′
β,11−β

+
⟨X̂11−β,11−β⟩

∆′
11−β,β

)

≃ |Λel|2

∆11−β,β

[
⟨X̂β,β⟩e +

(
⟨X̂11−β,11−β⟩ − ⟨X̂β,β⟩

)]
.

(7.11)

In the last step, the modified detuning ∆′
11−β,β was approximated to ∆11−β,β ,

and ∆′
β,11−β to −∆11−β,β . This is valid if the transition frequency ωβ,11−β of

the β ↔ 11 − β transition is set close enough to ωr (|∆11−β,β | ≪ ωr), while
still being in the dispersive regime (|∆11−β,β | ≫ |Λel|).

This experiment, sketched in Fig. 7.21b, is similar to the experiments
that were carried out in the previous chapter with molecular spin qubits. The
difference ⟨X̂11−β,11−β⟩ − ⟨X̂β,β⟩ plays the role of ⟨σ̂z⟩ ≡ ⟨X̂1,1⟩ − ⟨X̂0,0⟩ in a
qubit. The constant ⟨X̂β,β⟩e includes the effect of an incomplete initialization
to the ground state if the different nuclear spin states in the subset with mS =

−1/2 are slightly populated by temperature.

The other type of pump-probe experiments involves controlling the nuclear
state by driving the nuclear spin transitions, with the magnetic field set at
a value where the LER resonance frequency ωr sits in between the electronic
spin transitions associated to the different mI states (see Fig. 7.21c). This is
the method that is proposed to read the nuclear spin qudit state coupled to
an electronic spin ancilla [14].
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Figure 7.21: (a) The two types of pump-probe measurement are associated to whether
electronic spin or nuclear spin transitions are driven with the pump pulse. (b) If an
electronic spin transition is set close to ωr with magnetic field while keeping the spin-
LER system in the dispersive regime, the dispersive shift of ωr depends on the state
of the electronic spin (blue solid lines). The electronic spin state can be changed by
driving the electronic spin transition. In this case, a transition frequency above ωr

is assumed (positive detuning). As reference, the red solid line is the resonance of
the uncoupled resonator. (c) Another type of pump-probe experiment involves the
control of the nuclear spin states. The resonance of the uncoupled resonator (red
solid line) is shifted differently depending on the nuclear spin state (blue solid lines).
The magnetic field is chosen to have the electronic spin transitions associated to a
negative mI above ωr and those associated to a positive mI below ωr.

The shift δωr after pumping the nuclear transition β ↔ γ is:

δωr = |Λel|2
(
⟨X̂β,β⟩ − ⟨X̂β,β⟩e

∆′
β,11−β

+
⟨X̂γ,γ⟩ − ⟨X̂γ,γ⟩e

∆′
γ,11−γ

)
, (7.12)

which depends on the difference in population between nuclear states induced
by pulses. Measuring this shift requires a good initialization of the system by
lowering the temperature in order to see an appreciable change in δωr. Here
the modified detunings can not be approximated by ∆β,11−β and ∆γ,11−γ , as
in general it is not possible to simultaneously set both associated electronic
spin transition frequencies ωβ,11−β and ωγ,11−γ close to ωr.
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7.4.3 First pump-probe experiments

The first pump-probe experiments were carried out pumping the 0 ↔ 11 elec-
tronic spin transition, which has the largest population difference in the system
in thermal equilibrium. Thus, this transition provides the closest analogue of
the pump-probe experiments with qubits. The magnetic field was set to 25.5
mT, which places the 0 ↔ 11 transition frequency 123 MHz above the reso-
nance frequency ωr of LER 6 (see Fig. 7.22). This value was chosen to be
ten times the coupling obtained for this transition at 11 mK, (GN )0, 11 = 12.3

MHz, so that the dispersive regime condition |∆0, 11| ≫ (GN )0, 11 is fulfilled.

Δ0,11 ≃ 123 MHz

Figure 7.22: (a) Electronic spin transitions in [173Yb(trensal)]. The horizontal dashed
line marks the resonance frequency ωr of LER 6, while the vertical line marks the
magnetic field, B = 25.5 mT, at which pump-probe experiments were carried out.
(b) Close-up of the range of magnetic fields for which the 0 ↔ 11 transition frequency
is close to ωr. At B = 25.5 mT, the detuning between the transition frequency and
ωr is ∆0, 11 = 123 mT.

Pump pulses with lengths up to 500 µs were sent at the frequency of the
0 ↔ 11 electronic spin transition at 25 mT. Figure 7.23 shows the resonance
measured after the longest pump pulse was applied, compared to the reference.
The shift δωr between the two is small compared to what was expected (δωr ∼
(GN )20, 11/∆0, 11 ∼ (GN )0, 11/10 ∼ 1 MHz), and it is detected only for very long
pulses. Note that this was obtained with a non-attenuated excitation line, so
this is not due to input power limitation as in the first pump-pulse experiments
with PTMr.
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The main difference between these experiments and those in the previ-
ous chapter is how the sample is interfaced with the superconducting chip.
PTMr/PS deposits were directly on top of the resonator, in particular its in-
ductor. This produced high spin-photon couplings in a small set of PTMr

spins, which were responsible for most of the shift δωr. Here, [173Yb(trensal)]
samples were crystals, which are susceptible to a small chip-sample gap due to
any irregularities in the sample surface. The subsequent loss of the spins that
would have the highest spin-photon couplings is probably the main limitation
for producing a higher shift δωr.

𝛿𝜔r/2𝜋

Figure 7.23: (a) Normalized module of the complex-valued transmission S21 of Yb-
pulsed for probe frequencies close to the LER 6 resonance frequency ωr, measured at
B = 25.5 mT. Two situations are compared: red dots show the resonance after driving
the 0 ↔ 11 electronic spin transition, blue dots show the same resonance without any
previous pump pulse. (b) Close-up centered at ωr, showing the shift δωr of the center
frequency of the resonance. Figures (c, d) illustrate more clearly this shift with the
measurement of the phase of S21.

7.5 Conclusions

High cooperativity has been observed in both electronic and nuclear transi-
tions in [173Yb(trensal)]. Reaching this regime the nuclear spin transitions
was, a priori, much more demanding than with electronic ones due the very
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small nuclear magnetic moment. Although the collective spin-photon cou-
plings and cooperativities for nuclear spin transitions are indeed smaller than
for electronic spin transitions in this same molecular system (about one order of
magnitude), they are nevertheless remarkably high compared to the coupling
of isolated nuclear spins to electromagnetic radiation, which would be three
orders of magnitude lower (∼ µN/µB) than for electronic spin transitions. The
presence of the electronic spin, and its high hyperfine coupling to the nuclear
spin, introduces an efficient path to couple nuclear spin transitions to the mi-
crowave magnetic field generated by the LER. Here the coupling is mediated
by the electronic Zeeman interaction, which drives the nuclear transition due
to the mixing of the electronic spin and nuclear spin wavefunctions through the
hyperfine coupling. The lower coupling to nuclear spin transitions compared
to electronic ones is compensated by their longer ensemble coherence times T ∗

2 .
Thus, both nuclear and electronic spin transitions can be used in almost equal
terms to define the states of a qudit. This opens prospects for QEC within a
hybrid a circuit QED hybrid scheme.

The coupling of LERs to electronic spin and nuclear spin transitions was
studied independently with continuous wave experiments and with pulse trans-
mission, the latter unveiling the dynamics of the hybrid spin-LER system. The
experimental results obtained with these two types of measurement are con-
sistent with each other. This shows that the theory for the measurement of
resonators coupled to molecular spins is not only valid in the driven steady
state (t≫ 1/κ, 1/κ̃), but also for all the dynamics of the system.

Finally, additional experiments were carried out with isotopically purified
[173Yb(trensal)] crystals. The coupling of a resonator to the six electronic spin
transitions was measured at different temperatures. The purification gives
higher couplings to these transitions, but also increases their decoherence rate
due to the higher concentration of 173Yb nuclear spins (I = 5/2). The first
pump-probe experiments with qudits were performed in these samples, giving
a shift δωr smaller than expected, which could be due to the presence of a
sample-gap.
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Chapter 8

Circuit QED beyond
non-interacting magnetic
molecules

The experiments in previous chapters were carried out with large ensembles of
N magnetic molecules in order to enhance the ensemble-resonator couplingGN ,
which scales with

√
N . Molecules were considered to be close to equivalent, and

non-interacting, with the same effective spin Hamiltonian for each molecule.
In this situation, the microwave magnetic field generated resonator couples to
Dicke or Dicke-like states that are completely symmetric in the excitation of
any of the N identical molecular spins.

As the temperature of the spin system is decreased, spin-spin interactions
may play an important role on the physics of the ensemble. The question
then arises of whether these intrinsic collective states affect the coupling to the
circuit and, then, if this allows detecting the onset of magnetic correlations.
Besides, the spin-photon coupling can be also seen as a source of correlations
that eventually lead to a phase transition known as photon condensation [1]. It
is therefore interesting to study the competition between these two interactions.

This chapter studies the effect of spin-spin interactions on transmission
experiments performed with spin 1/2 and spin 1 ensembles. The step up from
spin 1/2 to spin 1 is quite relevant. The two-fold energy degeneracy at zero
magnetic field in a spin 1/2 can not be split by magnetic anisotropy (see
section 3.1.2 from chapter 3), while in the spin 1 case its three spin states
are non-degenerate in energy if there is some magnetic anisotropy in the ion.
An additional competition is then expected between spin-spin interactions and
magnetic anisotropy, which is not present in a spin 1/2.



212 Chapter 8. Circuit QED beyond non-interacting magnetic molecules

8.1 Competition between spin-photon and spin-spin
interactions in DPPH organic free radicals cou-
pled to a superconducting transmission line

The collective character of the coupling of an ensemble of qubits to photons in
a waveguide reflects itself in an enhanced superradiant emission of light and in
the broadening of the absorption lines [2, 3]. The underlying mechanism is the
light-mediated interaction among emitters, leading to the formation of collec-
tive spin states known as Dicke states [4, 5]. So far, the focus in waveguide QED
(w-QED) has been mainly on non-interacting emitters, where all interactions
occur through photons. Exploring the competition of this photon-mediated
interactions and intrinsic spin-spin interactions in the material remains rather
unexplored.

A sample of organic free radicals (DPPH) was chosen for this purpose.
DPPH is a free radical with spin 1/2 and a g-factor gS = 2.004 close to that of a
free electron [6]. At low temperatures, it forms antiferromagnetic (AF) dimers
and one-dimensional AF spin-chains. Figure 8.1a shows the increase of the
spin-spin correlations (in absolute value) generated by the antiferromagnetic
exchange interactions, as estimated from the magnetic susceptibility data in
chapter 5.

𝑆 𝑥
,𝑖
𝑆 𝑥

,𝑖
+
1

/
ൗ1
3
𝑆
(𝑆

+
1
)

𝑇 (K)

𝐵

𝑏mw

Figure 8.1: (a) Steady increase (in absolute value) in the spin-spin correlation
⟨Sx, iSx, i+1⟩ between nearest neighbour type-B DPPH sites as temperature is low-
ered. The negative correlations reflect the formation of antiferromagnetic spin chains.
They are computed from the dc-magnetic susceptibility of type-B DPPH molecules in
Fig. 5.11, following the relation χT/C ≃ 1− |⟨Sx, iSx, i+1⟩/(1/3) [S(S + 1)] | given in
[7]. Here, C is the Curie constant of the type-B sublattice. (b) DPPH sample on top
of a meandering transmission line. The static magnetic field B is applied horizontally.
Only the top part of the sample, where the microwave magnetic field bmw generated
by the line is perpendicular to B, couples to the line.
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A powder sample of DPPH was deposited on top of a superconducting
coplanar waveguide (CPW) to measure how these correlations influence the
interaction to photons travelling via the CPW (see Fig. 8.1b). The CPW
was fabricated by optical lithography on a 100 nm thin film of Nb deposited
on a crystalline sapphire wafer. The central line of the CPW had a width
of 400 µm in order to match the sample size. The sample was glued to the
CPW with apiezon grease, ensuring proper thermalization. The powder DPPH
pellets used here for broadband transmission experiments are similar to the
ones measured in chapter 5, where the full characterization of DPPH samples
is detailed. The broadband nature of waveguides provides a distinct advantage
over resonators, allowing the exploration of the transmission of DPPH in a wide
range of frequencies [8–11] and the different phases of DPPH (paramagnetic /
AF chains) within a single experiment. However, this advantage comes with the
trade-off of a reduced sensitivity compared to that of a resonator ((GN )line ≪
GN ).

8.1.1 Paramagnetic phase: spin-photon coupling enhancement

The broadband transmission of the CPW coupled to a DPPH powder sample
was measured below 4.25 K. The device was thermally coupled to the mixing
chamber of a ‘wet’ 3He-4He dilution refrigerator giving access to the tempera-
ture region between 130 mK and 4.2 K. Additional experiments were carried
out with the dilution refrigerator described in section 2.2, which gives access
to lower temperatures. Well above T = 0.65 K, half of the DPPH molecules
are forming dimers with S = 0 (type-A DPPH, see section 5.2.2 in chapter 5),
while the other half remain in the paramagnetic phase (type-B DPPH). Only
the latter couple to the microwave magnetic field generated by the CPW.

Normalized transmission data, measured at 2 K from 10 MHz up to 14 GHz
and for fields up to 500 mT are shown in Fig. 8.2a. A field-dependent resonant
absorption of photons by the paramagnetic ensemble is observed, matching the
transition frequency ωq = µBgSB/ℏ of a spin S = 1/2 with gS = 2.004. The
transmission shows close to Lorentzian absorption minima. A nearly constant
γ⊥ / 2π ≃ 20 MHz is measured at 2 K. The collective spin-photon coupling
G

(line)
N increases with magnetic field B, and therefore also with frequency. This

leads to a coupling visibility that also increases with B, as shown in Fig.
8.2b. These measurements were fitted using the theory for an ensemble of
non-interacting spins 1/2 coupled to a transmission line (see section 4.5.3 in
chapter 4):

S21(ωd) = 1−
G

(line)
N (∆P )e

i(ωq − ωd) + γ⊥ +G
(line)
N (∆P )e

, (8.1)
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where G(line)
N is the collective coupling of the spins to photons travelling via

the line and γ⊥ is the decoherence rate of the spin ensemble. In what follows,
the population difference in thermal equilibrium, (∆P )e, between the down
(mS = −1/2) and up (mS = +1/2) spin states is included in G(line)

N : G(line)
N ∝

(∆P )e. This population difference alone encodes the temperature dependence
of the intensity of the absorption signal in the paramagnetic phase:

(∆P )e := tanh

(
ℏωq

2kBT

)
= tanh

(
µBgSB

2kBT

)
. (8.2)

Figure 8.2: (a) Normalized transmission difference (δS21) of a DPPH sample coupled
to a transmission line at T = 2 K. This difference is computed at each field B as
δS21(B) = [S21, exp(B)− S21, exp(B + δB)] /S21, exp(B+ δB), effectively removing the
baseline of the transmission signal. δB is a small field, but large enough so that the
spin resonance signals at B and B+ δB do not overlap in frequency. A large increase
in visibility is observed at some specific frequencies due to the coupling of spins to
resonant modes in the transmission line. (b) Normalized transmission S21 = 1+ δS21

at four selected fields, avoiding the coupling with resonant modes in the transmission
line. The visibility of the resonance increases with frequency, as expected for the
spin-photon coupling with a one-dimensional waveguide.

Figure 8.3 shows the field and temperature dependence of G(line)
N and γ⊥.

G
(line)
N is proportional to the spectral density J(ωd), which in turn is propor-

tional to the input frequency ωd = 2πf in a one-dimensional waveguide (Ohmic
bath). Close to the spin resonance (ωd ≃ ωq), and G(line)

N can be written as:

G
(line)
N := αωq(∆P )e = α

µBgSB

ℏ
tanh

(
µBgSB

2kBT

)
, (8.3)

where α is a temperature-independent and field-independent dimensionless
scaling factor. α = 0.00441 ± 6 · 10−5 is the only free parameter in the
fit of G(line)

N in Fig. 8.3.
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Figure 8.3: Magnetic field dependence of G(line)
N and γ⊥ for several temperatures in

the paramagnetic phase. Experimental values are shown as dots. The solid blue line
is the average γ⊥ at intermediate fields. The solid red line is the fit of G(line)

N to
Eq. (8.3), with only α as a free parameter to fit all temperatures. Oscillations with
magnetic field (and therefore frequency) in the the experimental G(line)

N values are
associated to modes in the waveguide.

The coupling enhancement by Neff = N(∆P )e, where N is the number of
spins in the DPPH sample coupled to the microwave magnetic field generated
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by the waveguide, signifies the increase in the radiative rate decay in super-
radiant collective states. In the single-photon limit and at zero temperature,
this serves as a signature of the formation of Dicke states. Here, at finite
temperature, the system forms thermal collective states that also emit in a
superradiant manner.

The decoherence rate γ⊥ is found to be fairly temperature- and field-
independent, except for the slight increase at lower temperatures as the model
of the paramagnetic phase starts to fail. I associate it to a homogeneous broad-
ening γ⊥ = T−1

2 . The observed γ⊥/2π ∼= 8 MHz at T = 4.2 K is compatible
with the value measured for DPPH samples coupled to coplanar resonators
([12, Ch.7] and [13]) and to lumped-element resonators (see chapter 5). Re-
markably, G(line)

N becomes of the same order of γ⊥ for magnetic fields B > 400
mT. This yields a signal visibility:

η := max(|δS21|) =
G

(line)
N

G
(line)
N + γ⊥

(8.4)

close to unity. Therefore, the spin ensemble and the waveguide are in a regime
that resembles the strong coupling limit (GN ≥ γ⊥) that is often reached with
resonators, but in this case with a transmission line (G(line)

N ≥ γ⊥).

8.1.2 Breakdown of superradiance by magnetic correlations

Below TN = −θ = 0.65 K, B-type DPPH molecules tend to form AF chains
(see section 5.2.2). Temperature controls the extension of spin correlations
along the chains in a continuous and monotonic manner (see Fig. 8.1a). In
order to explore how these correlations modify the transmission of the CPW,
the CPW plus DPPH device was thermally coupled to the mixing chamber of a
different 3He-4He dilution refrigerator giving access to the temperature region
down to 10 mK.

Figure 8.4a shows the transmission data measured at a fixed magnetic field
B = 125 mT as function frequency and (decreasing) temperature. At this
field, the transmission of the waveguide is relatively ‘clean’, in the sense that
the oscillations in G

(line)
N (see Fig. 8.3) are not present. The spin resonance

first gets enhanced on cooling below 2 K, as a result of the higher spin polariza-
tion (higher (∆P )e), but then it broadens out by an order of magnitude upon
cooling from 2 K to 100 mK. This broadening is significantly larger than the
broadening associated with the weak anisotropy, less than 1 in 1000, between
the principal g-factors of DPPH [6]. Concurrently, the average resonance fre-
quency ωq increases by about 7% and the visibility decreases. Below 100 mK,
the resonance becomes temperature independent.



8.1. Competition between spin-photon and spin-spin interactions in DPPH organic
free radicals coupled to a superconducting transmission line 217

Figure 8.4: (a) Temperature dependence of the visibility of the resonance, given by
δS21 at a magnetic field B = 125 mT. A large broadening of the resonance signal
is observed below 1 K, marking the breakdown of superradiance due to the onset
of antiferromagnetic correlations between type-B DPPH molecules. (b) Simulation
of the experimental visibility with an antiferromagnetic mean-field model for type-B
DPPH molecules with an imposed temperature independent visibility below TN due to
the formation of spin waves (see main text). (c) Dependence of the antiferromagnetic
resonance frequency, ωres, of each chain with the angle ψ between the anisotropy axis
ϵ of the chain and the applied magnetic field B. The solid angle distribution favours
the presence of larger angles (thicker solid lines) and therefore, larger frequencies,
which is reflected in the transmission. The central frequency of the resonance in (b),
ωq, is represented by the solid black line. It fits quite well the experimental data,
represented with grey open dots.

These features can not be explained anymore as just the transmission of a
CPW coupled to an ensemble non-interacting spins. They are the consequence
of the growing 1D spin correlations between DPPH spins from the sublattice B
shown in Fig. 8.1a. A theory for the transmission of a waveguide coupled to 1D
antiferromagnetic chains was developed by collaborators Sebastián Roca and
David Zueco from the Q-MAD group at INMA. Using short chains does not
suffice to describe the transmission, as longer chains have larger contributions.
Unfortunately, a description of the coupling of arbitrarily long chains is com-
putationally unaffordable. Therefore, a mean field (MF) theory was developed
as a first approximation to describe the antiferromagnetism of the sample.

In antiferromagnetic MF theory, N spins are split into two sublattices with
magnetization M1 = −(N/2)µBgSS1 and M2 = −(N/2)µBgSS2:

H = µBgSB · (S1 + S2) + S1 · J · S2, (8.5)

where J is a tensor encoding the anisotropy of the spin-spin exchange interac-
tions. This anisotropy is defined by an axis ϵ that depends on the orientation
of the chains, introducing small corrections on the antiferromagnetic exchange
constant J fixed via the Curie-Weiss law measured between 1 and 10 K and
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shown in section 5.2.2: J/kB = 4TN, with TN = −θ = 0.65 K. The module of ϵ
is the anisotropy exchange energy ϵ. With this model, the k = 0 spin wave fre-
quency or antiferromagnetic resonance frequency ωres is computed by solving
the Landau-Lifshitz-Gilbert (LLG) equation with Eq. (8.5) in the linear regime
[14]. This is the frequency at which each chain resonates with microwave light,
provided that the photon wavelength λ is much longer than the size of the spin
chains. Here this is a valid assumption, as the sample size is smaller than the
smallest photon wavelengths (λ = 4.4 mm) for which the spin-photon coupling
was measured (ωd ≤ 14 GHz).

The presence of a weak anisotropy in the spin-spin interactions along the
chain is key to explain the observed shift in the resonance frequency ωq. Each
DPPH crystallite acquires a different resonance frequency depending on the
angle ψ between the anisotropy axis ϵ and the magnetic field. In a powder,
the anisotropy introduces a distribution of resonance frequencies ωres with a
larger contribution for angles ψ ∼ π/2 (see Fig. 8.4c). The ensuing inhomoge-
neous broadening makes different DPPH molecules ‘distinguisable’ and breaks
down the Dicke state. The resonance frequency ωq is computed as the central
frequency of this broadened signal.

This simple model is therefore able to account for the change in the ‘average
resonance frequency’ ω̄q (Fig. 8.4c) and the resonance broadening (Fig. 8.5b)
that are observed experimentally. ω̄q is computed as the centre frequency of
the average of the resonances for all solid angles. The only fit parameter is the
magnitude ϵ of the anisotropy in J :

ϵ :=
J∥ − J⊥

J⊥
, (8.6)

where J∥ ≡ (1+ ϵ)J and J⊥ ≡ J are the components of J parallel and perpen-
dicular to the anisotropy axis ϵ, respectively. Therefore, a reasonably good fit
of ω̄q gives a measure of the exchange coupling anisotropy, yielding ϵ ≃ −1/10.

There is, however, an important limitation inherent to MF models: they
overestimate the sharpness of the transition and predict a phase transition
towards an ordered phase, which does not occur in 1D (see the dashed line
in Fig. 8.5a). Besides, and MF model does not properly account for the
elementary excitations of the AF chains, i.e. the spin waves. The temperature
insensitivity of max(|δS21|) in Fig. 8.5a is indeed obtained by imposing the
appearance of the spin-wave dynamics below TN, which gives the solid line.
This insensitivity provides direct evidence for a change in the commutation
relations governing the elementary excitations of the spin system interacting
with the microwave photons.
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Figure 8.5: (a) Temperature dependence of the maximum visibility, max(|δS21|), ex-
tracted from Figs. 8.4a (red dots) and 8.4b (solid red line). As a comparison, the red
dashed line shows the expected visibility in the absence of spin waves below TN. (b)
Temperature dependence of γ⊥. Blue dots represent the experimental values extracted
from Fig. 8.4a. The blue solid line is the prediction from mean field theory, scaled
to include the ‘inhomogeneous’ broadening that arises from exchange anisotropy in
a powder sample. (c) Picture of the competition between spin-photon and spin-spin
interactions. At high temperatures, type-B spins are in the paramagnetic phase and
superradiant emission is observed. When the temperature is low enough, spins form
chains, and spin waves appear. This is a change in the fundamental commutation
relations of the spin system.

8.2 On-chip magnetic spectroscopy across a magnetic
phase transition

8.2.1 Qubits based on spin clock states

The main source of decoherence in molecular spin qubits is the interaction
of the spin with magnetic noise in the environment. Typical sources of these
magnetic fields are other neighbouring spins, as in the previous section, or even
nuclear spins from atoms in the same molecule. A straightforward strategy to
achieve long coherence times T2 is, therefore, to use molecules with effective
spin 1/2 and nuclear spin-free ligands in dilution. The best coherence times
are obtained with solvents which are also nuclear spin-free, like CS2 (see Fig.
8.6 for some milestones).

A radically different strategy is inspired by the so-called ‘clock transi-
tions’ that are used in atomic clocks, which appear in the anti-crossings be-
tween quantum states. In a magnetic molecule, these avoided crossings ap-
pear between superposition spin states with opposite symmetry — symmet-
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ric/antisymmetric — that form at certain magnetic fields. These ‘spin clock
transitions’ have a remarkable stability against magnetic field fluctuations, as
dipolar decoherence vanishes at first order [15].
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Figure 8.6: Beating decoherence in molecular spin qubits. These systems have and
effective spin 1/2, with nuclear spin-free ligands and in solution with nuclear spin-free
solvents. References: Cr7Ni [16, 17], (PPh4)2 [Cu(mnt)2] [18], (PPh4)2 [V(C8S8)3]

[19], [VO(β − C3S5)2]
2− [20], PTM [21].

Examples of these transitions have been found among molecular materials.
A paradigmatic example is provided by the HoW10 complex. EPR experi-
ments performed on diamagnetically diluted HoxY1−xW10 crystals show that
spin coherence times increase sharply near each clock transition [22] as the
spin-photon coupling becomes maximum [11]. However, the presence of size-
able hyperfine interactions turns them into non-ideal qubit candidates. First,
getting to the clock transition requires the application of an external magnetic
field. Second, and probably more important, the two levels involved in the
clock transition might not include the actual ground spin state, thus hindering
a simple qubit initialization by cooling.

The ideal situation is a clock transition between the ground and the first
excited spin states. The simplest system that can achieve this is a spin 1 with
tetragonal and orthorhombic distortions (only if D < 0), which is described by
the following Hamiltonian:

H = DŜ2
z + E

(
Ŝ2
x − Ŝ2

y

)
+ µBg

(
BxŜx +ByŜy +BzŜz

)
, (8.7)

where a constant term in the magnetic anisotropy has been dropped.
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8.2.2 Molecular design of the simplest system with spin-clock
states: the case of [Ni(2-Imdipa)]

The metallorganic compounds [Ni(Me6tren)] and [Ni(2-imdipa)(NCS)]-(NCS)
provide a physical realization of the system described by Hamiltonian (8.7)
[23]. Here I focus on [Ni(2-imdipa)(NCS)]-(NCS), shortened as [Ni(2-Imdipa)]
in what follows. It has a clock transition frequency of roughly 6 GHz, suitable
for the frequency range of on-chip broadband experiments and for coupling to
superconducting resonators. [Ni(2-Imdipa)] is composed of an organic ligand
(2-imdipa) hosting a Ni2+ ion with spin 1 (see Fig. 8.7).

Ƹ𝑧mol

ො𝑦mol

ො𝑥mol

Figure 8.7: 2-imdipa pentadentate ligand (left) and its encasing of the Ni2+ ion in
the Ni(2-Imdipa)(NCS) complex. Together with the NCS group, 2-imdipa forms an
octahedral coordination site for Ni2+. Only the magnetic anisotropy axis ymol was
completely determined in previous experiments, with two possible solutions for the
remaining axes xmol and zmol. A guess, based on the symmetry of the coordination
site, is shown here: the zmol is perpendicular to a face of the octahedron (although
not exactly in practice, as it is a distorted octahedron).

The energy spectrum of [Ni(2-imdipa)] was calculated from the experimen-
tal results of heat capacity experiments [23]. Figure 8.8a shows the tempera-
ture dependence of the specific heat of a [Ni(2-imdipa)] crystal for fields in the
range between 0 and 3 T applied along the longer dimension of the crystal.
The specific heat measured at zero field has two peaks related to D and E,
giving D/kB = −3.9 K and E/kB = 0.15 K. The Zeeman term is considered to
be isotropic with gS = 2.34, as the effect of magnetic anisotropy in the g-factor
is negligible compared to the large D and E parameters. The evolution of the
energy gap between the ground and first excited states with magnetic field is
tracked by following the position of the low temperature peak in the specific
heat (see figure 8.8b). The non-linear increase of the gap with the magnetic
field is a signature of a clock transition. The results are consistent with the
magnetic field being applied at 52.6◦ from the molecular z axis, zmol.
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Figure 8.8: (a) Temperature dependence of the specific heat of a [Ni(2-imdipa)] crystal
for magnetic fields in the range between 0 and 3 T applied along the longer dimen-
sion of the crystal. Solid lines show the simulated specific heat of a [Ni(2-imdipa)]
molecule with its molecular z axis at 52.6◦ from the magnetic field. (b) Magnetic
field dependence of the energy gap between the lowest lying energy spin states of this
Ni complex, extracted form the position of the low temperature contribution to the
specific heat at each measured field. The solid line is the expected evolution of the
gap for this relative orientation of the magnetic field and the molecular z axis.

Figure 8.9 shows the energy spectrum of [Ni(2-imdipa)] as a function of
magnetic field, with the parameters reported above and assuming the same
relative orientation of the magnetic field to the zmol. The orthorhombic term
DŜ2

z splits the mS = 0 state from the mS = ±1 doublet by |D|, while the
orthorhombic term E

(
Ŝ2
x − Ŝ2

y

)
opens a gap 2E between the two levels as-

sociated with symmetric and antisymmetric superpositions of the mS = ±1

states. For D < 0, E ≪ |D| and |µBgBj | ≪ |D| (j = x, y, z), perturbation
theory gives a simple formula for the energy gap ∆ as a function of the static
magnetic field:

∆ ≃ 2
√
E2 + (µBgBz)2 +

(µBgBy)
2 − (µBgBx)

2

|D|
. (8.8)

The two lowest lying energy spin states of this Ni complex can encode a
qubit with frequency of operation ωq := ω10 = ∆/ℏ. However, the fact that
it has an integer total spin introduces significant differences with respect to a
simple S = 1/2 system. The orthorhombic distortion gives ωq stability against
fluctuations in Bz (µBgBz against E), while the longitudinal distortion gives it
stability against fluctuations in Bx and By (µBgBx and µBgBy against |D|)).
The large |D| of [Ni(2-imdipa)] makes ωq almost insensitive to Bx and By. All
these features make the transition between the ground and first excited states
of [Ni(2-imdipa)] at zero-field a textbook example of a spin clock transition.
The transition frequency is protected against small magnetic field fluctuations,
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as it is evident from Eq. (8.8): the leading order in a perturbation of the gap
∆ at zero-field is of second order, while the first order contribution vanishes.

𝐵 ∥ Ƹ𝑧mol

𝐵 ∥ ො𝑦mol

𝐵 ∥ ො𝑥mol

𝐷

2𝐸

Figure 8.9: Magnetic field dependence of the transition frequencies between the
ground and the excited spin states in [Ni(2-imdipa)] (a). A close up of the 0 ↔ 1

transition between the ground and first excited states is shown in (b). |D| is large
enough to consider these two states as an isolated pair. The gap is easily tuned with
the magnetic field parallel to the molecular z-axis ẑmol, while is more less insensitive
to small fields parallel to x̂mol and ŷmol.

At the clock transition (B = 0), two superposition spin states with opposite
symmetry appear:

|±⟩ = 1√
2
(|mS = +1⟩ ± |mS = −1⟩) . (8.9)

The nature of these states determines the coupling of the qubit to photons. The
transition between |−⟩ and |+⟩ is only addressable with the Sz spin operator,
that is, with microwave magnetic fields bmw parallel to zmol. This is shown
in Fig. 8.10. If the static magnetic field is increased in the direction of zmol,
the coupling to bmw decreases. This is due to the increase in the magnetic
field transforming the |±⟩ superposition states into the |mS = ±1⟩ states, with
the transition between the latter being forbidden. Conversely, the effect of
magnetic fields of the same magnitude oriented perpendicular to zmol on |±⟩
is negligible, yielding a coupling to bmw that remains close to its maximum
value at zero field.

In view of this strong dependence of the coupling on the orientation of the
molecules with respect to the static magnetic field B and the microwave field
bmw, it is important how [Ni(2-imdipa)] crystals are placed onto the chips.
Figure 8.11a shows a [Ni(2-imdipa)] crystal in the form of a hexagonal prism.
The axis going through the two hexagonal faces is the unit cell ĉ axis. The â
and b̂ axes lie parallel to the hexagonal faces.
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𝐵, 𝑏mw ∥ Ƹ𝑧mol

𝐵, 𝑏mw ⊥ Ƹ𝑧mol

𝑏mw

𝑏mw ⊥ 𝐵

𝑏mw ⊥ 𝐵

Ƹ𝑧mol

Ƹ𝑧mol

Ƹ𝑧mol

𝐵

𝑏mw
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𝐵
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Figure 8.10: Single-spin photon coupling in [Ni(imdipa)], normalized by the maximum
coupling. This maximum is located at the clock transition. Three cases are shown. In
red, the microwave magnetic field bmw parallel to zmol (bmw ∥ zmol) and the static
magnetic field B perpendicular to both (B⃗ ⊥ zmol). In green, bmw, B ⊥ zmol and
bmw ⊥ B⃗. In blue, bmw, B ∥ zmol.
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Figure 8.11: (a) A [Ni(2-imdipa)] crystal, showing the relation between the hexagonal
prism and the unit cell axes. (b) Magnetization of the crystal at B = 0.1 T and T = 5

K as a function of rotation angle θ around an axis perpendicular to the â-b̂ unit cell
plane. The difference between data measured while increasing (blue solid dots) and
decreasing (red open symbols) angles is due to a mechanical hysteresis of the rotation
system and provides a measure of the angular uncertainties. The crystal was placed
so that the magnetic field aligned with the b̂ cell axis at θ = 90, 270◦. The solid line
shows the simulation of the magnetization with the parameters from heat capacity
experiments and assuming that the molecular z axis lies in the â-ĉ plane.

The specific heat measurements in Fig. 8.8a were performed with the
magnetic field applied along the longer dimension of the crystal, that is, parallel
to the ĉ axis. These measurements, combined with the measurement of the
magnetization of the crystal for magnetic fields applied at different orientations
in the â-b̂ plane, shown in Fig. 8.11b, are consistent with zmol being in the
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â-ĉ plane at 52.6◦ from the ĉ axis.

Each unit cell contains eight [Ni(2-imdipa)] molecules (see Fig. 8.12a), giv-
ing a spin density of 1.76 · 1027 spins/m3 in the crystal. These eight molecules
are related by an inversion centre, a 2-fold screw axis along b̂, and a glide
plane spanned by â and ĉ. This means that the zmol axes of all 8 molecules
are aligned. The tentative solution shown in Fig. 8.7 is compared with the cell
axes in Fig. 8.12b.

Layer B

Inversion

2-fold screw axis ෠𝑏

Glide

plane

( ො𝑎, Ƹ𝑐)

Ƹ𝑐

Layer A

ො𝑎

෠𝑏
Ƹ𝑧mol

ො𝑥mol

52.6°

ො𝑦mol

Figure 8.12: (a) The 8 [Ni(2-imdipa)] molecules in the unit cell, with their symmetry
relations. They are distributed in two layers, labeled A and B. (c) Relation between
the tentative solution for the molecular axes given in Fig. 8.7 and the unit cell axes.

8.2.3 Determination the molecular axes of [Ni(2-imdipa)] with
transmission experiments

Measuring a molecular spin qubit encoded in the states of a spin clock transi-
tion coupled to a resonator is not as simple as with a qubit encoded in a spin
1/2. First, the latter can be easily tuned with the applied field (ωq = µBgB/ℏ)
to the match frequency of a resonator, ωr. On the other hand, the anti-crossing
of the spin clock transition makes the frequency of operation of the qubit more
insensitive to the magnetic field, that is, more difficult to tune. For that reason,
the first experiments of [Ni(2-imdipa)] samples coupled to superconducting cir-
cuits were carried out with a CPW, where a wide frequency range between 10
MHz and 14 GHz can be explored.

A [Ni(2-imdipa)] crystal was deposited on top of the waveguide, with the
cell ĉ axis parallel to the CPW (see Fig. 8.12), inside a dilution refrigerator
mounting a superconducting vector magnet. This ensures that the microwave
magnetic field generated by the line, which here is perpendicular to ĉ, has a
component along the molecular z axis, zmol. The transmission of the CPW
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was measured at 128 mK and magnetic fields between -300 and +300 mT for
two magnetic field orientations, one for each of the two possible orientations
of zmol, both lying at 52.6◦ from ĉ in the â-ĉ plane. The temperature of the
sample could not be lowered further in these experiments due to a thermal-
ization problem. Figure 8.13 shows the transmission of the CPW for the two
orientations.

52.6°

52.6°

Figure 8.13: (a,b) Normalized transmission difference (δS21) of a CPW coupled to
a [Ni(2-imdipa)] crystal, for two magnetic field orientations that lie at 52.6◦ from
ĉ in the â-ĉ plane. This difference is computed at each field B as δS21(B) =

[S21, exp(B)− S21, exp(B + δB)] /S21, exp(B + δB), effectively removing the baseline
of the transmission signal. Here, δS21 is calculated with δB = 10 mT. The transmis-
sion measured for the orientation in (a) is consistent with the magnetic field applied
along the molecular z axis, zmol.

The absorption signal in Fig. 8.13a shows the non-linear dependence with
magnetic field that is associated to clock transitions. The minimum resonance
frequency, found at zero magnetic field, corresponds to a magnetic anisotropy
gap ∆/h = 2E/h = 5 GHz. This value is lower than the gap of ∼ 6 GHz that
was expected from heat capacity experiments. The observed magnetic field
dependence of the signal is consistent with the magnetic field applied along
zmol (compare with Fig. 8.9b). This confirms the choice of zmol in previous
sections. The orientation of the magnetic field in Fig. 8.13b corresponds
then to the magnetic field along xmol. In this case, no absorption signal is
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observed. The transition frequency between the ground and first excited states
in [Ni(2-imdipa)] is more insensitive to magnetic fields applied along xmol

than to magnetic fields applied along zmol (see Fig. 8.9b). The normalized
transmission difference δS21 defined in Fig. 8.13 tends to lower the visibility
of transitions that vary slowly with magnetic field, as is the case here for the
magnetic field along xmol. These results highlight how the relative orientation
of the applied field and the magnetic anisotropy axes plays a crucial role in the
coupling of the spin clock transitions to microwave photons.

8.2.4 Coupling spin-clock states to superconducting transmis-
sion lines

The experiment in the previous section was repeated in order to have access to
the temperature range below 128 mK. This time, a DPPH powder sample was
also placed on top of the CPW. The low temperature results of DPPH cou-
pled to a CPW discussed in section 8.1.2 come from this experiment. Figure
8.14 shows how this setup allows a direct comparison between the standard
electronic Zeeman transition in a S = 1/2 system, DPPH, and the clock tran-
sition in a S = 1 system, [Ni-(2-imdipa)]. The transmission of the CPW was
measured in the temperature range between 10 mK and 800 mK, for magnetic
fields between -300 mT and +300 mT applied parallel to the waveguide. The
results are shown in Fig. 8.15.

[Ni(2-imdipa)]

ℏ𝜔 ~ 𝛥

S = 1, clock transition

DPPH
S = 1/2

ℏ𝜔 ∝ 𝐵

𝐵

𝑏mw Ƹ𝑧mol

Figure 8.14: Comparison between the expected transmission for two samples de-
posited on the same CPW: DPPH (black powder pellet, S = 1/2) and [Ni-(2-imdipa)]
(indigo-purple crystal, S = 1 with a clock transition). In DPPH, the transition fre-
quency is proportional to the magnetic field, and therefore easy to tune. Conversely,
the superposition states that arise at the clock transition of [Ni(2-imdipa)] make the
transition frequency more insensitive to the magnetic field. This property makes clock
transitions difficult to tune, but also more robust against magnetic field fluctuations.
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Figure 8.15: Normalized transmission of a CPW coupled to a a [Ni(2-imdipa)] crystal
and a DPPH powder sample as a function of magnetic field and input microwave
frequency, for six selected temperatures in the range between 10 and 800 mK. The
complete set of measurements includes also the transmission at 20, 150, 175, 200, 225,
300, 350 and 400 mK.

Two absorption signals are observed, one with a linear dependence with
field (DPPH, S = 1/2), and the non-linear dependence of the clock transition
of [Ni(2-imdipa)] (S = 1). The transmission data was normalized by the



8.2. On-chip magnetic spectroscopy across a magnetic phase transition 229

transmission of the uncoupled CPW, which was estimated by taking the values
of the transmission S21 at those fields and frequencies that were sufficiently far
from any of the absorption signals. The minimum resonance frequency of
the [Ni(2-imdipa)], as in the previous section, appears at zero field, and is
associated with a magnetic anisotropy gap ∆/h = 2E/h > 6 GHz. At each
field and temperature, the absorption resonance of [Ni(2-imdipa)] is fitted with
Eq. (4.135):

S21(ωd ≃ ω10) =
γ⊥, 10 + i (ω10 − ωd)

γ⊥, 10 + (G
(line)
N )01(∆P10)e + i (ω10 − ωd)

. (8.10)

Here, ω10 is the frequency of the transition 0 ↔ 1 between the ground and first
excited states, with collective spin-photon coupling (G

(line)
N )01 and decoherence

rate γ⊥, 10.

The population difference (∆P10)e between the two states of the clock
transition is given by:

(∆P10)e =
1− e−ℏω10/kBT

Z
≃ tanh

(
ℏω10

2kBT

)
, (8.11)

as in a two-level system. The thermal population of the second excited state
has been neglected in the approximation of the partition function Z, as |D| is
large enough to make this population less than 1% in the measured tempera-
ture range. In what follows, the collective spin-photon coupling (G

(line)
N )01 is

redefined to include the population difference:

(G
(line)
N )01 := αω10(∆P10)e ≃ αω10 tanh

(
ℏω10

2kBT

)
, (8.12)

where the linear dependence of the coupling in a 1D waveguide has been in-
cluded and α is a dimensionless proportionality constant.

Figure 8.16a shows the fitted magnetic field-dependent transition frequency
ω10 for all the measured temperatures. In the higher end of the measured tem-
peratures (500-800 mK), the magnetic field dependence of the [Ni(2-imdipa)]
signal is compatible with the behaviour expected for a a paramagnetic two-
level system described by Eq. (8.8) with the magnetic field B applied at in
the (xmol, zmol) plane at ∼52.6◦ from zmol.
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Figure 8.16: (a) Magnetic field dependence of the transition frequency ω10 for tem-
peratures between 10 and 800 mK. A close-up of the area inside the dashed line is
also shown. The gap at zero-field increases as temperature is lowered, while two min-
ima appear at B = ±µ0Hmf . (b) Temperature dependence of the zero-field gap (ω10

at B = 0, blue dots) and the minimum ω10 (ω10 at B = µ0Hmf , red crosses). ω10

increases steadily from ∼6.4 GHz at 800 mK to ∼7.4 GHz at 10 mK as temperature
is lowered. (c) Temperature dependence of µ0Hmf , the magnetic field with minimum
ω10. Below 250 mK, two symmetric minima appear at ±µ0Hmf ̸= 0, with µ0Hmf

increasing sharply until it settles to ∼70 mT at the lowest measured temperatures.

However, as T decreases, the dependence of ω10 on B undergoes significant
changes and deviates from this simple picture. First, below ∼ 350 mK the zero-
field gap of the clock transition increases. Besides, the magnetic dependence
near B = 0 flattens. This modulation of the gap, represented in Fig. 8.16b,
suggests that there is a phase transition to a magnetically ordered state due to
spin-spin interactions. The net interaction magnetic field stabilizes the ground
state, lowering its energy with respect to the excited states. That is, the
energies associated to the elemental excitations of the ground state are higher,
thereby increasing ω10 at zero field. The steady increase of ω10 also suggests the
presence of short range magnetic order at the higher measured temperatures.
The extent of this order then grows as the temperature is lowered.

In addition to its increase at zero field, ω10 develops two minima at two
magnetic fields with the same magnitude µ0Hmf but opposite signs below 250
mK (see Fig. 8.16c). µ0Hmf appears sharply at this temperature, indicating
the onset of long range interactions. This can be seen as the different magneti-
zation orientations of small parts of the sample with short range order aligning
to generate a ‘mean field’ µ0Hmf .

In order to illustrate how spin-spin interactions modify the main features
of the transmission spectrum, I used a simple toy model of a dimer of [Ni(2-



8.2. On-chip magnetic spectroscopy across a magnetic phase transition 231

imdipa)] molecules with a Ŝz, i ⊗ Ŝz, j exchange interaction:

H =
[
DŜ2

z, 1 + E
(
Ŝ2
x, 1 − Ŝ2

y, 1

)
+ µBgSB · Ŝ1

]
⊗ I2

+ I1 ⊗
[
DŜ2

z, 2 + E
(
Ŝ2
x, 2 − Ŝ2

y, 2

)
+ µBgSB · Ŝ2

]
+ JŜz, 1 ⊗ Ŝz, 2.

(8.13)

Keeping only the Ŝz, 1Ŝz, 2 term to describe the interaction between the spins is
justified by the insensibility of the energy gap to magnetic fields perpendicular
to the molecular z axis. The spin-spin interaction can be seen as the interaction
of a spin with a ‘mean field’ generated by the surrounding spins, then the z-axis
Zeeman term of this field dominates against the other two axes.

At very low temperatures (T ≪ 2E/kB) and for small |J |, only one allowed
transition of the dimer has non-negligible thermal population difference. Figure
8.17 compares the experimental ω10 at 10 mK with the frequency of this tran-
sition. The fit with the dimer model gives a zero-field gap ∆/h = 5.921±0.003

GHz and an antiferromagnetic exchange constant J/kB = 63.6 ± 0.2 mK. The
two symmetric minima in the experimental ω10 are only possible with an an-
tiferromagnetic coupling. The angle between the magnetic field and molecular
z axis was slightly reduced to 47.7◦ for the fit.

Figure 8.18a shows the magnetic field and temperature dependence of the
other two fit parameters of the resonance, the decoherence rate γ⊥, 10 and the
collective spin-photon coupling (G

(line)
N )01. Both γ⊥, 10 and (G

(line)
N )01 decrease

with increasing (absolute) magnetic field. On top, a small dip shows in γ⊥, 10

around the clock transition (close to zero magnetic field). The magnetic field
dependence of (G(line)

N )01 is a combination of the prediction in Fig. 8.10, with
the maximum coupling at the clock transition, and the decrease in (∆P10)e
due to the increase of the transition frequency ω10 with magnetic field.

Figure 8.17: Comparison of ω10 measured at 10 mK (blue dots) with the only relevant
transition of the dimer at 10 mK (red solid line). Red dashed lines are forbidden
transition or with negligible population difference at 10 mK.
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Figure 8.18: (a) Magnetic field dependence of the decoherence rate γ⊥, 10 and the
collective spin-photon coupling (G

(line)
N )01 for temperatures between 10 and 800 mK

and fields between -100 and +100 mT. (b) Temperature dependence of γ⊥, 10 at zero
magnetic field. A maximum in γ⊥, 10 is observed as the transition temperature is
crossed (∼ 200–300 mK). (c) Temperature dependence of (G(line)

N )01. Blue dots are
the values from the fit of the experimental resonance, while the red solid line is the
fit to Eq. (8.12).

The temperature dependence of γ⊥, 10 and (G
(line)
N )01 at the clock transition

— zero magnetic field — is shown in Figs. 8.18b and 8.18c respectively. As the
transition temperature is crossed, a maximum in γ⊥, 10 is observed. Conversely,
(G

(line)
N )01 is fitted to Eq. (8.12), which assumes non-interacting spins, with a

proportionality constant α ∼ 0.0029.

8.2.5 Coupling spin-clock states to lumped-element resonators

The coupling of spin-clock states in [Ni(2-imdipa)] to photons travelling through
a waveguide has been characterized in the previous sections. The next step is
then to enhance the spin-photon coupling by coupling [Ni(2-imdipa)] crystals
to superconducting lumped-element resonators (LERs). A chip, labeled Ni-cw,
was designed with ten LERs with frequencies slightly above the zero-field gap
2E/h ∼ 6 GHz of [Ni(2-imdipa)]. The chip design is shown in Fig. 8.19a.
[Ni(2-imdipa)] crystals of different sizes were placed on top of each resonator
with different orientations in order to see the effect of the number of spins and
magnetic anisotropy on the coupling (see Fig. 8.19b). Unfortunately, most of
the crystals in this experiment fell or broke into pieces during cooldown, as
it can be seen in Fig. 8.19c. I decided then to focus the experiments on the
sample on LER 9, which is the crystal that matches the size of the resonators
(see Fig. 8.20).
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Figure 8.19: (a) Chip Ni-cw, hosting ten LERs (black) coupled to a single transmission
line (cyan). (b) Superconducting chip with [Ni(2-imdipa)] crystals (indigo crystals)
on top of Ni-cw LERs. One of the crystals is on top of two resonators, and also
on top of the transmission line. White crystal is a sample of spin defects on ZnO,
measurements with this sample are out of the scope of this work. (c) Remaining
crystals after the experiments (color) superimposed over (b) in greyscale. Note that
some of them fell from the chip at some point (crystals on top of LERs 3, 6 and 8)
or even broke into pieces (half of a crystal on top LER 4).

Figure 8.20: (a) Design of LER 1. The size of the resonator is smaller than in other
chips, as they are aiming for a higher resonance frequency ωr: smaller size → lower
capacitance C and inductance L → higher ωr = 1/

√
LC. (b) [Ni(2-imdipa)] crystal

on top of LER 9, matching the inductor size.
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The transmission of Ni-cw with driving frequencies ωd = 2πf close to the
resonance frequency of LER 9 was measured for magnetic fields between -300
and +300 mT applied along the transmission line. The experiment was carried
out at two temperatures: T = 440 mK (Fig. 8.21a) and T = 128 mK (Fig.
8.21b). A very large collective spin-photon coupling is observed, with the LER
resonance almost vanishing completely for fields |B| < 200 mT. Note that an
effect on the resonator is observed at zero field even if the resonance frequency
ωr/2π ≃ 8.2 GHz of LER 9 is far from the zero field gap of [Ni(2-imdipa)]
(∆/h = 6–7 GHz). This proves difficult for finding the LER resonances. The
resonance of LER 9 was found by comparing the transmission data for B = 0

and B = 300 mT.

Figure 8.21: Normalized transmission of Ni-cw for driving frequencies ωd close to the
resonance frequency of LER 9, measured for magnetic fields between -300 mT and
+300 mT along the transmission line and at two temperatures: 440 mK (a) and 128
mK (b). The resonator couples to the clock transition of [Ni(2-imdipa)].
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The experimental data are fitted with the model for the resonance of a LER
with frequency ωr coupled to a qubit of frequency ωq. The second excited state
of [Ni(2-imdipa)] is neglected, as it lies ∼80 GHz above the measured range.
The expression for the transmission parameter S21 is reproduced here:

S21(ωd ≃ ω10) = 1− κc

i(ωr − ωd) + κ+
(GN )210∆P10

i(ω10 − ωd) + γ⊥,10

. (8.14)

Here the qubit frequency ωq := ω10 = ∆/ℏ is defined by the evolution of the
energy gap ∆ between the ground and first excited states of [Ni(2-imdipa)],
which is given in Eq. (8.8). The collective spin-photon coupling (GN )10 is
also field dependent (see Fig. 8.10). In what follows, (GN )10 refers to the
spin-photon coupling at zero field, which is scaled at other fields following
the expected evolution of the coupling for a magnetic field at 52.6◦ from the
molecular z axis. The fit parameters are listed in table 8.1 for both measured
temperatures.

T = 440 mK T = 128 mK
ωr / 2π (GHz) 8.196611 ± 9 · 10−6 8.194578 ± 1.7 · 10−5

κ / 2π (MHz) 1.135 ± 0.008 1.261 ± 0.011
κc / κ 0.1487 ± 0.0009 0.1346 ± 0.0011
(GN )10 / 2π (MHz) 192.8 ± 0.2 279.1 ± 0.3
γ⊥,10 / 2π (MHz) 831 ± 4 460 ± 3
(GN )10 / γ⊥,10 0.232 ± 0.001 0.606 ± 0.003
C10 39.3 ± 0.3 134.1 ± 1.5
ω10(B = 0) (GHz) 6.442 ± 0.004 6.801 ± 0.003

Table 8.1: Parameters of the fit of the transmission maps in Fig. 8.21 with Eq. 8.14.

The transition frequency at zero field, ω10(B = 0) and the decoherence
rate γ⊥,10 obtained for both temperatures are of the same order of the values
reported in the previous section for [Ni(2-imdipa)] coupled to a CPW. However,
here it is assumed the same γ⊥,10 for all fields, while Fig. 8.18a showed a
magnetic field dependent γ⊥,10. The change in both ω10(B = 0) and γ⊥,10

with temperature is consistent with previous results: ω10(B = 0) increases
with decreasing temperature, while γ⊥,10 is higher at 440 mK (which is close
to the temperature with maximum γ⊥,10 in Fig. 8.18b).

The collective spin-resonator coupling is enhanced compared to the cou-
plings to the CPW in Fig. 8.18a. A large coupling (GN )10/2π = 192.8 MHz is
observed at T = 440 mK, and an even higher (GN )10/2π = 279.1 MHz at 128
mK. These couplings are not in the strong coupling regime (GN )10/γ⊥,10 > 1,
but they are not far from it, with (GN )10/γ⊥,10 > 0.6 at 128 mK. In fact,
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the increase of (GN )10 between 440 mK and 128 mK, combined with the de-
crease in γ⊥,10, suggests that the strong coupling regime might be reached at
base temperature (T ∼ 10 mK). Unfortunately, the temperature region below
128 mK could not be explored in these experiments due to a thermalization
problem in the cryostat. Similarly, it can be argued that the strong coupling
regime could be achieved using a LER with resonance frequency ωr closer to
ω10(B = 0).

The high cooperativity regime C10 = (GN )210/κγ⊥,10 ≫ 1 is reached at
both T = 440 mK and T = 128 mK, with a remarkably large C10 = 134.1
at the lowest temperature. This is more than four times the cooperativity of
electronic spin transitions in [Yb(trensal)] at T = 10 mK, e.g. C1 10 = 32.5

for the electronic spin transition 1 ↔ 10 with mI = −3/2 (see chapter 7).
Note, however, that the [Yb(trensal)] crystals were diamagnetically diluted,
while here the [Ni(2-imdipa)] crystal is fully concentrated. That is, the pro-
tection of the clock transition against decoherence is enough to obtain high
cooperativity even without improving its coherence time by diamagnetically
diluting the [Ni(2-imdipa)] molecules in a diamagnetic matrix. In comparison,
the increase of the concentration of [173Yb(trensal)] molecules in isotopically
purified [Yb(trensal)] samples decreased significantly the cooperativity.

8.3 Conclusions

Powder samples of DPPH deposited on top of a CPW, an organic free radical
molecule with spin 1/2, provide a platform to study the competition between
spin-spin and spin-photon interactions. Above TN = −θ = 0.65 K, the DPPH
ensemble is in the paramagnetic regime, and the superradiant emission of ther-
mal collective spin states is observed. Below TN, type-B DPPH molecules form
antiferromagnetic (AF) chains. The insensitivity of the absorption signal in
this temperature range is a signature of a change in the commutation relations
of the elementary excitations of the spin system due to the formation of spin-
waves. The coupling of the AF chains in a powder sample to a CPW allows
estimating the weak anisotropy in the antiferromagnetic exchange interactions
in the chains.

[Ni(2-imdipa)], a metallorganic compound with a Ni2+ ion with spin 1, adds
a third element, spin clock transitions, to the competition between spin-spin
and spin-photon interactions. The superposition spin states that form in this
transitions are more robust against spin-spin interactions, and have also dis-
tinct geometrical properties concerning their interaction with microwave mag-
netic fields. The effect of spin-spin interaction on the properties of the coupling
of the spin clock transition of [Ni(2-imdipa)] to photons in a CPW has been



REFERENCES 237

studied with transmission measurements down to 10 mK, which suggest the
presence of antiferromagnetic interactions below 200-300 mK. [Ni(2-imdipa)]
crystals have been also coupled to lumped-element resonators, achieving a re-
markably high cooperativity regime (C > 100 ≫ 1).
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Chapter 9

Conclusions

• Superconducting lumped-element resonators (LERs) have been studied
as an alternative to coplanar resonators. They are interesting due to their
property of frequency multiplexing and the possibility to fabricate low-
impedance resonators. This allows having LERs with very small induc-
tance, which enhances the spin-photon coupling in a small volume around
it. The experiments with DPPH powder samples coupled to LERs con-
firm that the strong coupling regime, defined by a collective spin-photon
coupling GN greater than the decoherence rate γ⊥, can be achieved with
LERs. The results also highlight the importance of minimizing the gap
between the sample and the surface of the superconducting surface in
order to have the largest collective spin-photon coupling.

• A low-inductance LER design was used to perform the control and dis-
persive readout of molecular spin qubits based on PTMr organic radicals.
The absorption spectrum and the relaxation time T1 of the spin ensem-
ble were measured. These measurements also showcased the effect of
the resonator on spin relaxation, obtaining an estimation of the highest
single spin-photon couplings and their distribution through their role in
the dynamics of the spin ensemble. In addition, experiments with short
pulses (10–500 ns) showed the first signs of coherent manipulation of a
ensemble of molecular spin qubits in this platform.

• The step of going from qubits to qudits is explored in the [173Yb(trensal)]
complex, a magnetic molecule encoding an electro-nuclear qudit with
d = 12 states coming from its electronic spin S = 1/2 and the nuclear
spin I = 5/2 of the 173Yb isotope. High cooperativity has been observed
in both electronic and nuclear transitions in [173Yb(trensal)], which puts
electronic and nuclear states almost on equal footing in this system. The
presence of the electronic spin, and its high hyperfine coupling to the



240 Chapter 9. Conclusions

nuclear spin, introduces an efficient path to couple nuclear transitions to
the microwave magnetic field generated by the LER.

• The effect of spin-spin interactions in molecular ensembles on their cou-
pling to superconducting has been studied with molecular systems with
spin 1/2 and spin 1. These interactions are unavoidable until the limit
of measuring a single molecular spin qubit is achieved. DPPH powder
samples coupled to superconducting coplanar waveguides (CPW) provide
a platform to study the competition between spin-spin and spin-photon
interactions in spin 1/2 ensembles. As the temperature is lowered, the
characteristics of the coupling of the sample to the waveguide change,
marking the formation of spin waves in antiferromagnetic DPPH chains.
[Ni(2-imdipa)], a metallorganic compound with a Ni2+ ion with spin 1,
adds a third ingredient, spin clock transitions. The effect of spin-spin in-
teractions on the spin clock transition in [Ni(2-imdipa)] can be detected
via the changes in the spin-photon interaction of the clock transition
spin superposition states with photons propagating through the waveg-
uide. [Ni(2-imdipa)] crystals have been also coupled to LERs, achieving
a remarkably high cooperativity regime (C > 100 ≫ 1)



Conclusiones

• Los resonadores de parámetros concentrados (LERs) son una alterna-
tiva interesante a los resonadores coplanares para integrar qubits de es-
pín molecular en circuitos superconductores. A diferencia de los res-
onadores coplanares, varios LERs de distintas frecuencias pueden fab-
ricarse en un chip y medir su resonancia con una única línea de trans-
misión. Además, estos resonadores pueden diseñarse con una inductancia
muy baja, generando campos magnéticos de microondas muy intensos
en volúmenes pequeños. Una propiedad importante que quedaba por
comprobar era si los LERs pueden alcanzar el régimen de acoplo fuerte
a muestras de qubits de espín molecular. Este régimen está definido
por un acoplo espín-fotón colectivo mayor que la tasa de decoherencia
del conjunto de espines en la muestra. Este régimen se ya se había al-
canzado previamente con resonadores coplanares. Los experimentos de
transmisión de microondas de LERs acoplados a muestras en polvo de
DPPH, un radical libre con espín 1/2, confirman que también es posible
alcanzar el régimen de acoplo fuerte en estos resonadores. Los resultados
de los experimentos también destacan la importancia que el espacio que
queda entre la muestra y la superficie del resonador tiene en el acoplo
obtenido.

• Se ha construido un montaje experimental de generación y detección de
pulsos de microondas para realizar experimentos de control y lectura de
estados de qubits de espín molécular acoplados a LERs de baja induc-
tancia. Con esta técnica se ha medido el espectro de absorción de una
muestra de PTMr, otro radical libre con espín 1/2, así como su tiempo de
relajación T1. Los resultados de estos últimos experimentos muestran el
efecto que tiene el resonador en la dinámica de los espines. Experimentos
con pulsos más cortos (10–500 ns) muestran los primeros indicios de una
manipulación coherente de estados de qubits de espín molecular basada
en una plataforma basada en circuitos superconductores.

• Se ha estudiado el complejo molecular [173Yb(trensal)] como un ejem-
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plo qudit de espín molecular, con d estados cuánticos. La molécula de
[173Yb(trensal)] es un qudit electronuclear con d = 12 estados provinientes
de su espín electrónico 1/2 y el espín nuclear 5/2 del isótopo 173Yb. Se ha
conseguido alta cooperatividad en este sistema tanto para transiciones
de espín electrónico como para transiciones de espín nuclear, lo que per-
mite utilizar los estados de espín nuclear de manera similar a los estados
de espín electrónicos. La alta cooperatividad de las transiciones nucle-
ares se debe al alto acoplo hiperfino del espín nuclear del 173Yb al espín
electrónico en esta molécula. Esto permite acoplar de manera eficiente
el estado nuclear a campos magnéticos de microondas a través del espín
electrónico.

• Se ha medido el efecto de las interacciones entre espines en el acoplo de
muestras de qubits moleculares a fotones propagándose por una línea de
transmisión. Las muestras en polvo de DPPH, con espín 1/2, acopladas a
líneas de transmisión ofrecen una plataforma para estudiar la competición
que existe entre las interacciones espín-espín y las interacciones espín-
fotón. Al bajar la temperatura, las propiedades del acoplo de la muestra a
la línea de transmisión cambian, señalando la aparición de ondas de espín
en cadenas antiferromagnéticas de DPPH. El complejo [Ni(2-imdipa)],
con un ion Ni2+ ion con espín 1, introduce un nuevo ingrediente: una
transición de reloj de espín entre su estado fundemental y su primer
estado excitado. Estos dos estados son superposiciones de estados de
espín que forman un qubit de espín molecular protegido frente a ruido
magnético. El efecto de las interacciones entre espines en la transición
de reloj a muy baja temperatura se ha detectado midiendo el acoplo
de ésta a fotones propagándose por una línea de transmisión. También
se han acoplado cristales de [Ni(2-imdipa)] a LERs, consiguiendo una
cooperatividad muy alta (C > 100 ≫ 1).
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Appendix A - Tables

LER ωr/2π (GHz) κ/2π (kHz) κc/2π (kHz)
1 1.8246150 48.4 47.4
2 1.8264478 49.3 48.3
3 1.8559130 26.4 25.3
4 1.8572975 26.5 25.4
5 2.2679124 18.8 17.4
6 2.2714567 19.2 17.8
7 2.4125265 3.5 1.7
9 3.7892397 13.2 9.8

10 − − −
11 4.1887260 19.5 15.7
12 4.1955763 19.5 15.7

Table A.1: Parameters from the simulation with Sonnet of the lumped-element res-
onators in chip Test 1.

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.6696529 ± 3 · 10−7 254.7 ± 0.2 76.1 ± 0.1 0.19 ± 0.03
3 1.7144528 ± 4 · 10−7 206.1 ± 0.2 26.64 ± 0.04 2.1 ± 0.1
5 2.116451 ± 1 · 10−6 415.5 ± 0.8 30.4 ± 0.1 23.2 ± 0.1

Table A.2: Parameters from the fit of the resonances of LERs 1, 3 and 5 in chip Test
1 measured at T = 4.2 K and B ≃ Bres, as defined in table 5.1. We placed the same
DPPH sample on top of each of the three resonators (see Fig. 5.17).
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LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.595572 ± 1 · 10−6 138.6 ± 1.3 13.4 ± 0.2 −10.6 ± 0.4
2 1.598124 ± 2 · 10−6 199.0 ± 1.6 18.6 ± 0.2 −17.5 ± 0.3
3 1.6537159 ± 9 · 10−7 167.1 ± 0.9 23.0 ± 0.2 −11.2 ± 0.2
4 1.657256 ± 1 · 10−6 150.4 ± 1.1 16.3 ± 0.2 −14.7 ± 0.3
5 1.723823 ± 2 · 10−6 219.4 ± 1.9 114.8 ± 1.2 −6.7 ± 0.4
6 1.725325 ± 2 · 10−6 196.61 ± 1.99 94.7 ± 1.1 −13.5 ± 0.4
7 1.806576 ± 2 · 10−6 206.1 ± 2.3 8.4 ± 0.1 10.8 ± 0.5
8 1.811397 ± 3 · 10−6 212.1 ± 2.9 7.0 ± 0.1 −3.9 ± 0.6
9 1.9589596 ± 9 · 10−7 149.0 ± 0.9 28.3 ± 0.2 6.4 ± 0.3

10 1.964212 ± 1 · 10−6 179.7 ± 1.3 27.7 ± 0.2 −4.9 ± 0.3
11 2.063403 ± 1 · 10−6 181.9 ± 1.4 32.5 ± 0.3 10.9 ± 0.3
12 2.065999 ± 2 · 10−6 172.8 ± 1.5 27.2 ± 0.3 −6.1 ± 0.4

Table A.3: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K and zero field, as defined in table 5.1.

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.5848946 ± 9 · 10−7 98.3 ± 0.9 17.0 ± 0.2 −0.5 ± 0.4
2 1.5904145 ± 8 · 10−7 95.0 ± 0.8 15.6 ± 0.2 −1.4 ± 0.3
3 1.6511598 ± 6 · 10−7 110.9 ± 0.6 22.5 ± 0.2 −1.4 ± 0.2
4 1.6326271 ± 6 · 10−7 101.0 ± 0.6 16.0 ± 0.1 7.4 ± 0.3
5 1.719468 ± 2 · 10−6 210.1 ± 1.8 115.7 ± 1.2 −0.5 ± 0.3
6 1.722812 ± 2 · 10−6 154.3 ± 2.1 61.94 ± 1.01 0.0 ± 0.6
7 1.802034 ± 3 · 10−6 121.9 ± 2.9 6.2 ± 0.2 −0.08 ± 0.98
8 1.777309 ± 2 · 10−6 107.9 ± 1.8 6.1 ± 0.1 −3.3 ± 0.7
9 1.9096160 ± 7 · 10−7 126.3 ± 0.7 24.5 ± 0.2 13.0 ± 0.2

10 1.8715570 ± 7 · 10−7 122.5 ± 0.7 22.0 ± 0.2 12.9 ± 0.2
11 2.0267752 ± 9 · 10−7 131.4 ± 0.9 29.8 ± 0.2 13.3 ± 0.3
12 1.9992826 ± 8 · 10−7 121.4 ± 0.8 21.9 ± 0.2 6.3 ± 0.3

Table A.4: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K and zero field, as defined in table 5.1, with DPPH
samples on top of LERs 1, 4, 5, 8, 10 and 12.
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LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.5843312 ± 2 · 10−7 141.3 ± 0.1 16.07 ± 0.02 2.49 ± 0.03
2 1.5898394 ± 2 · 10−7 140.2 ± 0.1 14.84 ± 0.02 −0.86 ± 0.03
3 1.6502776 ± 9 · 10−7 181.1 ± 0.6 23.5 ± 0.1 −5.4 ± 0.1
4 1.631767 ± 2 · 10−6 134.5 ± 1.6 13.6 ± 0.2 4.3 ± 0.2
5 1.7185818 ± 4 · 10−7 232.0 ± 0.3 94.7 ± 0.1 6.18 ± 0.04
8 1.7761841 ± 9 · 10−7 187.5 ± 0.5 5.19 ± 0.02 0.0 ± 0.1

10 1.8712407 ± 8 · 10−7 252.5 ± 0.4 20.89 ± 0.05 20.27 ± 0.05
12 1.9979448 ± 5 · 10−7 219.4 ± 0.3 19.39 ± 0.03 6.28 ± 0.04

Table A.5: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K. The values of ωr here are those of the resonators at
their corresponding resonance fields Bres (between 56 and 72 mT, depending on the
resonator). They are slightly shifted to lower frequencies compared to the values re-
ported in table A.4 due to the effect of the static field on the resonators (see section
5.4.1).

LER ωr/2π (GHz) κ/2π (kHz) |κc|/2π (kHz) ϕc (◦)
1 1.5897023 ± 1 · 10−7 99.3 ± 0.1 15.78 ± 0.01 −13.83 ± 0.03
2 1.5782930 ± 3 · 10−7 142.5 ± 0.2 14.92 ± 0.02 −3.51 ± 0.04
7 1.7796599 ± 9 · 10−7 203.2 ± 0.5 11.70 ± 0.04 19.7 ± 0.1
8 1.7994068 ± 5 · 10−7 153.4 ± 0.3 9.09 ± 0.02 −1.3 ± 0.1

11 1.9605984 ± 3 · 10−7 167.8 ± 0.2 35.02 ± 0.05 6.65 ± 0.03
12 1.9733963 ± 2 · 10−7 155.1 ± 0.1 27.83 ± 0.03 1.43 ± 0.03

Table A.6: Parameters from the fit of the transmission of the lumped-element res-
onators in chip Test 2 at 4 K.

LER ωr/2π (GHz) κ/2π (kHz) κc/2π (kHz)
1 2.8308 14.0 ± 1 2.0 ± 1
2 2.6597 11.0 ± 1 3.0 ± 1
3 2.5194 13.0 ± 1 4.0 ± 1
4 2.3896 17.0 ± 1 4.0 ± 1
5 2.2800 13.0 ± 1 4.0 ± 1
6 2.1756 23.0 ± 1 4.0 ± 1
7 2.0870 13.0 ± 1 5.0 ± 1
8 2.0059 10.0 ± 1 10.0 ± 1
9 1.9331 10.0 ± 1 5.0 ± 1

10 1.8585 11.0 ± 1 8.0 ± 1

Table A.7: Parameters from the characterization, just after fabrication at CAB, of
the lumped-element resonators in chip Test 3 at 12 mK.
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