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Abstract: Currently, pest management practices require modern equipment and the 18	

use of complex information, such as regulations and guidelines. The complexity of 19	

regulations is the root cause of the emergence of automated solutions for compliance 20	

assessment by translating regulations into sets of machine-processable rules that can be 21	

run by specialized modules of farm management information systems (FMIS). However, 22	

the manual translation of rules is prohibitively costly and therefore, this translation should 23	

be carried out with the support of artificial intelligence techniques. 24	

In this paper, we use the official Spanish phytosanitary products registry to empirically 25	

evaluate the performance of four popular machine learning algorithms in the task of 26	

correctly classifying pesticide regulations as prohibitions or obligations. Moreover, we also 27	

evaluate how to improve their performance with the preprocessing of the texts with natural 28	

language processing techniques. Finally, due to the specific characteristics of the texts 29	

found in pesticide regulations, resampling techniques are also evaluated. Experiments 30	

show that the combination of the machine learning algorithm Logic regression, the natural 31	

language technique part-of-speech tagging and the resampling technique Tomek Links is 32	
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the  best performing approach with an F1 score of 68.8%, a precision of 84.46% and a 33	

recall of 60%. Experimental results are promising and shows that this approach can be 34	

applied to develop a computer-aided tool for transforming textual pesticide regulations into 35	

machine-processable rules. To the best of our knowledge, this is the first study that 36	

evaluates the use of artificial intelligence methods for the automatic translation of 37	

agricultural regulations into machine-processable representations. 38	

Keywords: Rule extraction, Natural language processing, Smart precision agriculture, 39	
Integrated pest management 40	

 41	

 42	

1. Introduction 43	

In modern agriculture, production is governed by a variety of standards that restrict 44	

farming practices that could be harmful (Nikkilä et al., 2012). For example, different 45	

regulations and programs, such as Integrated Pest Management (IPM), have been 46	

developed to control the use of phytosanitary products and prevent unauthorized uses 47	

(Lozano et al., 2010). IPM can be implemented as a module of a farm management 48	

information system (FMIS), which collects, exchanges and stores a large amount of 49	

exploitation data and provides decision support for tailoring farm operation to the specific 50	

demands of stakeholders (Sørensen et al., 2010). Fountas et al. (2015) extend this model 51	

by defining a complex information ecosystem established around the farm machinery 52	

named Farm Machinery Management Information System (FMMIS), based on the Soft 53	

System Methodology (SSM). The interrelations presented in this extended model, some 54	

such as GNSS positioning data, real-time crop and soil data generated by airborne or 55	

terrestrial sensors, and input consumption and inventory management databases, have 56	

been increasing studied and adopted by farmers (Miller et al., 2017). Making farmer’s 57	

decision process easier is essential. 58	
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One of the FMMIS challenges is the active support during the decision-making 59	

process, which could ensure that agricultural tasks such as fertilization and spraying are 60	

conducted according to safety and quality standards. To achieve this goal, it is necessary 61	

to translate standards and regulations into a machine-readable representation, such as 62	

formal rules, that can be executed within an FMIS.  63	

According to Nash et al. (2011) and our own experience working with the official 64	

Spanish phytosanitary products registry, agricultural regulations consist of rules that can 65	

be mainly classified as prohibitions and obligations. Thus, each of these rules can be 66	

evaluated as true or false, with the conclusion of compliance or violation of the regulation.  67	

The manual translation of regulations into machine-processable representations is 68	

prohibitively costly in terms of time, labour and knowledge (Wyner and Governatori, 2013). 69	

Another barrier to the actual situation encompassing European farming is that most of the 70	

data and information are unstructured, fragmented and difficult to use (Fountas et al., 71	

2015).  72	

To avoid these bottlenecks, techniques related to artificial intelligence, such as 73	

information retrieval, natural language processing (NLP) and machine learning (ML), can 74	

be used to identify syntactical patterns in the rules and partially automate the translation of 75	

regulations into formal rules that can then be provided to the FMIS. Moreover, in recent 76	

years, some promising results have been obtained in extracting rules from regulations in 77	

several domains (e.g., Soria et al., 2005; Wyner and Peters, 2011; Maat and Winkels, 78	

2008). In the agricultural domain, these techniques must prove that they are highly 79	

accurate because non-compliance caused by an extraction error may carry a considerable 80	

economic penalty (Davies and Hodge, 2006). Automatic rule extraction from regulations is 81	

a complex process that requires different components. One of these components should 82	

be a rule classifier that allows regulations to be categorized as prohibitions or obligations 83	

(Figure 1). This step is critical because an error implies that the meaning of the rule is 84	

inverted. For example, a rule such as “Do not apply to crops with fruits that must be 85	
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preserved” could be interpreted as “Apply to crops with fruits that must be preserved”. 86	

Moreover, this classification could facilitate the modelling conditions and rule constraints 87	

that represent the meaning of rules and retain consistency with the original text. There are 88	

different ways to build rule classifiers, but the state-of-the-art approach includes the use of 89	

ML algorithms. Moreover, these algorithms are often enriched with linguistic knowledge 90	

that is automatically extracted by using NLP techniques and improved by using 91	

preprocessing techniques such as resampling. 92	

 93	

Figure 1. Processes for translating a rule into a machine-readable format. Rule classifier 94	
development is an interactive process. If a regulation changes, it may be necessary to retrain the 95	

classifier with new data. Developing a rule classifier is a complex task that requires the combination 96	
of NLP techniques, resampling methods and model training.  97	

 98	

This work evaluates the applicability of NLP, resampling and ML techniques for 99	

building a rule classifier that can automatically discern between prohibitions and 100	

obligations in the agricultural domain using documents from the official Spanish 101	

phytosanitary product registry. We have preprocessed these documents to extract only the 102	

parts of the text that represent the rules. Then, we have manually annotated them to 103	

create a gold corpus where the ML algorithms will find the patterns that allow the 104	
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distinction between prohibitions and obligations. This gold corpus will also be used as a 105	

benchmark to evaluate the performance of the different techniques evaluated in this paper. 106	

It is important to note that we have created our own corpus because, as far as we know, 107	

there is no available gold corpus focused on phytosanitary regulations in contrast to other 108	

research domains such as spam classification or news categorization. In this paper, we 109	

provide insights into the possibilities and limitations of existing ML, resampling and NLP 110	

techniques for usage in agriculture to support the development of decision support 111	

systems and the FMIS. Moreover, the objective of the approach presented in this paper is 112	

to provide a basis for the future automatic extraction of rules and their spatiotemporal 113	

components. As noted by Nikkilä et al. (2012), we believe that the fully automated 114	

translation of regulations is not currently feasible but building knowledge repositories and 115	

software components that gradually solve the rule translation problems, will benefit in 116	

future studies. 117	

This article is structured as follows, Section 2 presents the materials and methods. 118	

where the complexity of the FMIS is presented and the developed methodology is detailed. 119	

Section 3 shows the results of the evaluation of the techniques analysed and Section 4 120	

presents a discussion of its implementation in FMISs. Finally, Section 5 presents the 121	

conclusions and future directions for the integration of these techniques in modern FMISs. 122	

2. Materials and Methods  123	

2.1. Commercial FMIS structure and data sharing enhancements 124	

In modern agrisystems, many devices including tractors, tractor implement, field 125	

sensors, airborne devices, etc, are used on farms. The information generated and required 126	

by these devices must be understandable to optimize collaboration efforts. To simplify the 127	

abovementioned interconnection of different farm elements and provide a unified data 128	

platform, the commercial solution Agroplanning was created. Agroplanning is a modular 129	

cloud-based FMIS that treats the tractor as a centralized connected platform for data 130	
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generation and reception. The aim of the system is to incorporate the tractor-centric 131	

approach defined by Fountas et al. (2015), and equipping agricultural service companies, 132	

farmers, cooperatives and machinery manufacturers with the tools to generate the first 133	

advanced precision farming services, improve efficiency and increase the precision of 134	

agricultural management.  135	

Information regarding the real-time position of a tractor or routes, agricultural tasks 136	

performed with an implement and decisions made by growers is not easy to obtain if these 137	

processes are not properly recorded. To permit data collection and provide a number of 138	

intelligent services, a novel hardware module, ISOBUS compliant, which provides GNSS 139	

and GPRS connectivity and up to ten I/O digital pins, has been developed. This device 140	

sends the data packages to the cloud server every 10 second and can be mounted on any 141	

agricultural vehicle. This module was created to enhance data interoperability and tailor 142	

existing systems to farmers’ needs. The vehicle monitoring data are combined in the core 143	

of the Agroplanning cloud FMIS with a variety of soil, crop and climate data from wireless 144	

in-field sensor networks; and other data to improve knowledge of field conditions.  145	

All the data is automatically transferred to a cloud platform built on Azure Web 146	

Services (Microsoft, Redmond, USA). This cloud platform uses the database systems 147	

SQLServer and NoSQL Azure Tables, were the information provided is stored into 148	

relational and non-relational databases. A comprehensive diagram of the relational entities 149	

built up on the actual commercial FMIS is provided on figure 2. 150	

The modular architecture is reflected in the user interface, that can be seen on figure 3 151	

below, which has been divided into interconnected blocks as follows. 152	

• Vehicles: This block provides advanced agricultural fleet management in real 153	

time. In a visual interface with map base in OpenLayers, all information of the 154	

connected machinery, routes, implements, daily activities, alarms, etc. is 155	

shown. 156	
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• Farms: This module manages the different plots within a farm defined by the 157	

user from shapefiles or administrative information. 158	

• FieldBook: This module combines the two previous modules to automatically 159	

generate reports of what has been done in each plot by the vehicles. 160	

• Sensors: This module provides an analytical visualization of the growing, soil 161	

and climate conditions in each plot through wireless sensor networks. 162	
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Figure 2. Database relation diagram between entities and some example parameters on Agroplanning’s commercial FMIS solution 163	
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 164	

 Figure 3. User interface of actual FMIS commercial solution. 165	
 166	

The actual platform combines the different modules in such a way that all knowledge, 167	

agronomic algorithms with local components, and elements of decision support are 168	

merged to create a decision-making level that includes strategic, operational and 169	

evaluation aspects in the form of an automated report. The adoption of this integrative 170	

platform is being improved by the addition of new modules and functionalities, but its use is 171	

currently low. Specifically, approximately 20 producers are using it, mainly agricultural 172	

service providers in southwestern Spain, and the total number of connected vehicles is 173	

close to 200 (Agroplanning, Sevilla, Spain). 174	

In addition to the actual commercial stage of the FMIS, a novel conceptual feature 175	

provides the ability to incorporate third-party actors into the system. For pesticide 176	

applications in IPM systems, national and regional administrations have various open data 177	

sources (most of them unstructured as data repositories) that include information on 178	

allowed active substances, legal application doses and safety periods.  179	
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The novelty associated with this approach of combining administrative data and 180	

connected in-field elements is the possibility of automatically generating pesticide task 181	

recommendations according to both the standards of the administration and the agronomic 182	

algorithms adapted to local conditions. In this approach, automatic prescriptions can be 183	

generated based on where a vehicle is located, the crop and variety within the exploited 184	

domain (registered in official documents). The phenological state of the crop, the actual 185	

crop needs, and what active substances are allowed in that location (along with all the 186	

other regulatory information). 187	

In addition, these "official" prescriptions would be automatically sent to an electronic 188	

controller on the tractor or implement. On the vehicle on-board screen, the user is allowed 189	

to accept or reject the prescription. If the former happens, the user will be assured that the 190	

task will be performed according to the required safety and quality criteria. In addition, 191	

automatic task registration will ensure that this task complies with regulations and provides 192	

traceability for the performed actions. Details of the chemical amounts, frequency of tasks 193	

and pesticides used will be given through automatic reporting to both the producer and 194	

administration. 195	

Within this conceptual framework, which can be integrated in an FMMIS to improve 196	

the decision-making capacity, links can be created among producers, companies and 197	

administrations to allow end users to make informed decision that adhere to standards 198	

regarding the use of agricultural inputs though promoting data sharing and open data 199	

access. At this point, we consider important to point out that the direct involvement of the 200	

administration in the proposed conceptual model can lead to a data privacy conflict. In the 201	

near future, and on the basis of data protection regulations, this should be resolved with 202	

their explicit consent, by means of methods of user anonymization, using as far as 203	

possible data aggregates, and even with new methods based on digital technologies such 204	

as blockchain's smart contracts between two parties (user and administration), which 205	
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should include aspects such as data ownership and the generation of valuable information 206	

from them.  207	

The goal of such a system is to increase the integration and interoperability of 208	

agricultural information and involve the administration to ensure that crop protection tasks 209	

are efficiently and cost-effectively performed and comply with all safety standards and 210	

regulations.  211	

To achieve this target scenario, one barrier to overcome is the automatic incorporation 212	

of all the regulatory information associated with these applications. In this approach the 213	

information can be used to take actions and can be automatically incorporated into the 214	

FMIS (figure 4). This issue and the relevant details at the Spanish national level are 215	

addressed in the following section based on ML techniques and NLP. 216	

 217	

 218	

 219	

Figure 4. Complete vision of commercial stage and future enhancements on developed FMIS 220	
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2.2 Local structure of agricultural standards in Spain 221	

Documents containing information regarding the allowed phytosanitary products and 222	

how to apply them in Spain are published in the official Spanish phytosanitary product 223	

registry, which currently contains 2,426 documents in PDF format. Figure 5 shows an 224	

example of one of these documents. The part denoted by the dark blue box shows that this 225	

document is official and published by the Government of Spain. The light blue box contains 226	

a table with information regarding how the pesticide must be applied. This table includes 227	

two parts. The first part (green box) shows the structured portion of the regulation. This 228	

part could be easily transformed into a machine-readable format using different heuristics. 229	

Here, we can find information regarding the usage, crop and dose. The second part (red 230	

box) is formatted with unstructured manual language, and its translation into a formal rule 231	

is the motivation of this research. In this part, we can find different spatiotemporal 232	

constraints that cannot be easily extracted. Each of these constraints can be categorized 233	

as an obligation or a prohibition.  234	

Some examples of rules (translated into English) that appear in these documents with 235	

and their categorization (obligation/prohibition) are given in the following text. These rules 236	

will be used to train and evaluate the ML techniques that are the basis of the final rule 237	

classifier. 238	

• “Apply only until flowering” (Obligation) 239	

• “Treat from time the stalk develops until the ear emergence” (Obligation) 240	

• “Do not apply to crops with fruits that must be preserved” (Prohibition) 241	

• “Never apply after 10 leaves” (Prohibition) 242	

 243	



Computers and Electronics in Agriculture 2018, 18, x FOR PEER REVIEW  5 of 30 

	

 244	

Figure 5. English translation of part of the official documents that regulate the use of 245	
pesticides in Spain.  246	

 247	

2.3 Gold corpus creation 248	

A	 gold	 corpus	 is	 a	 set	 of	 annotated	 texts	 that	 serves	 as	 a	 basis	 for	 the	 training	 and	249	
evaluation	 of	ML	 algorithms.	 In	 addition,	 a	 gold	 corpus	 can	 be	 seen	 as	 the	 benchmark	250	
where	 a	 community	 research	 evaluates	 their	 algorithms	 and	 obtain	 state-of-the-art	251	
results.	 For	 example,	 research	 fields	 related	 to	 text	 classification	 such	 as	 spam	252	
classification	 or	 newswire	 categorization	 have	 their	 own	 gold	 corpus.	 Currently,	 to	 the	253	
best	 of	 our	 knowledge,	 there	 is	 no	 available	 gold	 corpus	 focused	 on	 phytosanitary	254	
regulations;	 therefore,	we	have	developed	our	own	corpus.	The	corpus	 is	a	monolingual	255	
Spanish	corpus	consisting	of	2,426	PDFs	collected	from	the	official	Spanish	phytosanitary	256	
product	registry.	We	manually	annotated	1,135	rules	in	natural	language	as	obligations	or	257	
prohibitions	 when	 the	 text	 conveys	 such	 meaning	 related	 to	 the	 application	 of	 a	258	
phytosanitary	 product.	 Some	 examples	 are	 shown	 in	 the	 previous	 section.	 The	 corpus	259	
statistics	are	shown	in	Table	1.	We	believe	that	the	is	of	adequate	size	for	the	evaluation	260	
of	algorithms	due	to	the	small	number	of	distinctive	rules	and	the	standardized	nature	of	261	
the	phytosanitary	vocabulary.		262	

It	is	important	to	note	that	the	processing	of	these	documents	is	not	trivial	because	they	263	
are	published	with	PDF	format	and	information	extraction	is	subject	to	errors.	In	this	part	264	
of	 the	work,	 these	 errors	 have	 been	manually	 fixed	 because	 our	 gold	 corpus	 dataset	 is	265	
relatively	small	(1,135	rules).		266	

 267	

Table 1. Corpus statistics 268	

Corpus Statistics 
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No. of rules 1,135 

No. of obligations 1,119 

No. of prohibitions 16 

Average rule length 

22 

words 

No. of words 25,420 

No. of unique words 2,689 

 269	

2.4 Natural language processing 270	

A preprocessing step using NLP techniques is necessary to extract the most important 271	

words or groups of words from inside the rules and improve the performance of the 272	

classifier. As Collobert et al. (2000) explained, the choice of the optimal text preprocessing 273	

technique is an empirical process that is mainly based on linguistic intuition followed by 274	

trial and error. We used the following NLP techniques to improve the ML process by 275	

adding linguistic knowledge: 276	

i. Part-of-speech (POS) tagging 277	

ii. Stemming 278	

iii. N-grams: unigrams and bigrams 279	

 280	

POS tagging is the process of marking a word in a text as corresponding to a 281	

particular part of speech based on both its definition and its context (Brill, 1992). We used 282	

the Stanford POS tagger in this study (Toutanova et al., 2003). Stemming consists of 283	

removing any attached suffixes and prefixes from words because singular and plural forms 284	

of a noun or different verb forms are semantically the same in many contexts and they 285	

increase redundancy and complexity in the model. We used the Porter algorithm for 286	

stemming (Porter, 1980). N-grams attempt try to solve the problem of information loss 287	

when transforming a document into a set of independent words because sometimes word 288	

context matters. Single tokens are known as unigrams and pairs of tokens are known as 289	

bigrams. In this work, we use both types of N-grams. 290	
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Moreover, stop words and punctuation are removed by default in our evaluation. 291	

These steps remove words that are not relevant such as some articles (e.g., “the” and “a”), 292	

pronouns, etc. It is important to note that there is no single universal list of stop words, and 293	

they depend on the context. Finally, to provide a weight for each word or group of words in 294	

the corpus we use the term frequency-inverse document frequency (tf-idf) (Raschka, 2014) 295	

because it decreases the weights of words that are not relevant and not in the list of stop 296	

words. 297	

2.5 Resampling techniques 298	

Additional challenges come from the usage of ML techniques. It has been reported 299	

that one of these aspects is related to class imbalance, in which examples in training data 300	

associated with one class heavily outnumber the examples from other classes (Japkowicz 301	

and Stephen, 2002; Chawla et al., 2004). In our corpus, this problem arises because, as 302	

reported in Table 2, we have many more obligations than prohibitions. In this situation, the 303	

ML system may have difficulties learning the concepts related to the minority class 304	

(prohibition in our case). Despite its shortcomings, one of the procedures that has been 305	

applied in many studies is resampling (He and Garcia, 2010). Resampling is performed by 306	

oversampling or undersampling data to change the frequency of classes in the training 307	

data extracted from the gold corpus in proportion to a cost model. Resampling is only 308	

applied to the training set because the test set must be kept in its original state. In this 309	

work, we perform a broad experimental evaluation involving five different resampling 310	

methods: 311	

i. Random oversampling (ROS), 312	

ii. Random undersampling (RUS), 313	

iii. SMOTE, 314	

iv. ADASYN, and 315	

v. Tomek Links. 316	
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In ROS, the minority class is randomly replicated to force the learning algorithm to 317	

correctly classify instances of that class, whereas RUS involves the random deletion of 318	

examples of the most frequent class to yield obtaining the opposite result. SMOTE is an 319	

advanced method of oversampling developed by Chawla et al. (2002). This approach aims 320	

to enrich the minority class boundaries by creating artificial examples in the minority class 321	

than replicating existing examples to avoid the problem of overfitting. ADASYN is another 322	

method of oversampling that was developed by Skalidis (2016). The essential concept is to 323	

use a weighted distribution for different minority class examples according to their level of 324	

difficulty in learning, where more synthetic data are generated for minority class examples 325	

that are harder to learn compared to those minority examples that are easier to learn. 326	

Tomek links is a method of undersampling that searches for instances of closest 327	

neighbours that do not share the same class label (Tomek, 1976). When this relationship 328	

is identified, the Tomek link is removed from the data set, and the process is repeated until 329	

no more Tomek links can be found. 330	

2.6 Model training 331	

After preprocessing using the NLP techniques, we must apply different ML algorithms 332	

to obtain a rule classifier that can discriminate between prohibitions and obligations. The 333	

term ML refers to the automated detection of meaningful patterns in annotated data. The 334	

specific methods used in this paper include support vector machines, logistic regression, 335	

naive Bayes and random forests methods. The three first methods are chosen because 336	

they generate linear models that generally yield good results in high dimensional sparse 337	

problems, such as text classification, that overcome the issue of dimensionality (Bellman, 338	

1961). A random forest method is chosen due to its effectiveness when applied to different 339	

problems, and contrary to linear classifiers, it can learn complex models that are 340	

sometimes necessary to correctly describe a classification problem. If the performance of 341	

linear and nonlinear classifiers is the same, linear classifiers are typically selected because 342	
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they are simpler than nonlinear classifiers. We used the following ML algorithms in our 343	

experiments: 344	

i. Support vector machines (SVM), 345	

ii. Logistic regression, 346	

iii. Naive Bayes, and 347	

iv. Random forest (RF) methods. 348	

SVM algorithms (Cortes and Vapnik, 1995) provide state-of-the-art text classification 349	

models because of their robustness to high dimensionality problems. An SVM model treats 350	

examples (in this work, the rules after preprocessing) as points in space, and these points 351	

are mapped so that the examples of different categories are separated by a gap that are 352	

as wide as possible. Because of the excellent results that SVM algorithms have achieved 353	

in a wide variety of domains, including in the agricultural field (Zhou et al., 2014), they have 354	

rapidly gained popularity. Logistic regression arises from the desire to model the posterior 355	

probabilities of classes (in this work, obligation and prohibition) via linear functions in the 356	

feature space (in this work, the words after preprocessing) while ensuring that the 357	

probabilities sum to one and remain in the range of [0,1] (Friedman et al., 2008). This 358	

model is also a representation of examples as points in space that are mapped as 359	

described above; however, contrary to SVM, the gaps between classes of points are as 360	

wide as possible. The naive Bayes classifier (Langley and John, 1995)  is based on the 361	

popular Bayes probability theorem. It is known for creating simple yet effective linear 362	

models. For example, this approach yielded excellent results when applied for spam 363	

classification and disease prediction (Saad et al., 2012). The main difference between 364	

naive Bayes and logistic regression is that the former optimizes the joint probability and the 365	

latter optimizes the posterior probability. RF methods use decision trees (i.e., a forest) with 366	

random independently sampled vectors, and all trees in the forest have the same 367	

distribution (Breiman, 2001). They are popular algorithms in the ML community and have 368	

been recently used in the agricultural field (e.g., Brillante et al., 2015; Görgens et al., 369	

2015). 370	
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2.7 Rule classifier evaluation 371	

Evaluation techniques measure the correspondence between the results that the 372	

classifier generates and those of the gold standard. There is no single evaluation metric 373	

that is appropriate for all classification problems. In practice, different classification models 374	

should be compared based on a particular dataset and different metrics. Moreover, it is 375	

important to consider the high-level goal of the application: The FMIS where the rule 376	

classifier could be integrated must accurately classify the maximum number of rules to 377	

reduce the risk of prescribing the wrong pesticide or application. This goal can be 378	

evaluated with thee metrics: recall, precision and a combination of the two deemed the F1 379	

score. 380	

Recall is a widely used ML metric. In our work, it is defined as the fraction of “true” 381	

prohibition rules that are effectively classified as prohibitions (!"#→"#). Thus, it provides a 382	

measure of the “completeness” of the system (Eq. 1). Recall decreases if the number of 383	

prohibitions misclassified as obligations (!"#→%&) increases. If recall is 100%, no 384	

prohibitions have been classified as obligations. 385	

'()*++ = -./→./
-./→./0-./→12

 (1) 386	

Precision is another widely used metric and provides a measure of the “soundness” of 387	

the system. Specifically, it is the proportion of the rules correctly classified as prohibitions 388	

(!"#→"#) to the total number of rules classified as prohibitions (!"#→"# + !%&→"#), as shown 389	

in Eq. 2. The precision decreases if the number of obligations misclassified as prohibitions 390	

(!%&→"#) increases. In this work, if the precision is lower than 100%, some obligations are 391	

classified as prohibitions and a rule such as “Apply this pesticide in the spring” could be 392	

interpreted as “Do not apply this pesticide in the spring”. 393	

34()5657! = -./→./
-12→120-12→./

     (2) 394	

High recall and precision values indicate good performance; however, it is important to 395	

note that there is a trade-off between optimizing recall and optimizing precision. Thus, 396	
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while precision and recall are very important metrics, considering only one of them will not 397	

provide the full picture. Finally, the F1 score combines precision and recall to provide a 398	

single metric for algorithms comparison, as shown in Eq. 3. In this work, this measure is 399	

used to identify the most balanced algorithm that is likely the best approach for 400	

categorizing rules. 401	

89 = 2 ∗ "#<=>?>%-	∗	#<=ABB"#<=>?>%-0#<=ABB        (3) 402	

A standard measure of classification performance is the classification accuracy. 403	

However, for datasets with skewed distributions, this measure can be misleading. 404	

3. Results 405	

This section shows the experimental results of the 96 different combinations achieved 406	

by evaluating 4 ML algorithms, 6 resampling methods and 4 NLP techniques to build the 407	

rule classifier. All of them are the averages of 30 runs. In each of the runs, we use 408	

stratified 10-fold cross-validation to find the best hyperparameter settings used in the ML 409	

algorithms (Table 2). This statistical technique provides good performance estimates with 410	

minimal assumptions and makes results less prone to random variation. The main 411	

disadvantage of cross-validation is the associated increased computational cost, but in this 412	

phase of the research, it is more important to obtain accurate estimates. It is important to 413	

note that optimal hyperparameter settings often differ for different datasets. Therefore, they 414	

should be tuned for each dataset. 415	

Table 2: Parameter specification for the algorithms 416	

Algorithm Parameters 

Naive Bayes - 

SVM 

Kernel = Linear 

C = 10 

Tolerance = 0.001 

Shrinking = true 

Random forest 

Estimators = 20 

Pruned = false 

Impurity = Gini 

Logistic regression 
Penalty =12 

C= 10 
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 417	

 418	

 419	

 420	

 421	

 422	

The ML algorithms were implemented based on the method published by scikit-learn 423	

(Pedregosa et al., 2011), which is one of the best known and most widely used ML 424	

libraries. This package, which is written in Python, includes the implementation of many 425	

popular ML algorithms and has preprocessing and evaluation capabilities. The version of 426	

scikit-learn used in this work is 0.19.1. We investigate the learning algorithms in 427	

combination with different NLP and resampling techniques to find the combination that 428	

allows the most accurate rule classification for prohibitions and obligations. Many 429	

algorithms and NLP techniques exist that are beyond the scope of this work, but in future 430	

experiments they should be studied to potentially identify better approaches. In Table 3, 431	

we can observe the top 10 combinations of NLP, resampling and ML techniques that 432	

yielded the best precision in recognizing prohibitions. These combinations minimized the 433	

false positive error (!%&→"#), i.e., the number of obligations classified as prohibitions. 434	

Conversely, they exhibit low recall values, which means that some prohibitions are “lost” 435	

and incorrectly classified as obligations !"#→%&. POS tagging is the best technique for 436	

achieving high precision. Otherwise, more diversity is provided by other resampling 437	

techniques and ML algorithms. Logistic regression could potentially be considered the best 438	

approach because the top results use this algorithm. Table 4 shows the top 10 439	

combinations of NLP, resampling and ML techniques that yield the best recall in 440	

recognizing prohibitions. These combinations minimize the false negative error (!"#→%&), 441	

i.e., the number of prohibitions classified as obligations. 442	

Tolerance = 0.0001 
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Table 3: Summary of the algorithms with the best precision in prohibition classification 443	
NLP Resampling Algorithm Precision (%) Recall (%) 
POS None Logistic 85.00 58.57 

POS Tomek links Logistic 84.46 60.00 

POS ROS RF 84.04 47.85 

POS Tomek links RF 81.54 40.00 

POS None RF 78.72 34.28 

POS SMOTE RF 75.73 50.71 

POS ADASYN RF 74.25 47.14 

Bigrams SMOTE SVM 72.12 61.42 

POS None SVM 67.72 52.14 

Bigrams ROS SVM 67.15 70.00 

 444	

However, these methods yield low precision, which means that many obligations are 445	

“lost” and classified as prohibitions (!"#→%&). The stemming and unigrams methods are the 446	

specific NLP techniques that produce the best recall performance. It is important to note, 447	

that best results are always achieved by resampling techniques, specifically, oversampling 448	

techniques. This finding is expected because resampling techniques are implemented to 449	

improve the ability of ML algorithms to recognize prohibitions. The problem with these 450	

approaches is that because there are so many obligations, if an algorithm is biased in 451	

classifying rules as prohibitions, precision can significantly decrease (the best precision is 452	

23.09%).  453	

Finally, Table 5 shows the top 10 combinations of NLP, resampling and ML 454	

techniques that exhibit the best F1 values for recognizing prohibitions. These results 455	

represent the most balanced approach. Thus, if we have no preference regarding the type 456	

of error and misclassifying obligations and prohibitions is equally important, this 457	

combination should be chosen. The most balanced combination yielded a 68.08% F1 score 458	

and included POS tagging, Tomek links and logistic regression. 459	

The remainders of the results suggest that POS tagging is implemented in the top 460	

three methods, and logistic regression is used to achieve the top two results. 461	
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To confirm that best performing result is not due to chance, we conducted a statistical 462	

significance test using the second-best (POS tagging, ROS and logistic regression). The 463	

test was performed using Welch’s t-test (Welch, 1951) with a confidence level of 0.01. 464	

 465	

Table 4: Summary of the algorithms with best prohibition recall 466	

NLP Resampling Algorithm Recall (%) Precision 
(%) 

Unigrams ROS Logistic 100 23.09 

Stemming ROS Logistic 100 21.04 

Unigrams ADASYN Logistic 100 20.71 

Unigrams SMOTE Logistic 100 20.58 

Stemming ADASYN Logistic 100 19.83 

Stemming SMOTE Logistic 100 19.67 

Unigrams RUS Logistic 100 6.85 

Stemming RUS Logistic 100 6.55 

Unigrams RUS Bayes 100 5.63 

Stemming ROS Bayes 100 5.54 

 467	

According to the test, statistical significance exists between the approaches; therefore, 468	

we can confirm that the correct selection of NLP, resampling and ML algorithms is 469	

important for developing the most accurate rule classifier. 470	

It is also important to note that in the three tables, logistic regression is the best ML 471	

algorithm. The rationale behind these results is that simple linear models can obtain good 472	

results in combination with different resampling and NLP techniques. To determine which 473	

are the techniques that work best for rule classification, we visualize the results after 474	

aggregating all the F1 values for all NLP, resampling and ML techniques.  475	

Figure 6 shows a comparison of NLP techniques without considering the rest of the 476	

classification components. Notably, POS tagging exhibits the best performance. The rest 477	

of the NLP techniques yield similar results; therefore, we can infer that stemming and 478	

bigrams have little influence on the F1 score. 479	
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In Figure 7, the behaviours of the different resampling techniques used during the 480	

experiments can be observed. ROS exhibits the most stability, although in some 481	

experiments, it yields poor results. The other oversampling techniques (ADASYN and 482	

SMOTE) displayed similar behaviours but poor performance. Undersampling techniques 483	

exhibited the worst overall performance. However, it is important to note that in particular 484	

cases, undersampling can produce high performance, such as in the case of Tomek links 485	

in combination with POS tagging and logistic regression. 486	

Table 5: Summary of the algorithms with the best F1 score  487	

NLP Resampling Algorithm F1 (%) 

POS Tomek links Logistic 68.08 

POS ROS Logistic 67.72 

POS None RF 67.04 

Bigrams ROS RF 66.64 

Unigrams ROS RF 66.54 

POS SMOTE RF 65.91 

Bigrams SMOTE RF 63.41 

Stemming ROS SVM 60.53 

POS ROS SVM 58.55 

POS SMOTE SVM 57.39 

 488	

Finally, Figure 8 illustrates the performance of the different ML algorithms. SVM and 489	

logistic regression exhibit the best performance in general. In the case of logistic 490	

regression, this result was expected after reviewing the previous results. On the other 491	

hand, SVM exhibits good performance but never produces excellent results. Thus, we can 492	

state that SVM is a robust approach that should be studied further in the future to 493	

determine if it can yield results similar to those of logistic regression.  494	
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 495	

Figure 6. Performance comparison of the different NLP techniques used. While POS tagging 496	

achieves the highest F1 score, the others obtain a similar lower performance.  497	

 498	

          499	

Figure 7. Performance comparison of the different resampling techniques evaluated. Over-500	

sampling techniques such as ROS, ADASYN and SMOTE achieve the highest performances.  501	
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 502	

Figure 8. Performance comparison of the different machine learning algorithms evaluated. SVM 503	

achieves the highest F1 score. 504	

4. Discussion 505	

Since health-related risks due to the provision of an incorrect rule are possible, it is 506	

critical that the phytosanitary rule classifier provides information to the FMIS with the 507	

maximum potential accuracy. The best approach identified in our experiments is a rule 508	

classifier that combines POS tagging, Tomek links and Logistic regression. The method 509	

yielded and F1 score of 68.8%, precision of 84.46% and recall of 60%. Although the ideal 510	

result would be 100% for all three metrics, this is unrealistic, and the literature no real 511	

automatic system can achieve this level of functionality. A human annotator could achieve 512	

this performance, but due to the abundance of regulations, it would be difficult to consider 513	

all the information that an automatic system could process. In addition, based on the 514	

automatic extraction of rules, the information provided by the FMIS would rarely be 515	

outdated. Although the idea of using artificial intelligence techniques is to bound and 516	

optimize human intervention, due to the dynamics of agricultural production, the feedback 517	

provided by humans to retrain an old rule classifier with more information is an important 518	

part of the system. Moreover, as Nash et al. (2011) noted, until new algorithms and 519	

approaches are researched, the original text of the rule must be provided to the farmer, 520	
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and if the automatic translation is not working correctly, a report with the detected 521	

problems could be generated. This could be seen as a Human in the Loop (HIL) DSS 522	

(Pinto et al., 2015). It is also important to note that machine learning models make a 523	

stationary assumption, but this is not true in practice. This means that the distribution of 524	

the data will drift from what the model was originally trained upon. Distribution drift 525	

invalidates the model and, therefore, it needs to be updated. 526	

In addition, this approach could be used as a computer-aided tool that human 527	

annotators could use to translate regulations into a formal semantic representation that 528	

could be executed within the FMIS. Therefore, this system could be seen as part of a 529	

semiautomatic rule extraction framework with an increased automation role based on 530	

inputs from future NLP, resampling and ML advances. However, although there are 531	

multiple language constructs for each sentence type, these methods are limited. Perhaps, 532	

some heuristic or post-processing methods could improve the performance of such 533	

algorithms. However, we prefer to use only ML and NLP for automatic rule translation. 534	

Finally, we agree with Nash et al. (2011) that obligations and prohibitions are good starting 535	

points for transforming rules into a machine-readable format and next step should include 536	

the extraction of information contained within the rules that represents the actions that are 537	

required or prohibited. To achieve this goal, it would be necessary to extend this approach 538	

by using external knowledge to model more complex rules. This knowledge could be 539	

based on different agricultural ontologies such as crop taxonomies proposed through open 540	

data initiatives and standards (Charvat et al., 2014). Moreover, if we add complexity to the 541	

model, the classifier should consider parts of the text whose category is not clear, and 542	

therefore, to request for human expert decision. This human expert could discard the rule 543	

because it does not contain relevant information for a specific FMIS requirement. In 544	

addition, new concepts related to law formalization such as permission, penalty and 545	

definition could be used to model new parts of the phytosanitary regulations. 546	

5. Conclusions 547	
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In this article, we have evaluated whether it is possible to use ML techniques in 548	

combination with NLP and resampling techniques to classify rules involving prohibitions 549	

and obligations and, consequently, the applicability of these techniques in a module that 550	

can be integrated within an FMIS that supports decision making based on regulations and 551	

production standards. To the best of our knowledge, this is the first attempt to combine 552	

different automatic rule classification approaches in the agricultural domain. The best 553	

approach found in our experiments was the combination of POS tagging, Tomek links and 554	

Logistic regression. This combination yielded an F1 score of 68.8% a precision of 84.46% 555	

and a recall of 60%. Thus, it provides promising results that will be improved with 556	

advances in ML and NLP research. The rule classifier obtained can be used as a 557	

computer-aided tool that human annotators can use to translate regulations into a formal 558	

language that could be executed within the FMIS. 559	

Future research will use different algorithms and NLP techniques. Moreover, by 560	

introducing new techniques for information extraction, the spatiotemporal constraints could 561	

be automatically extracted and integrated within the FMIS. Therefore, an end-to-end 562	

system would be operative and regulations written in natural language could be 563	

automatically translated into machine-readable formats.  564	
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