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Abstract

In the European Union, production standards in the form of legal regula-

tions play an important role in farming. Because of the increasing amount of

regulations, it is desirable to transform human-oriented regulations into a set of

computer-oriented rules to provide decision support through the Farm Manage-

ment Information System. To obtain the logical structure of rules, automatically

labeling their meaningful information is necessary.

In this work, we evaluate the performance of 8 different state-of-the-art deep

learning architectures to develop an end-to-end sequence labeler for phytosani-

tary regulations. This sequence labeler extracts different meaningful information

items to determine which pesticides can be applied to a crop, the place of the

treatment, when it can be applied, and the maximum number of applications.

The architectures evaluated do not require feature engineering and, hence, they

are applicable to the agricultural regulations of different countries. The best

system is a neural network that uses character embeddings, Bidirectional Long

short-term memory and Softmax. It achieves a performance of 88.3% F1 score.

Keywords

• Deep Learning

• Natural Language Processing

• Rule extraction

• Compliance Control

• Sequence Labeling

1. Introduction

Agricultural production is governed by regulations, such as phytosanitary

authorizations and Integrated Pest Management guidelines, that restrict farm-

ing practices harmful for the environment (Nikkilä et al., 2012). For instance,
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the phytosanitary authorizations contain obligations and prohibitions about

the place where a treatment can be applied (greenhouse or outdoors) and the

amount of pesticide that can be supplied. To avoid information overload, farm

software, such as a Farm Management Information System (FMIS), should have

a module that guarantee compliance control in operations managed (e.g. spray-

ing pesticides) by ensuring that such operations are conform to the relevant

regulations. This module would be easier to implement if regulations were avail-

able in both machine-readable and natural language formats (Nash et al., 2011).

FMIS refer to a planned system for collecting, processing, storing and dissemi-

nating data in the form needed to carry out a farm’s operations and functions

(Salami and Ahmadi, 2010). Currently, their functionalities are useful in farms

that seek to comply with agricultural standards while maintaining high product

quality. However, to meet reliably all these needs, there is a double bottleneck:

firstly, relevant information is scattered among different sources and, secondly,

it is only available through texts in natural language. For this reason, making

them computer-oriented require an analysis of their objectivity, interpretability

and feasibility to transform it into a formal representation as a statement in

first-order logic (Nash et al., 2011). In order to obtain the logical structure of

the regulations, it is necessary to label previously all the relevant information

used within the definition of the rule (e.g. crops, phenological stages, temporal

relations). However, because of the increasing amount of regulations, automatic

techniques supporting the labeling task are desirable.

Although legal language is considerably more constrained than ordinary lan-

guage, its syntactic structures require labeling approaches using techniques re-

lated to Natural Language Processing (NLP) and machine learning (ML) (Maat

and Winkels, 2008; Brighi and Palmirani, 2009; Wyner and Peters, 2011; Drag-

oni et al., 2016). However, despite the huge number of proposed approaches,

the problem of extracting rules is still open. Most traditional high performance

sequence labeling models are linear statistical models, including Hidden Markov

Models and Conditional Random Fields (CRF) (Ratinov and Roth, 2009; Passos

et al., 2014; Luo et al., 2015), which rely heavily on hand-crafted features and

task-specific resources such as orthographic features and dictionaries. However,

such task-specific knowledge is costly to develop (Ma and Xia, 2014), making

sequence labeling models difficult to adapt to new tasks, domains or languages.

With advances in deep learning, neural network models have reached state-

of-the-art results on many sequence labeling tasks (Lample et al., 2016; Ma

and Hovy, 2016). Different neural architectures such as Convolutional Neural

Network (CNN), recurrent neural networks (Goller and Kuchle, 1996), together

with its variants such as Long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) have gained prominence in past few years. Collobert et al.,

2011 proposed a seminal neural architecture for sequence labeling. It captures

word sequence information with a one-layer CNN based on pre-trained word

embeddings, followed with a CRF output layer (Lafferty and Mccallum, 2001).

Dos Santos et al., 2015 extended this model by integrating character-level CNN

features. LSTMs have shown great success solving sequence labeling tasks and

achieving competitive performance against traditional models (Graves et al.,
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2013; Huang et al., 2015; Hu et al., 2016).

Deep learning has recently entered in the domain of agriculture. Different

areas have introduced this method to improve their efficacy. Some of them

are highly related to plant protection; for example, general recognition of plant

diseases by leaf image classification with CNNs (Sladojevic et al., 2016; Mohanty

et al., 2016) and transfer learning (Ferentinos, 2018) or specific ones such as

disease recognition in banana leaves (Amara et al., 2017). There are also works

in weed identification (Xinshao and Cheng, 2016; Tang et al., 2017). More works

can be found in Kamilaris and Prenafeta-Boldú, 2018.

However, the state of the art represented by the previous works, focuses on

computer vision techniques. Nowadays, there are very few works in literature

that focus on information extraction and the automatic text labeling from reg-

ulations. For example, Patil et al., 2013 used unsupervised learning to extract

crops, diseases and chemical treatments. Malarkodi et al., 2016 proposed an ap-

proach for labeling crops, chemicals, locations and temperatures among others

by using CRF. None of these examples have used deep learning techniques.

In this work, our goal is to find a suitable deep-learning architecture for

building an end-to-end information extraction system in agricultural regula-

tions. For this reason, we evaluate 8 state-of-the-art neural network architec-

tures to label the meaningful parts of textual rules found in a phytosanitary

products registry (phenological stages, maximum number of applications, tem-

poral relations, etc.). The phytosanitary products regulations are especially

relevant for society because sustainable plant protection is a pressing challenge

(?). Moreover, in the Spanish phytosanitary authorizations, regulations can be

structured into a set of individual rules which roughly fulfill with the require-

ments to achieve an automatic compliance assessment (Nash et al., 2011). (i)

The analysed phytosanitary rules are obligations or prohibitions which could be

encoded in a machine-readable form. We do not have documentation rules. (ii)

The rules have a recurrent terminology, which could be modelled with an ontol-

ogy. (iii) They also have a discrete outcome and, finally, (iv) the required data

inputs could be available in future years with the use of technologies related to

precision agriculture such as remote sensing, computer vision and FMIS.

Our contribution is to show an end-to-end methodology to automatically

label meaningful parts of the phytosanitary regulations using a deep leaning

model. A model that does not require task-specific resources, feature engineer-

ing, or data preprocessing beyond pre-trained word embeddings on unlabeled

corpora. Thus, our approach can be applied to a wide range of sequence label-

ing tasks on different agricultural regulations of different countries. We explore

three neural model design decisions: character sequence representations, word

sequence representations and inference layer. We combine character and word-

level representations and feed them into bi-directional LSTM (BLSTM) and

CNN to model context information of each word. On top of BLSTM and CNN,

we compare two different inference layers: a CRF to jointly decode labels for

the whole sentence and a Softmax layer that makes a local decision without

taking into account the label context. This research is the continuation of (?),

where the categorization of rules as obligations or prohibitions was evaluated.
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In this work, we go one step further and we evaluate different deep learning

architectures in order automatically label the meaningful parts of the rules.

This article is structured as follows: Section 2 presents the different deep

neural networks that we are going to evaluate. Section 3 explains the experi-

mental setup. Section 4 shows the results and Section 5 presents a discussion.

Finally, in Section 6 conclusions are drawn and future directions envisaged.

2. Material and Methods

2.1. Neural Network Architectures
In this section, we describe the layers of the neural network architectures

evaluated in this research. We have used architectures developed in the state-

of-the-art literature (dos Santos et al., 2015; Ma and Hovy, 2016; Lample et al.,

2016; Strubell, 2017; Liu et al., 2017). Moreover, we have followed the framework

proposed by (Yang et al., 2018), and we study three main neural components:

(i) character sequence representations; (ii) word sequence representations; and

(iii) inference layer. An example is shown in Figure 1.

Character Sequence Representations. Character features such as prefix, suffix

and capitalization can be represented with character embeddings through neural

networks without human-defined features (Lample et al., 2016; Ma and Hovy,

2016). They have been proven to be critical for successful sequence labeling

tasks. In this work, we study the impact of using character embeddings ran-

domly initialized. The character sequence information is captured with LSTM.

Figure 1: Neural sequence labeling architecture for sentence “Apply until flowering”. Green,
red, yellow and blue circles represent character embeddings, word embeddings, character se-
quence representations and word sequence representations, respectively.
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Word Sequence Representations. In order to represent individual words, super-

vised labeling models require large amounts of manually labeled data to achieve

good performance. This data is hard to acquire. However, it is possible to take

advantage of very large unlabeled data to learn word features to enrich simpler

models obtained from small gold standards. These representations are called

word embeddings (Mikolov et al., 2011) and they perform well across a variety

of tasks (Collobert et al., 2011). Word embedding is a type of mapping that

allows words with similar meaning to have similar representation. In this work,

we use pre-trained Word2vec with Skipgram (Rong, 2016) to initialize word

embeddings. Word sequence representations are concatenated with character

sequence representations.

Similar to character sequences, we can model word sequence information

through LSTM or CNN structures. LSTMs are a family of neural networks that

operate on sequential data that effectively capture long-range dependencies (Liu

et al., 2017; Lample et al., 2016; Ma and Hovy, 2016). Unidirectional LSTMs

suffer from weakness of not utilizing the future contextual information. However,

bidirectional LSTM (BLSTM) addresses this by using two independent LSTMs

(forward and backward) in which one processes the input sequence in the forward

direction, while the other processes the input sequence in the reverse direction.

On the other hand, CNNs combine different architectural ideas to extract

features horizontally from multiple words allowing the network to extract higher

level writing style. The kernel size in the convolutional layer defines the number

of words to consider, providing a grouping parameter (Collobert et al., 2011;

dos Santos et al., 2015; Strubell, 2017).

Inference Layer. The inference layer takes the extracted word sequence repre-

sentations as features and assigns labels to the word sequence. A very simple

but effective labeling model is to use the hidden layer as features to make inde-

pendent labeling decisions for each output by using a Softmax layer (Ling et al.,

2015). Despite the success of Softmax in simple problems like Part-Of-Speech

Tagging (Collobert et al., 2011), the assumption of independence of output la-

bels limits its application in other common natural language processing tasks

where there are strong dependencies across output labels (e.g., named entity

recognitions, semantic labelling, etc.) (Huang et al., 2015; Yang et al., 2018).

In other words, a “grammar” that captures the correlations between adjacent la-

bels imposes constraints impossible to model with Softmax even when BLSTM

is used. For this reason, statistical linear models such as CRF can be used. We

compare the use of Softmax and CRF as inference layer implementation.

3. Experiments

This section describes the experiments performed on end-to-end neural net-

works. Although the process presented in this work, is suitable for labeling

information from phytosanitary regulations in different countries, we present

the Spanish case as an example of use. In addition, we investigate the main
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influencing factors to system performance, including the character sequence rep-

resentations, word sequence representations and inference algorithm.

3.1. Spanish Case
In order to create a sequence labeler with deep learning, the labeler must be

previously trained with a gold corpus, which is a set of manually annotated texts

that serves as a basis for the training and evaluation. In this work, we use a

corpus focused on the official information about crops and authorized pesticides

from the Spanish phytosanitary products registry. Currently, this repository

stores 2,426 PDFs that contain authorizations and instructions about how to

apply phytosanitary products to comply with environmental regulations. More-

over, we have developed an automatic process that checks periodically if any

regulations have been updated. We have each the of rules linked to its specific

phytosanitary product; and each product has its own unique identifier. There-

fore, if we detect that in the official Spanish phytosanitary products registry, a

product document has been updated with new rules, we remove the previous

rules and the whole rules are extracted again with the techniques shown in this

paper.

To address the annotation task, we have followed the MATTER methodol-

ogy (?). With this methodology, the first step is to model the phenomena that

is going to be extracted from texts through the label types shown in Table 1. In

our case, we model the application of phytosanitary product, where the maxi-

mum number of applications, phenological stages or place where the treatment

can be applied must be explicitly specified based on official documents (2,426

PDFs). Moreover, there are two label types (“xor” and “rep”) that do not appear

in the Table 1, but they are necessary to label information accurately; “xor” is

used when the treatment has two ways of being applied, and “rep” is used when

the treatment has several intervention periods. Another terms (e.g.: apply, do,

never) are not labeled because they do not represent restrictions, but linguistic

signs of the rule category (prohibition, obligation), which was studied in our

previous work. Since some concepts are expressed through multi-word expres-

sions (continuous sequences of words), the “IOB” annotation scheme (standard

mentioned in CONLL 2003 shared task) is used (“B” indicates the beginning of

an event, “I” is for inside an event, and “O” is for outside, that if the word do not

refer to an event). The corpus statistics are shown in Table 2 and Table 3. The

use of a large corpus is especially important in some tasks (e.g.: image classifica-

tion, object detection) because automatic feature extraction can involve millions

of features. However, if feature diversity is not so large (our corpus contains

5,459 words), suitable models that extract meaningful patterns from data can

be developed, by using techniques such as pre-trained word embeddings (Joulin

et al., 2017). The corpus is publicly available

1
.

1https://github.com/borjaeg/ner/blob/master/ner_corpus_condicionamientos_revisited_filtered.csv
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Table 1: Label types used for annotation
Label Definition

phe The available phenological stages for

the treatment

dur Temporal relation: During

aft Temporal relation: After

bef Temporal relation: Before

mac Number of times a treatment can be

applied during a season

mai Number of times a treatment can be

applied during an intervention period

pla Place where the treatment can be

applied

Figure 2: Example of labeled rules

Table 2: Gold Corpus Statistics

Corpus Statistics

No. of rules 273

Rule length average 22 words

No. of labels 12

No. of entities 1803

No. of words 5459

No. of unique words 679

Table 3: Number of Labels in the corpus

Label #

B-phe / I-phe 610 / 1031

B-dur 252

B-aft / I-aft 213 / 63

B-bef 203

B-mac 129

B-mai 18

B-pla / I-pla 16 / 9

B-xor 59

B-rep 27

In the case that this experiment was reimplemented with another language,

only the word embeddings layer should be replaced; and only in the case that a

pre-trained embedding is used. The rest of the process could be reused in the

same way.
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3.2. Hyperparameters
Hyperparameters including learning rate, hidden layer size and number of

layers can strongly affect model performance. Table 4 summarizes the chosen

hyperparameters for our experiments. These hyperparameters for our models

were tuned on the development set by random search. We experiment by tun-

ing the hyperparameters with different settings: learning rates (0.1, 0.2, 0.5),

LSTM layer sizes (50, 100, 150) and CNN layer sizes (32, 64, 128). Parameter

optimization is performed with stochastic gradient descent (SGD) with batch

size 1 and a fixed learning rate. We explore other more sophisticated optimiza-

tion algorithms such as RMSProp and AdaDelta (Ruder, 2017), but in prelimi-

nary experiments they did not improve upon plain SGD. We use early stopping

(Caruana et al., 2001) based on performance on validation sets. Pre-trained

word embeddings are evaluated with fine-tuning. For the implementation of the

neural networks, we use Keras 2.1.6 (Chollet, 2017).

Table 4: Hyperparameters
Parameter Value

Char Emb Size 10

Word Emb Size 300

CNN window 3

CNN layer size 32

LSTM layer size 50

Batch Size 1

Learning Rate 0.1

3.3. Evaluation
F1 score (Eq. 1) is used as the evaluation metric for sequence labeling, where

precision is the ratio of correct labels in the sequence labeler output and recall

is the ratio of the correct labels in the gold corpus. This evaluation technique

measures the correspondence between the labels that the sequence labeler gen-

erates and those of the gold corpus. To compare the overall performance among

neural architectures, we use the micro-average approach because in a multi-class

classification setup, this approach is preferable if there is class imbalance (See

Table 3 for more details). To reduce the volatility of the system, we conduct

each experiment 5 times under different random seeds, and report the mean for

each neural architecture.

F1 = 2 ⇤ precision ⇤ recall
precision+ recall

We also present a comparison of the performance of each of the main com-

ponents of the neural architectures. This evaluation can clarify which are the

more promising future research directions.
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4. Experimental Results

This section shows the results of the experiment performed with the different

neural architectures. To represent the neural network architectures, we use the

structure “character representation-word representation-inference layer”. More-

over, to simplify the description, we use the following nomenclature: “N” and

“C” to represent No char and character embedding representation in the charac-

ter representation layer; “B” and “C” to represent BLSTM and CNN structure

in the word representation layer; and finally, “C” and “S” to represent CRF and

Softmax layers in the inference layer. This can be seen in Table 5.

Table 5: Nomenclature used to describe neural architectures in table 6

BLSTM CNN

Softmax CRF Softmax CRF

Char C-B-S C-B-C C-C-S C-C-C

No Char N-B-S N-B-C N-C-S N-C-C

4.1. Evaluation per label type
Examining the results in Table 6, we think that there are some important

facts to remark. Each label has its own best sequence labeler (in bold format),

so we can infer that in our gold corpus, a best algorithm for the complete

translation of human-oriented regulations into computer-oriented regulations

does not exist and an ensemble of neural network architectures is necessary to

label the rules with the highest performance. Another important observation

is that a complex architecture such as the C-B-C obtains 0% F1 score within 4

different label types. In other words, this architecture cannot model the patterns

that other simpler architectures can. The main reason is that these labels have

a small representation in the corpus and the complexity of the architecture is an

impediment to obtain a good performance. Related to this, there are two labels

(“B-mai” and “B-rep”), with which all the architectures obtain low performances.

There are two main reasons for this result: firstly, as shown in Table 3, these

labels contain few examples and deep learning approaches may have difficulties

to extract meaningful patterns. Secondly, the words annotated by these labels

present polysemy (i.e.: the same word can be labeled differently), making the

labeling more tricky. Finally, in the last table row, we show the micro-average

F1score for each neural network architecture. Taking into account this result,

the C-B-S architecture shows the highest performance and it can be considered

as the best overall approach. It is also remarkable that all the architectures with

CRF in the inference layer, except C-C-C, do not obtain the highest performance

in any label types. This seems to contradict the general belief that CRF is always

a good approach to model sequences. This will be studied deeply in the next

subsection. Finally, it is important to note that all the neural networks evaluated

obtain performances over 82%, which are results quite similar to those obtained

in the community sequence labeling benchmarks (Malarkodi et al., 2016; Patil

et al., 2013).

9



Table 6: Architecture’s F1score per label type

Neural Architectures

Label N-B-S N-C-S C-B-S C-C-S N-B-C N-C-C C-B-C C-C-C

B-phe 90.96 85.38 90.08 84.74 90.24 88.74 90.47 88.70
I-phe 87.50 79.63 89.99 79.68 89.37 86.43 88.82 87.62
B-dur 88.44 86.73 92.07 86.17 87.00 89.12 89.11 89.90
B-bef 96.26 94.62 95.95 94.67 93.75 89.73 92.61 92.14
B-aft 89.89 93.74 92.07 94.58 93.26 92.85 91.17 93.20
I-aft 66.66 75.00 74.50 61.22 72.33 72.41 67.80 74.57
B-mac 78.78 79.53 74.86 83.42 75.00 79.24 74.07 84.39
B-xor 82.92 82.92 87.80 82.34 79.99 82.34 66.66 79.99
B-mai 33.33 34.78 13.32 42.10 12.49 29.62 0.0 43.47
B-rep 58.82 38.71 56.25 45.71 44.44 48.78 0.0 51.42
B-pla 95.65 95.23 90.91 100 80.00 90.91 0.0 81.82
I-pla 92.30 100 100 100 92.30 100 0.0 92.30

µ-Avg 87.18 82.70 88.30 82.84 87.26 85.73 85.81 87.01

4.2. Network Settings
Following the framework proposed by Yang et al., 2018, the aim of this

part of the evaluation is the comparison of the different neural layers to study

which ones lead to an overall better performance. In order to confirm that the

differences are not due to chance, we have computed statistical significance test.

Specifically, the test has been performed using the Welch’s t-test (Welch, 1951).

We have set the the confidence level to 0.1.

Char vs No char. In our experiments, according to Figure 3 a), character infor-

mation slightly improves the sequence labeling models. Moreover, the difference

is statistically significant (p < 0.1).

CNN vs BLSTM. In Figure 3 b), we can observe that BLSTM obtains a better

performance than CNN. However, the difference is not statistically significant

(p > 0.1). From these results, we cannot conclude that the global word context

information is necessary for sequence labeling.

CRF vs Softmax. According to Figure 3 c), models with CRF inference layer do

not outperform the models with Softmax layer under all configurations, proving

that label dependency information is not effective is our corpus. Moreover, the

difference is not statistically significant (p > 0.1).
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Figure 3: Comparison of layers performance

5. Discussion

In this work, we have developed an end-to-end sequence labeler, which is

a necessary step to automate the translation of human-oriented regulations

into formal rules. Moreover, because deep neural networks automatically ex-

tract language-independent features, this approach can be applied to transform

regulations in other countries. In our experiments, we have found that an ar-

chitecture with character embeddings, BLSTM and Softmax obtains the best

performance. This system, with an overall performance of 88.3% F1score, over-

comes the rest of the approaches. Currently, there is no benchmark for sequence

labeling in the context of agricultural regulations and, therefore, it is difficult to

directly compare our results with another works. However, there are two related

works that are important to mention. Patil et al., 2013 worked on the agricul-

ture domain with 3 labels in contrast to our 12 labels. The highest precision

obtained by the their algorithm is 66.2% for crop, 92.8% for disease and 88.6%

for chemical. In other work, Malarkodi et al., 2016 extract crops, chemicals and

locations among others, and obtain a precision of 83.24%, a recall of 83.13%

and F1 score of 83.18%. Therefore, we can conclude that our results are quite

similar to the state-of-the art works in the agricultural domain.

It is important to note that all the architectures presented in this paper have

only one hidden layer and maybe, they could be too simple to learn properly the

linguistic phenomena. Another important observation is the low influence of the

different neural layers by themselves. Different combinations achieve better or

worse performance, but we can conclude that none of the layers always improves

decisively the performance of the sequence labeler. Character embeddings im-

proves slightly the performance, but it must be used with specific layers such as

BLSTM in order to consolidate the improvement. In related literature, this is

not the case, but they use larger corpus. and we can hypothesize that this could

be a consequence of our corpus size. Moreover, the use of the IOB annotation

scheme with a small gold corpus can hinder the learning of sequential patterns.

More complex schemes could lead to a better performance.
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6. Conclusions

In this paper, we have presented an empirical evaluation of 8 state-of-the-art

deep learning architectures to develop and end-to-end sequence labeler for the

phytosanitary regulations in agriculture domain. To the best of our knowledge,

this work is the first attempt in sequence labeling of phytosanitary regulations

by using a systematic comparison of different deep learning techniques. We have

evaluated the performance of three main layers: a character sequence represen-

tation layer, a word sequence representation layer and an inference layer. For

this evaluation, we have used a gold corpus based on the Spanish phytosanitary

products registry. In our experiments, the best sequence labeler system has a

character embedding layer as the character sequence representation, a BLSTM

as the word sequence representation and a Softmax as the inference layer. This

architecture achieves 88.3% F1score, which is similar to results obtained in re-

lated work.

Despite the good results, we believe that the performance can be further

improved. Deep learning is often used in problems that have very large datasets

with thousands or hundreds of thousands of instances. For this reason, in future

work, we will evaluate techniques for increasing the corpus size (e.g.: silver

corpus). Moreover, the output labels could be annotated with BIOES standard,

since this scheme has been reported to outperform others such as IOB (Yang

et al., 2018). Finally, a multi-channel convolutional neural network for labeling

will be evaluated. This architecture involves using multiple versions of the

standard model with different sized kernels. This allows the document to be

modeled at different n-grams (groups of words) at a time, whilst the model

learns how to best integrate these interpretations. All these improvements bring

closer the human-oriented regulations to computer-oriented regulations.
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