000136066 001__ 136066
000136066 005__ 20240711103551.0
000136066 0247_ $$2doi$$a10.1016/j.ijfoodmicro.2024.110810
000136066 0248_ $$2sideral$$a138992
000136066 037__ $$aART-2024-138992
000136066 041__ $$aeng
000136066 100__ $$0(orcid)0000-0003-3752-4660$$aPagán, Elisa
000136066 245__ $$aGrowth fitness, virulence, and heat tolerance of Salmonella Typhimurium variants resistant to food preservation methods
000136066 260__ $$c2024
000136066 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136066 5203_ $$aTo study potential ramifications of antimicrobial resistance, we carried out adaptive laboratory evolution assays (ALE) to isolate three resistant variants (RVs) of Salmonella enterica Typhimurium, employing three different types of food preservation methods: 1) an emergent technology, plasma-activated water (PAW), leading to variant RV-PAW; a traditional method, heat, leading to variant RV-HT, and a natural antimicrobial compound, carvacrol, leading to variant RV-CAR. The variant resistant to plasma-activated water, RV-PAW, had mutations in rpoA and rpoD; it showed increased tolerance to heat in orange juice but ultimately did not pose a significant threat, as it exhibited a fitness cost at refrigeration temperature (8 °C), whereas its virulence against Caenorhabditis elegans decreased. The variant resistant to heat, RV-HT, had mutations in flhC, dnaJ: it exhibited a fitness cost at high growth temperatures (43 °C) and induced morphofunctional alterations in C. elegans. The variant resistant to carvacrol, RV-CAR, had mutations in sseG, flhA, wbaV, lon; this variant not only exhibited significantly higher thermotolerance in both laboratory media and food models but also effectively increased its growth fitness at refrigeration temperatures while retaining its virulence, evidenced by the highest percentage of Smurf phenotype in C. elegans.
000136066 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/FPU17-02441$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-123404NB-I00
000136066 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000136066 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136066 700__ $$aLópez, Noelia
000136066 700__ $$aSánchez, Ana
000136066 700__ $$0(orcid)0000-0003-2579-5375$$aCampillo, Raúl$$uUniversidad de Zaragoza
000136066 700__ $$0(orcid)0000-0001-5053-8309$$aBerdejo, Daniel$$uUniversidad de Zaragoza
000136066 700__ $$0(orcid)0000-0002-7629-8101$$aGarcía-Gonzalo, Diego$$uUniversidad de Zaragoza
000136066 700__ $$0(orcid)0000-0002-0238-6328$$aPagán, Rafael$$uUniversidad de Zaragoza
000136066 7102_ $$12008$$2640$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Nutrición Bromatología
000136066 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000136066 773__ $$g422 (2024), 110810 [9 pp.]$$pInt. j. food microbiol.$$tINTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY$$x0168-1605
000136066 8564_ $$s1886027$$uhttps://zaguan.unizar.es/record/136066/files/texto_completo.pdf$$yVersión publicada
000136066 8564_ $$s2463526$$uhttps://zaguan.unizar.es/record/136066/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136066 909CO $$ooai:zaguan.unizar.es:136066$$particulos$$pdriver
000136066 951__ $$a2024-07-11-08:37:35
000136066 980__ $$aARTICLE