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Ancient Plasmodium genomes shed light on 
the history of human malaria

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest 
selective pressures on the human genome, and resistance alleles provide biomolecular 
footprints that outline the historical reach of these species1. Nevertheless, debate 
persists over when and how malaria parasites emerged as human pathogens and 
spread around the globe1,2. To address these questions, we generated high-coverage 
ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax  
and P. malariae from 16 countries spanning around 5,500 years of human history.  
We identified P. vivax and P. falciparum across geographically disparate regions of 
Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax,  
this evidence pre-dates textual references by several millennia3. Genomic analysis 
supports distinct disease histories for P. falciparum and P. vivax in the Americas: 
similarities between now-eliminated European and peri-contact South American 
strains indicate that European colonizers were the source of American P. vivax, 
whereas the trans-Atlantic slave trade probably introduced P. falciparum into the 
Americas. Our data underscore the role of cross-cultural contacts in the dissemination 
of malaria, laying the biomolecular foundation for future palaeo-epidemiological 
research into the impact of Plasmodium parasites on human history. Finally, our 
unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare 
case study in which individual mobility can be inferred from infection status, adding to 
our knowledge of cross-cultural connectivity in the region nearly three millennia ago.

Malaria is a vector-borne disease caused by protozoa in the genus Plas-
modium and is transmitted by female anopheline mosquitoes4. It is a 
major cause of human morbidity and mortality, with an estimated 240 
million cases and more than 600,000 fatalities in 2020 (ref. 5). Beyond 
its current health impact, malaria has profoundly influenced human 
evolution, exerting one of the strongest identified selective pressures 
on the human genome. Congenital haematological conditions, includ-
ing sickle-cell disease, G6PD deficiency and thalassaemia, have per-
sisted because they confer partial resistance to malaria, indicating a 
long-term relationship between the pathogen and human populations6.

Of the five primary human-infecting Plasmodium species, P. falci-
parum and P. vivax account for the vast majority of malaria disease 
burden today, whereas P. malariae, P. ovale wallikeri and P. ovale cur-
tisi are less common and cause milder symptoms4. Previous research 
indicates that P. falciparum emerged through zoonosis from gorillas 
in sub-Saharan Africa7. Date estimates for the most recent common 
ancestor of extant P. falciparum strains range from less than 10,000 
to 450,000 years ago8–10.

The emergence of P. vivax is generally considered to pre-date that 
of P. falciparum, but its evolutionary origins are less well understood. 
Early mitochondrial analyses supported an origin in Southeast Asia, 
placing P. vivax in a clade of Plasmodium species infecting macaques 
and other Southeast-Asian primates11,12. Analyses based on nuclear 
data, including phylogenies and patterns of nucleotide diversity, have 
provided further support for an Asian origin13. However, parasites of the 
African great apes, notably P. carteri and P. vivax-like, are now thought 
to constitute the closest relatives of P. vivax10,14,15. Together with the 

near-fixation of the Duffy-negative allele in many human groups in 
sub-Saharan Africa, this provides strong support for an African origin 
for P. vivax1. The Duffy antigen, encoded by the FY locus, facilitates 
P. vivax erythrocyte invasion, and individuals homozygous for the 
Duffy-negative allele were once considered completely immune to  
P. vivax malaria1,6. Accumulating evidence demonstrates that popu-
lations with high rates of Duffy negativity can maintain low levels of  
P. vivax transmission, and the phenotype seems to reduce the efficiency 
of erythrocyte invasion and provide protection against blood-stage 
infection16. Thus, proponents of the African-origin hypothesis argue 
that a long history of selection pressure exerted by P. vivax drove 
increases in the Duffy-negative phenotype, making these populations 
less susceptible to P. vivax infection today. Interestingly, some human 
groups in Papua New Guinea have a Duffy null allele that seems to have 
arisen through an independent mutation. Indeed, the low frequency 
and long haplotype associated with the Papua New Guinea variant sup-
port more recent positive selection in people living in Oceania than in 
those in sub-Saharan Africa17.

As well as the evolutionary constraints, variation in pathogenesis 
between P. vivax and P. falciparum contributes to their distinct geo-
graphical distributions and ecologies. Because of its higher virulence, 
morbidity and mortality, P. falciparum requires a larger population 
of susceptible hosts to sustain transmission. Consequently, some 
researchers have theorized that hunter-gatherer population densities 
were probably too low to support the emergence of P. falciparum, which 
instead may have proliferated with the development of agriculture in 
sub-Saharan Africa1. Climate also poses distinct constraints on the 
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ranges of these two species, with P. vivax able to survive and develop 
at lower temperatures than P. falciparum18,19. Finally, P. vivax forms 
hypnozoites in its dormant hepatic stage, and reactivation months 
or even years after an initial infection can re-initiate the Plasmodium 
life cycle, enabling further transmission4. Hypnozoites enable P. vivax 
to overwinter in the human host when low temperatures limit vector 
activity. Combined with its greater tolerance for cold temperatures, 
this capacity enables P. vivax to survive in temperate regions, whereas 
P. falciparum is generally restricted to tropical and subtropical zones1.

Because Plasmodium species are obligate intracellular pathogens, 
their contemporary distributions reflect patterns of human mobility, as 
well as the evolutionary, physiological and ecological constraints acting 
on the parasite, human host and mosquito vector. However, relatively 
little is known about the timing and routes by which Plasmodium spp. 
spread around the globe. In the palaeopathological literature, cribra 
orbitalia and porotic hyperostosis have been considered to be indica-
tors of severe malarial anaemia20,21. However, their presence should be 
interpreted with caution because these skeletal lesions are not pathog-
nomonic for the identification of malaria cases in the archaeological 
record22,23, and the two conditions probably have different underlying 
aetiologies24,25. Recurrent fevers are described in Vedic and Brahmanic 
texts from the first millennium bce, and Hippocratic texts from the late 
fifth or early fourth century bce provide the first unambiguous refer-
ences to malaria in the Mediterranean world1,3. However, retrospective 
diagnosis of malaria poses considerable challenges, and many time 
periods and regions are missing from the historical record26. Although 
written sources and congenital haematological conditions provide 
indirect evidence of the historical range of malaria, uncertainty per-
sists over which species contributed to selective processes in specific 
regions, as well as how the selective dynamics played out over time1,2.

Tracing the history of Plasmodium spp. in the Americas is of particular 
interest, given the limited number of transoceanic contacts that may 
have facilitated transmission. P. falciparum is likely to have reached 
the Americas with colonizers from Mediterranean Europe or as a result 
of the trans-Atlantic slave trade, but the potential pre-contact origin  
of American P. vivax is still debated27. Some scholars suggest that  
P. vivax reached the American continent with its first human inhabit-
ants, and cite as evidence both its high nucleotide diversity and the 
presence of divergent mitochondrial lineages in American parasite 
populations28. Others argue that American P. vivax may derive from 
pre-colonial-era contacts with Oceanian seafarers27. Finally, P. vivax, as 
well as P. falciparum and many other Eurasian pathogens, may have rea 
ched the Americas during the European colonial era28–30. A contact-era 
introduction of Plasmodium spp. is consistent with the absence of 
malaria-resistance alleles in the Indigenous peoples of the Americas31. 
Further support for this hypothesis comes from analyses of the only 
historical European P. vivax genomic dataset available to date, which 
derives from a 1944 blood slide from Spain’s Ebro Delta. Analysis of 
nuclear single-nucleotide polymorphism (SNP) data places Ebro1944 
close to contemporary South and Central American P. vivax strains30.

The ability to retrieve ancient bacterial and viral DNA preserved in 
human skeletal material is providing a fuller picture of the evolution, 
origins and global dissemination of historically important pathogens32. 
However, attempts to retrieve ancient DNA from Plasmodium spp. have 
until now had limited success33. Apart from Ebro1944 (refs. 30,34,35), 
the available ancient Plasmodium datasets have so far been restricted 
to two partial mitochondrial genomes from southern Italy dating to the 
first and second century ce36. Here we identify P. falciparum, P. vivax 
and P. malariae infections in 36 ancient individuals from 16 countries 
spanning 5,500 years of human history from the Neolithic to the mod-
ern era. Using two new in-solution hybridization capture bait sets, we 
generate high-coverage ancient Plasmodium mitochondrial genomes 
and genome-wide nuclear data, which demonstrate that the European 
expansion of P. vivax greatly pre-dates evidence from written sources. 
Genomic data from now-eliminated European P. falciparum and P. vivax 

strains provide an unprecedented opportunity to explore gaps in the 
genomic diversity of modern Plasmodium populations, enabling a 
fuller picture of the origins and transmission routes of human malaria 
parasites. Finally, contextualizing ancient genomic data from P. falci-
parum and P. vivax alongside archaeological information and human 
population genetics reveals the critical role of human mobility in the 
spread of malaria in past populations.

Ancient Plasmodium spp. data generation
To identify ancient malaria cases, we performed a metagenomic analy-
sis of previously produced shotgun-sequenced libraries from more 
than 10,000 ancient individuals (Methods). Ancient DNA libraries 
found to possess traces of Plasmodium DNA were enriched using two 
new hybridization capture reagents targeting the mitochondrial and 
nuclear genomes of Plasmodium spp. In total, we identified 36 malaria 
cases, comprising 10 P. falciparum infections, 2 cases of P. malariae 
and 21 P. vivax infections, along with 2 individuals co-infected with  
P. falciparum and P. malariae as well as 1 P. vivax–P. falciparum 
co-infection (Fig. 1, Supplementary Table 1 and Supplementary Note 1). 
We analysed these ancient mitochondrial and nuclear datasets along-
side modern Plasmodium data and published shotgun reads from the 
Ebro1944 blood slide30,34,35,37,38.

Mitochondrial capture allowed for the reconstruction of full genomes 
from 13 P. falciparum strains with mean coverage ranging from 1.1× to 
118.3×, 6 P. vivax strains with mean coverage of 3.0× to 94.3× and 4 
P. malariae strains with 1.1× to 80.4× mean coverage (Extended Data 
Fig. 1, Supplementary Table 2 and Supplementary Note 2). To further 
explore the population structure of ancient P. vivax and P. falciparum, 
we genotyped our ancient nuclear-capture datasets at high-quality 
biallelic SNP positions ascertained in modern datasets published by 
the MalariaGEN P. vivax Genome Variation Project and the MalariaGEN  
P. falciparum Community Project, respectively37,38 (Extended Data Fig. 2). 
For P. falciparum, we merged data from 1,227 modern and 8 ancient 
strains genotyped at 106,179 segregating SNP positions, and for P. vivax 
our final dataset contained 906 modern and 23 ancient strains geno-
typed at 419,387 segregating SNP positions. The coverage of our ancient 
samples ranged from 541 to 19,525 SNPs for P. falciparum (median  
of 1,068 SNPs) and from 721 to 208,344 SNPs for P. vivax (median of  
2,153.5 SNPs) (Supplementary Table 3 and Supplementary Note 3).

Early presence of malaria in Eurasia
Previous attempts to outline the past distribution of Plasmodium spp. 
have relied on textual references that provided evidence for P. falcipa-
rum in the Greek world as early as around 400 bce and in South Asia 
from the early first millennium bce3. Our ancient P. falciparum data from 
the Himalayan site of Chokhopani (a calibrated (cal) date of around 
804–765 cal bce39; Supplementary Note 1.1.3) and the Central European 
Iron Age site of Göttlesbrunn (around 350–250 bce; Supplementary 
Note 1.1.6) complement these textual references, shedding light on the 
role of mobility and trade in transmitting malaria beyond historically 
documented centres of endemicity (Fig. 1). Chokhopani is situated in a 
high transverse Himalayan valley around 2,800 m above sea level, but 
grave goods indicate that there were trade connections with the Indian 
subcontinent that may have facilitated the spread of malaria into the 
highlands39. Similarly, Göttlesbrunn was part of some trans-regional 
exchange networks, as evidenced by the archaeological record40, and 
historically attested conflicts brought Late Iron Age Central European 
populations into potentially malarious regions of the Mediterranean 
and the Balkans41.

Biomolecular data also provide firm evidence for the widespread 
impact of P. vivax on prehistoric European populations. We have identi-
fied three P. vivax-infected individuals dating from the third or fourth 
millennium bce, including a Middle Neolithic Baalberge individual from 
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Leubingen, Germany (3,637–3,528 cal bce; Supplementary Note 1.2.7), a 
Chalcolithic individual from Cueva de las Lechuzas, Spain (3,300–2,300 
bce42; Supplementary Note 1.2.1) and an Eneolithic individual from 
Gundorovka in Russia (turn of the fourth to third millennium bce43; 
Supplementary Note 1.2.5) (Fig. 1). Finding P. vivax in 3 ecologically 
disparate sites more than 5,000 km apart indicates that this species 
probably affected large portions of Europe by the fourth millennium 
bce, predating the earliest textual evidence for malaria by several thou-
sand years1,3. Evidence for P. vivax infection at Gundorovka is espe-
cially noteworthy: although the site was used for a period spanning the 
Neolithic–Eneolithic through the Middle–Late Bronze Age and Early 
Iron Age, the individual analysed here has been contextually dated to 
the Eneolithic period43. Our findings underscore the need for further 
sampling to fully elucidate the capacity of low-density transitional 
hunter-gatherer groups to sustain malaria transmission before the 
full-scale adoption of agriculture and sedentism.

P. vivax population genetics
Consistent with previous studies, analysis of nuclear SNP data revealed 
a strong phylogeographic structure in modern P. vivax populations37. 
In a principal component analysis (PCA), strains from proximal regions 
formed distinct clusters, and the first two principal components (PCs) 
captured a large proportion of this genetic variation (9.47% and 5.54% 
for PC1 and PC2, respectively), defining three main clusters: (1) Africa, 
Western Asia and Latin America (South and Central America); (2) East 
and Southeast Asia; and (3) Oceania (Fig. 2). Our ancient P. vivax dataset 
includes six strains with nuclear SNP coverage levels suitable for popu-
lation genetic analysis (Supplementary Note 4): STR105 and STR185 

from the medieval/early modern cemetery of St. Rombout in Mechelen, 
Belgium (Supplementary Note 1.4.1); GAT004 from the early medieval 
Austrian site Gars Thunau (Supplementary Note 1.2.3); the previously 
published Ebro1944 dataset30,34,35; LDC020, dated to the peri-contact 
period (1437–1617 cal ce) from the Chachapoya site of Laguna de los 
Cóndores, Peru (Supplementary Note 1.2.6); and TGA007 from the late 
medieval/early modern period in southern Uzbekistan (Supplementary 
Note 1.2.8). Our data provide an opportunity to assess diversity in Euro-
pean P. vivax populations spanning the colonial era. All higher-coverage 
European strains fall in a tight cluster in PCA space, indicating the pres-
ence of a single, broadly distributed European population exhibiting 
genetic continuity from the medieval to the modern period (Fig. 2). 
Assessment of our ancient samples using PCA, ADMIXTURE and F4 
statistics also provided evidence for stability in P. vivax population 
structure over time (Extended Data Figs. 3–6, Supplementary Table 4 
and Supplementary Note 5). Falling within the diversity of modern 
Latin American strains, LDC020 exhibits a closer affinity to modern 
Peruvian P. vivax than to modern strains from Colombia, Brazil and 
Central America (Supplementary Table 5 and Supplementary Note 6). 
Similarly, PCA places TGA007 adjacent to modern Western Asian popu-
lations sampled from Afghanistan, India, Iran and Sri Lanka, and adja-
cent to and shifted towards two admixed strains from modern Bhutan. 
Finally, low-coverage samples from Uzbekistan and Pharaonic Egypt 
also show relatedness to geographically proximal modern populations 
(Extended Data Fig. 3 and Supplementary Note 5). Such affinities in 
strains sampled centuries apart may reflect long-term persistence of 
endemic foci in Latin America and western/southern Asia, an observa-
tion that is consistent with the refractory nature of P. vivax populations 
to contemporary eradication campaigns44.
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Fig. 1 | Spatial and temporal distribution of Plasmodium-positive ancient 
individuals. a, Archaeological sites with malaria-positive ancient individuals. 
Site colour reflects the date-range midpoint for the infected individual(s). 
Names and abbreviations are included for sites discussed in the main text. Map 
produced using Cartopy (v.0.20.3, https://github.com/SciTools/cartopy/tree/

v0.20.3), Natural Earth (naturalearthdata.com) and World Shaded Relief map 
(Esri). b, Temporal distribution of n = 36 malaria-positive ancient individuals. 
Points reflect date-range midpoints; error bars indicate uncertainty inferred 
from either archaeological context (uncapped error bars) or radiocarbon dating 
(capped error bars, calibrated calendar ages, 2σ range) (Supplementary Table 1).
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P. falciparum population genetics
As for P. vivax, analysis of nuclear SNP data revealed considerable phy-
logeographic structure in modern P. falciparum populations, with PCA 
defining the following three clusters: (1) Africa and South America; 
(2) South and Southeast Asia; and (3) Oceania (Fig. 3). As previously 
observed, modern P. falciparum exhibits lower genetic diversity than 
P. vivax. In a global set of 1,227 P. falciparum samples published by the 
MalariaGEN project38, we observed only 106,179 high-quality biallelic 
segregating SNPs, compared with 419,387 positions in a set of 906  
P. vivax strains. Furthermore, as a consequence of the organism’s higher 
AT skew and lower complexity, our probe set spans a smaller proportion 
of the P. falciparum nuclear genome (Extended Data Fig. 7), meaning that 
P. falciparum strains generally attain lower coverage in our ancient data-
set. Nevertheless, 3 samples exhibit coverage levels of more than 10,000 
SNPs: CHO001 from the first millennium bce Himalayan site of Chokho-
pani (Supplementary Note 1.1.3); HPD007 from the seventeenth-century 
Spanish colonial outpost of Heping Dao off the coast of Taiwan (Supple-
mentary Note 1.1.7); and Ebro1944 (refs. 30,34,35). Interestingly, these 
genomes, along with other lower-coverage European strains, fall into 

a gap in PCA space and are modelled as complex population mixtures 
in supervised ADMIXTURE analysis (Fig. 3, Extended Data Figs. 4, 5 
and 8 and Supplementary Note 7). This observation indicates that our 
ancient strains cannot be clearly assigned to one currently sampled 
modern P. falciparum population, possibly reflecting sampling biases 
in modern comparative datasets. Apart from Ebro1944, our ancient 
dataset provides a first glimpse into the genetics of now-eliminated 
European P. falciparum populations. Furthermore, despite constitut-
ing an important centre of P. falciparum endemicity, the MalariaGEN 
P. falciparum Community Project Pf6 data release lacks genotype data 
from India. We attempted to address this problem by analysing our data 
alongside published shotgun-sequencing data from five P. falciparum 
strains retrieved from hospitalized patients in Goa45. Indeed, based on 
PCA, F3 statistics and ChromoPainter/fineSTRUCTURE, the Ebro1944 
strain showed a higher affinity to these Indian genomes than to other 
modern populations (Fig. 3, Extended Data Fig. 8 and Supplementary 
Note 7). This observation may reflect links between European and South 
Asian P. falciparum populations, as previously proposed34, but more 
sampling is needed to further support this hypothesis and clarify the 
population affinities of our ancient strains.
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admixture proportions (standard errors, 300 bootstrap replicates).



Nature  |  Vol 631  |  4 July 2024  |  129

Alternative histories in the Americas
In this study, we generated high-coverage P. vivax genome-wide nuclear 
and mitochondrial data from a peri-contact South American individual 
from the site of Laguna de los Cóndores in Peru (LDC020). Associ-
ated with the Chachapoya culture and radiocarbon dated to between 
1437 and 1617 cal ce, analysis of human genome-wide data indicated an 
individual of Indigenous ancestry with no evidence of European admix-
ture (Extended Data Fig. 9 and Supplementary Note 8). The LDC020 
P. vivax strain overlaps with modern South American populations in 
PCA and can be modelled as deriving 100% of its genetic ancestry from 
American-related populations in supervised ADMIXTURE analysis 
(200 bootstrap replicates; Fig. 2). F3 statistics indicate that LDC020 
is related more closely to Latin America than to any other modern  
P. vivax population (Extended Data Fig. 3 and Supplementary Note 5), 
and F4 statistics demonstrate that LDC020 shows excess affinity with 
modern Peruvian P. vivax populations compared with modern strains 
from Colombia, Brazil and Central America (Supplementary Table 5 and 
Supplementary Note 6). Together, this evidence suggests that LDC020 
is closely related to the ancestors of P. vivax circulating in the Americas 
today, and the genetic links between modern and ancient Peruvian  
P. vivax support the early establishment and long-term maintenance 
of an endemic focus in the region.

Interestingly, both PCA and F4 statistics indicate that ancient Euro-
pean P. vivax strains are also related more closely to modern and 
ancient Latin American strains than to any other modern population 
(Fig. 2, Extended Data Fig. 3, Supplementary Table 4 and Supple-
mentary Note 5). A neighbour-joining phylogeny constructed using 
genome-wide SNP data places the ancient European P. vivax strains 
basal to a clade formed by LDC020 and modern Latin American line-
ages (Fig. 2). Together, the close relationship between pre-elimination 
European populations, modern American P. vivax and LDC020 sup-
ports the introduction of P. vivax from European populations to the 
Americas during the contact period. A non-African source for American 
P. vivax is also consistent with the low frequency of P. vivax in regions 
of sub-Saharan Africa with high rates of Duffy negativity. Overall, this 
evidence for a close genetic link between American and extirpated 
European strains indicates that P. vivax was probably absent in the 
Americas before the colonial period, although we cannot exclude  
the possibility of a replacement of pre-contact P. vivax variation after 
the introduction of strains from Europe.

Although our dataset lacks ancient Latin American P. falciparum 
strains, it sheds light on the relatedness between modern lineages 
and ancient European P. falciparum strains spanning the contact era. 
As noted above, ancient European P. falciparum strains fall in a dis-
tinct region in PCA space that does not overlap with currently sampled 
modern populations. On the contrary, all modern South American 
P. falciparum strains sequenced to date form a tight cluster closely 
related to strains from West, Central and East Africa. Analyses using 
F4 statistics further support the close relationship between South 
American and African P. falciparum, although a minor contribution 
from European lineages cannot be excluded (Supplementary Table 6 
and Supplementary Note 7). Together with the high prevalence of  
P. falciparum in sub-Saharan Africa today, our population genetic analy-
sis supports the transmission of this species to the Americas as a result 
of the trans-Atlantic slave trade27,46.

Human mobility and malaria transmission
The unexpected recovery of P. falciparum and P. vivax genomes from 
individuals at the high-altitude Himalayan site of Chokhopani (2,800 m 
above sea level) and the Andean site of Laguna de los Cóndores (2,860 m 
above sea level) underscores the role of human mobility in spreading 
malaria. In general, elevation limits endogenous malaria transmis-
sion. The colder and potentially drier conditions associated with high 

altitudes may be unsuitable for mosquito survival and reproduction, 
and temperatures below species-specific thresholds inhibit the devel-
opment of Plasmodium parasites inside mosquito vectors47. Precise 
altitudinal limits on malaria endemicity depend on a variety of fac-
tors, including latitude, microclimate, landscape modification and 
the Plasmodium and Anopheles species present, and boundaries may 
shift dynamically in response to changes in climate and/or the local 
environment. Although the complex ecology of Plasmodium transmis-
sion complicates attempts to reconstruct past endemic ranges, modern 
epidemiological and climatological data are sufficient to render malaria 
transmission at Chokhopani highly unlikely (Supplementary Note 9).

Instead, we hypothesize that malaria cases at highland sites reflect 
transregional transmission from lowland areas capable of sustaining 
endemic foci. Situated in a high transverse Himalayan valley linking the 
Tibetan Plateau with southern lowland areas, the region surrounding 
Chokhopani may have served as an epicentre of trade and exchange in 
the first millennium bce. Consisting of a series of shaft tombs built into 
a riverside cliff, the site contained three burial chambers containing the 
remains of at least 21 individuals, as well as copper grave goods similar 
to those produced in the Indian subcontinent39,48,49 (Supplementary 
Note 1.1.3). Owing to the commingled nature of the remains, skeletal 
material from CHO001 was limited to the permanent molar yielding  
P. falciparum DNA. Previous studies found that the genetically male indi-
vidual CHO001 possessed alleles associated with high-altitude adapta-
tion and exhibited ancestry similar to that of present-day Tibetans50 
(Supplementary Note 1.1.3). Notably, individuals from Chokhopani also 
have a minor lowland South Asian ancestry component that is absent in 
other prehistoric sites in Upper Mustang; this finding further supports 
the connection between Chokhopani and lowland South Asian regions, 
although the admixture event probably occurred around 500–1,000 
years before the P. falciparum-infected individual identified here lived50. 
Finally, the relatively short overland distances between Chokhopani 
and regions of contemporary malaria endemicity in the Nepalese and 
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Indian Terai underscore the likely role of individual mobility in spread-
ing P. falciparum into the Himalayan highlands51. Taken together, our 
discovery of a P. falciparum infection in the Chokhopani individual adds 
to a growing body of evidence for cross-cultural connectivity, even in 
this remote Himalayan region. Given the genetic links between CHO001 
and other modern and ancient high-altitude populations, we suggest 
that this individual lived locally and contracted malaria while travelling 
to or from an adjacent endemic region. However, we cannot exclude 
the possibility that CHO001 was a non-local individual who travelled 
to Chokhopani from a nearby malarious area. Overall, we highlight 
CHO001 as a rare case study in which aspects of an individual’s mobil-
ity can be inferred from their infectious-disease status, which is an 
important finding given the limited information that could be drawn 
from the fragmented skeletal material associated with this individual.

Long-distance exchange may also have facilitated the spread of  
P. vivax into the vicinity of Laguna de los Cóndores (LDC; Supplemen-
tary Note 9). The Chachapoya cultural region, including LDC, is in the 
subtropical forest of the eastern Andean slopes, providing an appro-
priate environment for mosquitos to thrive. Despite the remote loca-
tion of the region today, archaeological evidence suggests that the 
Chachapoya cultural region was home to many pre-colonial societies 
and served as an intersection of cultural connectivity and exchange 
for communities across the Andes to the Amazon Basin52. Indeed, 
the discovery of Amazonian feathered head-dresses and preserved 
lowland-animal pelts at LDC attests to exchange networks with areas 
of modern malaria endemicity52. Furthermore, the Spanish invasion 
and conquest is known to be one of the main factors contributing to 
the spread of infectious diseases throughout the Americas, leading 
to drastic population declines for many Indigenous groups that some 
suggest were as large as 90% (ref. 53). In some regions, introduced 
pathogens spread rapidly along existing networks of connectivity, 
decimating local Indigenous populations even before the arrival of colo-
nial military forces53,54. Later, the Spanish displaced large numbers of 
Indigenous inhabitants, who were conscripted to fight against the Inca 
or to explore the Amazon55. Together, warfare, Spanish colonization 

and other socio-political upheavals may have accelerated the spread 
of malaria in the Andean hinterlands early in the colonial era.

The identification of ten malaria-infected individuals from the ceme-
tery of St. Rombout in Mechelen, Belgium, further illustrates the capac-
ity of warfare and individual mobilization to drive malaria transmission 
(Supplementary Note 1.4.1). Situated directly adjacent to the first per-
manent military hospital in early modern Europe, which was in use from 
1567 to 1715 ce, the cemetery may have served as a burial place for sol-
diers in the Habsburg Army of Flanders56,57. Excavations of the cemetery 
unearthed the remains of 4,158 articulated individuals from 3 main lay-
ers, approximately dated to the twelfth-to-fourteenth centuries ce, the 
fifteenth-to-sixteenth centuries ce and the seventeenth-to-eighteenth 
centuries ce; the last 2 phases overlap with the time the hospital was in 
use57,58. Interestingly, our pathogenomic and human population genetic 
analyses of 40 individuals from Mechelen support the hypothesis that 
the cemetery contained at least 2 distinct subgroups. Studying 25 indi-
viduals dated to the earliest phase (twelfth-to-fourteenth centuries ce) 
reveals an approximately equal sex ratio, and these individuals formed 
a tight cluster in PCA overlapping with geographically proximal modern 
populations for which genotype data are available (including French, 
English, Scottish and Hungarian), as well as late-medieval Germany 
and the Netherlands59 (Fig. 4 and Supplementary Table 7). Consistent 
with this signature of central/northern European ancestry, both of 
the malaria infections in the early transect were caused by P. vivax, a 
species adapted to transmission in colder climates and thought to be 
endemic throughout Europe at this time26.

Compared with the early transect, 15 individuals recovered from the 
cemetery’s middle and late phases exhibit greater variability in both 
genetic ancestry and Plasmodium species detected. Of the 13 male 
individuals, 11 have heterogeneous ancestry encountered across the 
Mediterranean, and 2 female individuals overlap the early phase cluster 
in PCA space (Fig. 4 and Supplementary Table 7). Interestingly, we iden-
tified P. vivax, P. malariae and/or P. falciparum in eight mid–late-phase 
male individuals, including three cases of multispecies Plasmodium 
infections, which are common today in geographic regions with more 
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than one endemic species60. To refine the possible source populations 
for these eight later-phase infected individuals, we performed further 
analyses using tools for ancestry spatial interpolation and modelling 
(Supplementary Note 10). As in the early phase, two P. vivax-infected 
individuals had ancestry similar to populations from central/northern 
Europe, consistent with a ‘local’ ancestry signature. For the remain-
ing ‘non-local’ malaria cases, we narrowed down the possible sources 
to the southern Iberian peninsula (n = 3) and the Aegean (n = 1), and 
in two cases our modelling indicated mixed ancestry including both 
these former sources and Sardinia (Extended Data Fig. 10, Supple-
mentary Table 8 and Supplementary Note 10). Remarkably, all indi-
viduals infected with P. falciparum and/or P. malariae, including the 
three individuals with multispecies Plasmodium infections, exhib-
ited non-local ancestry. Low winter temperatures are thought to have 
restricted endemic P. falciparum foci north of the Alps26, but these 
findings are consistent with the hypothesis that the mid–late-phase 
malaria-infected individuals from Mechelen may have been troops 
from the circum-Mediterranean region. More broadly, our results are 
consistent with the historical records regarding the army of Flanders, 
which in the sixteenth and seventeenth centuries ce recruited soldiers 
from northern Italy, Spain and other Mediterranean regions to fight in 
the Low Countries61. As well as providing compelling evidence regard-
ing the mortuary context of these individuals, the host and pathogenic 
DNA retrieved raises important questions regarding the extent of local 
malaria outbreaks in this period. Notably, multiple anopheline vectors 
capable of transmitting P. falciparum and other malaria parasites per-
sist in the Low Countries and other regions of Europe today26,62. Thus, 
although P. falciparum-infected individuals at Mechelen may represent 
isolated, recently imported cases, it is also possible that they fell victim 
to more-extensive local malaria outbreaks triggered by intense human 
mobilization in the socio-economic context of warfare.

Conclusions and implications
In this study, we demonstrate that malaria-parasite genome-wide 
mitochondrial and nuclear data can be reconstructed from human 
skeletal remains. Together with textual, osteological and archaeologi-
cal evidence, these new biomolecular data provide an opportunity to 
reassess our understanding of the past distribution of malaria-parasite 
species. We show that P. vivax was endemic in Europe several thousand 
years before the earliest textual references, and the identification of  
P. falciparum in the Himalayan highlands and temperate Europe under-
scores the role of human mobility in carrying malaria to the peripheries 
of endemic zones. As well as species identification, we demonstrate 
that population genetic analysis of unsampled and eliminated para-
site populations can provide critical insights into the sociocultural 
processes that helped to spread malaria around the globe. We find 
that eliminated European P. vivax resembles modern and ancient Latin 
American parasite populations, consistent with transmission from 
European colonizers to Indigenous peoples of the Americas in the 
contact period. We also found that American P. falciparum shows strong 
affinity to modern African lineages, implicating the trans-Atlantic slave 
trade in the spread of this parasite across the Atlantic.

Beyond these insights, the capacity to reconstruct ancient genomes 
from human malaria parasites raises new questions and opens multi-
ple avenues for future research. The population history of European 
P. falciparum remains particularly enigmatic, with ancient strains 
showing relatedness to multiple extant modern lineages. Denser 
temporal and spatial sampling of European P. falciparum may help 
to elucidate whether these strains did indeed result from multiple 
admixture events or constitute a deeply diverged population without 
closely related extant lineages. More broadly, sampling of additional 
ancient and archival materials provides an opportunity to generate 
a more-comprehensive catalogue of Plasmodium diversity. Such 
efforts may be especially beneficial for regional populations in which 

successful elimination campaigns limit opportunities for sampling 
in public-health contexts. Similarly, although the near-fixation of the 
Duffy-negative allele limits P. vivax endemicity in sub-Saharan Africa 
today, ancient genome-wide data would provide an ideal opportunity 
to address debates regarding the geographic origins of this species. 
Despite preservation problems, our recovery of P. vivax DNA from 
ancient Egypt demonstrates that genotyping ancient Plasmodium 
strains from tropical and subtropical regions is theoretically possible. 
Finally, the ability to identify specific parasites in particular regions 
and time periods sets the stage for renewed study of the economic and 
human impact of malaria on past cultures. Integrating evidence from 
ancient DNA with historical records, osteological markers of anaemia 
and archaeological data could shed new light on historical debates, 
such as the possible role of malaria in the decline of the ancient Greek 
and/or Roman civilizations. Taken together, the capacity to reconstruct 
ancient genomes from Plasmodium spp. lays the groundwork for future 
studies on the origins, transmission, evolution and cultural impact of 
human malaria parasites.
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