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Abstract: The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental
because of the continued high incidence of COVID-19 and limited accessibility to antivirals in
some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with
outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed,
appears to be an excellent starting point for drug development. Accordingly, in this study, we
performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease
(Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring
functions were employed to identify the best molecular docking poses. The selected structures were
subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results,
four compounds with the best molecular behavior and binding energy were selected for experimental
testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual
screening, we identified a significant starting point for drug development, shedding new light on
DCM compounds.

Keywords: SARS-CoV-2 main protease; dark chemical matter; docking; molecular dynamics;
MMPB/GBSA approach; drug design; virtual screening
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1. Introduction

Sparked by a previously unidentified coronavirus known as SARS-CoV-2, an outbreak
of respiratory illness referred to as COVID-19 developed in December 2019 [1]. With
the first cases having originated in Wuhan, Hubei Province, China, the rapid spread of
infections around the world triggered a global health emergency that urged the World
Health Organization to declare it as an infectious disease pandemic of international concern
on 11 March 2020 [2]. Social measures and widespread testing, combined with the rapid
development of an efficacious vaccine, helped to lift the acute phase of the pandemic on
5 May 2023 [3]. Despite this accomplishment, COVID-19 continues to represent a global
health burden and is still a cause of death in many parts of the world [4].

Despite the positive impact of vaccination, the rapid evolution of the virus, waning
immunity, and the high cost of vaccination makes the identification of effective antivirals
a high priority. Several antiviral agents, approved under emergency authorization, are
presently available. Current standard-of-care antivirals against COVID-19 include the
SARS-CoV-2 main protease (Mpro) inhibitor, Nirmatrelvir [5] (co-packaged with the CYP3A
inhibitor Ritonavir and sold as Paxlovid® [6]), and the RNA-dependent RNA polymerase
inhibitor, Remdesivir [7,8], shown to be efficacious in viral clearance and in preventing
severe disease when administered in a timely manner. In addition, Molnupiravir [9], an
oral nucleotide analog with broad-spectrum antiviral activity, is no longer recommended
in most countries due to its ineffectiveness and induction of counterproductive mutage-
nesis [10]. Other repurposed antivirals, such as Lopinavir/Ritonavir, also proved to be
ineffective in treating the illness [11]. The need to rapidly discover specific antiviral thera-
pies against SARS-CoV-2 makes drug repurposing a preferred strategy in many COVID-19
drug discovery initiatives [12–17]. Moreover, computational chemistry studies are a cost-
effective strategy, as has been shown in many recently published studies. A few of them
have focused on the virtual screening of FDA-approved compounds with the successful
identification of drugs presenting inhibitory activity regarding coronavirus in vitro [18,19].
Natural products have also been considered as promising starting points in the discovery
process of antiviral agents, including those identified by virtual screening and subsequent
experimental in vitro validation for their inhibitory profile in regard to the SARS-CoV-2
Mpro [20–24].

From the early stages of drug design to subsequent hit-to-lead optimization studies,
computational methodologies constitute an important tool in the development of new
treatments [25]. One of these methodologies is virtual screening, where the structure of
thousands of compounds is scrutinized to fulfill a specific set of stereochemical features. A
key ingredient in efficiently performing virtual screening studies concerns the availability
of structural databases alongside easy access to the compounds identified for experimental
validation. Currently, there is a vast array of compound structure databases for drug design,
such as the European Molecular Biology Laboratory ChEMBL database [26], which consists
of a manually curated chemical database of bioactive molecules with drug-like properties,
or the popular ZINC database [27,28].

In this work, we used the Dark Chemical Matter (DCM) database to conduct virtual
screening studies [29]. This is a particularly interesting database of drug-like compounds
that, despite presenting excellent selectivity profiles, have never shown biological activity
before. Despite being extensively explored with no favorable experimental results so far, its
use remains a promising starting point for drug development [30–32].

Accordingly, in the present study, we report the results of a virtual screening study
of the DCM database aimed at identifying prospective inhibitors of the SARS-CoV-2 Mpro

main protease. For this purpose, we employed a robust protocol previously developed
in our group that shows reasonable success rates [18,20,21]. Specifically, two distinct and
independent protocols of ensemble molecular docking were applied to identify inhibitors
from the DCM database targeting different representative structures of the enzyme. After
the identification and selection of the best candidates, extensive molecular dynamics calcu-
lations were conducted to evaluate the free binding energy of a selected set of complexes.
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Finally, compounds with the best binding affinities and energy profiles were selected and
procured for in vitro testing, with one of the four compounds assessed showing a promising
Mpro inhibitory profile.

2. Results
2.1. Virtual Screening Targeting the SARS-CoV-2 Mpro Main Protease

To undertake the ensemble molecular docking of the diverse compounds in the Dark
Chemical Matter database, seven representatives of the SARS-CoV-2 Mpro monomeric struc-
ture were used. The ensemble molecular docking was performed using the QVina2 software
QuickVina 2 version [33]. To ensure a varied selection of compounds with different ligand
sizes, an additional size-independent docking protocol was implemented to complement
the information extracted from the original approach. Thus, two independent strategies
were conducted. In the first (hereafter, Dock1), we applied the default scoring function of
QVina2 to rank ligand-Mpro complexes, while for the second (hereafter, Dock2) we intro-
duced a correction to obtain a size-independent scoring function. Specifically, in Dock2,
the QVina2 default scoring function was adjusted by dividing it by a Num_NoH0.3 factor,
where Num_NoH corresponds to the number of non-hydrogen atoms of the ligand [34].

For each representative structure, ligand-Mpro complexes presenting a scoring function
value lower than or equal to an established threshold were rank ordered and saved for
further analysis. Minimum and maximum values are reported in Table S1. A −8.1 kcal/mol
threshold was established for Dock1 after an in-depth analysis of the resulting energy
distribution (Table S2). This number was selected to include chemical diversity and to
keep the computational cost reasonable. A different threshold was used in Dock2 for each
representative (Table S2) in order to keep the number of selected poses around 200. In
this case, the range of energies generated in the docking process was small compared to
that obtained using the non-modified scoring function, making a practical selection with a
single threshold difficult. As a result, a total of 3625 and 1012 complexes were selected for
Dock1 and Dock2, respectively. However, it is important to note that the selected complexes
may include more than one pose per compound, and some of them may appear on the list
of different representatives (Table S3).

After the selection of the ligand–receptor complexes for both docking processes, a
minimization protocol was implemented. At this point, we introduced explicit solvation
and allowed conformational accommodation for both ligand and receptor. Since molecular
docking is a technique that enables the generation of diverse poses of the compounds to
target the receptor under study, some may present steric clashes, bad contacts, or bad atom
orientations in the three-dimensional conformational space. Hence, a minimization process
is an essential step in obtaining more relaxed complex structures to proceed further with
the study.

The binding free energies of the minimized structures were obtained by the applica-
tion of the MMPBSA and MMGBSA end-point methodologies [35], respectively, denoted
as ∆Gbinding(PB) and ∆Gbinding(GB). At the end of both processes, an independent rank
ordered list was obtained for each representative structure of Mpro. As a result, a total
of 28 lists were obtained, 1 for each of the 7 representative structures using 2 different
approaches for energy calculation (PB/GB) for each of the 2 independent docking processes.

At this stage, compound selection for subsequent molecular dynamic studies becomes
essential. Rather than focusing only on compounds exhibiting the best binding affinities,
our approach also prioritizes those ligands able to bind to different conformations of the
target protein. Consequently, we employed a consensus approach that also considers the
assumption that the larger the number of receptor conformations a ligand binds, the higher
its chances of success. According to this criterion, 106 compounds were selected for Dock1
and 90 for Dock2. In the first case, we included those compounds that exhibit binding to
six, five, four, and three representatives of the target. No compound was found capable of
binding to all receptors. In the second case, compounds that exhibit binding to four, three,
and two representatives of the target were included. No compound was found capable of
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binding to seven, six or five receptors. For each compound, the complex structure with the
lowest binding energy was selected for further studies.

Next, the selected compounds were subjected to a preparation step. Accordingly, a 0
to 300 K heating process, followed by a density equilibration step, was carried out for each
of the selected complexes. Thereafter, a production run of 100 ns of conventional Molecular
Dynamics (cMD) simulations was performed.

To analyze the time evolution of the free binding energy, ∆Gbinding, of all the initially
selected compounds, the MMGBSA approach was employed. Following the previous
procedures established by us [18,20,21], an iterative process, consisting of the extension of
the simulation length of the previous molecular dynamics simulations, was performed for
the analysis. During each iteration, complexes that exhibited a smooth ∆Gbinding fluctuating
behavior during the last 20 ns of the cMD simulation were kept to continue with the protocol.
Thus, the cMD simulations of 72 and 48 complexes were extended to 200 ns for Dock1
and Dock2, respectively. Thereafter, 29 and 22 complexes were selected to extend their
simulations to 500 ns for Dock1 and Dock2, respectively.

Next, to better study the stability of the selected complexes and to reduce the number
of candidates, cMD was switched to Gaussian accelerated Molecular Dynamics (GaMD)
(see the methodology Sections 4.1.3 and 4.1.4 for more details). Consequently, GaMD
simulations of 1 µs were undertaken for eight and five complexes selected from Dock1
and Dock2 protocols, respectively. Finally, four and three complexes were selected for
Dock1 and Dock2, respectively, to extend their GaMD simulations up to 1.6 µs to check the
stability of the previously observed free binding energy smooth behaviour (Table S4). The
∆Gbinding (GB) time evolution plots for all seven selected complexes, obtained using the
MMGBSA approach, are shown in Figures S1–S3.

Free binding energy profiles exhibiting minor fluctuations were identified as a robust
indication of any compound to be selected for experimental testing. These fluctuations,
linked to the ligand motion within the interaction hotspot, can be translated into complex
stability. Therefore, good drug candidates are expected to present mild fluctuations, ex-
hibiting constant and smooth binding energy profiles with small deviations, suggesting the
stability of the binding pose during interaction. On the other hand, the compounds to be
excluded from experimental assays will correspond to those exhibiting sharp changes in
energy profiles, suggesting the possible pose misadaptation of the ligand to the binding
site, despite presenting good binding energies. However, if these compounds eventually
stabilize after the extension of the simulation, they can also be considered as candidates for
experimental testing. As such, displaying smooth and stable energy profiles is required for
selection, in addition to presenting good affinity values.

Following the analysis, the time evolution of all selected compounds binding energies
was evaluated and found to be stable for all of them. More specifically, compounds
DM2 and DM5–7 presented good convergence during the complete simulation, exhibiting
small fluctuations not higher than approximately 20 kcal/mol of their average value
(Figures S2 and S3). Similarly, compound DM1 also showed a strong converged profile,
especially during the last 1.2 µs of extended GaMD simulation. Upon monitoring its time
evolution plot (Figure S1), a sudden energy stabilization was observed before the first
400 ns of simulation, likely due to a conformational change caused by a pose adaptation
of the ligand to increase its interactions and stability at the binding site. Despite some
fluctuations in their energetic profiles, compounds DM3 and DM4 exhibited good affinities
during the entire analysis process and were thus also selected for further experimental
studies. Hence, after analyzing the binding stability and behavior of the time evolution
plots, all 7 compounds were selected as prospective candidates for in vitro testing as a
result of the extensive virtual screening process performed (Table S4).
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2.2. In Vitro Activity Assay of Selected Candidate Compounds

From the selected potential candidates identified through the virtual screening de-
scribed above, only four (two from each virtual screening protocol) were commercially
available and consequently experimentally tested in an in vitro activity assay.

Among the tested candidates (Table S4), one compound, DM1 (Figure 1), showed
specific inhibitory activity, exhibiting a substrate concentration-independent inhibition
constant (Ki) of 48 ± 5 µM (Figure S4). In contrast, the remaining three compounds tested
did not yield detectable inhibitory activities at concentrations below 125 µM.
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Figure 1. (a) Chemical structure of compound DM1 identified from the virtual screening process as a
prospective hit targeting the SARS-CoV-2 Mpro main protease. (b) Three-dimensional representation
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depicted in blue and red, and hydrogen atoms in white.

Based on the good energetic profiles shown by the selected but non-tested com-
pounds, we also suggest experimentally assessing their potential inhibitory activity to
target SARS-CoV-2 Mpro.

2.3. Binding Analysis of the Active Compound

As also demonstrated in our previous studies [18,20,21], the docking protocol em-
ployed in the current study, exploring the DCM database, yielded at least one experimen-
tally active compound among those selected as candidate inhibitors of the SARS-CoV-2
Mpro protease. Departing from the smooth energetic profile found for the active compound
(Figure S1), a further binding analysis was performed.

To assess for significant ligand–protein residue interactions in the complex, a free
energy decomposition per residue analysis of the last 100 ns of the total 1.6 µs GaMD
trajectory for the active compound was conducted (Figure 2 and Table S5). As such, we
found major contributions of Mpro residues Q189 and T190 with energy contributions
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of −8.2 and −7.4 kcal/mol, respectively, involving hydrogen bond interactions with the
ligand. Interactions between the catalytic dyad H41 and the ligand were significant, with a
contribution of −5.3 kcal/mol, involving π-π interactions (Figure S5).
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of the extended GaMD simulations performed for the DM1 ligand—SARS-CoV-2 Mpro protease
complex, experimentally found to be active.

Furthermore, hydrogen bonds exhibiting a minimum of 90% occupancy during the last
100 ns of the extended 1.6 µs GaMD trajectory were evaluated (Table S6). From the results,
acceptor–donor interactions between the Oc oxygen of the ligand (Figure 1) and residue
T190, as well as interactions between the oxygen atoms of Q189 and T190 with ligand
amino groups (Figure 3), were inferred to be major contributions defining the interactions
of the active compound at the binding site. The three-dimensional structure of the active
compound at the binding site, together with residues defining the pocket and subsequent
interactions, are depicted in Figure 3. π-π interactions between the catalytic dyad residue
H41 and the benzene group of DM1 (Figure S5) were found to contribute to the stability of
the complex. Notably, the formation of intramolecular π-π interactions confer the ligand
with its three-dimensional bioactive conformation.
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Figure 3. Binding site representation of the active dark chemical matter compound DM1 in complex
with the SARS-CoV-2 Mpro protease, taken from the last frame of the extended GaMD simulation
performed. Representation (a) shows the three-dimensional structure of the ligand interacting at
the binding pocket, defined by residues H41, M165, D187, Q189, T190, and Q192. Representation
(b) depicts the spatial distribution of the protein residues defining the pocket previously described.
Complementary, hydrogen bonds established between the ligand and the protein are highlighted
with yellow dashes (c). Carbon, nitrogen, oxygen, and hydrogen surface atoms are represented in
green, blue, red, and white, respectively.
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3. Discussion

In response to the need for the development of specific antiviral therapies targeting
SARS-CoV-2, numerous studies have focused on natural compounds, the repurposing of
existing drugs or the massive screening of compounds. This work proposes an alternative
virtual screening approach based on two independent ensemble docking strategies for the
SARS-CoV-2 Mpro main protease and a set of drug-like compounds, stored in the Dark
Chemical Matter (DCM) database, that have never shown bioactivity despite presenting
outstanding selectivity profiles [29].

The selection of a docking score to be used to rank and identify the best compounds
is the most important limitation of any virtual screening protocol. Consequently, two
different docking scores were implemented as a major goal of this study in order to assess
the goodness of the size-independency correction of the scoring function employed. Our
approaches, both based on the default docking score provided by QVina2, differ in their
consideration of a correction factor applied to only one of them so as to obtain a consensus
based on size-independent binding affinities [34].

After the full completion of both independent protocols, a total of seven compounds
were selected for in vitro testing as candidate inhibitors of Mpro activity, of which four corre-
sponded to the original strategy and three to the corrected score. Of these compounds, four
were subjected to experimental assays, one of them exhibiting significant inhibitory activity
against Mpro, thus shedding light onto the dark chemical matter library of compounds.

Compared with our group’s previous projects, in which the same main procedure was
applied [18,20,21], similar results were obtained. The methodology, again, was sufficient
to produce at least one experimentally active compound to inhibit the SARS-CoV-2 Mpro

main protease. Thus, in this study, with one out of four tested compounds being active, we
obtained a success rate of 25%.

Regarding interactions of the compound experimentally found to be active, com-
pared to previously identified active compounds, such as (−) epigallocatechin gallate,
amentoflavone, vitexin-2-O-rhamnoside, aloin, or rhoifolin [20], we must note the common
binding site interactions with residues H41, M165, D187, and Q189 of SARS-CoV-2 Mpro.
Despite presenting differences in their specific free binding energy residue decomposition
profiles, interactions with the catalytic dyad residue (H41) prove important in the binding
and stability of the complex, especially concerning hydrogen bond formation, which, in
general, can be translated into increased binding affinities and complex stability.

The catalytic mechanism of SARS-CoV-2 Mpro involves the alignment of residues H41
and C145 with the peptide substrate at the active substrate-binding pocket [36–39]. Therein,
the drug candidate molecule will undertake a competitive binding process with the natural
substrate of the protease. Then, only if favorable binding interactions exist, inhibitors of the
Mpro will exhibit a higher affinity for the protein rather than for the substrate [36,40]. In this
work, an in silico analysis of the active compound identified in vitro revealed interesting
interactions with residue H41 but none with catalytic dyad C145. Jin, Z., Du, X., Xu, and Y.
et al. identified up to four binding pockets inside the active site of SARS-CoV-2 Mpro [36].
Compared to our results, we can identify the significant interaction contributions of the
active compound with H41, M49, D187, and R188, as well as with M165, P168, R188, T190,
A191, and Q192, corresponding to residues defining binding pockets S2 and S4, as described
in the literature by the authors.

In the end, our main virtual screening methodology suffices to facilitate an in vitro
evaluation of candidate compounds, and is always able to at least identify one active
compound [18,20,21]. Since the number of tested compounds from each independent
protocol was small, it is very difficult to extract robust conclusions about the effect of the
size-independency correction, or even to compare results. Also, it is important to mention
that, for now, we have only introduced two different docking scores in the present work.
Therefore, it will be interesting for prospective work to implement more varied functions
and work with a broader consensus for results comparison. Furthermore, to truly assess
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the goodness of the approach, we encourage further studies to gather more experimental
results for comparative analyses.

With the increase in computational resources and capabilities, it will also be interesting
to combine different scoring functions, not only classical ones but also those supported by
machine learning (ML) or artificial intelligence (AI), as well as to increase the number of
replicates and the simulation length of the molecular dynamics to obtain more accurate
and robust results.

4. Materials and Methods
4.1. Computational Studies
4.1.1. SARS-CoV-2 Mpro Protease Representative Structures Selection

To introduce the conformational flexibility of the SARS-CoV-2 Mpro protease, seven
selected Mpro representatives were used as receptors in the virtual screening process. We
will provide a brief overview of the selection process, as previously described by our
group [20]. The crystallographic structure of SARS-CoV-2 Mpro protease (PDB access code
6Y84), considering only the monomer, was prepared and placed in a cubic periodic box
filled with four-point Optimal Point Charge (OPC) water molecules [41] with counterions
to neutralize the charge of the unit cell using the Leap module of AMBER18 [42]. All
calculations were carried out using the ff19SB force field [43]. Next, the structure was
relaxed via a multistep minimization procedure to eliminate possible steric clashes [44].
Subsequently, independent duplicates of conventional Molecular Dynamics (cMD) and
Gaussian accelerated Molecular Dynamics (GaMD) of 500 ns length were carried out to
enhance the conformational space exploration of the system [45] within the NVT ensemble.

Finally, to select the most representative structures representing the greatest structural
diversity of the binding site of the Mpro protease, a clustering process was performed
separately for both cMD and GaMD calculations using the average linkage algorithm [46],
implemented in the AMBER18 cpptraj module [42,47]. To conclude, seven representatives,
three for the cMD and four for the GaMD, were selected to represent clusters with over
10% of the population.

4.1.2. Virtual Screening

For the seven SARS-CoV-2 Mpro representatives selected for the present work, two
independent multi-step Virtual Screening (VS) processes were conducted, with and without
using a scoring function correction for the ensemble molecular docking process. From now
on, an overview of both protocols will be given (Figure 4).

Initially, in step 1, the QVina2 software [33] was employed to dock the molecules of the
DCM database, composed of 76,962 compounds derived from the original database after
preparation with OpenBabel (version 2.3.2) [48] and Antechamber module [49] included in
AMBER18 software. In step 2, complexes presenting binding energy values higher than
a predefined cut-off based on the energy function used to rank the docking results were
selected for each Mpro representative structure. Subsequently, in step 3, the Antechamber
and LeaP modules of the AMBER18 package [42] were used to parametrize the ligands
with GAFF2 force field [50], add counterions, and solvate the complexes in a box of TIP3P
water molecules [51]. To parametrize the protein, the ff14SB force field was employed [52].
Next, a multistep minimization procedure consisting of 5000 steps, each using the steepest
descent method, was conducted to relax the whole system for each complex. First, all
protein and ligand atoms were fixed by the application of harmonic positional restrictions
of 5 kcal/mol·Å−2, only allowing relaxation for water molecules and ions. Then, as
a subsequent step, only the main atoms of the protein were kept fixed with the same
harmonic positional restrictions to allow the free movement of the ligand. Finally, in the
last step of the minimization protocol, all atoms were allowed to move freely.
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Then, in step 4, the free binding energy ∆Gbinding of all minimized structures was
computed using both the Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA)
and the Molecular Mechanics Generalized—Born Surface Area (MMGBSA) approaches [53,54].
These two values, using a consensus criterion, were used as a new scoring to rank and select
the ligands that will be further studied by means of molecular dynamics simulations. Hence,
in step 5, conventional Molecular Dynamics (cMD) or Gaussian accelerated Molecular
Dynamics (GaMD) of increasing length were performed. After that, in step 6, a new
ranking was again obtained after applying the MMGBSA approach to the full simulation
length. Next, an iterative process involving steps 5 and 6 was performed. Consequently, at
each iteration step, the extension of the simulation length, and the subsequent free binding
energy recalculation, was only carried out for the previously selected compounds. In the
end, after the selection of the best candidates, ligand–receptor interactions at the binding
site were analyzed based on their free binding energies from the final extended simulations.

As previously mentioned, the difference between both independent protocols consists
in the scoring function employed for the ensemble molecular docking. In the first one
(Dock1), the default scoring function of QVina2 was used to rank ligand-Mpro complexes,
while, in the second (Dock2), this value was divided by Num_NoH0.3, where Num_NoH
represents the number of non-hydrogen atoms of the ligand [34].

LE = affinity/Num_NoH (1)

SILE = affinity/Num_NoH0.3 (2)

As documented in previous studies [55–57], ligand efficiencies (LE, Equation (1)) are
strongly dependent on system size. Thus, as some authors propose [34,55], the introduction
of a correction term in ligand efficiency measures seems to be a good strategy for obtaining
size-independent affinity results, not only in hit-to-lead experimental optimization studies,
but also in in silico free binding energy estimations.
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Ligand efficiency tends to notably decrease with ligand size. Thus, the introduction
of size-independent ligand efficiency (SILE, Equation (2)) can result in better drug design
experimental processes and promising protein–ligand molecular docking applications [34].

4.1.3. Binding Free Energy Calculations

Binding free energies were computed following the MMPBSA and the MMGBSA ap-
proaches [35], as implemented in the AMBER18 package [42]. For both methodologies, the
free binding energy is derived from Equation (3), where ∆Hgas is the gas–phase interaction
energy that includes the noncovalent van der Waals (∆Hgas

vdW) and electrostatic (∆Hgas
elec)

molecular mechanics energies, and the contribution of the polar (∆Gsolv
polar) and non-polar

(∆Gsolv
nonpolar) terms corresponds to the solvation free energy (∆Gsolv).

∆Gbinding = ∆Hgas + ∆Gsolv − T∆Sgas (3)

Therefore, ∆Gsolv
polar can be numerically calculated with the Poisson–Boltzmann (PB)

equation [58], or using the Generalized Born (GB) method [59], for MMPBSA and MMGBSA
algorithms, respectively. More concretely, for the MMGBSA calculation, we used the
Onufriev–Bashford–Case (OBC) Generalized Born method (igb = 2) [60]. On the other hand,
∆Gsolv

nonpolar can be obtained as follows:

∆Gsolv
nonpolar = γSASA + β (4)

where the Solvent-Accessible Surface Area (SASA) is computed with the LCPO method [61]
and the constant values for γ and β were set to 0.00542 kcal/mol·Å2 and 0.92 kcal/mol for
MMPBSA [53] and 0.0072 kcal/mol·Å2 and 0 kcal/mol for MMGBSA [54]. In the present
project, all binding free energy calculations were performed with the python program
MMPBSA.py [62].

The contribution of each Mpro protein residue to the total binding free energy of
the active compound was analyzed using the MMGBSA decomposition protocol [63]
implemented in the MMPBSA.py module of AmberTools20 [64]. The binding interaction
for each residue–residue pair includes three contributing terms: Van der Waals, electrostatic,
and solvation contribution. The polar contribution of ∆Gsolv was computed as in the case
of the ∆Gbinding, using the generalized Born model based on the parameters developed
by Onufriev et al. [60]. All energy components were calculated using 2500 snapshots
corresponding to the last 100 ns of the full-length molecular dynamics run.

4.1.4. Conventional Molecular Dynamics

After minimization, each of the selected complexes were heated to 300 K at a constant
rate of 15 K every 10 ps under the canonical ensemble (NVT, heating). A harmonic positional
restriction of 1.0 kcal/mol·Å−2 for the main atoms of the protein, using the Langevin
thermostat algorithm with a collision frequency of 3 ps−1, was employed for the purpose.

Once the system was heated, 500 ps of simulation were performed at constant pressure
(NPT ensemble), while keeping the main atoms of the protein fixed with a harmonic
positional restriction of 1.0 kcal/mol·Å−2 for density equilibration. Subsequently, cMDs
of different lengths were iteratively carried out under the canonical ensemble to study
the complex stability. All simulations were carried out using AMBER18 software package
(2018 version) [42].

4.1.5. Gaussian Accelerated Molecular Dynamics

Alternatively, Gaussian accelerated molecular dynamics (GaMD) is a recently devel-
oped approach that allows for unconstrained enhanced sampling that does not require
the introduction of predefined collective variables [65]. To do so, a boost potential con-
structed employing a harmonic function that follows a Gaussian distribution is applied to
smoothen the Potential Energy Surface (PES) of the system. This smoothing is then intro-
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duced only when the potential energy of the system V
(→

r
)

is lower than a reference energy

Eref, as depicted in Equations (5) and (6), where ∆V*
(→

r
)

corresponds to the modified
system potential.

∆V*
(→

r
)
= V

(→
r
)
+ ∆V

(→
r
)

(5)

∆V
(→

r
)
=

 1
2 k
(

E − V
(→

r
))2

V
(→

r
)
< Eref

0 V
(→

r
)
≥ Eref

(6)

Furthermore, it is important to note that the boost potential added can have two main
contributions, implying the modification of the dihedral and total potential energetic terms.
This boost potential is computed based on statistics of the system potential, including the
minimum, maximum, average, and standard deviation. For the present study, a dual boost
was employed for all GaMD simulations.

In this work, GaMD simulations of increasing length were carried out within the NVT
ensemble after the initial cMD simulations. In these simulations, an intermediate step was
conducted to obtain the initial statistical analysis of the dual boost potential to be applied.
The length of this step will vary depending on the number of atoms of the system. For the
target evaluated in this study, the upper limit of the standard deviation of the total potential
boost (σ0P) was set to 6 and the upper limit of the standard deviation of the dihedral
potential boost (σ0V) was set to 6. In all these simulations, a cutoff of 10 Å was employed.

4.2. Experimental Procedure
4.2.1. SARS-CoV-2 Mpro Expression

Mpro was expressed in transformed BL21 (DE3) Gold E. coli. After small-scale growth
in LB/ampicillin (100 µg/mL) at 37 ◦C overnight, 4 L LB/ampicillin medium (100 µg/mL)
was inoculated and incubated at 37 ◦C until reaching the induction step (OD at 600 nm around
0.6). Induction was initiated by adding 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG)
and the culture was incubated at 18 ◦C for 5 h. Cells were sedimented by centrifugation
at 4 ◦C for 10 min at 10,000 rpm (Beckman Coulter Avanti J-26 XP Centrifuge, Barcelona,
Spain) and resuspended in lysis buffer (sodium phosphate 50 mM, pH 7, sodium chloride
500 mM). Cells were lysed by sonication (Sonics Vibra-Cell Ultrasonic Liquid Processor,
Newtown, CT, USA) on ice, adding benzonase 20 U/mL (Merck-Millipore, Madrid, Spain)
and lysozyme 0.5 mg/mL (Carbosynth, Compton, UK). Centrifugation at 4 ◦C for 30 min at
20,000 rpm and filtration (0.45 µm-pore membrane) were performed to remove cell debris
and polish sample before chromatography. Protein was purified by immobilized metal
affinity chromatography (ÄKTA FPLC System, GE Healthcare Life Sciences, Barcelona,
Spain) using a cobalt HiTrap TALON column (GE-Healthcare Life Sciences) in a single
step, applying an imidazole 10–250 mM gradient. Purity was assessed by SDS-PAGE.
Protein fractions were pooled and dialyzed in final buffer (sodium phosphate 50 mM, pH 7,
sodium chloride 150 mM). In order to determine the concentration of protein, an extinction
coefficient of 32,890 M−1 cm−1 at 280 nm was employed.

4.2.2. SARS-CoV-2 Mpro Proteolytic Activity Assay

The activity of Mpro was measured in vitro using the substrate (Dabcyl)KTSAVLQSG-
FRKME(Edans)-NH2 (Biosyntan GmbH, Berlin, Germany), which contains two fluo-
rophores capable of interacting through Förster resonance energy transfer (FRET). After
initiating the reaction by adding substrate at 20 µM (final concentration) to the enzyme
at 0.2 µM (final concentration) for a final volume of 100 µL in buffer sodium phosphate
50 mM, pH 7, and NaCl 150 mM, the catalytic activity was recorded through a continuous
assay. As compounds were dissolved at high concentration in 100% DMSO, a constant
final DMSO percentage (2.5%) was kept in all assays. The FRET effect (fluorescence emis-
sion of donor group, which already increased upon substrate cleavage) was measured
using a fluorescence microplate reader (FluoDia T70, Photon Technology International,
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Birmingham NJ, USA) for 20 min (excitation wavelength, 380 nm: emission wavelength,
500 nm). The enzymatic activity and initial enzymatic rate were measured as the initial
slope in the fluorescence emission vs. time plot. The Michaelis–Menten constant, Km, and
the catalytic rate constant or turnover number, kcat, were previously estimated (Km = 11 µM,
and kcat = 0.040 s–1) [66].

4.2.3. SARS-CoV-2 Mpro Inhibition Assay

The inhibition potency of the compounds against Mpro was assessed in vitro using
same the enzymatic activity protocol described above, which allowed the estimation of
the inhibition constant, Ki, and the half-maximal inhibitory concentration, IC50. Inhibition
curves were obtained by measuring the enzyme activity (at fixed 0.2 µM enzyme concen-
tration and fixed 20 µM substrate concentration) as a function of compound concentration
(serial 2-fold dilution from 125 µM to 0 µM), while maintaining the percentage of DMSO
constant (2.5%). The enzymatic activity (initial slope of the fluorescence emission vs. time
plot) was measured as a function of compound concentration. The quotient between the
activity in the presence/absence of compound provided the residual enzymatic activity
percentage at a given compound concentration. Employing a simple inhibition model,
the apparent inhibition constant for each compound, Ki

app, was estimated by non-linear
regression analysis according to the following:

[EI] =
1
2

(
[I]T + [E]T + Kapp

i −
√(

[I]T + [E]T + Kapp
i

)2
− 4[E]T [I]T

)
(7)

[I] = [I]T − [EI] =
1
2

(
[I]T − [E]T − Kapp

i +

√(
[I]T + [E]T + Kapp

i

)2
− 4[E]T [I]T

)
(8)

v([I])
v([I] = 0)

= 1 − [EI]
[E]T

=
1

1 + [I]
Kapp

i

(9)

where [EI] is the concentration of the enzyme-inhibitor complex, [E]T and [I]T are the total
concentrations of enzyme and inhibitor, and v is the initial slope of the enzymatic activity
trace at a given (free) inhibitor concentration [I]. No approximations were considered in
this model, thus having general validity for any total enzyme and inhibitor concentration
and any value of the inhibition constant. If the inhibitor acts competitively with regard to
the substrate

v([I])
v([I] = 0)

=
1

1 + [I]
Kapp

i

=
1

1 + [I]

Ki

(
1+ [S]

Km

) (10)

where Ki is the intrinsic (i.e., substrate concentration-independent) inhibition constant, and
[S] is the substrate concentration. Neglecting compound depletion (i.e., approximating the
free compound concentration by the total compound concentration), the Ki

app in Equation
(2) is equivalent to the IC50. Contrary to Ki

app, IC50 is assay-dependent (depending on
[E]T, [S], and Km) and must be employed cautiously when comparing inhibition potencies.

5. Conclusions

The present work, aimed at the identification of inhibitors of the SARS-CoV-2 Mpro

main protease, proposed an alternative virtual screening docking protocol based on the
introduction of a size-independency correction to the original QVina2 scoring function.
To do so, the Dark Chemical Matter (DCM) database of drug-like compounds [29] was
employed on two independent ensemble docking strategies. As a result, from both inde-
pendent approaches, a total of seven compounds were selected for in vitro testing. Only
four of them were finally subjected to experimental assays, of which one was found to
be active.
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In the end, our identification of one experimentally active compound, out of four
compounds tested, is proof that (1) DCM compounds are worth exploring as a source of
new compounds with biomedical interest and (2) our main methodology suffices to identify
compounds that are potentially active against selected targets [18,20,21]. Furthermore,
based on the good energetic results of compounds that were selected but not experimentally
tested, our success rate (one out of four tested compounds, 25%) may be an underestimate.
As such, our results warrant the use of our approach in much larger drug discovery efforts.
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Abbreviations

Throughout the present work, certain abbreviations and symbols have been used frequently.
Consequently, this table provides a comprehensive list of all the abbreviations utilized throughout
the text, accompanied by their respective definition, listed in alphabetical order.

Abbreviation Definition Page *
BL21(DE3)

BL21 (DE3) Chemically Competent Escherichia Coli Cells Derivative 11
Gold E. Coli
ChEMBL European Molecular Biology Laboratory 2
cMD Conventional Molecular Dynamics 4
COVID-19 Coronavirus Disease 2019 (2019 novel coronavirus) 1
DCM Dark Chemical Matter 1
DMSO Dimethyl Sulfoxide 11
FDA Food and Drug Administration 2
FRET Förster Resonance Energy Transfer 11
GaMD Gaussian Accelerated Molecular Dynamics 4
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GAFF2 General Amber Force Field 2 8
GB Generalized Born 3
IC50 Half-Maximal Inhibitory Concentration 12
IPTG Isopropyl 1-thio-β-D-galactopyranoside 11
kcat Catalytic rate constant 12
Ki Substrate Concentration-Independent Inhibition Constant 1
Ki

app Apparent Substrate Concentration-Independent Inhibition Constant 12
Km Michaelis–Menten Constant 12
LCPO Linear Combination of Pairwise Overlaps 10
LB/ampicillin Luria Broth/Ampicillin Bacterial Culture Medium 11
LE Ligand Efficiency 9
MMPBSA Molecular Mechanics Poisson–Boltzmann Surface Area 3
MMGBSA Molecular mechanics Generalized Born Surface Area 3
Mpro Main Protease 1

NVT ensemble
Canonical Ensemble: constant particle number (N), constant volume

8
(V) and temperature fluctuating around an equilibrium value (T).

OBC Onufriev–Bashford–Case 10
OD Optical Density 11
OPC Four-Point Optimal Point Charge Water Model 8
PB Poisson–Boltzmann 3
PDB Protein Data Bank 8
PES Potential Energy Surface 10
RNA Ribonucleic Acid 2
SASA Solvent-Accessible Surface Area 10
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 1
SDS-PAGE Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis 11
SILE Size-Independent Ligand Efficiency 9
TIP3P Transferable Intermolecular Potential with 3 Points 8
VS Virtual Screening 8
ZINC ZINC is not commercial 2
* Page number corresponds to the first appearance of the abbreviation in the text.
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