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A B S T R A C T

This paper explores the connections between traditional Large Deformation Diffeomorphic Metric Mapping
methods and unsupervised deep-learning approaches for non-rigid registration, particularly emphasizing dif-
feomorphic registration. The study provides useful insights and establishes connections between the methods,
thereby facilitating a profound understanding of the methodological landscape. The methods considered in
our study are extensively evaluated in T1w MRI images using traditional NIREP and Learn2Reg OASIS
evaluation protocols with a focus on fairness, to establish equitable benchmarks and facilitate informed
comparisons. Through a comprehensive analysis of the results, we address key questions, including the intricate
relationship between accuracy and transformation quality in performance, the disentanglement of the influence
of registration ingredients on performance, and the determination of benchmark methods and baselines. We
offer valuable insights into the strengths and limitations of both traditional and deep-learning methods,
shedding light on their comparative performance and guiding future advancements in the field.
1. Introduction

The non-rigid registration of images is the process of determining
the transformation that best warps the source image into the target
image according to convenient non-rigid transformation models and
image similarity metrics. Non-rigid image registration is a fundamen-
tal stage in many different medical applications involving spatial or
temporal changes of anatomical or functional features [1–4]. Among
the most relevant applications, inter-subject registration is used for
the spatial normalization of inputs in template building, atlas-based
segmentation, or deep-learning based disease classification [5–9]. Intra-
subject registration is used for the fusion of multi-modal information,
establishing comparisons from different imaging modalities, the cap-
ture of correlations between structure and function, the guidance of
computerized interventions, or the analysis of the temporal evolution
of diseases [10–12].

1.1. Traditional vs. unsupervised deep-learning methods

The variational formulation of the non-rigid registration problem
from the minimization of an energy functional was inspired by Horn
and Schunck’s approach to solving the optical flow problem [13]. The
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solutions to both problems have evolved through decades, retaining the
energy minimization approach as a backbone [14]. Large Deformation
Diffeomorphic Metric Mapping (LDDMM) stands out for being a math-
ematically well-established approximation to the non-rigid registration
problem through diffeomorphisms [15]. Diffeomorphisms enable shape
analysis from transformations and thus, they constitute the inception
point of Computational Anatomy applications [16,17]. The registration
quality, the high accuracy, and the convenience of smooth and invert-
ible transformations for medical applications have made diffeomorphic
registration the target to reach by many research on non-rigid regis-
tration (e.g., the diffeomorphic versions of Demons [18] are preferred
over Demons [19]).

Since the deep-learning explosion taking place in the second decade
of the XXI century, deep-learning solutions have been proposed to
solve a variety of computer vision and medical imaging problems.
FlowNet [20] provided the first deep-learning solution to the opti-
cal flow problem and the working ideas were quickly adapted and
extended to the problem of non-rigid registration and diffeomorphic
registration in medical imaging [21–24]. Supervised deep-learning ap-
proaches led to unsupervised approaches that circumvented the costly
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need to compute ground truth transformations for training [4]. The in-
terest in unsupervised deep-learning based image registration methods
has exponentially increased, and the balance between traditional and
deep-learning proposals has broken toward the latter.

Although both traditional and unsupervised deep-learning methods
depart from the same minimization problem, the approaches used for
finding the solutions are qualitatively different. Traditional methods
for non-rigid or diffeomorphic registration seek transformations that
minimize the energy functional through traditional optimization meth-
ods such as gradient-descent, Levenberg–Marquardt, Gauss–Newton,
or quasi-Newton [25,26]. Given the source–target image pair, the
optimization process is specific to that image pair. When enough reg-
ularization is used, the optimization follows a path of deformations
belonging to the transformation model. Deep-learning methods seek a
function represented with a deep neural network that allows for the
computation of the transformation that minimizes the energy functional
for the source–target image pair. The energy functional is turned into
a loss function that is used during training to adjust the network pa-
rameters through stochastic optimization. In this case, the optimization
path is not specific to the image pair but to the data used during train-
ing (network initialization, image pairs, and random sequentiation).
Indeed, the models estimated during the optimization process are not
guaranteed to provide solutions belonging to the transformation model.

With traditional methods, the good performance of the obtained
solution for a given variational problem depends on reaching an accept-
able local minimum. This mostly depends on the selected optimization
strategy. With unsupervised deep-learning methods, the performance
of the obtained solution depends on reaching a model with good gen-
eralization capabilities. This mostly depends on the amount of training
data.

Despite the big difference in the approach, traditional and deep-
learning methods still share the definition of the image similarity terms,
the parametrization of the space of admissible transformations, and the
need for regularization. The high modularity of the traditional non-
rigid registration paradigm evidenced with the Insight Toolkit (ITK,
www.itk.org) and FAIR [26] libraries makes it possible to adapt or
extend the existing methods. For example, a traditional registration
method can be adapted to deal with multimodality through a change
in the image similarity term and the corresponding derivations of
the expressions needed for optimization [26,27]. In addition, a small-
deformation method can be turned into a diffeomorphic approach
by including the stationary or the non-stationary parametrizations of
diffeomorphisms for the representation of the transformation, selecting
a convenient regularization, and computing the derivations needed for
optimization (see, for example, the evolution of one of the variants
in [28] to a diffeomorphic version in [29]).

Deep-learning approaches boost the benefit of this modularity since
the derivations of the expressions needed for optimization that may
be hard with traditional methods can be easily obtained through au-
tomatic differentiation. However, it is often difficult to find the con-
nections, similarities, and differences between traditional and deep-
learning methods due to the temporal distance between analogous
proposals and the frequent use of different notations.

1.2. Evaluation of non-rigid registration

With the development of non-rigid image registration methods and
applications, arose the need to provide evaluation metrics that allow es-
tablishing which methodological improvements outperform others for
the applications of interest. The difficulty of the problem lies in the lack
of ground truth deformations, leading us to rely on indirect methods
such as the accuracy obtained when the methods are used in atlas-
based segmentation or establishing point or surface correspondences,
when these data come from manual expert delineations [30]. In addi-
tion, some evaluation proposals include the quantification of desirable
2

properties of the transformations, such as the invertibility, smoothness,
inverse consistency, transitivity, or enabling statistics [31,32].

It should be noted that there is often a compromise between these
desirable properties and accuracy. Among methods with similar per-
formance in atlas-based segmentation, the methods providing smooth,
invertible, or enabling statistics transformations should be preferred.
However, it is frequent to find recent evaluation studies where the
highest accuracies are obtained at the expense of reducing smoothness
or giving up invertibility, and the obtained accuracies are considered
the only criterion to prevail over the state of the art [33]. It has been
shown that smoothness, invertibility, or statistics enabling are obtained
at the expense of reducing accuracy (compare, for example, the per-
formance in [34] with its statistics enabling version [35]). Therefore,
it is usual that methods with desirable properties are reported to be
of inferior performance, and the unfair use of accuracy as the only
criterion to establish superior performance is not discussed in the
evaluations presented in the literature. This inertia arises from the lack
of homogeneous evaluation protocols with a consistent use of datasets
and evaluation metrics which hinders to assess whether a method is
superior to another under fair and stable conditions.

There are recent interesting evaluation initiatives such as the
Learn2Reg challenge [36], that aim at the homogenization and stan-
dardization of the evaluation protocols in non-rigid registration. How-
ever,

• Learn2Reg is limited to challenge participants. The segmentations
on the test set are not available, and the owners of interesting
methods do not participate in the challenge due to different
reasons.

• Learn2Reg is more focused on results than on the underlying
methodologies. Brief descriptions of the methods are provided,
and parameters and models are missing. Reproducibility is hard
to achieve for many methods.

• Challenge participants and organizers still give more importance
to accuracy rather than desirable properties. The overall rank
includes three metrics of accuracy and one metric of smoothness.

• Fast-inference deep-learning approaches take advantage to tra-
ditional methods. The overall rank includes one metric on time
complexity at inference and no metrics on time complexity at
training or memory complexity.

Learn2Reg is definitively a milestone toward improving evaluation
protocols of non-rigid registration methods, but there is still a long way
to go. Despite the valuable knowledge obtained from Learn2Reg, it is
still hard to choose the best methods and baselines to beat when a novel
non-rigid registration method is proposed. For example, in the case
of OASIS challenge, improvements could go through facilitating the
test set information and the process of submission, providing detailed
information on the registration ingredients and parameters allowing the
reproducibility of the results, providing constructive self-criticism on
the fairness of the proposed metrics and ranks used for the comparisons,
extending the evaluation from the performance in atlas-based segmen-
tation to other applications and establishing realistic baselines for the
different applications.

1.3. Contribution

The contribution of our work is to provide a homogeneous in
notation, an extensive description, and a fair and consistent evaluation
of traditional LDDMM and unsupervised deep-learning methods with a
focus on diffeomorphic registration. On the one hand, we aim at estab-
lishing the inter- and intra-theoretical connections between traditional
and deep-learning methods for a comprehensive understanding of their
methodological insights. On the other hand, we aim at providing a
complete, fair, and reproducible evaluation protocol to establish the
methods and baselines to beat with future proposals.

http://www.itk.org
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In this work, we focus on the problem of T1w MRI non-rigid regis-
tration due to our interest in neurodegenerative diseases. We use our
own NIREP-based evaluation protocol, which is consistent with our pre-
vious contributions to traditional LDDMM methods. In addition, we use
Learn2Reg OASIS challenge evaluation protocol in the validation set to
complete the results given in the challenge with interesting milestone
methods that should not be forgotten. For the sake of reproducibility,
we use a parameter configuration that allows a fair comparison among
traditional methods. For the deep-learning approaches, we use the
publicly available models generated by the proposing authors for the
problem of T1w MRI non-rigid registration. Our objective is to increase
knowledge in old and new methods for diffeomorphic registration with
old and new evaluation protocols.

We provide interesting insights on both the methodological and
quantitative and qualitative evaluation aspects of the considered meth-
ods with the hope that our work will serve as guidance for improving
the understanding and the assessment of future proposals. The registra-
tion results are publicly available in https://ieee-dataport.org/docume
nts/traditional-lddmm-vs-deep-learning-deformation-fields-nirep-and-o
asis.

Our manuscript proceeds as follows. Section 2 provides an overview
of the methodologies under traditional LDDMM methods. Section 3
provides an overview of the methodologies under the deep-learning
methods considered in this study. Section 4 provides an overview of the
most relevant evaluation protocols for non-rigid registration. Section 5
specifies the methods evaluated in this work. Section 6 describes the
datasets used in the evaluation and the relevant implementation details
for reproducibility. Section 7 shows the obtained evaluation results.
Section 8 discusses the most relevant findings of this study. Finally,
Section 9 provides the main conclusions of our work and directions
worth to consider in future research.

2. Traditional LDDMM methods for diffeomorphic registration

In this section, we provide an overview of traditional LDDMM meth-
ods. We start from the original LDDMM formulation and go through
the use of the stationary parametrization in LDDMM, the symmetric
formulation of SyN, and PDE-constrained LDDMM approaches. Then,
we review the most relevant EPDiff-constrained methods. We finish
with a mention to the band-limited parametrization.

2.1. Initial setup

Let 𝐼0 and 𝐼1 be the moving (source) and fixed (target) images
epresenting the input of the image registration problem. In the contin-
ous domain, the images are represented by square-integrable functions
𝑖 ∶ 𝛺 → R, where 𝛺 is a rectangular domain in R𝑑 . For volumetric
mages, 𝑑 = 3. 𝐷𝑖𝑓𝑓 (𝛺) represents the Riemannian manifold of smooth
iffeomorphisms on 𝛺. 𝑉 is the tangent space of the Riemannian

structure at the identity diffeomorphism, 𝑖𝑑. 𝑉 is a space of smooth
vector fields on 𝛺. 𝐷𝑖𝑓𝑓 (𝛺) has a Lie group structure, and 𝑉 is the
corresponding Lie algebra.

2.2. LDDMM

Large Deformation Diffeomorphic Metric Mapping (LDDMM) was
proposed by Beg et al. [15] following the inspiration of Horn and
Schunck method for the computation of the optical flow [13] and
Christensen et al. method for greedy diffeomorphic registration [37].
The LDDMM problem is approached with a variational formulation
from the minimization of the energy functional

𝐸(𝑣) = 𝐸reg(𝑣) + 𝜆𝐸img(𝐼0◦𝜑−1, 𝐼1), (1)

where 𝑣 is the velocity field flow that parametrizes the problem, 𝜑−1 ∶
𝛺 → R𝑑 is the diffeomorphic transformation that warps the moving
3

0 into the fixed 𝐼1 image, the total energy 𝐸 is decomposed into the
regularization 𝐸reg and the image similarity metric 𝐸img, and 𝜆 is a
parameter that weights the contribution of 𝐸reg and 𝐸img to 𝐸.

LDDMM assumes that transformations live in an appropriate Rie-
mannian manifold of diffeomorphisms, 𝐷𝑖𝑓𝑓 (𝛺). The Riemannian met-
ric of 𝐷𝑖𝑓𝑓 (𝛺) is defined from the scalar product in 𝑉

⟨𝑣,𝑤⟩𝑉 = ⟨𝐿𝑣,𝐿𝑤⟩𝐿2 = ⟨𝐿†𝐿𝑣,𝑤⟩𝐿2 =

∫𝛺
⟨𝐿†𝐿𝑣(𝑥), 𝑤(𝑥)⟩𝑑𝛺, (2)

here 𝐿 = (𝐼𝑑 − 𝛼𝛥)𝑠, 𝛼 > 0, 𝑠 ∈ R is the invertible self-adjoint differ-
ntial operator associated with the differential structure of 𝐷𝑖𝑓𝑓 (𝛺).
he metric is right-invariant with respect to the composition of diffeo-
orphisms. 𝑉 is a Reproducing Kernel Hilbert Space (RKHS) of vector

ields.
Instead of defining the energy on 𝜑−1 directly, the variational

roblem is parametrized with 𝑣𝑡 ∈ 𝐿2([0, 1], 𝑉 ), which is a time-
arying velocity field that represents the tangent vectors of the path
f diffeomorphisms 𝜙𝑡 with beginning in the identity 𝜙0 = 𝑖𝑑 and end
n 𝜙1 = 𝜑−1 and yield the minimum energy for the LDDMM problem.
he transport equation
𝑑𝜙𝑡
𝑑𝑡

= −𝑣𝑡◦𝜙𝑡 (3)

with initial condition 𝜙(0) = 𝑖𝑑, corresponds with the Riemannian expo-
ential map between the elements in the manifold of diffeomorphisms
𝑖𝑓𝑓 (𝛺) and the corresponding elements in the tangent space at the
𝑑, 𝑉 .

In LDDMM, the regularization energy is defined from

reg(𝑣) = ∫

1

0
‖𝑣𝑡‖

2
𝑉 𝑑𝑡, (4)

here ‖ ⋅ ‖2𝑉 = ⟨⋅, ⋅⟩𝑉 . Thus, the length of the path of diffeomorphisms
𝑡 is given by the regularization energy. Under the exact matching
ssumption at convergence, 𝐸img(𝐼0◦𝜑−1, 𝐼1) = 0 and the solution 𝑣𝑡
ields a flow of diffeomorphisms 𝜙𝑡 which is a geodesic in 𝐷𝑖𝑓𝑓 (𝛺)

with the Riemannian metric. This is the motivation below the word
‘‘metric’’ in LDDMM. In practice, the matching is not exact and the
solutions depart slightly from belonging to geodesic paths.

The image similarity energy is defined from

𝐸img(𝐼0◦𝜑−1, 𝐼1) = ‖𝐼0◦𝜑
−1 − 𝐼1‖2𝐿2 , (5)

although the energy minimization approach is amenable to the most
commonly used image similarity metrics in medical image registration
problems, such as normalized cross-correlation (NCC), its localized ver-
sion (lNCC), mutual information (MI), and normalized gradient fields
(NGF) [26,27,38]. Thus, the energy minimization problem of LDDMM
is given by

𝐸(𝑣) = ∫

1

0
‖𝑣𝑡‖

2
𝑉 𝑑𝑡 +

1
𝜎2

‖𝐼0◦𝜑
−1 − 𝐼1‖2𝐿2 (6)

where 𝜎 is used as the weighting parameter between regularization and
image similarity.

Gradient-descent is used in the optimization process. The derivation
of the gradient ∇𝑣𝐸(𝑣) is obtained from the Hilbert space structure
of 𝑉 and the relationship between Gateaux derivatives and Frechet
differentials. Starting from 𝑣𝑡 = 0𝑉 , 𝑡 ∈ [0, 1], the gradient-descent leads
the optimization toward a local minimum in the direction of the energy
gradient with the gradient-descent update equation

𝑣𝑛+1𝑡 = 𝑣𝑛𝑡 − 𝜖∇𝑣𝐸(𝑣
𝑛
𝑡 ) (7)

here

𝑣𝐸(𝑣𝑡) = 2𝑣𝑡 −
2
𝜎2
𝐾

(

|𝐷𝜙𝑡,1|(𝐼0◦𝜙𝑡,0 − 𝐼1)

∇(𝐼0◦𝜙𝑡,0)
)

, (8)

using the notation trick 𝜙 = 𝜙 ◦𝜙−1 and 𝐾 = (𝐿†𝐿)−1.
𝑠,𝑡 𝑡 𝑠
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LDDMM was a revolutionary breakthrough in the medical image
community due to its accuracy and its ability to provide high-quality
smooth and invertible transformations. The solutions are given directly
in the tangent space 𝑉 and there is a direct way of computing the
olutions in 𝐷𝑖𝑓𝑓 (𝛺) since the exponential map is simply solving an
DE (Eq. (3)). Solutions to the image registration problem given in
are crucial for their usability as inputs in Computational Anatomy

pplications such as the computation of population atlases (mean and
edian) and modes of variation (principal geodesic analysis) [39–42].

The most important limitation of LDDMM lies in the computa-
ional load as a result of the time-varying nature of 𝑣𝑡 (non-stationary
arametrization). Important advances in diffeomorphic registration,
uch as the stationary or the band-limited parametrizations, and
econd-order optimization aimed at reducing the computational com-
lexity of the original formulation [32,43,44]. Other advances ad-
ressed the problem of improving baseline accuracies, extending 𝐸img
or multimodality, or imposing physical constraints (like incompress-
bility) [38,45–47]. All these advances have the original formulation of
DDMM as a backbone.

.3. StLDDMM

Stationary LDDMM (StLDDMM) was proposed as an efficient alter-
ative to non-stationary LDDMM by replacing the time-varying velocity
ields by constant in time ones, known as stationary or steady velocity
ields [43,44,48]. The method was originally proposed with gradient-
escent [49] and subsequently improved with Gauss–Newton optimiza-
ion [50]. The original idea of using the stationary parametrization
n diffeomorphic registration was addressed independently by three
ifferent research groups, and StLDDMM shared the spotlight with
artel [14] and diffeomorphic Demons [18].

The energy minimization of StLDDMM is given by

(𝑣) = ‖𝑣‖2𝑉 + 1
𝜎2

‖𝐼0◦𝜑
−1 − 𝐼1‖2𝐿2 (9)

here the transport equation in the stationary case is simplified to

𝑑𝜙𝑡
𝑑𝑡

= −𝑣◦𝜙𝑡. (10)

In this case, 𝑣 does not depend on 𝑡. The transport ODE is usually solved
by scaling and squaring for transformations, which adapts the scaling
and squaring method for computing the group exponential in matrix
groups to 𝐷𝑖𝑓𝑓 (𝛺) [48].

Gauss–Newton optimization involves the derivation of the gradient
and the Hessian of the energy functional. They are obtained from the
first and second-order relationships between Gateaux derivatives and
Frechet differentials. The Gauss–Newton update equation is given by

𝑣𝑛+1 = 𝑣𝑛 − 𝜖(𝐻𝑣𝐸(𝑣𝑛))−1∇𝑣𝐸(𝑣𝑛). (11)

While for gradient-descent the optimization is sensitive to the initial
selection and refinement strategy of parameter 𝜖, Gauss–Newton is
typically able to converge to acceptable local minima with 𝜖 = 1.0.
In addition, the method shows a super-linear convergence rate, which
increases the efficiency of the optimization despite the extra burden in
the computation of the Hessian.

It should be noticed that the solutions of the StLDDMM problem
belong to one-parametric subgroups instead of geodesics. Therefore,
the usability of stationary solutions is more limited than non-stationary
ones. However, the computational efficiency made StLDDMM a compet-
itive alternative to non-stationary LDDMM in applications strictly not
requiring the use of geodesics.
4

2.4. SyN/ANTS

The Symmetric Normalization method proposed by Avants et al.
[51] (SyN) is the best-performing method in the extensive evaluation
framework conducted by Klein et al. [52]. The method was imple-
mented with ITK as ANTS library, and it was the first Open Source
version of a diffeomorphic registration method in the LDDMM family.
SyN was progressively extended to work with several image similarity
metrics and parametrizations. The exceptional accuracy achieved by
this method in different applications made SyN a baseline to beat for
new proposals of non-rigid registration methods. However, ANTS is im-
plemented in the CPU, which difficult its use in applications requiring
massive computations such as atlas building, spatial normalization in
large datasets, or extensive evaluations [6,9,36].

The variational formulation of SyN departs from LDDMM in order to
improve the symmetry between the forward and backward paths of dif-
feomorphisms. Thus, recalling with 𝑣𝑡𝐼0→𝐼1 the velocity field flow from
𝐼0 to 𝐼1 and with 𝜙𝑡𝐼0→𝐼1 the corresponding path of diffeomorphisms,

𝐸(𝐼0, 𝐼1, 𝑣𝐼0→𝐼1 , 𝑣𝐼1→𝐼0 ) =

∫

0.5

0
‖𝑣𝑡𝐼0→𝐼1‖

2
𝑉 + ‖𝑣𝑡𝐼1→𝐼0‖

2
𝑉 𝑑𝑡 +

‖𝐼0◦𝜙
0.5
𝐼0→𝐼1

− 𝐼1◦𝜙0.5
𝐼1→𝐼0

‖

2
𝐿2 , (12)

ubject to 𝜙𝑡𝐼0→𝐼1◦𝜙
1−𝑡
𝐼1→𝐼0

= 𝑖𝑑 and 𝜙1−𝑡
𝐼1→𝐼0

◦𝜙𝑡𝐼0→𝐼1 = 𝑖𝑑. Therefore, the

ethod imposes the minimization of the image similarity in the middle
oint of the forward and backward paths while constraining the ‖⋅‖2𝑉 of
he forward and backward velocity fields from the initial to the middle
oint of the forward and the backward paths, respectively. In addition,
xtra computations are included to guarantee the inverse consistency
etween the forward and the backward paths of diffeomorphisms. The
DDMM metric in 𝑉 is replaced by Gaussian kernels of different sizes,
nriching the RKHS structure of V. The optimization proceeds in a
ultiresolution strategy using gradient-descent. In their original paper,

he authors used the gradient from LDDMM for the 𝐿2 image similarity
etric and provided the derivation of the gradient for lNCC. Later, they
rovided a reproducible evaluation setup including MI [53].

It is well-known that in non-symmetric LDDMM approaches the
omputed solutions favor minimizing the image similarity between
he warped source and the target, while the image similarity between
he target warped with the inverse diffeomorphism and the source
ends to be greater. There are applications such as template build-
ng or shape analysis where it is important to work with symmetric
nd inverse-consistent solutions. In these applications, symmetric and
nverse-consistent methods should be a more appropriate choice.

The secret of SyN performance is on the use of different Gaussian
ernel regularizers within the multiresolution strategy and the use of
NCC as image similarity metric. The symmetry imposed by SyN is a
esirable property, but other non-symmetric methods reached similar
ccuracies in standard datasets later on. However, the use of an image
imilarity in the middle of the diffeomorphism path decouples the
roblem into two simpler subproblems. Therefore, this may give an
dvantage in the registration of images with substantial differences in
natomy, such as normal-diseased pairs (e.g. Alzheimer’s disease).

.5. PDE-LDDMM

The family of PDE-constrained LDDMM methods proposed in [54]
nd extended in [46,55–57] is especially interesting. PDE-LDDMM con-
ists in a formulation analytically but not numerically equivalent to Beg
t al. LDDMM using an optimal control approach. The method extends
he ideas of optical Stokes flow [58] to the diffeomorphic setting. PDE-
DDMM has been used for modeling compressible and incompressible
iffeomorphisms, boundary-preserving nonlinear Stokes fluid diffeo-
orphisms, and mass and intensity preserving diffeomorphisms [46,47,
9].
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The constraints in PDE-LDDMM are derived from the inverse-
consistency identity

𝜙𝑡◦𝜙
−1
𝑡 = 𝑖𝑑 (13)

s follows. By differentiation with respect to time, we get
𝜕
𝜕𝑡
𝜙𝑡◦𝜙

−1
𝑡 (𝑥) +𝐷𝜙𝑡◦𝜙−1

𝑡
𝑑
𝑑𝑡
𝜙−1
𝑡 (𝑥) = 0 (14)

∀𝑥 ∈ 𝛺. We now apply the transport equation (Eq. (3)) to get
𝜕
𝜕𝑡
𝜙𝑡◦𝜙

−1
𝑡 (𝑥) +𝐷𝜙𝑡◦𝜙−1

𝑡 𝑣𝑡◦𝜙
−1
𝑡 (𝑥) = 0. (15)

From the change of variables 𝜙−1
𝑡 (𝑥) = 𝑦 we get the deformation state

equation
𝜕𝜙𝑡
𝜕𝑡

(𝑦) +𝐷𝜙𝑡𝑣𝑡(𝑦) = 0, (16)

or, equivalently,

𝜕𝑡𝜙𝑡 +𝐷𝜙𝑡 ⋅ 𝑣𝑡 = 0. (17)

The initial condition is 𝜙0 = 𝑖𝑑.

2.5.1. PDE-LDDMM based on the image state equation
The original PDE-LDDMM method proposed by Hart et al. in [54]

approached the LDDMM problem with a constrained variational formu-
lation. The constraint was based on the restriction of the deformation
state equation from maps to images. Thus, the problem is defined from
the constrained minimization problem

𝐸(𝑣) = ∫

1

0
‖𝑣𝑡‖

2
𝑉 𝑑𝑡 +

1
𝜎2

‖𝑚(1) − 𝐼1‖2𝐿2 (18)

ubject to

𝑡𝑚𝑡 + ∇𝑚𝑡 ⋅ 𝑣𝑡 = 0 (19)

ith initial condition 𝑚(0) = 𝐼0 (see the analogy with Eq. (17)). The
ifferentiation of the augmented Lagrangian with respect to the state
ariable 𝑚 and its adjoint variable 𝜆 yield the optimality conditions

𝜕𝑡𝑚𝑡 + ∇𝑚𝑡 ⋅ 𝑣𝑡 = 0

𝜕𝑡𝜆𝑡 − ∇ ⋅ (𝜆𝑡 ⋅ 𝑣𝑡) = 0

𝑚(0) = 𝐼0

𝜆(1) = 2
𝜎2

(𝐼1 − 𝑚(1)).

(20)

nd the gradient (in 𝐿2) needed for gradient-descent optimization

𝐿2𝐸(𝑣) = 2𝐿†𝐿𝑣 + 𝜆∇𝑚. (21)

rom the optimal control point of view, 𝑣 is the control, 𝑚 is the state,
nd 𝜆 is the adjoint variable.

These equations were shown to be analytically equivalent to the
nes derived in the original LDDMM [54]. The objective of the PDE-
DDMM approach was to avoid the expensive computations in the map
pace by the translation of the computations to the image space through
he solution of the image state equation. Mang et al. proposed in [46]
he extension of the problem with Gauss–Newton–Krylov optimization.
n this case, the Hessian-vector product is given from

𝐿2𝐸(𝑣)𝛿𝑣 = 2𝐿†𝐿𝛿𝑣 + 𝛿𝜆∇𝑚. (22)

.5.2. PDE-LDDMM based on the deformation state equation
Inspired by the previous PDE-LDDMM contributions, Hernandez

t al. successfully explored the idea of obtaining more stability and
ccuracy by relying on the deformation state equation [34,57]. The
uthors proposed two different methods, one using the expressions of
he state and adjoint variables that can be derived from the equivalence
etween Hart et al. PDE-LDDMM and original LDDMM. The second one
irectly imposed the deformation state equation as a constraint from
5

nverse-consistency.
Thus, the first method uses the deformation state equation (Eq. (17))
or the computation of the forward and inverse paths, 𝜙𝑡 and 𝜓𝑡, and

then it uses the expressions

𝐽𝑡 =|𝐷𝜓𝑡|

𝑚(𝑡) =𝐼0◦𝜙𝑡
𝜆(𝑡) =𝐽𝑡𝜆(1)◦𝜓𝑡
𝑚(𝑡) =∇𝐼0◦𝜙𝑡 ⋅ 𝛿𝜙𝑡
𝛿𝜆(𝑡) =𝛿𝐽𝑡𝜆(1)◦𝜓𝑡 + 𝐽𝑡∇𝜆(1)◦𝜓𝑡 ⋅ 𝛿𝜓𝑡

(23)

in the computation of the gradient ∇𝐿2𝐸(𝑣) and the Hessian 𝐻𝐿2𝐸(𝑣)
rom Eqs. (21) and (22).

The second method solves Eq. (18) subject to

𝑡𝜙𝑡 +𝐷𝜙𝑡 ⋅ 𝑣𝑡 = 0 (24)

ith initial condition 𝜙0 = 𝑖𝑑. The differentiation of the augmented
agrangian with respect to the state variable 𝜙 and its adjoint variable
yield the optimality conditions

𝜕𝑡𝜙𝑡 +𝐷𝜙𝑡 ⋅ 𝑣𝑡 = 0

−𝜕𝑡𝜓𝑡 −𝐷𝜓𝑡 ⋅ 𝑣𝑡 = 0

𝜕𝑡𝜌𝑡 − ∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡) = 0

𝜙(0) = 𝑖𝑑

𝜓(1) = 𝑖𝑑

𝜌(1) = 𝜆(1) ⋅ ∇𝑚(1)

(25)

nd the gradient needed for gradient-descent optimization is, in this
ase,

𝐿2𝐸(𝑣) = 2𝐿†𝐿𝑣 +𝐷𝜙 ⋅ 𝜌. (26)

he Hessian-vector product needed for Gauss–Newton–Krylov opti-
ization is given from

𝐿2𝐸(𝑣)𝛿𝑣 = 2𝐿†𝐿𝛿𝑣 +𝐷𝛿𝜙 ⋅ 𝜌 +𝐷𝜙 ⋅ 𝛿𝜌. (27)

Originally, Runge–Kutta was used for the computation of the solu-
ions of the ODEs. However, the equations needed for Semi-Lagrangian
ntegration were derived in [34]. They improved the stability of the
olvers while reducing the complexity with the number of time steps.
oth methods outperformed the PDE-LDDMM proposal by Mang et al.

.6. LDDMM and geodesic shooting

Given an initial velocity field 𝑣0 ∈ 𝑉 at 𝑡 = 0, the geodesic path
nder the right-invariant metric on 𝐷𝑖𝑓𝑓 (𝛺) is given by the solution
f the Euler-Poincare (EPDiff) equation [60]

𝑡𝑣𝑡 = −𝐾
(

(𝐷𝑣)𝑇 (𝐿†𝐿𝑣) +𝐷(𝐿†𝐿𝑣)𝑣 + (𝐿†𝐿𝑣)∇ ⋅ 𝑣
)

. (28)

This expression is obtained from a conservation of momentum law
hich expresses that the momentum of the diffeomorphic flow at any
lace along the geodesic can be generated from the momentum at the
rigin

𝐿†𝐿𝑣𝑡, 𝑤⟩ = ⟨𝐿†𝐿𝑣0, 𝐷𝜙
−1
𝑡 𝑤◦𝜙𝑡⟩,∀𝑤 ∈ 𝑉 . (29)

Once the time-varying vector field flow 𝑣𝑡 is computed from the
PDiff equation, the geodesic 𝜙𝑡 on 𝐷𝑖𝑓𝑓 (𝛺) can be obtained by
he solution of the transport equation. This process is called geodesic
hooting and it is one of the fundamentals in the study of Riemannian
eometry [61].

Geodesic shooting on 𝐷𝑖𝑓𝑓 (𝛺) can be used to alleviate the compu-
ational complexity of LDDMM with a parametrization of the problem
n the initial velocity field. Thus,

(𝑣 ) = ‖𝑣 ‖

2 + 1
‖𝐼 ◦𝜑−1 − 𝐼 ‖

2 (30)
0 0 𝑉 𝜎2 0 1 𝐿2
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where 𝜑−1 is computed from the solution at time 𝑡 = 1 of the transport
quation associated with the vector field 𝑣𝑡 solution of Eq. (28) with
nitial condition 𝑣0.

The dependence of 𝜑−1 on 𝑣0 is quite complex, therefore the deriva-
ion of the gradient ∇𝑣0𝐸(𝑣0) is cumbersome. Younes et al. approached

the problem from the momentum conservation constraint in [62] yield-
ing to quite complicated equations. Vialard et al. [63] proposed a
PDE-constrained formulation with solutions on the space of scalar
momentum, denoted with 𝛼. Thus,

(𝛼0) = ‖𝛼0∇𝐼0‖2𝑉 + 1
𝜎2

‖𝑚(1) − 𝐼1‖2𝐿2 (31)

where the initial momentum 𝐿†𝐿𝑣0 = 𝛼0∇𝐼0 and the problem is
constrained to the state and EPDiff-equations. Singh et al. [40] pro-
posed the PDE-constrained formulation with solutions on the vector
momentum.

Later on, Zhang et al. proposed to compute the easier derivation of
the gradient ∇𝑣1𝐸(𝑣0) and transport the vector backward using parallel
ransport through the adjoint Jacobi equations [32]. The idea was
uccessfully applied in Hernandez et al. PDE-LDDMM methods with
auss–Newton–Krylov optimization [35,56].

.7. Mermaid

Mermaid (iMagE Registration via autoMAtIc Differentiation) is a
uite for LDDMM diffeomorphic registration available in https://merm
id.readthedocs.io. The suite is focused on different PDE-LDDMM vari-
nts with origin in the geodesic shooting methods proposed in [40,63].
utomatic differentiation is used in the computation of the gradient of

he different energy functionals and the optimizer is stochastic gradient
escent. Although Mermaid’s optimization is close to the one used with
eural networks and the suite includes some learning-based energies
RDDMM), the optimization approach is strictly not based on data.
herefore, most of the methods in Mermaid can be considered as
raditional.

The suite includes the stationary and EPDiff parametrizations. SSD,
CC, and lNCC are the metrics available for image similarity. The

egularization energies include the ones used in LDDMM (named
elmholtz) and energies more typically used in non-rigid registra-

ion methods and optical flow, such as diffusion, curvature, or to-
al variation. The suite also includes Gaussian and multi-Gaussian
moothing.

The registration models are distributed into:

• Advection for images and maps.
• EPDiff parametrization using vector-valued momentum for im-

ages and maps.
• EPDiff parametrization using scalar-valued momentum for images

and maps.

ccording to our experience, not all combinations of the registration in-
redients are possible: the input parameters are automatically changed
y the code and the numerics are prone to become unstable for some
ombinations.

.8. The band-limited parametrization

Last, but no least, a remarkable milestone in LDDMM is the proposal
y Zhang and Fletcher [32] of expressing the variational formula-
ion of geodesic shooting LDDMM in the space of band-limited initial
ector fields. The band-limited parametrization supposes a significant
eduction in memory and computation time. The reduction of the high-
requency components of the velocity fields augments the stability
f the ODEs and smoothes the optimization curves as a consequence
f the extra smoothness added with band-limiting to the variables.
6

lthough this parametrization was proposed for EPDiff methods, it
has been successfully extended to other LDDMM approaches such as
PDE-LDDMM methods [28].

3. Unsupervised deep-learning methods for diffeomorphic regis-
tration

In this section, we provide an overview of unsupervised deep-
learning methods. We focus on those methods with own or available
source code and models that have demonstrated exceptional accuracy
at the time of their respective publications when assessing their perfor-
mance in terms of the Dice similarity coefficient. We also include the
methods considered as benchmarks in TransMorph paper [33].

3.1. VoxelMorph

VoxelMorph was proposed in 2018 [23,24] as an unsupervised
deep-learning method for non-rigid image registration. VoxelMorph
was among the first methods requiring no supervised information,
such as ground truth transformations or anatomical landmark loca-
tions. The simplest version of VoxelMorph uses the small deformation
parametrization for the solution of the problem 𝜙. Thus,

𝜙 = 𝑖𝑑 + 𝑢, (32)

where 𝑢 ∶ 𝛺 → R𝑑 is the displacement field of the warp of the moving
𝐼0 into the fixed 𝐼1 image. The transformation 𝜙 is defined from the

inimization of a loss function 

̂ = argmin
𝜙

(𝐼0, 𝐼1, 𝜙). (33)

he loss is borrowed from traditional methods and it is defined from
he weighted contribution of image similarity and regularization losses

(𝐼0, 𝐼1, 𝜙) = sim(𝐼0◦𝜙, 𝐼1) + 𝜆reg(𝜙). (34)

he recommended image similarity loss is the mean squared error
MSE), based on the sum of squared differences (SSD), or the lo-
al normalized cross-correlation (lNCC), widely used in traditional
ormulations. The regularization loss is defined from

reg(𝜙) = ‖∇𝑢‖2
𝐿2 = ∫𝛺

‖∇𝑢(𝑥)‖22𝑑𝛺 (35)

nd penalizes the displacement field associated with the solution from
howing large partial derivatives of first-order. This regularization loss
as introduced in Horn and Schunck method for the estimation of the
ptical flow [13].

The authors proposed and compared two different architectures
nspired by U-Net [64]. The U-Nets were combined with the spatial
ransformer [65] for the computation of the composition 𝐼0◦𝜙. They
ound that there was a compromise between the number of param-
ters and the accuracies obtained on the test datasets. VoxelMorph-
I obtained the best registration results at the cost of using extra
omputational resources.

The codes for VoxelMorph were released in the GitHub reposi-
ory https://github.com/voxelmorph/voxelmorph. The models in [23]
ere available in the repo. VoxelMorph library includes extensions to

he use of the stationary parametrization and different image similar-
ty metrics used in traditional methods. The library included useful
utorials on how to train and test VoxelMorph models on 2D and
D data. These are probably the reasons why VoxelMorph has been
dopted as the baseline to beat with subsequent proposals. The original
oxelMorph codes and models became legacy code in less than five
ears due to the fast evolution of the third-party dependencies. The
uthors are constantly updating and maintaining the library and more
owerful models are released from time to time.
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3.2. VoxelMorphDiff

The diffeomorphic version of VoxelMorph (VoxelMorphDiff) was
proposed in 2018 [66,67]. Inspired by the supervised proposal by
Krebs et al. [68], VoxelMorphDiff was approached using variational
inference. Thus, the method is not only able to provide the diffeomor-
phic transformation that best warps the moving into the fixed image
according to the loss function but also to provide uncertainty estimates.

Let 𝑧 be a latent variable used for the parametrization of the
transformation 𝜙. Thus, we represent the solution of the problem by
𝑧 ∶ 𝛺 → R𝑑 . The prior probability of 𝑧 is modeled from a multivariate
ormal distribution of zero mean and covariance matrix 𝛴𝑧

(𝑧) = 𝑁(𝑧; 0, 𝛴𝑧). (36)

he authors assume 𝑧 to be a stationary velocity field, and the solution
o the problem is computed through the transport equation (Eq. (3)) by
he scaling and squaring algorithm.

The smoothness of 𝑧 is encouraged by the definition of 𝛴−1
𝑧 =

𝐿, where 𝜆 controls the scaling of the velocity field 𝑧 and 𝐿 is the
aplacian of a neighborhood graph defined on the grid in which the
mage domain 𝛺 is discretized.

Let 𝐼1 be a noisy observation of the warped image 𝐼0◦𝜙. Then,

(𝐼1|𝑧; 𝐼0) =  (𝐼1; 𝐼0◦𝜙𝑧, 𝜎2𝐼), (37)

here 𝜎2 represents the variance of the additive image noise.
The solution of the registration problem is obtained from the es-

imation of the posterior registration probability 𝑝(𝑧|𝐼1; 𝐼0) and 𝜙𝑧 as
he most likely transformation for the pair of images using maximum a
osteriori (MAP) estimation. The approach comes with an estimate of
he uncertainty of the registration.

Since the problem for 𝑝(𝑧|𝐼1; 𝐼0) is intractable, the authors use a
ariational approach for the approximated posterior registration prob-
bility. Variational inference uses a convolutional neural network com-
ined with the scaling and squaring method for transport equation in-
egration and spatial transformer layers for the computation of warped
mages. The probabilistic formulation of the registration problem was
irst theoretically formulated in [14].

The posterior registration probability 𝑝(𝑧|𝐼1; 𝐼0) is approximated
with the probability 𝑞𝜓 (𝑧|𝐼1; 𝐼0) parametrized by 𝜓 . The parameter
𝜓 is obtained from the minimization of the Kullback—Leibler (KL)
divergence between 𝑞𝜓 and 𝑝. Thus, we seek for

min
𝜓
𝐾𝐿[𝑞𝜓 (𝑧|𝐼1; 𝐼0) ∥ 𝑝(𝑧|𝐼1; 𝐼0)] =

min
𝜓
𝐾𝐿[𝑞𝜓 (𝑧|𝐼1; 𝐼0) ∥ 𝑝(𝑧)] − 𝐸𝑞[log 𝑝(𝐼0|𝑧; 𝐼1)]. (38)

At this point, the approximate posterior 𝑞𝜓 (𝑧|𝐼1; 𝐼0) is modeled with
a multivariate normal with diagonal covariance matrix

𝑞𝜓 (𝑧|𝐼1; 𝐼0) =  (𝑧;𝜇𝑧|𝐼1 ,𝐼0 , 𝛴𝑧|𝐼1 ,𝐼0 ), (39)

and the parameters 𝜇𝑧|𝐼1 ,𝐼0 and 𝛴𝑧|𝐼1 ,𝐼0 are estimated from a CNN
parametrized by 𝜓 with the minimizing function in Eq. (38) as the loss
function. Thus,

(𝜓 ; 𝐼1, 𝐼0) =

𝐾𝐿[𝑞𝜓 (𝑧|𝐼1; 𝐼0) ∥ 𝑝(𝑧)] − 𝐸𝑞[log 𝑝(𝐼1|𝑧; 𝐼0)] =

𝐾𝐿[𝑞𝜓 (𝑧|𝐼1; 𝐼0) ∥ 𝑝(𝑧)] −
1

2𝜎2𝐾

∑

𝑘
‖𝐼0◦𝜙𝑧𝑘 − 𝐼1‖

2, (40)

where 𝐾 is the number of samples used. The first term in the final
expression of the loss encourages the posterior 𝑞 to be close to the
7

𝜓

prior 𝑝(𝑧). The second term favors those solutions where the warped
image is similar to 𝐼1, resembling VoxelMorph image similarity loss.

3.3. SynthMorph

SynthMorph departs from VoxelMorph with a training strategy
which replaces image pairs with synthetic or true segmentation pairs
[69]. The method is proposed from the observation that the use of
image similarity metrics strictly from the images as loss functions
results in models that are only able to predict acceptable solutions
for image pairs and image differences similar to the data observed
during training. SynthMorph exposes the models during training to a
wide range of variability in segmentation pairs and differences that are
expected to improve their generalization capability. In addition, the
models are supposed to be agnostic to image modalities since images
are replaced with segmentations.

The loss function is defined in terms of seg(𝐼0) and seg(𝐼1), the
segmentations associated with the moving and the fixed images

(seg(𝐼0), seg(𝐼1), 𝜙) =
sim(seg(𝐼0)◦𝜙, seg(𝐼1)) + 𝜆 reg(𝜙), (41)

here the image similarity metric is given by the Dice metric

sim(seg(𝐼0), seg(𝐼1), 𝜙) =

2
𝐿

𝐿
∑

𝑙=1

(𝑠𝑒𝑔(𝐼0)◦𝜙)𝑙 ⊙ 𝑠𝑒𝑔(𝐼1)𝑙
(𝑠𝑒𝑔(𝐼0)◦𝜙)𝑙 ⊕ 𝑠𝑒𝑔(𝐼1)𝑙

, (42)

here (⋅)𝑙 represents the one-hot encoded segmentation of label 𝑙,
is the number of labels, and ⊙ and ⊕ represent the point-wise

ultiplication and addition, respectively.
SynthMorph uses the stationary parametrization of diffeomorphisms.

he regularization is defined from

reg(𝜙) =
1
2
‖∇𝑢‖2

𝐿2 , (43)

where 𝑢 is the displacement field of 𝜙, recall 𝜙 = 𝑖𝑑 + 𝑢.
The authors synthesized two different sets of training data, yield-

ing two different models. The first set was obtained from random
geometric shapes synthesized from noise distributions. The second set
was obtained from brain image segmentations obtained from SynthSeg
[70].

3.4. SyMNet

SyMNet was proposed in [71] with the idea of estimating both
forward 𝜙𝐼0→𝐼1𝑡 and backward 𝜙𝐼1→𝐼0𝑡 diffeomorphic transformations for
an image registration pair while enforcing the symmetry of the process.
The method is heavily inspired by SyN and the suite of algorithms
implemented in ANTS library.

SyMNet uses both the small displacement and the stationary paramet
tion of diffeomorphisms, although the former is preferred by the
authors due to the improved consistency in the estimation of the inverse
transformation [14]. The network is based on a U-Net architecture.

The loss function combines the image similarity loss that is de-
composed into three image-based losses which measure the difference
between the warped images at the beginning and end points of the
forward and backward paths and in the middle and three regular-
ization terms that control different aspects of the smoothness of the
transformations. Thus,

(𝐼0, 𝐼1) = sim + 𝜆regreg + 𝜆magmag + 𝜆JdetJdet (44)

where

sim = −𝑙𝑁𝐶𝐶(𝐼0◦𝜙
𝐼0→𝐼1
0.5 , 𝐼1◦𝜙

𝐼1→𝐼0
0.5 )

𝐼0→𝐼1 𝐼1→𝐼0
−𝑙𝑁𝐶𝐶(𝐼0◦𝜙1 , 𝐼1) − 𝑙𝑁𝐶𝐶(𝐼1◦𝜙1 , 𝐼0). (45)
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The regularization loss combines the contribution of the regulariza-
tion term for the forward and backward velocities with a constraint
on the differences of the magnitude of the velocities to be similar, and
the Jacobian determinant that is penalized against non-diffeomorphic
solutions. Thus,

reg = ‖∇𝑣𝐼0→𝐼1‖2
𝐿2 + ‖∇𝑣𝐼1→𝐼0‖2

𝐿2 (46)

mag = ‖𝑣𝐼0→𝐼1‖2
𝐿2 − ‖𝑣𝐼1→𝐼0‖2

𝐿2 (47)

Jdet = ∫𝛺
max(0,−|𝐽𝜙(𝑥)|)𝑑𝛺. (48)

The method differs from SyN in the image similarity loss, enriching
the SyN image similarity with the errors at the beginning and end
points of the paths of transformations. In addition, the regularization
is substantially different from SyN, based on restricting the magnitude
of the gradient of the velocity fields and complemented with a control
on the magnitude of the velocity fields and a penalization on negative
Jacobians.

3.5. LapIRN

LapIRN proposed the use of a Laplacian Pyramid Network architec-
ture for diffeomorphic registration [72]. The idea of using a pyramidal
image structure comes from coarse-to-fine or multi-resolution strategies
that are commonly used in computer vision tasks such as scale-space,
segmentation, object detection, optical flow estimation, and non-rigid
registration. The use of a multi-resolution strategy enables the methods
to capture large and small misalignments between the images. The
computations at the coarsest resolution levels provide initial rough
estimations of the transformations helping to avoid local minima far
from the optimal solutions.

Multiresolution strategies are hard in neural network-based ap-
proaches, and cascade CNNs, where different networks for the different
resolutions are combined in an end-to-end manner, seem the most
reasonable approaches [73]. Thus, LapIRN follows a three-level cascade
Laplacian pyramid framework, with an identical CNN-based registra-
tion network for each pyramid level. Each network uses as input the
warped images upsampled from the immediately superior coarser scale
and the transformations computed in that scale. LapIRN is trained in a
coarse to fine manner, where the coarsest level network is trained first,
and the finer-level networks are progressively added to the training
of the whole cascade system. With respect to the alternative of sepa-
rated network training, the training strategy followed in LapIRN helps
achieve a balance of the loss weights overall the different resolution
levels. The optimization loss for the method is defined following a
similarity sub-pyramid for each level

𝑘sim(𝐼0, 𝐼1) =
∑

𝑖≤𝑘
− 1
2𝑘−𝑖

𝑙𝑁𝐶𝐶(𝐼 𝑖0◦𝜙
𝑖, 𝐼 𝑖1), (49)

where 𝑘 denotes the pyramid level, (𝐼 𝑖0, 𝐼
𝑖
1) denote the image registra-

tion pair subsampled at level 𝑖, and 𝜙𝑖 denotes the transformation at
level 𝑖. Typically, 𝑘 ∈ {1, 2,… , 𝐿} where 𝐿 = 3.

LapIRN is implemented with small displacements and the stationary
parametrization of diffeomorphisms. The regularization is respectively
performed on the displacements or velocity fields obtained on the
corresponding resolution level

𝑘reg = 1
2𝐿−𝑘

‖∇𝑣‖22. (50)

According to the Learn2Reg challenge rank, LapIRN is one of the
est-performing methods scoring in the top-three of the different reg-
stration tasks.
8

.6. CycleMorph

CycleMorph stands for cycle-consistent unsupervised non-rigid im-
ge registration [74]. The method departs from the limitations observed
n deep-learning approaches to preserve the topology of the objects in
he image due to the lack of smoothness of the transformations, and
he typically low accuracy of the models when inference is performed
etween the same images (surprisingly, the estimated transformation
reatly differs from the identity in this trivial case). The authors pro-
ose a cycle consistency loss as a constraint that helps in the purpose of
reserving the topology and an identity loss that helps with the same
mage registration problem. Thus, the loss function is defined as follows

(𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 , 𝜙𝐼1→𝐼0 ) =

reg+sim(𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 ) + reg+sim(𝐼1, 𝐼0, 𝜙𝐼1→𝐼0 ) +

cycle(𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 , 𝜙𝐼1→𝐼0 ) +

id(𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 , 𝜙𝐼1→𝐼0 ). (51)

The loss reg+sim is selected as a typical total loss function with lNCC
s image similarity and ‖∇𝜙‖2

𝐿2 as regularization. The cycle consistency
oss is defined from

cycle(𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 , 𝜙𝐼1→𝐼0 ) =

‖𝐼1◦𝜙
𝐼1→𝐼0 − 𝐼0‖𝐿1 + ‖𝐼0◦𝜙

𝐼0→𝐼1 − 𝐼1‖𝐿1 (52)

and robustly measures the 𝐿1 differences between the warped images at
the end-points of the path after the registration with the corresponding
transformation. Finally, the identity loss is an additional regularization
that guides the network to estimate the identity transform for identical
pairs of images

𝑖𝑑 (𝐼0, 𝐼1, 𝜙𝐼0→𝐼1 , 𝜙𝐼1→𝐼0 ) =

−𝑙𝑁𝐶𝐶𝐼0=𝐼1 (𝐼0◦𝜙
𝐼0→𝐼1 − 𝐼1) − 𝑙𝑁𝐶𝐶𝐼1=𝐼0 (𝐼1◦𝜙

𝐼1→𝐼0 − 𝐼0). (53)

Small deformation and a U-Net architecture complete the description
of the proposed method.

CycleMorph and SymNet approach the problem of enhancing in-
verse consistency in the registration. Both methods overlap in the use
of image similarity losses and regularization terms at the beginning and
end points of the forward and backward paths. Then, they differ in
the use of information in the middle of the path and the inclusion of
different regularization terms. CycleMorph does not consider the option
of using the stationary parametrization of diffeomorphisms although
the method may be very easily extended. The model used in this work
was generated and released by TransMorph’s authors.

3.7. ViT-V-Net

ViT-V-Net builds on Vision Transformer architectures for image
classification [75], which use a purely self-attention-based model that
learns long-range spatial relations to focus on the relevant parts of
the image for the task [76]. The ViT network cannot be used directly
in the problem of image registration since the consecutive downsam-
plings have the effect of emphasizing low-resolution features without
localization information. ViT-V-Net combines ViT and convolutional
networks, providing an architecture suitable for image registration.
The emphasis of the contribution is on the network, which departs
from traditionally used U-Net. Small deformation, SSD, and diffusion
regularizer are selected for the definition of the loss function.

3.8. TransMorph

So far, VoxelMorph library has served as base code for many of
the subsequent proposals. TransMorph gives name to a suite of models
closely related to VoxelMorph models [33]. The codes for TransMorph
are available in the GitHub repository https://github.com/junyuchen24
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5/TransMorph_Transformer_for_Medical_Image_Registration, where the
parallelism with VoxelMorph can be appreciated.

TransMorph replaces the classical U-Net architecture of VoxelMorph
with convolutional neural networks (CNNs) by a swin transformer, one
of the adaptations of the original transformer architecture for natural
language processing to computer vision applications. The suite includes
the small deformation, stationary, and b-spline parametrizations; SSD
and lNCC image similarity metrics; and the regularization energy used
in VoxelMorph is complemented by the possibility of using the bending
energy

𝑏𝑒𝑛𝑑 = ‖∇2𝑢‖22, (54)

losely related with LDDMM operator 𝐿.
In addition, the probabilistic version for a diffeomorphic Trans-

orph and a Bayesian version are available. The methods include the
ossibility of using the segmentations of the images during training and
ncorporate a loss based on the Dice similarity coefficient.

The proposal of TransMorph architecture came out after a thorough
eural Architecture Search (NAS) for the problem of image registration.
he authors considered three models that use the hybrid Transformer-
onvNet architecture: ViTVNet, proposed for non-rigid image registra-
ion; Pyramid Vision Transformer (PVT), proposed for image classifi-
ation, object detection, and semantic segmentation [77]; and Con-
olutional Neural Network and Transformer (CoTr), for 3D medical
mage segmentation [78]. In addition, they considered the pure trans-
ormer architecture of nnFormer, proposed for medical image segmen-
ation [79]. The authors came out with a hybrid Transformer-ConvNet
rchitecture with swin transformers to provide the best registration
esults according to the considered evaluation metrics.

TransMorph was trained with transformer architectures of different
izes ranging from tiny, to small, regular, and large versions. In addi-
ion, TransMorph comes with the code for conducting an interesting
omparative with traditional methods such as SyN, NiftyReg, LDDMM,
nd deedsBVC. In addition, the codes include the possibility to compare
he b-spline variant of TransMorph with MIDIR, a stationary variant of
oxelMorph where the stationary velocity fields are represented with
-splines [80].

.9. NODEO

NODEO was proposed in [81] as a fresh learning-based approach
o the problem using Neural Ordinary Differential Equations (NODEs).
ODEs were first proposed in [82] as a learning-based approach to
DE solvers. The method is inspired by the analogies between the Euler
ethod and ResNet [83] and replaces the residual network itself with
function leading the depth of the neural network from discrete to

nfinite dimension thus leveraging the accuracy of the solvers. Given
n ODE in the shape of
𝑑𝑦
𝑑𝑡

= 𝑓 (𝑦(𝑡), 𝑡), (55)

with initial condition 𝑦(𝑡0) = 𝑦0, neural ODEs aim at learning the
unction 𝑓 parametrized by 𝜃 in the shape of a neural network. Thus,

the objective is to learn 𝑓𝜃 from
𝑑𝑧
𝑑𝑡

= 𝑓𝜃(𝑧(𝑡), 𝑡) (56)

sing

(𝑧(𝑡1)) = 

(

𝑧0 + ∫

𝑡1

𝑡0
𝑓𝜃(𝑧(𝑡), 𝑡)𝑑𝑡

)

(57)

s loss function.
NODEO approaches the ODE solver of the original LDDMM problem

ith NODEs. Thus, the solution of the transport equation is estimated
y NODES
𝑑𝜙𝑡 = −𝑣𝜃(𝜙 ), (58)
9

𝑑𝑡 𝑡 𝑡 i
where

𝜙(𝑠) = 𝜙(0) + ∫

𝑠

0
−𝑣𝜃𝑡 (𝜙𝑡)𝑑𝑡. (59)

otice the analogy between Eqs. (3) and (58).
The loss function is

(𝐼0, 𝐼1, 𝑣𝜃𝑡 ) = reg(𝑣𝜃𝑡 ) +

sim

(

𝐼0, 𝐼1, 𝜙(0) + ∫

1

0
−𝑣𝜃𝑡 (𝜙𝑡)𝑑𝑡

)

. (60)

he image similarity is lNCC while the regularization is borrowed from
revious proposals

reg = 𝜆regreg + 𝜆magmag + 𝜆JdetJdet, (61)

here

reg = ‖𝑣𝜃𝑡 ‖
2
𝐿2 (62)

mag = ‖∇𝑢‖2
𝐿2 (63)

Jdet = ∫𝛺
max(0,−|𝐽𝜙(𝑥)| + 𝜖)𝑑𝛺. (64)

The main difference between NODEO and other deep-learning ap-
roaches is that the training is conducted for each registration pair.
tarting from a random initialization of 𝑣𝜃𝑡 , forward and backward prop-
gation iteratively improve the estimation of the network parameters 𝜃
ccording to the minimization of the loss function given in Eq. (60).

Analyzing the codes available in the GIT repository https://github.
om/yifannnwu/NODEO-DIR, two remarkable implementation details
ome to light. First of all, the authors used a stationary parametrization
or the NODES. This means that 𝑣𝜃𝑡 does not depend on time and the
uthors are solving the problem for the stationary parametrization. For
number of time steps equal to two, the stationary parametrization

s analogous to StLDDMM. For a number of time steps greater than
wo, the parametrization is analogous to Dartel. The computation of
he inverse of the exponential mapping

og ∶ 𝐷𝑖𝑓𝑓 (𝛺) → 𝑉 , (65)

𝑡 → 𝑣𝑡 is needed for the computation of the regularization loss. This
s circumvented with the rough approximation

𝑡 ≈ 𝜙𝑡+1 − 𝜙𝑡 (66)

hat introduces an intrinsic error in the solutions. Second, the authors
laim the need to apply a Gaussian kernel in the last layer of the CNN
rchitecture. This may be due to the method with the CNN layers is
ot able to learn sufficiently smooth models 𝑣𝜃𝑡 from the regularization
osses. A more elegant explanation is that auto gradient is computing
he gradient of the loss function in the space of 𝐿2 functions, however,
he gradient needs to be computed in 𝑉 . This is a correct transformation
f the derivatives considering the Gaussian RKHS structure of 𝑉 .

. Insights into the evaluation of traditional and deep-learning
ethods

Evaluation of non-rigid image registration nearly initiated with eval-
ation projects such as the Non-Rigid Image Registration Evaluation
roject (NIREP) [31]. NIREP provided an evaluation framework to
bjectively compare the performance of non-rigid registration with a
roposal of standard criteria. The authors provided a dataset of 16 brain
RI images together with manual segmentations over 32 gray matter

egions. The framework was built on the idea that no metric alone is
ufficient for performance evaluation. The authors proposed to use a
et of diverse metrics for a good indication of the registration quality.
hese metrics included the overlap of the segmentations, the intensity
ariance that measures the sharpness of the atlas built from the reg-

strations to a common template, the inverse consistency between the
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forward and backward transformations, and the capacity of pairwise
registrations to satisfy the transitivity property. From these metrics, the
overlap of the segmentations prevailed through time.

The wide collaborative effort of Klein et al. [52] was the first
extensive evaluation project given the brain MRI datasets (LPBA40,
IBSR18, CUMC12, and MGH10), number of methods (14), and eval-
uation metrics (8). The evaluation metrics were in agreement with
VALMET [84], an abandoned evaluation project preceding NIREP and
all of them quantified the performance of non-rigid registration from
the amount of overlap between segmentations and surfaces. Despite
some of the authors of NIREP participated in this project, NIREP dataset
was not included in the study, and, surprisingly, all the participants
agreed on the inferior quality of IBSR18, CUMC12, and MGH10 images
and segmentations. Indeed, the authors pointed out as caveats that
the overlap metrics were insensitive to the presence of foldings in the
transformations, and that the study did not inform on the intrinsic
properties of the spatial deformations such as invertibility, inverse
consistency, or transitivity. In addition, the study ranked the different
methods as a whole, without any insight into the influence of the reg-
istration ingredients (transformation parametrization, regularization,
image similarity, and optimization) in the outcome.

Despite the mentioned caveats, the overlap metrics suggested by
Klein et al. (Target Overlap, Dice Similarity Coefficient, Jaccard index)
and their datasets prevailed in subsequent evaluation studies leaving
aside the evaluation of desirable properties related to the quality of
the transformations. They widely constitute almost the only criteria
to establish novel non-rigid registration methods in the state of the
art. Fortunately, SyN resulted in one of the best DSC-performing meth-
ods and established a hard-to-beat and reproducible baseline with
diffeomorphic solutions [53].

The following milestones in evaluation protocols for non-rigid im-
age registration were organized around challenges: EMPIRE10 (lung
CT; 2010) [85], CRC (lung CT and brain MRI; 2018) [86], CuRIOUS
(intra-operative brain US and MRI; 2019) [87], ANHIR (histology;
2019) [88], and Learn2Reg (lung CT, brain MRI, thorax CT-MR, hidden;
2020, 2021, 2022) [36]. From them, EMPIRE10 and CRC recovered
measurements of registration quality such as the ratio of singularities
or inverse consistency.

Learn2Reg is probably the most comprehensive, extensive, and
ambitious evaluation project to date. The challenge was proposed in
2020. This was a very opportune moment in which the community
had witnessed a shift from traditional to supervised deep-learning
methods with super efficient inference, and non-supervised proposals
had just overcome the overhead of computing sample transformations
for training. The challenge intended to serve as a unique benchmark to
fairly evaluate the state of the art and upcoming proposals in different
datasets and tasks. Learn2Reg proposed the use of the Dice Similarity
Coefficient (DSC) and the 30th percentile as overlap metrics together
with the 95th percentile Hausdorff distance (HD95), the standard de-
viation of the logarithm of shifted and clipped displacement Jacobians
(SDlogJ)1, a measurement of the quality of the transformations different
from previous proposals (NIREP, EMPIRE10, CRC). In addition, the
runtime at inference was included in the evaluation. The task regarding
brain MRI registration is translated from Klein et al. datasets to OASIS
(www.oasis-brains.org). FreeSurfer segmentations are used as a proxy
for manual segmentations, yielding an evaluation-based on a bronze
instead of on a gold standard.

As in Klein et al. study, the participants of Learn2Reg challenge
evaluated the registration methods as a whole, therefore, we still do
not have insights on the influence of the registration ingredients in the

1 The Python code for the computation of the SDlogJ is log_jac_det =
np.log(jacobian_determinant(disp_field[np.newaxis, :, :,
:, :]) + 3) .clip(1.0e−9, 1.0e10).
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overall performance. In addition, the methods were limited to those re-
search groups with the resources needed to participate in the challenge
(human resources availability, time, software, and hardware), leaving
aside milestones from the state of the art. The results were limited to
the proposed evaluation metrics and methodological insights leading to
the best performance were not provided.

In the problem of evaluation of non-rigid registration with OA-
SIS, LapIRN, Convex Adam, and VoxelMorph ranked in the top three
with average DSC values of 82, 81, and 80% in the test set. Sur-
prisingly, Convex Adam combines a deep-learning based module for
establishing large correspondences with traditional optimization (hy-
brid method) [89]. Even more, this hybrid approach ranked in the
top positions of the different Learn2Reg applications recovering the
interest in traditional approaches with the potential to collaborate with
deep-learning solutions.

5. Methods evaluated in this work

Given the large families of traditional and deep-learning based non-
rigid image registration methods, we need to focus our study. Thus,
in this work, we selected traditional LDDMM and unsupervised deep-
learning methods with available source code and models trained in the
T1w MRI registration problem, preferably with diffeomorphic variants.
Even though we conducted the evaluation in more than fifty variants
of methods.

Since the number of different LDDMM variants is considerable
and given the prevalence of the stationary parametrization of dif-
feomorphisms in unsupervised deep-learning approaches, we focused
on the stationary versions of LDDMM leaving out of the scope of
this work the non-stationary, EPDiff, or band-limited parametrizations.
The methods with these interesting parametrizations will be studied
in a subsequent work. Although traditional LDDMM methods with
the stationary parametrization can be easily transformed into inverse
consistent and symmetric methods, we decided to evaluate the methods
as they were originally proposed and leave for future work the analysis
of the advantages of these variants.

Table 1 gathers the traditional LDDMM and unsupervised deep-
learning methods evaluated in our work. We provide a brief description
of the method that allows the classification or identification of the
model architecture, the parametrizations, the regularization terms, the
image similarity metrics, and the optimization methods. For traditional
methods, we selected the optimization that is feasible (e.g., MI and
gradient descent in StLDDMM) or known to provide the best accu-
racy in previous evaluation studies (e.g., NGF and gradient descent in
PDE-LDDMM).

Regarding the deep-learning methods, we decided to use the pub-
licly available models generated by the original authors for the problem
of T1w MRI registration. Our decision may carry problems of intra- and
inter-fairness:

• The publicly available models may be suboptimal, better models
may be achieved by extending the training phase.

• The publicly available models were not trained under the same
conditions (image pairs and number of iterations) and a good
method may underperform just because of an inferior training
setup.

Nevertheless, some of these methods showed a competitive evaluation
performance according to our criteria. In addition, our decision also
carries interesting advantages:

• It is worth knowing the evaluation outcome of publicly available
models and methods.

• The evaluation conducted with publicly available models is easily
reproducible.

http://www.oasis-brains.org
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Table 1
Summary of the registration ingredients of the methods evaluated in this work. We refer with 𝑣 to the velocity field and 𝑢 to the displacement field, 𝜙 = 𝑖𝑑 + 𝑢. The abbreviations
used in the table are eq for equation, disp for displacement, and rep for representation.

Method Model Parametrization Regularization Image similarity Optimization

SyN LDDMM Greedy SyN Multi-kernel Gaussian SSD, lNCC, MI (middle) Gradient descent

StLDDMM LDDMM Stationary ‖𝐿𝑣‖22 SSD, NCC, lNCC, NGF Gauss–Newton
StLDDMM LDDMM Stationary ‖𝐿𝑣‖22 MI Gradient descent

PDE-LDDMM State eq. constraint Stationary, Galerkin rep. ‖𝐿𝑣‖22 SSD, NCC, lNCC Gauss–Newton–Krylov
PDE-LDDMM State eq. constraint Stationary, Galerkin rep. ‖𝐿𝑣‖22 MI, NGF Gradient descent
PDE-LDDMM Map eq. constraint Stationary, Galerkin rep. ‖𝐿𝑣‖22 SSD, NCC, lNCC Gauss–Newton–Krylov
PDE-LDDMM Map eq. constraint Stationary, Galerkin rep. ‖𝐿𝑣‖22 MI, NGF Gradient descent

Mermaid Map Stationary ‖𝐿𝑣‖22 SSD, NCC Stochastic gradient descent
Mermaid Scalar momentum map Stationary Multi-kernel Gaussian SSD, NCC Stochastic gradient descent
Mermaid Vector momentum map Stationary Multi-kernel Gaussian SSD, NCC Stochastic gradient descent

NODEO LDDMM through
neural ODEs

Stationary ‖∇𝑢‖22, 𝐽𝑑𝑒𝑡 > 0,
‖𝑣‖22

SSD, lNCC Adam

VoxelMorph U-Net Small disp./stationary ‖∇𝑢‖22 SSD, lNCC Adam
VoxelMorph-Diff Probabilistic, U-Net Stationary KL SSD Adam

SynthMorph U-Net Stationary ‖∇𝑢‖22 DSC Adam

SymNet U-Net Small disp./stationary ‖∇𝑢‖22, 𝐽𝑑𝑒𝑡 > 0,
symm ‖𝑣‖22

lNCC
(beginning, middle, end)

Adam

LapIRN Pyramid CNN Small disp./stationary ‖∇𝑢‖22/‖∇𝑣‖
2
2, 𝐽𝑑𝑒𝑡 > 0 lNCC Adam

TransMorph Swin transformer Small disp. ‖∇𝑢‖22 lNCC, DSC Adam
TransMorph-Diff Probabilistic

Swim transformer
Stationary KL SSD Adam

TransMorph-Bspl Swin transformer Stationary, b-spline rep. ‖∇𝑢‖22 lNCC Adam
TransMorph-Bayes Bayesian

Swim transformer
Small disp. ‖∇𝑢‖22 lNCC Adam

CycleMorph U-Net Small disp. ‖∇𝑢‖22 lNCC, cycle, id
(beginning, end)

Adam

MIDIR U-Net Stationary, b-spline rep. ‖∇𝑢‖22 MI Adam

VIT Vision transformer Small disp. ‖∇𝑢‖22 SSD Adam
PVT Pyramid vision transformer Small disp. ‖∇𝑢‖22 – Adam
CoTr CNN-Transformer Small disp. ‖∇𝑢‖22 DSC Adam
nnFormer Swin transformer Small disp. ‖∇𝑢‖22 – Adam
Last, but not least, we considered including ConvexAdam from
earn2Reg22 in our study since the source code is available in https:
/github.com/multimodallearning/convexAdam. However, we found
hat the method apparently uses data extracted from the segmentation
f the images and we did not find any information on how to obtain
his data correctly.

. Datasets and implementation details

.1. NIREP

NIREP or NIREP16 was proposed in [31] for the evaluation of non-
igid registration. NIREP16 consists of 16 T1w Magnetic Resonance
maging (MRI) images. These images were acquired at the Human
euroanatomy and Neuroimaging Laboratory, University of Iowa. They
ere selected for the NIREP project from a database of 240 normal
olunteers. Datasets correspond to 8 males and 8 females with a
ean age of 32.5 ± 8.4 and 29.8 ± 5.8 years, respectively. The images

re skull-stripped and aligned according to the anterior and posterior
ommissures. Image dimension is 256 × 300 × 256 with a voxel size
f 0.7 × 0.7 × 0.7 mm. Images are distributed with the segmentation of
2 gray matter regions at the frontal, parietal, temporal, and occipital
obes. The most remarkable feature of this dataset is its excellent
mage quality. The geometry of the segmentations provides a specially
hallenging framework for deformable registration evaluation. The sup-
lementary material gathers the details on the segmented regions and
heir visual appearance.

In our previous works, a subsampled version of this dataset has
een extensively used for the evaluation of different LDDMM methods.
he images of this dataset have been subsampled by reducing image
11
dimension to 180 × 210 × 180 with a voxel size of 1.0 × 1.0 × 1.0 mm.
Subsampling is needed to be able to run interesting but memory-
demanding benchmark methods and to maintain the continuity of the
evaluation results shown in previous works. In our experiments, the
first image is selected as the source and warped to the remaining 15
images of the dataset.

6.2. OASIS Learn2Reg22

The open-access series of imaging studies, OASIS (https://www.
oasis-brains.org/), is a project aimed at making neuroimaging data
sets of the brain freely available to the scientific community. OASIS
is divided into different projects with a focus on the study of the
anatomical evolution of normal and diseased brains.

OASIS Learn2Reg22 dataset is a small sample made of 416 3D T1w
MRI scans from different subjects. The dataset was first proposed in
Learn2Reg21 challenge with the intention to assess the performance of
non-rigid registration methods in the alignment of small structures of
variable shape and size from monomodal MRI. Slight modifications in
the Learn2Reg21 data were performed for Learn2Reg22 including the
renaming of the files and the permutation and flip of some dimensions
to provide the images in the space of the MNI 152 template. Thus, the
image dimension in OASIS Learn2Reg22 dataset is 160 × 224 × 192
while it is 160 × 192 × 224 in OASIS Learn2Reg21. This is relevant
for those models trained before 2022 with limitations on the input
dimensions.

The original images were pre-processed for the HyperMorph pa-
per [90]. Preprocessing included resampling and alignment to a com-
mon template and skull stripping. The segmentations were automati-
cally obtained using FreeSurfer and SAMSEG from the neurite package.

https://github.com/multimodallearning/convexAdam
https://github.com/multimodallearning/convexAdam
https://github.com/multimodallearning/convexAdam
https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
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A total of 35 brain structures are customarily used in the evaluation.
The registration pairs are given by the challenge organizers. The sup-
plementary material gathers the details on the segmented regions and
their visual appearance.

The validation set, made up of 19 image pairs, can be used for the
evaluation of non-rigid registration methods in the case that the valida-
tion set has not been involved in the model design. The segmentations
are not available for the test set. Indeed, the evaluation of methods
using the test set needs to go through an official submission of results
to the challenge organizers. In our experiments, we used the validation
set for evaluation.

6.3. Implementation details

The experiments were run on a machine equipped with one NVidia
GeForce RTX 3090 Ti with 24 GB of video memory and an Intel Core
i7 with 64 GB of DDR3 RAM. The C++ code of ANTS library was used
for the SyN method. The LDDMM codes were developed in the GPU
with MATLAB. The Python codes and models publicly available for
Mermaid and the deep-learning methods were used for the remaining
methods. We needed to install different Python environments due to
the fast obsolescence of code dependencies.

For the traditional methods, we used the same implementation
and parameters as in our previous works [27]. All methods were
embedded into a multi-resolution scheme of three levels. Gradient-
descent, Gauss–Newton, and Gauss–Newton–Krylov were implemented
with an efficient method for the update of the step size based on offline
backtracking line-search combined with a check on Armijo’s condition.
We used the stopping conditions in [46]. Otherwise, the optimization
was stopped after 50 iterations in the case of gradient-descent and
Gauss–Newton and after 5 inner × 10 outer iterations in the case of
Gauss–Newton–Krylov.

Regularization parameters were selected from a search of the opti-
mal parameters in NIREP16 and OASIS datasets. Thus, we used 𝜎2 =
.0, 𝑠 = 2, and a unit-domain discretization of the image domain 𝛺. We
elected 𝛼 = 0.0010 for NIREP16 and 𝛼 = 0.0025 for OASIS. Details on
he selection of 𝛼 are given in the supplementary material.

ANTS was run with the following parameters
ynconvergence="[50x50x50,1e−6,10]",
ynshrinkfactors="42x1",
ynsmoothingsigmas="32x1vox".
he selection of the number of iterations was in agreement with the
umber of iterations used in gradient-descent and the number of inner
outer iterations used in Gauss–Newton–Krylov optimization for PDE-

DDMM. The selection of the Gaussian smoothing parameters resulted
n a minimal regularization with the objective of obtaining a maximal
mage matching.

Mermaid parameters were selected to be fairly compared with StLD-
MM and PDE-LDDMM. Namely, we used a multiresolution strategy
ith 50 × 50 × 50 iterations, the same shrink factors than SyN, and
n initial learning rate leading to a suitable convergence in all cases.
he regularization was set to Helmholtz with the same parameters
sed in the traditional LDDMM methods. Mermaid codes used this
egularization for the map model but it was automatically replaced
or the scalar and vector momentum map models with a multi-kernel
aussian. This means that Helmholtz regularizer is not implemented for

hese variants of Mermaid. Thus, we used the regularization parameters
et with Mermaid codes
ulti_gaussian_stds= "[0.05, 0.1, 0.15, 0.2, 0.25]",
ulti_gaussian_weights= "[0.06666666666666667,
.13333333333333333, 0.19999999999999998,
.26666666666666666, 0.3333333333333333]".
s we will see in the results section, these parameters imposed a too
trong regularization to provide competitive results. However, the large
12

umber of parameters and the time complexity of Mermaid made us l
eave the quest for a less restrictive parameter set out of the scope of
his work.

NODEO was executed with the default parameters. Mean filter was
sed as smoothing kernel. The number of time steps was 2, yielding
stationary parametrization. The number of iterations was 300. The
eighting parameters were 𝜆reg = 0.0005, 𝜆mag = 0.05, and 𝜆Jdet = 2.5.

For the deep-learning methods, different image size adjustments
were performed in response to the sizes requested by the models.
Images were zero-padded and cropped whenever possible. For Syn-
thMorph the images needed to be cropped. For TransMorph, NIREP
images and labels need to be resampled. OASIS L2R22 images were
remapped into Learn2Reg21 space using flips and permutations.

7. Results

In this section, we show the most relevant results of the experiments
conducted to evaluate the performance of the methods considered in
this work. First, we provide and extensive evaluation in the NIREP16
database, where the traditional LDDMM methods considered in this
work have been previously evaluated consistently throughout our pre-
vious works [27]. Next, we provide the evaluation in OASIS validation
set in the framework of Learn2Reg22 challenge. As a complement of
the evaluation conducted in our work, we provide the most relevant
evaluation results in the atlas to IXI registration problem. The details
are found in the supplementary material.

7.1. Evaluation metrics

In this study, we use the Dice Similarity Coefficient (DSC) for the
evaluation of the accuracy of the methods. Given 𝑆 and 𝑇 two regions
belonging to the warped source and the target labeling, the DSC is given
by

𝐷𝑆𝐶(𝑆, 𝑇 ) = 2
|𝑆 ∩ 𝑇 |
|𝑆| + |𝑇 |

, (67)

where | ⋅ | denotes the cardinality of the regions. Thus, the DSC for a
iven structure is computed from the quotient of twice the cardinality
f the intersection between the segmentations of the structures and the
ardinality of their union, where segmentations are treated as sets. This
etric ranges from 0 to 1. A DSC score of 1 means that the overlap is
erfect while a DSC score of 0 means that the structures do not overlap.
he DSC values of good-performing methods depend on the difficulty
f the dataset. This means that a DSC of 0.5 in a difficult dataset may
e as good as a DSC of 0.75 in an easier one. DSC is related to other
etrics such as the Target Overlap or Jaccard coefficients, and it has

een shown that the relative performance of the different methods is
reserved through the used metric [52].

An informative way of comparing the performance of the methods
s to plot the distribution of the DSC values in the shape of box-and-
hiskers. The DSC values are stored in a matrix where the dimension is

he number of structures times the number of experiments. Therefore,
wo different kinds of boxplots arise. Klein et al. proposed to plot the
istribution of the DSC values averaged by structures [52]. This way,
e can assess the distribution of the overall accuracy of the methods
er experiment. On the other hand, Learn2Reg paper showed the plots
f the distribution of the DSC values averaged by experiment [36]. This
ay, the boxplots represent the variability of the registration methods

hrough the different structures.
According to our experience, the differences in performance among

he registration methods can be better visualized with the proposal
f Klein et al. Regarding Learn2Reg proposal, it is common that the
ifferences in the difficulties for the registration of the structures are
arge. In consequence, the box plot and whisker sizes result bigger and
he number of outliers rises considerably. Overall, the methods become

ess distinguishable in the comparison of these distributions.
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A well-known issue with the use of box-and-whiskers of the DSC
values is that the DSC may disproportionately penalize errors in small
regions compared to large regions. Therefore, a method greatly per-
forming in small regions may be penalized with the use of aggregated
DSC scores. However, the use of box-and-whisker plots is reasonable
to have a global assessment of a large set of methods. The alternative
option would be to make a comparison of the accuracy of the methods
on the different regions using stratified boxplots, as suggested in [91],
but then one misses the big picture in studies like ours since we
have observed that methods with similar performance are not usually
consistently better than the others in all regions.

We measure the invertibility and smoothness of the transformations
using different metrics based on the Jacobian determinant of the trans-
formations (in the following, we use the word Jacobian to refer to its
determinant). Namely, we use the Jacobian extrema, the percentage
of negative Jacobians, and the standard deviation of the logarithm of
the positive Jacobians (SDlogJ). For SDlogJ, we depart from Learn2Reg
implementation in the sense that we directly compute the Jacobian of
the transformations and we exclude from the standard deviation the
points with negative Jacobian.

The Jacobian extrema allow measuring the greatest changes in
volume, whether there are foldings in the transformations, and how
aggressive they are. The percentage of negative Jacobians allows mea-
suring whether there is a general tendency to fold, or foldings occur in
a few isolated examples. The SDlogJ allows measuring the uniformity
of the amount of deformation. An informative way of comparing these
metrics is to plot the most illustrative ones in colored bubble charts as
proposed in [36].

Apart from the quantitative evaluation, it is important to show
some illustrative examples for a qualitative evaluation. In this case, the
differences between the fixed and the warped images, an RGB coded
map of the displacement fields, and the grids of the transformations
are used in our work.

7.2. Evaluation in NIREP dataset

7.2.1. Quantitative assessment
Table 2 shows the mean and standard deviation of the DSC values

after registration and the measurements obtained from the Jacobians.
In addition, Fig. 1 shows, in the shape of box and whisker plots, the
statistical distribution of the DSC values after averaging across the 32
segmented structures. In addition, Fig. 5 shows the results of pairwise
right-tailed Wilcoxon rank-sum tests, that were conducted for the as-
sessment of the statistical significance of the difference of medians for
the distribution of the DSC values. The alternative hypothesis is that
the median of the first distribution is higher than the median of the
second one.

All the traditional methods with the exception of Mermaid svf-map
obtained diffeomorphic or nearly diffeomorphic solutions, being diffeo-
morphisms the most frequent ones. For the deep-learning methods, the
solutions were diffeomorphic or nearly diffeomorphic in NODEO, VM-
Diff, VM-GIT, both versions of SynthMorph and SymNet, LapIRN-Diff,
TransMorph-Diff IXI, TransMorph-Bspl IXI, VM-Diff IXI, and MIDIR.
We consider a method with an average percentage close or inferior to
0.001 negative values nearly diffeomorphic, since negative Jacobians
are obtained in around one hundred points. A method with an average
percentage above 0.01 negative values is not considered nearly diffeo-
morphic, since negative Jacobians are obtained in a range from several
hundred to thousands of points.

Compared with the best traditional DSC baseline value of 60.24
obtained by SyN-lNCC, StLDDMM outperformed this baseline with
diffeomorphic and nearly diffeomorphic solutions (DSC of 61.52 ob-
tained with NCC and DSC of 62.10 obtained with lNCC). PDE-LDDMM
obtained an average DSC close to the baseline for the best-performing
methods (60.11 for the method based on the image state equation
13

and 60.92 for the method based on the deformation state equation). v
Mermaid svf-map also obtained an average DSC close to or outper-
forming the baseline but with non-diffeomorphic solutions (61.31
obtained with NCC). Compared with the best nearly diffeomorphic
deep-learning DSC baseline value of 61.35, obtained by VM-GIT, only
StLDDMM outperformed the value and Mermaid svf-map reached the
value. With regard to the deep-learning methods, NODEO-lNCC, VM-
GIT, SynthMorph-brains, both versions of SyMNet, LapIRN-Diff, and
TransMorph-OASIS reached or overpassed the traditional baseline. The
deep-learning baseline was reached or overpassed by NODEO-lNCC,
SyMNet, and TransMorph-OASIS.

For the traditional methods, the best-performing metric was lNCC or
NCC. For NODEO, lNCC was also the best-performing metric. However,
for VoxelMorph the models trained with SSD seem to outperform lNCC.
Finally, it takes our attention the low performance of the probabilistic
diffeomorphic methods (VoxelMorph-Diff and TransMorph-Diff).

These observations are best complemented with the boxplots shown
in Fig. 1. For some metrics the distributions of StLDDMM, PDE-LDDMM,
and Mermaid svf-map outperform the distribution of ANTS-lNCC. In the
case of StLDDMM the differences are significant (𝑝 < 1.0𝑒−4). From the
igure, it is striking the superior performance of NODEO-lNCC.

The performance of VM-GIT, SyMNet-Disp, and LapIRN-Disp is
uperior to the traditional baseline. In this case, VM-GIT and SyMNet-
isp solutions are nearly diffeomorphic. In addition, the performance
f SynthMorph-brains, SyMNet-Diff, and LapIRN-Diff are similar to
he traditional baseline and the solutions are nearly diffeomorphic.
ransMorph trained with OASIS also outperforms the traditional base-

ine but at the cost of very aggressive foldings in a large number of
oints (order of ten thousand points). Finally, it takes our attention
hat TransMorph trained with OASIS greatly outperforms the methods
rained with IXI. One of the reasons may be that TransMorph-OASIS
oosts its performance with a loss based on DSC. The pairwise right-
ailed Wilcoxon rank-sum tests showed statistical significance coherent
ith all our observations of superiority (𝑝 < 1.0𝑒−4).

Fig. 4 shows a partial selection of the boxplots in Fig. 1 with the
iffeomorphic and nearly diffeomorphic methods. The best-performing
ethod is NODEO-lNCC. The second position is occupied by SyMNet-
isp. The third position is shared with VM-GIT and StLDDMM. Between

he deep-learning and the traditional baselines, we find several StLD-
MM and PDE-LDDMM methods, and SyMNet-Diff. Finally, some StLD-
MM and PDE-LDDMM methods, SynthMorph-brains, and LapIRN-Diff

each the baseline distribution of SyN-lNCC. Below this baseline, we
an find some PDE-LDDMM methods, Mermaid, NODEO-SSD, VM-Diff,
ransMorph-Bspl, and MIDIR. The low performance of Mermaid svf
calar and vector momentum map is possibly due to the high regular-
zation imposed by the software. The pairwise right-tailed Wilcoxon
ank-sum tests showed statistical significance for the superiority of
ODEO-lNCC with the exception of SymNet-Disp (𝑝 = 0.0575). Com-
aring SyMNet-Disp with VM-GIT and StLDDMM Wilcoxon test did not
how statistical significance (𝑝 = 0.98 and 𝑝 = 0.79).

We assessed whether the DSC distributions in Fig. 4 may be dis-
roportionately penalizing errors in small regions compared to large
egions. To this end, we used stratified box-plots over the 32 regions.
e did not find evidence that the global DSC boxplots are penalizing

ny worthy registration method. These box-plots are shown in the
upplementary material.

Fig. 6 shows a graphical representation of the relationship among
he mean DSC values, SDlogJ, the percentage of negative Jacobian
eterminants, and max(𝐽 ). Attending to the SDlogJ dimension, there
s a clear threshold identifying methods with a large percentage of
egative Jacobians (SDlogJ above 1). These methods include Mermaid
vf-map, early versions of VoxelMorph, LapIRN-Disp, and the majority
f models considered in TransMorph paper. From a close-up of the best
SC (above 59) and SDlogJ (below 0.5), we can see that all the methods
re nearly diffeomorphic. The regularization of the baseline method
yN-lNCC is the highest, followed by LapIRN-Diff and PDE-LDDMM.
here is an ascending trend between the DSC values and the SDlogJ

alues.
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Table 2
Quantitative results on NIREP16. Mean and standard deviation of the Dice Similarity Coefficient (DSC), maximum and minimum of the Jacobian determinant, percentage of negative
Jacobian determinants, and standard deviation of the logarithm of the Jacobian determinant for those points with positive values. The abbreviation sym is used for symmetric, svf
is used for stationary velocity field, disp is used for displacement, and diff is used for diffeomorphic. In the column Model we detail either the model used for traditional methods
or the name of the file with the trained model used for the deep-learning methods. Boldface indicate, for each family of methods, the one with the best DSC average. With (⋆𝑛)

e indicate that the Jacobian computation failed in 𝑛 experiments showing extremely large or even 𝑛𝑎𝑛 values for 𝑚𝑎𝑥(𝐽 ). The arrows indicate that high DSC values while not
xtreme Jacobian determinant values are preferable.
Method Metric Model DSC (%) ↑ max (J) ↓ min (J) ↑ % of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓

Affine – – 43.56 ± 1.94 – – – –

SyN SSD Sym-LDDMM 55.24 ± 2.04 4.73 ± 1.02 0.28 ± 0.09 0.000000 0.13 ± 0.01
SyN lNCC Sym-LDDMM 𝟔𝟎.𝟐𝟒 ± 𝟏.𝟑𝟓 4.11 ± 0.39 0.24 ± 0.03 0.000000 0.15 ± 0.00
SyN MI Sym-LDDMM 55.34 ± 1.33 4.55 ± 0.83 0.29 ± 0.04 0.000000 0.13 ± 0.01

StLDDMM SSD LDDMM 59.87 ± 1.77 9.76 ± 3.10 0.18 ± 0.03 0.000000 0.20 ± 0.01
StLDDMM NCC LDDMM 61.52 ± 1.44 12.37 ± 4.51 0.14 ± 0.03 0.000000 0.22 ± 0.01
StLDDMM lNCC LDDMM 𝟔𝟐.𝟏𝟎 ± 𝟏.𝟓𝟒 15.09 ± 4.46 0.02 ± 0.22 0.000046 ± 0.000123 0.27 ± 0.01
StLDDMM MI LDDMM 60.47 ± 1.46 14.55 ± 5.94 0.17 ± 0.02 0.000000 0.23 ± 0.01
StLDDMM NGF LDDMM 60.66 ± 1.71 9.19 ± 3.14 0.05 ± 0.24 0.000048 ± 0.000186 0.27 ± 0.01

PDE-LDDMM SSD State equation 57.48 ± 3.29 13.42 ± 18.96(⋆2) 0.00 ± 0.00 0.000000 0.22 ± 0.02
PDE-LDDMM NCC State equation 58.22 ± 4.37 8.22 ± 7.61(⋆1) 0.00 ± 0.00 0.000000 0.22 ± 0.02
PDE-LDDMM lNCC State equation 𝟔𝟎.𝟏𝟏 ± 𝟐.𝟖𝟏 7.41 ± 3.56 0.01 ± 0.01 0.000000 0.23 ± 0.02
PDE-LDDMM MI State equation 58.26 ± 1.78 4.71 ± 2.03 0.03 ± 0.03 0.000000 0.22 ± 0.01
PDE-LDDMM NGF State equation 58.73 ± 3.55 7.08 ± 4.29(⋆1) 0.07 ± 0.05 0.000000 0.25 ± 0.05

PDE-LDDMM SSD map equation 60.30 ± 2.41 24.67 ± 25.91 0.04 ± 0.02 0.000000 0.24 ± 0.02
PDE-LDDMM NCC map equation 𝟔𝟎.𝟗𝟐 ± 𝟏.𝟖𝟖 15.59 ± 5.89 0.05 ± 0.03 0.000000 0.24 ± 0.03
PDE-LDDMM lNCC map equation 58.81 ± 1.72 5.31 ± 1.13 0.10 ± 0.04 0.000000 0.19 ± 0.01
PDE-LDDMM MI Map equation 59.43 ± 1.47 7.93 ± 2.41 0.07 ± 0.02 0.000000 0.23 ± 0.01
PDE-LDDMM NGF Map equation 60.29 ± 1.74 18.36 ± 18.83 0.13 ± 0.03 0.000000 0.28 ± 0.01

Mermaid SSD svf map 60.23 ± 2.69 75.18 ± 27.38 −13.03 ± 6.65 0.24188 ± 0.03040 1.21 ± 0.07
Mermaid SSD svf scalar momentum map 51.21 ± 1.04 2.44 ± 0.66 0.56 ± 0.05 0.000000 0.11 ± 0.01
Mermaid SSD svf vector momentum map 48.84 ± 1.50 3.03 ± 0.54 0.35 ± 0.06 0.000000 0.26 ± 0.04
Mermaid NCC svf map 𝟔𝟏.𝟑𝟏 ± 𝟏.𝟗𝟒 100.69 ± 32.22 −28.69 ± 21.40 0.48353 ± 0.04501 1.66 ± 0.07
Mermaid NCC svf scalar momentum map 51.26 ± 1.05 2.40 ± 0.68 0.56 ± 0.05 0.000000 0.11 ± 0.01
Mermaid NCC svf vector momentum map 50.30 ± 0.93 1.56 ± 0.14 0.70 ± 0.03 0.000000 0.10 ± 0.01

NODEO SSD LDDMM through NODEs 58.75 ± 1.66 4.70 ± 0.72 0.37 ± 0.03 0.000000 0.15 ± 0.01
NODEO lNCC LDDMM through NODEs 𝟔𝟑.𝟗𝟎 ± 𝟏.𝟔𝟐a 11.57 ± 2.97 −0.36 ± 0.42 0.00189 ± 0.00236 0.30 ± 0.03

VM-I SSD cvpr2018_vm1_l2 57.52 ± 2.93 86.12 ± 97.05 −13.04 ± 5.72 1.64137 ± 0.25119 2.95 ± 0.21
VM-I lNCC cvpr2018_vm1_cc 56.90 ± 1.93 59.70 ± 11.59 −14.89 ± 3.88 2.92957 ± 0.29345 3.90 ± 0.18
VM-II SSD cvpr2018_vm2_l2 59.70 ± 2.52 53.13 ± 26.16 −9.26 ± 5.27 1.04256 ± 0.19816 2.37 ± 0.21
VM-II lNCC cvpr2018_vm2_cc 58.22 ± 2.25 46.91 ± 7.83 −7.65 ± 1.56 1.63442 ± 0.21334 2.95 ± 0.18
VM-Diff SSD miccai2018_10_02_init1 55.44 ± 2.53 19.91 ± 6.23 −0.19 ± 0.30 0.00006 ± 0.00006 0.37 ± 0.02
VM-GIT 2021 SSD vxm_dense_brain_T1_3D_mse 𝟔𝟏.𝟑𝟓 ± 𝟐.𝟐𝟒 12.48 ± 2.17 0.04 ± 0.06 0.00001 ± 0.00003 0.28 ± 0.01

SynthMorph-shapes DSC shapes-dice-vel-3-res-8-16-32-256f 56.56 ± 1.35 6.45 ± 0.60 0.05 ± 0.02 0.000000 0.27 ± 0.01
SynthMorph-brains DSC brains-dice-vel-0.5-res-16-256f 𝟔𝟎.𝟒𝟕 ± 𝟏.𝟓𝟗 7.89 ± 0.84 0.01 ± 0.01 0.000003 ± 0.000013 0.28 ± 0.01

SymNet-Disp lNCC SyMNet_fea8_140000 𝟔𝟐.𝟕𝟗 ± 𝟏.𝟖𝟑 12.50 ± 1.48 −0.32 ± 0.35 0.00008 ± 0.00008 0.32 ± 0.01
SyMNet-Diff lNCC SyMNet_smo30_update_80000 61.13 ± 2.24 15.27 ± 2.25 −0.15 ± 0.27 0.00003 ± 0.00004 0.31 ± 0.01

LapIRN-Disp lNCC LapIRN_disp_fea7 𝟔𝟐.𝟎𝟐 ± 𝟏.𝟑𝟏 32.88 ± 5.84 −7.47 ± 1.63 1.33800 ± 0.27667 2.67 ± 0.26
LapIRN-Diff lNCC LapIRN_diff_fea7 60.44 ± 1.23 6.66 ± 0.78 0.16 ± 0.03 0.000000 0.22 ± 0.01

TransMorph OASIS lNCC TransMorph_Validation_dsc0.857 𝟔𝟏.𝟕𝟎 ± 𝟏.𝟔𝟕 22.00 ± 3.96 −3.78 ± 0.81 0.59623 ± 0.04706 1.81 ± 0.07
TransMorphLarge OASIS lNCC TransMorphLarge_Validation_dsc0.8623 61.60 ± 1.61 16.63 ± 2.57 −3.36 ± 0.57 0.33412 ± 0.04067 1.37 ± 0.08

TransMorph IXI lNCC TransMorph_Validation_dsc0.744 55.70 ± 1.41 23.75 ± 4.07 −4.75 ± 1.01 0.92994 ± 0.05306 2.24 ± 0.06
TransMorph-Diff IXI SSD TransMorph_diff_Validation_dsc0.604 51.20 ± 1.61 15.09 ± 4.55 −0.52 ± 0.46 0.00489 ± 0.00719 0.46 ± 0.04
TransMorph-BSpl IXI lNCC TransMorph_bspl_Validation_dsc0.750 𝟓𝟖.𝟗𝟓 ± 𝟏.𝟔𝟗 10.63 ± 1.90 0.06 ± 0.02 0.000000 0.28 ± 0.00
TransMorph-Bayes IXI lNCC TransMorph_Bayes_Validation_dsc0.743 58.88 ± 1.58 21.93 ± 6.46 −4.55 ± 1.49 0.67174 ± 0.06248 1.91 ± 0.09

VM-I IXI – VoxelMorph_1_Validation_dsc0.720 49.15 ± 1.49 35.46 ± 16.01 −8.15 ± 1.73 1.49607 ± 0.11320 2.83 ± 0.10
VM-II IXI – VoxelMorph_2_Validation_dsc0.725 52.35 ± 1.67 40.75 ± 15.04 −14.01 ± 4.94 1.12015 ± 0.11074 2.46 ± 0.12
VM-Diff IXI SSD VoxelMorph_diff_Validation_dsc0.591 52.31 ± 1.81 17.79 ± 4.32 −1.26 ± 0.84 0.00188 ± 0.00089 0.40 ± 0.01
CycleMorph IXI lNCC CycleMorph_Validation_dsc0.729 𝟓𝟓.𝟐𝟑 ± 𝟏.𝟔𝟑 37.62 ± 11.10 −8.82 ± 1.81 1.21097 ± 0.11454 2.55 ± 0.12
MIDIR IXI MI MIDIR_Validation_dsc0.733 50.91 ± 1.15 19.19 ± 3.12 0.02 ± 0.06 0.00000 ± 0.00001 0.36 ± 0.01

ViT IXI SSD ViTVNet_Validation_dsc0.726 𝟓𝟖.𝟖𝟎 ± 𝟏.𝟔𝟎 25.46 ± 5.35 −7.20 ± 1.69 1.08126 ± 0.06503 2.41 ± 0.07
PVT IXI – PVT_Validation_dsc0.720 53.71 ± 1.60 30.28 ± 4.28 −6.44 ± 2.39 1.60610 ± 0.08508 2.92 ± 0.07
CoTr IXI DSC CoTr_Validation_dsc0.730 31.95 ± 1.45 174.47 ± 7.73 −170.51 ± 4.20 46.05814 ± 0.02322 12.26 ± 0.00
nnFormer IXI – nnFormer_VAlidation_dsc0.739 49.59 ± 1.51 18.13 ± 7.34 −6.58 ± 2.10 0.80107 ± 0.06446 2.09 ± 0.08

a We indicate the method with the best DSC average.
7.2.2. Qualitative assessment
Fig. 7 shows sagittal views of the differences after registration of

the best DSC-performing methods, bolded in Table 2. The methods
reduce the differences after registration to different extents. Despite
the excellent DSC values, NODEO shows errors in intensity matching in
14
the boundary of the corpus callosum, caudate nucleus, and the parietal
lobe. SynthMorph can be highlighted with a general poor visual image
matching. Both versions of LapIRN show a general low image matching
at the parietal and the external layer of the frontal lobe, and the
boundary of the corpus callosum.
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Fig. 1. NIREP16. Volume overlap obtained by the registration methods measured in terms of the DSC between the warped and the corresponding manual target segmentations.
Box and whisker plots show the distribution of the DSC values averaged over the 32 NIREP manual segmentations. The boxes indicate the first, second, and third quartile of the
DSC values. The whiskers indicate the minimum and maximum of the DSC values, leaving outside the outliers, which are marked with circles. The vertical purple line indicates the
median of the baseline traditional method (ANTS lNCC) and the vertical blue line indicates the median of the baseline deep-learning method (VM-GIT), facilitating the comparisons.
Figs. 8–11 show sagittal views of the displacement fields and the
transformation grids of the methods considered in this work. For each
method, the variant with the best-performing metric is shown. The
visual smoothness of traditional LDDMM methods can be also appreci-
ated in VM-Diff, VM-GIT, LapIRN-Diff, TransMorph-Bspl, and MIDIR. It
takes our attention the artifacts shown in NODEO. SynthMorph shapes
seems to provide smoother displacements than SynthMorph brains.
The artifacts shown in CoTr and nnFormer certainly explain the low
performance of these methods.

The visual exploration of the transformation grids is even more
informative than the visualization of the displacement fields. The fold-
ings and the lack of smoothness of the non-diffeomorphic methods can
be neatly appreciated in the figures. The patterns of deformation of
Mermaid svf-map lack of smoothness all over the grid while the strong
regularization is appreciated in the deformation patterns of Mermaid
svf scalar and vector momentum map. NODEO specializes in obtaining
foldings all over the cortex. Its patterns of deformation greatly differ
from traditional methods. The patterns of deformation in VM-GIT
look similar to StLDDMM and PDE-LDDMM. On the other hand, the
deformation patterns of SynthMorph are qualitatively different between
the shapes and the brains models. SyMNet also specializes in obtaining
foldings all over the cortex, although the range of deformation is
smaller than in NODEO. It drives our attention the flawed deformation
obtained by LapIRN in the parietal lobe, which explains the intensity
differences shown in Fig. 7 in this area. In addition, the deformation
of LapIRN-Diff seems to follow a strong regularization with small and
15
smooth deformation patterns located in the corpus callosum contrarily
to what it is expected for a good-performing registration method for
this image pair in this region. The grids in Fig. 11 show that the
DSC accuracy with TransMorph OASIS models are obtained at the
expense of foldings all over the brain. Regarding the IXI models, the
transformations show unrealistic deformations in the great majority of
experiments with the exception of TransMorph-Bspl and MIDIR, which
show transformations visually similar to VM-GIT. It is striking the
problems with the boundary shown by TransMorph-Diff and VM-Diff.

7.2.3. Computational complexity
Table 3 shows the total computation time and the VRAM peak

memory reached through the computations in the NIREP16 database.
ANTS was run on the CPU due to the lack of a GPU version of the
library. Legacy VoxelMorph codes were also run on the CPU due to the
incompatibility of the TensorFlow version needed with our GPU. Fig. 2
shows a graphical representation of the relationship among the mean
DSC values (x-axis), the computational complexity (y-axis and color),
and max(𝐽 ) (circle size) of the nearly diffeomorphic methods.

The computation time in traditional methods that totally (SyN) or
partially (LDDMM with MI and NGF) use the CPU was in the order of
several minutes. It drives out attention the low efficiency of SyN-lNCC
with respect to SyN-SSD or SyN-MI. The computation time of StLDDMM
methods is in the order of less than half a minute, competing with some
of the deep-learning models in efficiency (15 s for StLDDMM-NCC).
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Fig. 2. NIREP 16. Relationship among the mean DSC values (x-axis), the computational complexity (y-axis and colorbar), and max(𝐽 ) (bubble sizes), of the nearly diffeomorphic
methods. Up figure shows the results for the computation time. Low figure shows the results for the VRAM peak memory. The vertical dashed line indicates the threshold for
DSC-accurate methods. Best viewed with zooming.
The more complicated models and numerical implementation of PDE-
LDDMM lead to computation times of two to five minutes. Mermaid
suite of methods were the least efficient with a computation time close
to 8 min in the GPU.

The most efficient deep-learning methods are SyMNet and LapIRN
(around 4 s), followed by VoxelMorph models (8 s for VM-GIT). Synth-
Morph models computation time is close to 10 s. The computation time
of TransMorph-related models ranges from 5 to 20 s. NODEO takes over
a minute.

Both versions of SynthMorph stand out for their huge memory us-
age. However, it may be that the 18 GBs were allocated by TensorFlow
and the actual memory usage of the algorithm would be much lower.
Some of the TransMorph-related methods and Mermaid were among
the most memory-consuming ones, reaching almost 10 GBs. Mermaid
memory consumption was around 8 GBs.

From the best-performing methods with nearly diffeomorphic solu-
tions, PDE-LDDMM with Gauss–Newton–Krylov optimization shared a
cluster of memory-consumption between 5.5 and 6 GBs with LapIRN.
Then, PDE-LDDMM with gradient descent optimization shared another
cluster of memory-consumption between 4 and 5 GBs with NODEO-
lNCC. ANTS, StLDDMM, SyMNet, and TransMorph-Bspl showed a
16
memory-consumption between 2.5 and 3.5 GBs, which represents the
cluster of the most memory-efficient methods.

7.3. Evaluation in OASIS dataset

7.3.1. Quantitative assessment
Table 4 shows the mean and standard deviation of the DSC values

after registration and the measurements obtained from the Jacobians.
In addition, Fig. 3 shows, in the shape of box and whisker plots, the
statistical distribution of the DSC values after averaging across the 35
segmented structures, and after averaging across the 19 experiments,
and vice-versa. Fig. 5 also shows the results of pairwise right-tailed
Wilcoxon rank-sum tests.

For some LDDMM variants, the percentage of negative Jacobian
increased with respect to NIREP results. However, all these meth-
ods remained nearly diffeomorphic. Mermaid svf-map was still non-
diffeomorphic while diffeomorphic for scalar and vector momentum
map models. For the deep-learning methods, the solutions were dif-
feomorphic or nearly diffeomorphic in NODEO-SSD, VM-Diff, VM-GIT,
both versions of SynthMorph and SymNet, LapIRN-Diff, TransMorph-
Diff IXI, TransMorph-Bspl IXI, VM-Diff IXI, and MIDIR, almost a total
coincidence with NIREP with the exception of NODEO-lNCC.
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Table 3
NIREP16. Computation time and maximum VRAM memory usage achieved by the registration methods considered in our study. The star symbol ⋆ in 𝑡𝑖𝑚𝑒𝐺𝑃𝑈 column indicates
that some of the algorithm instructions were run on the CPU. In the peak VRAM column, it indicates that the memory usage is in the RAM.

Method Metric Model 𝑡𝑖𝑚𝑒𝐺𝑃𝑈 (s) peak VRAM (MBs)

SyN SSD SyM-LDDMM 270.31 2550 ⋆
SyN lNCC SyM-LDDMM 2065.24 2656 ⋆
SyN MI SyM-LDDMM 262.16 2932 ⋆

StLDDMM SSD LDDMM 16.88 2472
StLDDMM NCC LDDMM 15.39 2605
StLDDMM lNCC LDDMM 30.42 2733
StLDDMM MI LDDMM 200.26 ⋆ 1981
StLDDMM NGF LDDMM 151.25 ⋆ 3411

PDE-LDDMM SSD State equation 158.23 5823
PDE-LDDMM NCC State equation 148.93 5875
PDE-LDDMM lNCC State equation 183.89 6159
PDE-LDDMM MI State equation 278.74 ⋆ 4997
PDE-LDDMM NGF State equation 162.49 ⋆ 5023

PDE-LDDMM SSD Map equation 250.05 5769
PDE-LDDMM NCC Map equation 250.39 5899
PDE-LDDMM lNCC Map equation 244.78 6065
PDE-LDDMM MI Map equation 546.74 ⋆ 4555
PDE-LDDMM NGF Map equation 286.60 ⋆ 4555

Mermaid SSD svf map 463.56 8131
Mermaid SSD svf scalar momentum map 462.77 8213
Mermaid SSD svf vector momentum map 468.77 8305
Mermaid NCC svf map 483.03 8131
Mermaid NCC svf scalar momentum map 474.05 8213
Mermaid NCC svf vector momentum map 465.85 8305

NODEO SSD LDDMM through NODEs 60.71 3902
NODEO lNCC LDDMM through NODEs 81.79 4464

VM-I SSD cvpr2018_vm1_l2 6.01 5689 ⋆
VM-I lNCC cvpr2018_vm1_cc 6.19 5881 ⋆
VM-II SSD cvpr2018_vm2_l2 10.39 5424 ⋆
VM-II lNCC cvpr2018_vm2_cc 10.45 5586 ⋆
VM-Diff SSD miccai2018_10_02_init1 12.03 6212 ⋆
VM-GIT 2021 SSD vxm_dense_brain_T1w_3D_mse 8.05 3739

SynthMorph shapes DSC shapes-dice-vel-3-res-8-16-32-256f 13.21 18 189
SynthMorph brains DSC brains-dice-vel-0.5-res-16-256f 12.41 18 189

SyMNet-Disp lNCC SyMNet_fea8_140000 3.67 3130
SyMNet-Diff lNCC SyMNet_smo30_update_80000 4.09 2888

LapIRN-Disp lNCC LapIRN_disp_fea7 4.54 5934
LapIRN-Diff lNCC LapIRN_diff_fea7 3.16 5934

TransMorph OASIS lNCC TransMorph_Validation_dsc0.857 20.69 2876
TransMorphLarge OASIS lNCC TransMorphLarge_Validation_dsc0.8623 26.92 4506

TransMorph IXI lNCC TransMorph_Validation_dsc0.744 9.70 6282
TransMorph-Diff IXI SSD TransMorph_diff_Validation_dsc0.604 4.45 2984
TransMorph-BSpl IXI lNCC TransMorph_bspl_Validation_dsc0.750 19.29 2772
TransMorph-Bayes IXI lNCC TransMorph_Bayes_Validation_dsc0.743 26.75 9796

VM-I IXI – VoxelMorph_1_Validation_dsc0.720 7.04 4104
VM-II IXI – VoxelMorph_2_Validation_dsc0.725 3.81 4154
VM-Diff IXI SSD VoxelMorph_diff_Validation_dsc0.591 3.67 2068
CycleMorph IXI lNCC CycleMorph_Validation_dsc0.729 9.66 3032
MIDIR IXI MI MIDIR_Validation_dsc0.733 6.38 2128

ViT IXI SSD ViTVNet_Validation_dsc0.726 9.52 4760
PVT IXI – PVT_Validation_dsc0.720 11.40 4724
CoTr IXI DSC CoTr_Validation_dsc0.730 4.57 7808
nnFormer IXI – nnFormer_VAlidation_dsc0.739 11.37 3874
Compared with the traditional DSC baseline value of 77.07 obtained
y SyN-lNCC, StLDDMM performed similarly with nearly diffeomorphic
olutions (DSC of 77.47, obtained with lNCC). PDE-LDDMM based
n the deformation state equation obtained an average DSC close
o the baseline with diffeomorphic solutions (76.12, obtained with
CC). In this case, PDE-LDDMM based on the image state equation
nderperformed the baseline for all the metrics. Compared with the
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best nearly diffeomorphic deep-learning baseline value of 77.78, ob-
tained by SyMNet-Diff, among the traditional methods SyN-lNCC and
StLDDMM performed similarly. Regarding the deep-learning methods,
NODEO-lNCC, SynthMorph-shapes, LapIRN-Disp, TransMorph-OASIS,
TransMorph-BSpl reached or overpassed the traditional and deep-
learning baselines. From them, only SynthMorph and TransMorph-Bspl
were nearly diffeomorphic.
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Table 4
Quantitative results on OASIS L2R22. Same legend as in Table 2. With (⋆𝑛) we indicate that the Jacobian computation failed in 𝑛 experiments showing extremely large or even
𝑛𝑎𝑛 values for 𝑚𝑎𝑥(𝐽 ). (⋆ ⋆ 𝑛) indicates that Mermaid svf-map with NCC optimization exploded in 𝑛 experiments, and the DSC could not be obtained. The arrows indicate that
igh DSC values while not extreme Jacobian determinant values are preferable.
Method Metric Model DSC (%) ↑ max (J) ↓ min (J) ↑ % of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓

Affine – – 57.18 ± 5.17 – – – –

SyN SSD Sym-LDDMM 68.23 ± 5.35 6.14 ± 2.05 0.08 ± 0.21 0.00004 ± 0.00013 0.16 ± 0.03
SyN lNCC Sym-LDDMM 𝟕𝟕.𝟎𝟕 ± 𝟑.𝟒𝟗 4.36 ± 0.67 0.23 ± 0.04 0.000000 0.18 ± 0.01
SyN MI Sym-LDDMM 74.58 ± 3.50 6.78 ± 3.01 0.17 ± 0.06 0.000000 0.17 ± 0.02

StLDDMM SSD LDDMM 73.32 ± 3.43 6.41 ± 2.75 0.26 ± 0.12 0.000000 0.16 ± 0.03
StLDDMM NCC LDDMM 76.06 ± 2.39 8.28 ± 3.44 0.16 ± 0.09 0.000004 ± 0.000016 0.18 ± 0.02
StLDDMM lNCC LDDMM 𝟕𝟕.𝟒𝟕 ± 𝟐.𝟖𝟏 32.16 ± 70.55 −0.52 ± 1.05 0.00273 ± 0.00594 0.30 ± 0.05
StLDDMM MI LDDMM 72.91 ± 3.83 32.41 ± 60.80 −0.16 ± 0.62 0.000867 ± 0.002033 0.28 ± 0.05
StLDDMM NGF LDDMM 73.21 ± 6.48 6.40 ± 3.98 −0.03 ± 0.61 0.000679 ± 0.002884 0.29 ± 0.07

PDE-LDDMM SSD State equation 70.44 ± 6.47 5.94 ± 3.34 0.01 ± 0.03 0.000005 ± 0.000013 0.19 ± 0.04
PDE-LDDMM NCC State equation 73.07 ± 6.16 14.10 ± 18.54 0.00 ± 0.01 0.000000 0.20 ± 0.03
PDE-LDDMM lNCC State equation 𝟕𝟑.𝟑𝟎 ± 𝟓.𝟑𝟐 11.51 ± 6.83(⋆1) 0.00 ± 0.01 0.000000 0.26 ± 0.04
PDE-LDDMM MI State equation 66.02 ± 13.78 65.53 ± 190.20(⋆1) 0.04 ± 0.04 0.002118 ± 0.006726 0.27 ± 0.13
PDE-LDDMM NGF State equation 69.40 ± 4.39 10.04 ± 2.75 0.06 ± 0.04 0.000000 0.32 ± 0.04

PDE-LDDMM SSD Map equation 72.80 ± 4.13 14.11 ± 11.87 0.13 ± 0.05 0.000000 0.20 ± 0.03
PDE-LDDMM NCC Map equation 𝟕𝟔.𝟏𝟐 ± 𝟐.𝟔𝟏 47.39 ± 80.02 0.08 ± 0.03 0.000000 0.22 ± 0.02
PDE-LDDMM lNCC Map equation 74.44 ± 3.67 20.35 ± 27.26 0.08 ± 0.04 0.000000 0.25 ± 0.02
PDE-LDDMM MI Map equation 71.82 ± 4.53 23.36 ± 27.97 0.09 ± 0.05 0.000000 0.28 ± 0.07
PDE-LDDMM NGF Map equation 71.78 ± 4.05 15.47 ± 10.86 0.17 ± 0.04 0.000000 0.29 ± 0.03

Mermaid SSD svf map 𝟔𝟗.𝟐𝟔 ± 𝟒.𝟕𝟒 50.72 ± 18.49 −2.69 ± 1.99 0.02159 ± 0.00791 0.50 ± 0.05
Mermaid SSD svf scalar momentum map 65.44 ± 4.13 1.78 ± 0.52 0.67 ± 0.09 0.000000 0.08 ± 0.02
Mermaid SSD svf vector momentum map 51.19 ± 8.87 1.72 ± 0.00 0.46 ± 0.00 0.000000 0.13 ± 0.00
Mermaid NCC svf map 73.78 ± 3.84

(⋆ ⋆ 8)
240.24 ± 89.83 −109.42 ± 69.73 0.97577 ± 0.12407 2.33 ± 0.14

Mermaid NCC svf scalar momentum map 64.18 ± 4.46 1.41 ± 0.25 0.77 ± 0.06 0.000000 0.05 ± 0.01
Mermaid NCC svf vector momentum map 50.40 ± 8.70 1.41 ± 0.00 0.64 ± 0.00 0.000000 0.11 ± 0.00

NODEO SSD LDDMM through NODEs 74.70 ± 3.46 6.16 ± 1.97 0.37 ± 0.04 0.000000 0.17 ± 0.02
NODEO lNCC LDDMM through NODEs 𝟕𝟗.𝟏𝟑 ± 𝟐.𝟒𝟖 20.63 ± 5.50 −0.56 ± 0.21 0.01450 ± 0.00806 0.48 ± 0.05

VM-I SSD cvpr2018_vm1_l2 71.57 ± 4.44 70.95 ± 24.72 −9.08 ± 3.28 1.25975 ± 0.26733 2.59 ± 0.26
VM-I lNCC cvpr2018_vm1_cc 74.11 ± 3.22 68.42 ± 39.51 −7.78 ± 1.63 1.27227 ± 0.20789 2.61 ± 0.20
VM-II SSD cvpr2018_vm2_l2 72.89 ± 4.54 102.32 ± 60.32 −9.36 ± 3.90 1.10000 ± 0.24781 2.43 ± 0.26
VM-II lNCC cvpr2018_vm2_cc 𝟕𝟓.𝟐𝟔 ± 𝟑.𝟒𝟑 45.52 ± 18.66 −4.78 ± 1.34 0.71020 ± 0.16217 1.97 ± 0.21
VM-Diff SSD miccai2018_10_2_init1 72.20 ± 4.50 26.34 ± 11.49 −0.08 ± 0.13 0.00007 ± 0.00016 0.37 ± 0.04
VM-GIT 2021 SSD vxm_dense_brain_T1_3D_mse 75.25 ± 3.77 26.61 ± 11.66 0.03 ± 0.02 0.00000 ± 0.00002 0.32 ± 0.04

SynthMorph-shapes DSC shapes-dice-vel-3-res-8-16-32-256f 𝟕𝟕.𝟒𝟓 ± 𝟐.𝟒𝟗 7.56 ± 1.14 0.05 ± 0.01 0.000000 0.31 ± 0.01
SynthMorph-brains DSC brains-dice-vel-0.5-res-16-256f 75.08 ± 3.15 8.14 ± 1.20 0.03 ± 0.02 0.000000 0.29 ± 0.01

SymNet-Disp lNCC SyMNet_fea8_140000 76.85 ± 2.53 20.65 ± 5.87 −0.10 ± 0.20 0.00002 ± 0.00002 0.35 ± 0.02
SyMNet-Diff lNCC SyMNet_smo30_update_80000 𝟕𝟕.𝟕𝟖 ± 𝟐.𝟔𝟔 18.82 ± 3.78 −0.11 ± 0.24 0.00003 ± 0.00005 0.34 ± 0.01

LapIRN-Disp lNCC LapIRN_disp_fea7 𝟖𝟏.𝟔𝟎 ± 𝟐.𝟒𝟒 28.58 ± 12.40 −1.90 ± 0.34 0.28960 ± 0.09427 1.27 ± 0.19
LapIRN-Diff lNCC LapIRN_diff_fea7 77.03 ± 3.18 4.56 ± 1.25 0.24 ± 0.05 0.000000 0.15 ± 0.01

TransMorph OASIS lNCC TransMorph_Validation_dsc0.857 85.75 ± 1.42 36.01 ± 12.31 −6.13 ± 2.19 0.96647 ± 0.17053 2.28 ± 0.19
TransMorphLarge OASIS lNCC TransMorphLarge_Validation_dsc0.8623 𝟖𝟔.𝟐𝟑 ± 𝟏.𝟒𝟎a 35.69 ± 14.48 −5.91 ± 1.93 0.91601 ± 0.16652 2.22 ± 0.19

TransMorph IXI lNCC TransMorph_Validation_dsc0.744 76.30 ± 3.23 35.81 ± 12.28 −5.20 ± 0.85 1.14856 ± 0.23298 2.47 ± 0.24
TransMorph-Diff IXI SSD TransMorph_diff_Validation_dsc0.604 69.58 ± 3.05 22.06 ± 4.74 −1.89 ± 1.91 0.00285 ± 0.00235 0.42 ± 0.02
TransMorph-BSpl IXI lNCC TransMorph_bspl_Validation_dsc0.750 𝟕𝟕.𝟎𝟒 ± 𝟐.𝟓𝟒 14.65 ± 4.59 −0.09 ± 0.18 0.00010 ± 0.00012 0.32 ± 0.01
TransMorph-Bayes IXI lNCC TransMorph_Bayes_Validation_dsc0.743 75.00 ± 3.70 38.59 ± 15.44 −5.39 ± 1.53 1.20217 ± 0.25951 2.52 ± 0.26

VM-I IXI – VoxelMorph_1_Validation_dsc0.720 51.65 ± 6.30 25.90 ± 0.00 −9.20 ± 0.00 1.52077 ± 0.00000 2.85 ± 0.00
VM-II IXI – VoxelMorph_2_Validation_dsc0.725 52.13 ± 6.13 31.46 ± 0.00 −5.78 ± 0.00 1.31596 ± 0.00000 2.66 ± 0.00
VM-Diff IXI SSD VoxelMorph_diff_Validation_dsc0.591 49.43 ± 6.34 15.77 ± 0.00 −1.19 ± 0.00 0.00143 ± 0.00000 0.35 ± 0.00
CycleMorph IXI lNCC CycleMorph_Validation_dsc0.729 𝟕𝟏.𝟕𝟎 ± 𝟑.𝟗𝟖 42.68 ± 22.14 −4.79 ± 0.79 0.98096 ± 0.13966 2.30 ± 0.16
MIDIR IXI MI MIDIR_Validation_dsc0.733 51.62 ± 7.38 8.38 ± 0.00 0.10 ± 0.00 0.000000 0.29 ± 0.00

ViT IXI SSD ViTVNet_Validation_dsc0.726 𝟕𝟒.𝟔𝟗 ± 𝟒.𝟏𝟏 38.75 ± 19.39 −4.34 ± 1.01 0.78960 ± 0.12778 2.07 ± 0.16
PVT IXI – PVT_Validation_dsc0.720 62.63 ± 3.84 53.65 ± 22.44 −8.40 ± 1.73 1.94102 ± 0.14972 3.20 ± 0.12
CoTr IXI DSC CoTr_Validation_dsc0.730 32.45 ± 2.99 184.50 ± 0.00 −176.27 ± 0.00 46.65555 ± 0.00000 12.29 ± 0.00
nnFormer IXI – nnFormer_Validation_dsc0.739 67.00 ± 4.07 27.39 ± 5.54 −8.24 ± 2.25 1.20328 ± 0.16335 2.55 ± 0.17

a We indicate the method with the best DSC average.
For the traditional methods, the outperformance of lNCC or NCC
metrics over the others seen in NIREP16 database prevails. However,
lNCC tends to outperform SSD for the deep-learning methods. The per-
formance of probabilistic diffeomorphic methods is low, as happened
with NIREP16.

These observations are complemented with the boxplots shown
in Fig. 3. Comparing the two alternatives of representing the DSC
distributions (e.g. grouped by structures and grouped by experiments)
the proposal of Klein et al. allowed a better comparative assessment
18
due to the reasons already exposed in Section 7.1. In this case, the
traditional baseline is among the best diffeomorphic methods and
only the distribution of StLDDMM for the lNCC metric reaches the
distribution of SyN-lNCC. NODEO-lNCC performance in OASIS is much
more modest than in NIREP16, slightly outperforming the traditional
baseline. It is striking the performance shown by both TransMorph-
OASIS models. Since we are providing the results in OASIS validation
set, it may be possible that these results come from a combination of
using the DSC metric in the loss and data leakage.
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Fig. 3. OASIS L2R22. Volume overlap obtained by the registration methods measured in terms of the DSC between the warped and the corresponding manual target segmentations.
Left, box and whisker plots show the distribution of the DSC values averaged over the 35 FreeSurfer segmentations. The vertical purple line indicates the median of the baseline
traditional method (ANTS lNCC), the vertical blue line indicates the median of the deep-learning method (VM-GIT), and the vertical green line indicates the median of the baseline
deep-learning method (SyMNet-Diff) facilitating the comparisons. Right, box and whisker plots show the distribution of the DSC values averaged over the number of experiments.
The boxes indicate the first, second, and third quartile of the DSC values. The whiskers indicate the minimum and maximum of the DSC values, leaving outside the outliers, which
are marked with circles. The vertical lines from the left plot are preserved for facilitating the comparisons.
Fig. 4. NIREP16 and OASIS L2R22. Partial selection of the boxplots in Figs. 1 and 3 with the diffeomorphic and nearly diffeomorphic methods. The boxes indicate the first,
second, and third quartile of the DSC values. The whiskers indicate the minimum and maximum of the DSC values, leaving outside the outliers, which are marked with circles.
The vertical purple line indicates the median of the baseline traditional method (ANTS lNCC) and the vertical blue line indicates the median of the baseline deep-learning method
(VM-GIT), facilitating the comparisons.
Overall, these quantitative results are qualitatively different from
the results obtained in NIREP. The differences may be due to the
different structures segmented in NIREP (mainly in the cerebral cortex)
with respect to the structures segmented in OASIS (covering the whole
brain and integrating different structures from the cerebral cortex into
the same structure). NIREP seems a more challenging data, where the
performance of the different image registration methods can be better
appreciated.

In the partial selection of boxplots shown in Fig. 4 with the dif-
feomorphic and nearly diffeomorphic methods of Fig. 3, the best-
performing methods show a similar distribution. They include ANTS-
lNCC, StLDDMM with lNCC, SynthMorph-shapes, both versions of SyM-
Net, LapIRN-Diff, and TransMorph-Bspl. Comparing ANTS-lNCC with
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the others in the corresponding row of the Wilcoxon test did not show
statistical significance (𝑝 = 0.56, 𝑝 = 0.50, 𝑝 = 0.28, 𝑝 = 0.73, 𝑝 = 0.43,
and 𝑝 = 0.34, respectively).

Regarding the graphical representation of the relationship among
DSC, SDlogJ, the percentage of negative Jacobians, and max(𝐽 ) given
in Fig. 6, the observations obtained with NIREP still hold. From a close-
up of the best DSC (above 75) and SDlogJ (below 0.5), we can see
that the regularization of the baseline method SyN-lNCC is high, at the
same level as StLDDMM NCC. However, the highest regularization is
obtained by LapIRN-Diff. In this case, the ascending trend between the
DSC and the SDlogJ values is appreciated in methods from 75.5 points
of DSC. Although NODEO-lNCC was classified into non-diffeomorphic
methods, the SDlogJ metric is below 0.5.
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Fig. 5. Results of the pairwise right-tailed Wilcoxon rank-sum tests to assess the statistical significance of the differences among the methods. The matrix depicts the pairwise
p-values between each two methods. An straightforward interpretation of the plots is that methods showing blue horizontal lines typically exhibit a statistically significant higher
median DSC value distributions.
7.3.2. Qualitative assessment

Fig. 12 shows the sagittal view of the differences after registration
of the best DSC-performing methods, bolded in Table 4. The methods
show a better reduction of the differences after registration than in
NIREP with similar appearances among similarly performing methods.
20
It drives our attention the good visual reduction of differences shown
by the traditional methods, NODEO lNCC, or TransMorph OASIS.

Figs. 13 and 14 show sagittal views of the transformation grids
of the best-performing variants of the methods considered in this
work. In this case, the lack of smoothness can also be appreciated
in the figures. The specialization of NODEO in deforming the cortex



Computers in Biology and Medicine 178 (2024) 108761M. Hernandez and U.R. Julvez
Fig. 6. NIREP16 and OASIS L2R22. Relationship among the mean DSC values (x-axis), the standard deviation of the Jacobian logarithms (SDlogJ, y-axes), the percentage of
negative Jacobian determinants (colorbar), and max(𝐽 ) (bubble sizes). The left figures show the results in all the considered methods. The right figures show a close-up of the
methods with the best DSC and SDlogJ values.
is even more enhanced in this dataset. In this case, the patterns of
deformation of traditional, VM-Diff, and VM-GIT do not look similar.
The lack of resemblance between SynthMorph models persists. SyMNet
and LapIRN-Disp specialize in obtaining small deformations all over
the cortex. The patterns of deformation of LapIRN-Diff are small. The
deformations of TransMorph OASIS models are too extreme and really
unrealistic in locations such as the corpus callosum. The same happens
with the deformations obtained with IXI models. The problems with the
boundary shown by TransMorph-Diff and VM-Diff in NIREP persist.

7.3.3. Comparison with the state of the art results
According to Learn2Reg test results [36], LapIRN obtained a DSC of

82.0%, and the VoxelMorph methods produced by 3Idiots and Winter
groups obtained a DSC of 80.0 and 77.0%, respectively. Our results
in the validation set were 81.0 and 77.0% for the LapIRN Disp and
Diff models, and 75.25% for VM-GIT. There are profound method-
ological changes that may be responsible for the differences. LapIRN
in Learn2Reg was a conditional version for hyperparameter tuning
proposed in [92]. It seems that the VoxelMorph version proposed by
3Idiots deeply modified different aspects of the original method such
as the image similarity, the number of parameters, and training over
patches instead of full images. On the other hand, Learn2Reg does
not provide any information on the methodology underlying Winter
submission. There is no information on whether the methods are nearly
diffeomorphic, which may explain the lower performance with respect
to our results with nearly diffeomorphic methods. Of course, the dif-
ferent training strategies and test datasets may also be responsible for
these differences.

According to TransMorph validation results, LapIRN obtained a DSC
of 86.1, VoxelMorph 84.7, TransMorph-OASIS 85.80, and TransMorph-
Large 86.20%. We were able to reproduce the results with OASIS
and TransMorph Vanilla and Large models. Therefore, the results in
our study can be considered to complement the results shown in
TransMorph paper for OASIS with extension to traditional LDDMM and
the deep-learning methods considered in our work. From the gap in
performance shown with LapIRN and VoxelMorph, it seems that there
is room for improvement between the models used in our work and the
models used in TransMorph paper. We suspect that this improvement
may pass through the use of conditional networks for hyperparameter
learning and the use of DSC losses during training.
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8. Discussion

8.1. DSC accuracy as the only metric to evaluate the performance of
non-rigid image registration

The problem of evaluation in non-rigid registration is quite complex.
Ideally, the best evaluation protocol would go through having the
ground truth transformation in a test dataset. As an alternative, the
problem could be approached using a non-rigid registration method
 for computing a ground truth transformation and evaluating the
performance of the algorithms in the pair of images made of the
moving and the warped images. However, this would be biased to
the deformation model associated with . We also could use random
transformations, but the test set would not represent a scenario close
to real applications. In addition, the aperture problem in optical flow
would give problems in low-textured areas and the filling-in effect
may hide the real performance of the methods inside the brain. For
these reasons, the non-rigid registration community has opted for an
evaluation setup based on a bronze standard.

Recent state-of-the-art papers argue the superiority of deep-learning
methods with respect to traditional methods in terms of accuracy
exclusively measured in terms of the overlap between the warped and
reference segmentations. Regularization in deep-learning methods is
hard, therefore, the high DSC values are achieved through unrealistic
deformations such as foldings or evident mismatches which question
their usability in clinical applications.

There is a need to improve the evaluation protocols since the widely
trusted DSC metric has well-known drawbacks leading to misleading
evaluations. However, there seems to be an acquired inertia from
early non-rigid registration evaluation protocols which seems difficult
to break. This is not exclusive in the non-rigid image registration
community [93]. Our study revealed some of the problems of solely
using the DSC for evaluation, and our position is to start combining the
DSC values with metrics of the smoothness of the transformation such
as the percentage of negative Jacobians and the minimum Jacobian or
the Jacobian extrema range.

From our results, the best-performing methods should be those
exhibiting superior DSC while also maintaining a controlled percentage
of negative Jacobians and a bounded minimum Jacobian. The value
min(𝐽 ) = −0.10 may be an acceptable value for this bound.
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Fig. 7. NIREP16. Sagittal view of the differences after registration 𝐼0◦𝜙 − 𝐼1 in a representative experiment. The figure shows the methods with the best DSC mean in each of
the considered families (bolded in Table 2). To enrich the comparison, the figure includes the diffeomorphic versions of SyMNet and LapIRN. Gray values indicate no or small
differences after registration while white or black values indicate large differences.
8.2. Registration ingredients responsible for high DSC accuracies

For traditional methods, the image similarity metric plays an impor-
tant role in the obtention of high accuracies. Cross-correlation metrics
tend to outperform the others. For the deep-learning methods, both
the SSD and cross-correlation metrics were used in the models with
the highest accuracies. The replacement of images with segmentations
in the training phase also provided high accuracies. For a suitable
combination of transformation parametrization, architecture, and loss
balance, the training phase with labeled images is able to converge to
a model capable of obtaining high DSCs in the inference phase with
the original gray-level images. However, the differences of the images
after registration are much higher than the differences achieved with
intensity-based metrics. We would like to remark that including the
22
metric used for evaluation in the loss function can be a misleading
practice, resulting in inflated baseline performance.

For traditional methods, the regularization parameter 𝛼 greatly
influenced the accuracy. A reasonable downgrade in regularization
leads to a moderate lack of smoothness and nearly diffeomorphic
transformations. We observed that too low regularization resulted in
non-diffeomorphic solutions and ODE-stability problems. From previ-
ous works, we know that second-order optimization converges to a
better local minimum.

For the deep learning methods, the small deformation parametriza-
tion leads to higher DSC values than the stationary parametrization. In
the great majority of cases, the number of negative Jacobians consid-
erably increased.

For the deep learning methods, the use of symmetric approaches and
multiresolution strategies resulted into successful methods. In NIREP



Computers in Biology and Medicine 178 (2024) 108761M. Hernandez and U.R. Julvez
Fig. 8. NIREP16. Sagittal view of the displacement fields in a representative experiment. The figure shows the variant with the best-performing metric for each method. The RGB
color map proposed in VoxelMorph paper is used for the color representation of the vector fields. To enrich the comparison, we show the displacement fields of the three variants
of Mermaid. The displacements of TransMorph-related methods are shown in Fig. 9.
dataset, transformers did not outperform more conventional architec-
tures. They did in OASIS dataset, but the improvement may be due to
the use of DSC in the loss and the use of the validation set as the test set
rather than the change in architecture. This observation is corroborated
in studies such as Jia et al. [94]. Overall, it was striking the superior
performance achieved with the inclusion of neural ODEs proposed in
NODEO.

8.3. Registration ingredients responsible for diffeomorphic solutions

For traditional methods, the great majority of the considered vari-
ants of LDDMM provided diffeomorphic transformations, where
smoothness can be appreciated in the displacement RGB representation
and the transformation grids. The exception lies in Mermaid svf-map,
where stochastic optimization converged to non-invertible solutions.
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For deep learning methods, the use of the stationary parametrization
is undoubtedly a necessary condition for obtaining diffeomorphic solu-
tions. The b-splines based parametrization also allowed the obtention
of nearly diffeomorphic solutions. Even though the models were not
purely diffeomorphic in the great majority of cases but the smoothness
can be visually appreciated as with the traditional methods.

The loss 𝐽det > 0 acts as extra regularization preventing the model
from developing non-diffeomorphic solutions. This observation was
obtained from an in-house ablation study with SyMNet and LapIRN.
However, it seems that this loss does not regularize enough in NODEO-
lNCC. We suspect that VM-GIT and SynthMorph models may combine
the stationary parametrization and the positive Jacobian restriction
given the percentage of negative Jacobians. Finally, it is striking the
high DSC accuracy and the low percentage of negative Jacobians
obtained with SymNet-Disp model. Despite the obtained performance,
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Fig. 9. NIREP16. Sagittal view of the displacement fields in a representative experiment. TransMorph related methods.
we believe that SyMNet-Diff could be preferable, since the small defor-
mation parametrization has shown inconsistency problems between the
forward and inverse transformations, 𝜙 = 𝑥+𝑢 and 𝜙 = 𝑥−𝑢 respectively
(see [14] toy example in C-Shape experiment).

8.4. Diffeomorphism related properties, plausibility, and transformation
quality

In early evaluation protocols, it was proposed to use the ability
of the methods to provide solutions with inverse consistency and
transitivity properties. Together with the diffeomorphic property, this
was considered a guarantee of transformation quality provided the
mathematically correct behavior of compositions and inversions. The
inverse consistency is related to the closeness of 𝜙◦𝜙−1 and 𝜙−1◦𝜙
to the identity. Transitivity is intended to measure correspondence
errors when two transformations are composed together. Therefore,
given 𝜙 and 𝜓 two invertible transformations, transitivity measures the
closeness of 𝜙◦𝜓◦𝜓−1◦𝜙−1 to the identity. These metrics are intended to
favor methods that are able to obtain pure diffeomorphic solutions with
parametrizations that favor the inverse consistency and transitivity
properties (e.g. stationary or non-stationary). In addition, methods
including inverse consistency and transitivity restrictions are amenable
to obtain a better score. Therefore, there is an evident bias in the
selection of these metrics for evaluation and it would not be fair to use
them in our study for establishing a general comparison with methods
not imposing these restrictions.
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In Learn2Reg, the quality of the transformations is assimilated to
plausibility, which is identified with smoothness. This is an oversim-
plification of the concept plausible because the most probable trans-
formation between two images should be smooth but many of the
smooth transformations existing between the images may not be plau-
sible. According to the Python codes provided by the challenge, the
smoothness of the transformations is measured in terms of the stan-
dard deviation of the clipped logarithm of the shifted Jacobian of the
displacement fields. This makes it hard to assess how the foldings
in the transformations may affect the quantification of registration
smoothness. Replacing this metric with the standard deviation of the
log-Jacobian of the transformation, when this quantity is greater than
zero, seems a more coherent quantification of registration smoothness,
but it does not alleviate the problem of including a downgrade in the
metric when the transformations show negative Jacobians. According
to our results, our SDlogJ may still do a good job in the discrimination
of non-diffeomorphic from nearly diffeomorphic solutions.

An intuitive definition of a plausible transformation for a non-rigid
registration problem would be to assume that the images are printed
on a super-elastic material or a super-viscous fluid and then impose
deformation forces to obtain a global to local alignment of the cerebral
structures without tearing the material. These forces would lead to a
plausible transformation. We agree that plausibility would be a perfect
concept for the quantification of registration quality. However, it is
usually hard to know the physical model underlying the transformation
between two images and, therefore, the subsequent quantification.
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Fig. 10. NIREP16. Sagittal view of the transformation grids in a representative experiment. The figure shows the variant with the best-performing metric for each method. The
grids of TransMorph related methods are shown in Fig. 11.
From the visual analysis of the transformation grids in Figs. 10, 11,
13, and 14, we are able to perceive that some methods provide more
realistic transformations than others. Indeed, it is easier to identify
non-realistic transformations than realistic ones. Our intuition is that
smoothness is a necessary condition for plausibility in a great number
of applications but it is far from being a sufficient one.

8.5. Which methods and models from our study may be established as
benchmarks and baselines to beat with future proposals? which ones should
not?

According to the results obtained in this study, we would suggest
to consider the diffeomorphic or nearly diffeomorphic methods with
the highest DSC values as the best candidates for establishing bench-
mark methods and baselines. This way, methods are selected among
25

those with both high accuracy and desirable properties that make
them potentially usable in clinical applications. As a benchmark for
traditional methods, we would suggest StLDDMM with lNCC due to its
high accuracy and efficiency. Together with the models VM-GIT, Syn-
thMorph, SyMNet-Diff, LapIRN-Diff, and TransMorph-Bspl, they may
constitute a competitive benchmark set. NODEO stands out for its ac-
curacy, however, the artifacts shown in the displacement fields and the
inconsistency in the obtention of nearly diffeomorphic solutions makes
us recommend to use this method with caution. The DSC boxplots and
Jacobian metrics obtained in this study for NIREP16 and OASIS datasets
may serve as a baseline for future works. Furthermore, we recommend
complementing the quantitative assessment with qualitative findings to
provide a more comprehensive evaluation of future methods.

It drove our attention that, despite the similarity of the underlying
methodologies below Mermaid and PDE-LDDMM, the latter greatly
outperformed the former in terms of convergence stability, accuracy,
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Fig. 11. NIREP16. Sagittal view of the transformation grids in a representative experiment. TransMorph related methods.
and smoothness. It remains to be studied whether the inferior perfor-
mance of Mermaid svf-map may be due to the use of stochastic gradient
descent or more specific design decisions such as the used ODE solvers
(i.e. Euler vs. semi-Lagrangian). In addition, it should be studied how to
relax the regularization effect of multi-kernel regularizers in Mermaid
svf scalar and vector momentum maps.

From the different deep-learning approaches, probabilistic meth-
ods (VM-Diff and TransMorph-Diff) notably underperformed their non-
probabilistic counterparts. Ashburner et al. first provided a probabilistic
formulation of the image registration problem that was assimilated to
an energy minimization problem due to the unfeasibility of computing
the posterior with the techniques available in 2007 [14]. The problem
was solved later on with variational inference, and probabilistic deep-
learning methods were proposed for diffeomorphic registration [24,33,
68]. The interest in the probabilistic approach lies in the capacity to
provide the uncertainty in the obtained solutions, which may help to
increase or decrease trust in the obtained transformations and trust may
be crucial in clinical applications such as interventional ones. However,
the usability of the uncertainty of a method with low accuracy is
limited, so our study points out that further research is needed to
improve the accuracy of probabilistic methods.

Finally, we lead our attention to the performance obtained with
IXI models shown in the Supplementary Material. These models were
generated to solve the atlas to image registration problem on the IXI
dataset. Although the atlas-to-image registration problem is slightly
26

different from the image-to-image problem, our results indicate that
the resulting models are not able to adapt to this changing scenario.
It remains to be studied whether the problem is with the special
characteristics of an atlas image or with the IXI dataset itself.

8.6. Is it worthwhile to recover the balance between traditional and deep-
learning proposals?

Our results show that traditional methods are able to compete
with deep-learning methods when performance is measured from the
combination of DSC accuracy and transformation quality measured in
terms of invertibility and smoothness. However, only a few traditional
methods show a computation time competitive with the few seconds
that takes the inference phase of deep-learning methods. The use of
more complicated models such as PDE-LDDMM inevitably increases the
computational complexity to the order of a few minutes. The memory
usage at inference is in a similar order of magnitude with interesting
analogies between the families.

Despite the evident inferiority of traditional methods in computa-
tional complexity with respect to deep-learning methods at inference,
there are consistent arguments that make it worth recovering the
balance between traditional and deep-learning proposals:

• Traditional methods have complete control of the transforma-
tion model. Optimization smoothly minimizes the energy leading
the solution in 𝐷𝑖𝑓𝑓 (𝛺) from the identity to a suitable local
minimum. Deep-learning methods do not have control of the
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Fig. 12. OASIS. Sagittal view of the differences after registration 𝐼0◦𝜙 − 𝐼1 in a representative experiment. The figure shows the methods with the best DSC mean in each of
the considered families (bolded in Table 4). To enrich the comparison, the figure includes the diffeomorphic versions of SyMNet and LapIRN. Gray values indicate no or small
differences after registration while white or black values indicate large differences.
transformation model during training. Even after a considerable
number of epochs with solid clues that the model can be consid-
ered to converge, we do not have any guarantee that the solution
for an image pair belongs to the transformation model.

• The variability of strategies for training deep-learning models has
a combinatorial order. It is not well understood the relationship
between the image pair selection strategies used for training
and the performance of the resulting model. The generalization
obtained with a given training set is hard to reproduce with
another dataset. The models are not able to deal correctly with
unseen trivial cases (e.g. the registration of the same image in
the image pair).

• The generalization capability of under-trained models is low
(e.g. a reasonable number of epochs and a reasonable amount
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of data). Some of the best-performing models are trained in a
wide range of datasets (e.g. VoxelMorph was trained in thousands
of images from ADNI, OASIS, ABIDE, ADHD200, MCIC, PPMI,
HABS, and Harvard GSP). The generalization capability of models
trained over healthy populations to diseased ones is not well
understood.

• There are clinical problems where there is not enough data for
training good-performing models.

• Domain transfer, robustness, and usability remain underexplored
problems.

• For deep-learning methods, the computational complexity during
training is huge. Training for a batch sizes of one occupies the
whole VRAM.
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Fig. 13. OASIS. Sagittal view of the transformation grids in a representative example. The figure shows the variant with the best-performing metric for each method. The grids
of TransMorph-related methods are shown in Fig. 14. Mermaid svf vec mom NCC experienced convergence problems in this experiment.
These are also opportunities for the improvement of deep-learning
methods that may be solved from the cross-fertilization among tra-
ditional and deep-learning approaches. Traditional analogs may be
used to elucidate whether training is regularizing the model to yield
solutions close to the underlying model, to evaluate the generalization
capability during training, or to assess whether the model is struggling
with scarce data or shift domain problems.

Last but not least, one of the main conclusions of Learn2Reg chal-
lenge is that hybrid methods achieved the best DSC accuracies in most
applications. So, combining traditional with deep-learning approaches
may be a perfect tandem for many applications. As we showed, most of
the deep learning-based methods are somehow inspired by traditional
methods, as happened in other research fields. Thus, Learn2Reg pieces
of evidence together with the theoretical and experimental insights
shown in our study may serve to recover the interest in the research
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in traditional approaches, trying to bridge gaps between both worlds,
better understanding, and close up.

9. Conclusions

In this work, we have provided an extensive methodological de-
scription and a fair and consistent evaluation of traditional LDDMM
and unsupervised deep-learning methods with a focus on diffeomorphic
registration. We have covered a wide spectrum of traditional meth-
ods belonging to what we like to call the LDDMM-verse. Regarding
deep-learning methods, we have focused our study on methods with
available source code and models trained in the T1w MRI registration
problem, preferably with diffeomorphic variants. We have provided the
most relevant theoretical insights of the considered methods, establish-
ing their connections for a unifying view of the non-rigid registration
problem and its solutions. We have followed old and new evaluation
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Fig. 14. OASIS. Sagittal view of the transformation grids in a representative experiment. TransMorph related methods.
protocols to give continuity to our previous contributions to the LD-
DMM family, while complementing Learn2Reg challenge with insight-
ful ways of analyzing the results toward a fair and usable evaluation
protocol.

The most important claim from our work is that the quantification
of segmentation overlap should not be used alone to establish the
performance of a method in the state of the art. Our target for perfor-
mance quantification should be a combination of segmentation overlap
and different metrics reflecting the smoothness and invertibility of the
transformations. According to our results, the methods with high DSC
scoring while showing diffeomorphic or nearly diffeomorphic solutions
should be preferred, since non-diffeomorphic solutions can be visually
perceived as non-realistic.

We found that most of the considered traditional methods are prone
to obtain diffeomorphic solutions. Regarding deep-learning methods,
our evaluation study pointed out the models that are able to obtain
nearly diffeomorphic solutions in the datasets used for evaluation.
If we restrict our analysis to methods with diffeomorphic or nearly
diffeomorphic solutions, we found that traditional methods share a
competitive DSC performance with the best-performing deep-learning
models. Some traditional methods showed a computation time in the
same order as some deep-learning methods and the increased computa-
tional complexity of other traditional methods was the result of using
29
more complicated models with interesting and maybe worthy prop-
erties. We pointed out the methods that may be used as benchmarks
in future evaluation studies and provided the baselines to beat in our
evaluation protocol.

The logical subsequent steps from this work would be to extend
the analysis to other methods in the LDDMM family, such as EPDiff-
constrained LDDMM and band-limited methods with this new perspec-
tive on evaluation performance. In addition, deep-learning methods
should be compared by the generation of models under the same
training conditions to corroborate whether the registration ingredients
influencing performance are the ones identified in this work.

There is still a difficult open question: How to lead training toward
realistic transformations and how to establish quantitative metrics of
plausibility as a proxy to assess transformation quality and realism. We
believe that unsupervised methods should rely on stronger regulariza-
tion strategies toward learning the underlying transformation models.
In this sense, it may be even worth to recover supervised approaches.
A possible way to approach the problem of plausibility quantifica-
tion could be to use surrogates linked to clinical applications such as
the quantification of the usability of the methods in Computational
Anatomy applications or the measurement of the diagnostic capacity
of artificial intelligence systems including non-rigid registration in their
pipeline.
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