000136132 001__ 136132
000136132 005__ 20240719195437.0
000136132 0247_ $$2doi$$a10.1016/j.resconrec.2020.104968
000136132 0248_ $$2sideral$$a118108
000136132 037__ $$aART-2020-118108
000136132 041__ $$aeng
000136132 100__ $$0(orcid)0000-0002-6148-1253$$aOrtego, Abel$$uUniversidad de Zaragoza
000136132 245__ $$aAssessment of strategic raw materials in the automobile sector
000136132 260__ $$c2020
000136132 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136132 5203_ $$aA conventional passenger car demands almost 50 different types of metals, along other raw materials. Some of these metals, such as tantalum, indium, niobium or rare earths elements, are considered critical by the European Commission and many other institutions. Additionally, their functional recycling is practically absent. The transition to fully electric vehicles will require more electrical and electronic devices, motors and batteries, that will need an increasing amount of critical metals. A methodology has been developed to identify strategic elements for the automobile sector. This approach defines a variable called Strategic Metal Index (SMI) which is calculated for each metal. This index is the result of combining the following parameters: (1) Automobile sector demand with respect to world production; (2) known resources compared to total cumulative demand and (3) Supply risk. The index has been applied to 50 metals used by different types of vehicle powertrains. The assessment covers metal demand from 2018 to 2050 according to vehicle sales projections. Using this approach, the most strategic elements for the automobile manufacturing sector are Ni, Li and Co (used in batteries), Nd and Dy (permanent magnets), Tb (lighting and fuel injectors), Sb, Bi and and B (steel alloys, paintings), Au and Ag (electronics), In (screens) and Te (steel alloys, electronics). The search for substitutes, implementation of eco-design measures and the increase of the functional recyclability of these elements should be strongly encouraged in the sector.
000136132 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-85224-R
000136132 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000136132 590__ $$a10.204$$b2020
000136132 591__ $$aENVIRONMENTAL SCIENCES$$b11 / 273 = 0.04$$c2020$$dQ1$$eT1
000136132 591__ $$aENGINEERING, ENVIRONMENTAL$$b5 / 53 = 0.094$$c2020$$dQ1$$eT1
000136132 592__ $$a2.468$$b2020
000136132 593__ $$aWaste Management and Disposal$$c2020$$dQ1
000136132 593__ $$aEconomics and Econometrics$$c2020$$dQ1
000136132 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000136132 700__ $$0(orcid)0000-0001-9263-7321$$aCalvo, Guiomar$$uUniversidad de Zaragoza
000136132 700__ $$0(orcid)0000-0003-3330-1793$$aValero, Alicia$$uUniversidad de Zaragoza
000136132 700__ $$aIglesias-Émbil, Marta
000136132 700__ $$0(orcid)0000-0003-0702-733X$$aValero, Antonio$$uUniversidad de Zaragoza
000136132 700__ $$aVillacampa, Mar
000136132 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000136132 773__ $$g161 (2020), 104968 [11 pp]$$pResour. conserv. recycl.$$tResources, Conservation and Recycling$$x0921-3449
000136132 8564_ $$s578576$$uhttps://zaguan.unizar.es/record/136132/files/texto_completo.pdf$$yPostprint
000136132 8564_ $$s2648380$$uhttps://zaguan.unizar.es/record/136132/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000136132 909CO $$ooai:zaguan.unizar.es:136132$$particulos$$pdriver
000136132 951__ $$a2024-07-19-18:27:50
000136132 980__ $$aARTICLE