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A B S T R A C T

This paper introduces a distributed optimization scheme for achieving formation control
in multi-agent systems operating under switching networks and external disturbances. The
proposed approach utilizes the zero-gradient sum property and consists of two steps. First, it
guides each agent towards the minimizer of its respective local cost function. Subsequently,
it achieves a formation around the minimizer of the global cost function. The distributed
optimization scheme guarantees convergence before a predefined time, even under simultaneous
switching networks and external disturbances, distinguishing it from existing finite and fixed-
time schemes. Moreover, the algorithm eliminates the need for agents to exchange local
gradients or Hessians of the cost functions or even prior knowledge of the number of agents in
the network. Additionally, the proposed scheme copes with external disturbances using integral
sliding modes. The scheme’s effectiveness is validated through an application to distributed
source localization, for which several numerical results are provided.

1. Introduction

Recently, there has been a growing interest in consensus-based distributed optimization due to advancements in distributed
computing and large-scale networks [1]. This research area has found applications in various domains, including data-based
networks, robotics, unmanned aerial vehicles, social and economic networks, smart grids, and epidemic networks. At the same
time, the consensus and formation control of Multi-Agent Systems (MAS) have gained significance in control engineering. Motion
coordination applications often require multiple agents to achieve and sustain a desired geometric pattern centered around an
optimal location for the entire team. These applications encompass various tasks such as exploration, surveillance, robotics, target
localization, and satellite formation flight [2].

Distributed source localization is one specific application that highlights the relevance of distributed optimization. This
application is studied in various contexts, including pollution source localization, search and rescue missions, gas source localization,
acoustic source localization, and more [3,4]. To achieve this task, the use of a single agent often leads to poor performance in the case
of large search environments. Therefore, the problem of source localization using multiple agents has been recently investigated [5–
7]. As discussed in [8,9], such practical problems can be formulated as a distributed optimization problem, where the objective is to
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cooperatively minimize the sum of local cost functions, a problem which has been studied in [10–13]. Based on the local knowledge
of each agent, the optimal value of the global cost function is reached.

Additional requirements should sometimes be considered while solving the distributed optimization problem. For instance, agents
hould form a specific geometric pattern around the optimal location for the entire team [14]. This leads to the simultaneous
ptimization and formation control problem [15], which is more general than the consensus problem due to the offset between the
inal position of the agent and the optimal point according to the cost function.

For many practical applications, the agents should reach the optimal solutions of the corresponding optimization problem within
given time (e.g., the source localization needs to be quickly achieved in the case of disaster) [16]. In order to take into account such

onvergence time constraints, many algorithms use the fixed-time concept introduced in [17] and further extended in [18]. One can
efer to the following papers [19–21]. Despite the interesting properties of such algorithms, it is challenging to design the control
ains since the link between the Upper Bound of the Settling Time (UBST ) and the system parameters is not sufficiently explicit. To

deal with this issue, [22–24] introduced the concept of fixed-time stable systems with a predefined UBST as a design parameter. As
hown in [22–26], one of the main advantages of using this design approach is that it can provide stronger performance guarantees
han traditional methods, particularly in distributed optimization [27]. By constraining the time for optimization, the algorithm can
e designed to terminate once the solution is obtained rather than continuing to iterate indefinitely. This can significantly reduce the
omputational resources required and improve the overall scalability of the algorithm. This is particularly important in applications
here real-time performance is critical, such as in robotics or autonomous systems.

An increasing amount of work concerning time constraints has been drawn recently in the literature. For instance, a predefined-
ime optimization algorithm has been proposed in [28] without converging to the ideal global optimum. A three-stage algorithm,
hich needs an exchange of the gradients of the local cost functions, has been investigated in [29]. In [30], the upper and lower
ounds of the Hessians of local cost functions are needed to implement the distributed optimization scheme. A prescribed-time
istributed optimization algorithm has been proposed in [16] using time-varying gains that tend to infinity as the time approaches
he prescribed convergence time, yielding to inherent robustness and performance limitations [31]. In [27,32,33], without the need
or auxiliary variables or time-variable gains, the predefined-time simultaneous formation control and distributed optimization are
nvestigated. It is worth noting that the papers mentioned above assume that the graph topology is fixed and that no external
isturbance occurs. However, the problem of varying topologies over time and the presence of external disturbances altering the
ystem dynamics are frequent situations in MAS. In [12], a distributed optimization scheme with adversarial agents over switching
opologies is investigated. While this algorithm tackles the consensus problem, it achieves asymptotic convergence to the optimum. A
istributed fixed-time optimization algorithm for consensus under time-varying communication topology has been proposed in [20]
hile requiring the exchange of gradients among agents. In [34], an optimization algorithm for integrator chain systems based on

ignal generators has been proposed. The algorithm is significantly superior compared to similar algorithms in the literature due
o the consideration of matched and unmatched disturbances. However, the settling time depends on the initial condition of the
gents, and only fixed topologies are considered. Notice that none of the papers mentioned above address time constraints, switching
opologies, and disturbances simultaneously, and this is where our research becomes valuable.

In this paper, the suggested approach is a distributed fixed-time optimization scheme with predefined UBST that guarantees
ormation control for multi-agent systems over switching networks and in the presence of external disturbances. The proposed
cheme is divided into two steps. First, the controller guides each agent towards the minimizer of its respective local cost function.
hen, the distributed optimization and formation control is achieved. Indeed, all agents converge towards the minimizer of the global
ost function. Contrary to many existing algorithms, the proposed scheme satisfies the zero-gradient sum property [35]. Besides, it
ossesses several noteworthy characteristics, including:

• The proposed algorithm can be used on arbitrarily strongly convex cost functions and requires fewer tuning parameters
compared to many works in the literature.

• Contrary to [19,30,36], the proposed algorithm can be used both in formation and consensus control.
• The UBST can be assigned according to the desired requirements, contrary to many existing finite and fixed-time schemes.
• Contrary to [29], agents are not required to exchange the local gradients or Hessians of the cost functions.
• Unlike most existing works, the proposed algorithm does not rely on prior knowledge of the number of agents in the network.

Furthermore, the scheme deals with switching topologies and handles disturbances through integral sliding modes.

The remainder of this article is organized as follows. Preliminaries and important Lemmas are presented in Section 2. The problem
ormulation is given in Section 3. Section 4 introduces the proposed predefined-time scheme, including its stability analysis. The
pplicability for source localization is verified through several numerical experiments in Section 5. Concluding remarks are given
n Section 6.

. Preliminaries

.1. Notation

Let R denote the set of real numbers and R𝑛 the 𝑛-dimensional Euclidean space. For 𝐱 ∈ R𝑛, 𝐱⊤ denotes its transpose and ||𝐱||
ts Euclidean norm. Denote 𝟎𝑛 = [0,… , 0]⊤ ∈ R𝑛. 𝐈𝑛 is the identity matrix with dimensions 𝑛 × 𝑛. For a twice differentiable function
𝑓 ∶ R𝑛 → R, ∇𝑓 and ∇2𝑓 represent the gradient and Hessian of the function, respectively. For matrices 𝐀 ∈ R𝑚×𝑛 and 𝐁 ∈ R𝑝×𝑞 ,
𝐀⊗ 𝐁 ∈ R𝑚𝑝×𝑛𝑞 denotes the Kronecker product. For any real number ℎ, the function |⌊∙⌉|ℎ ∶ R𝑛 → R𝑛 is defined as |⌊𝐱⌉|ℎ = 𝐱||𝐱||ℎ−1

𝑛
| |

ℎ

2

for any 𝐱 ∈ R ⧵ {𝟎𝑛}. Moreover, if ℎ > 0,
|

⌊𝟎𝑛⌉| = 𝟎𝑛.
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2.2. Graph theory

Let  = ( , ) denote a graph, where  = 1, 2,… , 𝑁 is the set of agents and  ⊆  ×  is the set of edges. The corresponding
eighted adjacency matrix is 𝐀 = [𝑎𝑖𝑗 ] ∈ R𝑁×𝑁 with 𝑎𝑖𝑗 > 0 if (𝑗, 𝑖) ∈  and 𝑎𝑖𝑗 = 0 otherwise. Assuming that no self-loops are
resent, 𝑎𝑖𝑖 = 0, ∀𝑖 ∈  . The neighbor set of agent 𝑖 is defined as 𝑖 = {𝑗 ∈ |(𝑗, 𝑖) ∈ }. The Laplacian matrix 𝐋 = [𝑙𝑖𝑗 ] ∈ R𝑁×𝑁

ssociated with  is defined as 𝑙𝑖𝑗 = −𝑎𝑖𝑗 for 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 =
∑𝑁

𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗 . If the graph is undirected and connected, the eigenvalues of
he Laplacian matrix 𝐋 are 0 < 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 , where 𝜆2 is the algebraic connectivity of the graph. For more details see [37].

In practice, the network structure may change due to communication issues. This feature can be modeled using a switching
ynamic network. Let  = {1,2,… ,𝐾} be a collection of 𝐾 graphs having the same vertex set and 𝜗 ∶ [0,∞) →  is a switching
ignal determining the topology of the dynamic network at each instant of time. For 𝜗(𝑡) = 𝑘, the adjacency and Laplacian matrices,
nd the neighbor set of agent 𝑖 are denoted as 𝐀𝑘, 𝐋𝑘, and  𝑘

𝑖 , respectively.

.3. Convex analysis

A twice continuously differentiable convex function 𝑓 ∶ R𝑛 → R is said to be 𝜃-strongly convex and 𝛩-smooth if the following
ondition hold

𝜃𝐈𝑛 ≤ ∇2𝑓 (𝐱) ≤ 𝛩𝐈𝑛. (1)

ith 𝜃, 𝛩 > 0. An important consequence of (1) is that the following property is attained [38, Section 9.1.2]:
𝜃
2
||𝐱 − 𝐲||2 ≤ 𝑓 (𝐲) − 𝑓 (𝐱) − ∇𝑓 (𝐱)⊤(𝐲 − 𝐱) ≤ 𝛩

2
||𝐲 − 𝐱||2, (2)

If 𝑓 is a 𝜃-strongly convex function, then its minimizer 𝐱∗ = argmin𝐱∈R𝑛 𝑓 (𝐱) is unique. The reader may refer to [38–40] for more
etails.

.4. Stability notions

The reader may refer to [41], [25, Section II] and [42, Section III]. Consider the autonomous system

𝐱̇(𝑡) = 𝐟 (𝐱(𝑡);𝝆), 𝐱0 ∶= 𝐱(0) (3)

here 𝐱(𝑡) ∈ R𝑛 is the system state and 𝝆 ∈ R𝑏 with 𝝆̇ = 0 represents the tunable parameters of the system. Function 𝐟 ∶ R𝑛 → R𝑛

ay be discontinuous, and such that the solutions of (3) exist and are unique in the sense of Filippov. Thus, Φ(𝑡, 𝐱0) denotes the
olution of (3) and 𝐱 = 𝟎𝑛 is the unique equilibrium point.

efinition 1. The origin of (3) is said to be finite-time stable if it is Lyapunov stable and for any 𝐱0 ∈ R𝑛 there exists 0 ≤ 𝑇 < ∞
uch that Φ(𝑡, 𝐱0) = 0 for all 𝑡 ≥ 𝑇 . The function 𝑇 (𝐱0) = inf

{

𝑇 ≥ 0 ∶ Φ(𝑡, 𝐱0) = 0, ∀𝑡 ≥ 𝑇
}

is called the settling-time function of
ystem (3).

efinition 2. The origin of (3) is fixed-time stable if it is finite-time stable and if there exists a 𝑇max < ∞ such that sup𝑥0∈R𝑛 𝑇 (𝑥0) ≤
max.

efinition 3 ([43], Definition 4). For the parameter vector 𝝆 of system (3) and an arbitrarily selected constant 𝑇𝑐 ∶= 𝑇𝑐 (𝝆) > 0, the
rigin of (3) is said to be fixed-time stable with 𝑇𝑐 as a predefined Upper Bound of the Settling Time (UBST ) if the settling time
unction 𝑇 (𝐱0) is uniformly bounded as 𝑇 (𝐱0) ≤ 𝑇𝑐 ,∀𝐱0 ∈ R𝑛. In this case, 𝑇𝑐 is called a predefined time.

roposition 1 ([44],Theorem 3.1). If there exists a continuous, positive definite and radially unbounded function 𝑉 ∶ R𝑛 → R≥0 such that
he time derivative of 𝑉 along the trajectories of (3) satisfies

𝑉̇ (𝐱(𝑡)) ≤ − 1
𝛼𝑠𝑇𝑐

exp(𝛼𝑉 (𝐱(𝑡))𝑠)𝑉 (𝐱(𝑡))1−𝑠, (4)

for 𝐱(𝑡) ∈ R𝑛 ⧵ {𝟎𝑛} and constants 𝑇𝑐 ∶= 𝑇𝑐 (𝝆) > 0, 𝛼 > 0, 𝑠 ∈ (0, 1∕2], then the origin of (3) is fixed-time stable with 𝑇𝑐 as a predefined
UBST.

2.5. Important lemmas

Lemma 1 ([45], Theorem 2.1). Consider a family of time-dependent switching systems of the form 𝐱̇(𝑡) = 𝐟𝜗(𝑡)(𝐱(𝑡)) with 𝐟𝜗(𝑡) ∈ {𝐟1,… , 𝐟𝑛}. If
all systems in the family share a radially unbounded common Lyapunov function, then the switched system is globally uniformly asymptotically
stable regardless of the switching signal 𝜗(𝑡) ∈ {1,… , 𝑘}.
3
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Lemma 2 ([46], Lemma 4.18). For a general undirected graph  with weighted adjacency matrix 𝐀 = [𝑎𝑖𝑗 ] ∈ R𝑁×𝑁 and for given vectors
𝐱𝑖, 𝐲𝑖 ∈ R𝑛, it follows that

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝐱⊤𝑖 (𝐲𝑖 − 𝐲𝑗 ) =

1
2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗 (𝐱𝑖 − 𝐱𝑗 )⊤(𝐲𝑖 − 𝐲𝑗 ).

Lemma 3 ([27], Lemma 2). Let 𝑓 (𝑥) = exp
(

𝑘𝑥2𝑠
)

𝑥2(1−𝑠). If 𝑘 ≥ 0 and 0 < 𝑠 < 1∕2, then 𝑓 (𝑥) is convex for 𝑥 > 0.

emma 4 ([27], Lemma 3). Let 𝑓 ∶ R → R be convex with 𝑓 (0) = 0 and a set of𝑁2 numbers 𝑣𝑖𝑗 with 𝑖, 𝑗 ∈ {1,… , 𝑁}. Let𝑖 ⊆ {1,… , 𝑁}
be an arbitrary index set. Then,

1
𝑁2

𝑁
∑

𝑖=1

∑

𝑗∈𝑖

𝑓 (𝑣𝑖𝑗 ) ≥ 𝑓

(

1
𝑁2

𝑁
∑

𝑖=1

∑

𝑗∈𝑖

𝑣𝑖𝑗

)

.

2.6. Zero-gradient-sum algorithms

Consider a distributed algorithm of the form:

𝐱̇𝑖(𝑡) = 𝝓𝑖

(

𝐱𝑖(𝑡), 𝐱𝑖
(𝑡)
)

𝐱𝑖(0) = 𝝌 𝑖, ∀ 𝑖 ∈ 
(5)

where 𝐱𝑖 ∈ R𝑛 represents node 𝑖’s estimate of the unknown global minimizer 𝐱∗ at time 𝑡. 𝐱𝑖
(𝑡) is a vector obtained by stacking the

information obtained from neighboring agents (i.e., 𝐱𝑗 ,∀𝑗 ∈ 𝑖). 𝝓𝑖 ∶ R𝑛 ×R𝑛|𝑖| ↦ R𝑛 is a locally Lipschitz function, and 𝝌 𝑖 ∈ R𝑛

is a constant determining the initial state. The agents are endowed with a local cost function 𝑓𝑖 ∶ R𝑛 → R.

Definition 4 ([47], Definition 1). A continuous-time distributed algorithm of the form (5) is said to be a Zero-Gradient-Sum algorithm
if local cost functions 𝑓𝑖 are twice continuously differentiable, 𝜃𝑖-strongly convex and 𝛩𝑖-smooth, 𝝓𝑖 ∀ 𝑖 ∈  is locally Lipschitz,
and the following conditions are satisfied:

∑

𝑖∈
∇2𝑓𝑖(𝐱𝑖(𝑡))𝝓𝑖

(

𝐱𝑖(𝑡), 𝐱𝑖
(𝑡)
)

= 𝟎𝑛
∑

𝑖∈
𝐱𝑖(𝑡)𝑇∇2𝑓𝑖(𝐱𝑖(𝑡))𝝓𝑖

(

𝐱𝑖(𝑡), 𝐱𝑖
(𝑡)
)

< 0

∑

𝑖∈
∇𝑓𝑖(𝝌 𝑖) = 𝟎𝑛.

(6)

2.7. Integral sliding modes

Consider a linear uncertain system

𝑥̇ = 𝐴𝑥 + 𝐵(𝑢 +𝑤), (7)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚 and 𝑤 ∈ R𝑚 which represents an unknown disturbance vector bounded by a known positive constant 𝛿.
Assuming that there exists a controller 𝑢∗(𝑥), either continuous or discontinuous, which ensures that the nominal system 𝑥̇ = 𝐴𝑥+𝐵𝑢∗

is stabilized with given properties. Define the sliding surface 𝜎 as

𝜎 = 𝐶𝑇 𝑥 + 𝑧

𝑧̇ = −𝐶𝑇 (𝐴𝑥 + 𝐵𝑢∗),
(8)

with 𝑧(0) = −𝐶𝑇 𝑥(0) and an appropriate matrix 𝐶. Using the controller

𝑢 = 𝑢∗ −𝑀sign(𝜎),

with 𝑀 ≥ 𝛿, the trajectory of the linear uncertain system coincides with the one of the nominal system 𝑥̇ = 𝐴𝑥 + 𝐵𝑢∗ without
perturbation. Compared to traditional sliding mode control, integral sliding mode approach exhibits system motion on sliding mode
that spans the same dimension as the state space. More details can be found in [48].

3. Problem definition

Consider the leaderless MAS with 𝑁 agents given by

𝐱̇𝑖(𝑡) = 𝐮𝑖(𝑡) + 𝐰𝑖(𝑡) 𝑖 ∈ {1,… , 𝑁}, (9)

where 𝐱𝑖(𝑡),𝐮𝑖(𝑡) ∈ R𝑛 represents the state, the control input of agent 𝑖 ∈ {1,… , 𝑁}, respectively. In addition, 𝐰𝑖(𝑡) ∈ R𝑛 represents
4

an unknown disturbance vector under the following assumption.
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Assumption 1. There exists a known bound 𝛿𝑖 ≥ 0 for the disturbance vector 𝐰𝑖(𝑡) such that ||𝐰𝑖(𝑡)|| ≤ 𝛿𝑖,∀𝑡 ≥ 0.

Moreover, each agent can exchange information only with its neighbors under a switching network, in which the associated
opologies 𝑘 satisfy the following assumption:

ssumption 2. The switched dynamic network is formed by undirected connected graphs. Furthermore, the switching signal 𝜗(𝑡)
s generated exogenously and there is a minimum dwell time between consecutive switchings in such a way that Zeno behavior is
xcluded.

The agents are endowed with a local cost function 𝑓𝑖 ∶ R𝑛 → R and the main objective is to establish a fixed formation around
he target point 𝐱∗ ∈ R𝑛, which minimizes

𝐹 (𝐱) ∶=
𝑁
∑

𝑖=1
𝑓𝑖(𝐱) (10)

efore a predefined time 𝑇𝑐 . The local cost functions are subject to the following assumption.

ssumption 3. There exists 𝜃𝑖, 𝛩𝑖 > 0 such that the local cost functions 𝑓𝑖 ∶ R𝑛 → R are twice differentiable, 𝜃𝑖-strongly convex
and 𝛩𝑖-smooth.

Remark 1. Assumption 3 includes many cases such as quadratic, fractional, trigonometric, exponential, logarithmic and other
bounded differentiable functions. Some practical examples can be found in economic dispatch, optimal rendezvous of multiple
mobile robots, statistics, and machine learning [19].

The formation is defined by fixed displacements 𝐡𝑖 ∈ R𝑛, where each agent has a unique displacement that determines their
positional offset from the target point. Consequently, agent 𝑖 ∈  aims to reach the position 𝐱∗ + 𝐡𝑖.

In this context, the problem can be written as follows:

min
𝐱∈R𝑛

𝐹 (𝐱), subject to
⎧

⎪

⎨

⎪

⎩

lim
𝑡→𝑇𝑐

||𝐩𝑖(𝑡) − 𝐱∗|| = 0

||𝐩𝑖(𝑡) − 𝐱∗|| = 0, ∀𝑡 ≥ 𝑇𝑐 ,
(11)

where 𝐱∗ = argmin𝐱∈R𝑛 𝐹 (𝐱) and 𝐩𝑖(𝑡) = 𝐱𝑖(𝑡) − 𝐡𝑖. Here, 𝐱𝑖(𝑡) is a local copy of the global optimization variable 𝐱(𝑡). Henceforth, the
time dependence of variables will be written only when necessary.

Remark 2. It is worth noting that the considered problem is to simultaneously solve the optimization and formation control problem
in a decentralized way. The distributed optimization problem for achieving consensus appears as a special case when 𝐡𝑖 = 𝟎𝑛.

4. Main results

To solve problem (11), the following distributed scheme is proposed, in which controller 𝐮𝑖(𝑡) is comprised of two parts: a sliding
mode controller 𝐮d

𝑖 (𝑡) and a two-step controller for the optimization process 𝐮∗𝑖 (𝑡). Mathematically,

𝐮𝑖(𝑡) = 𝐮d
𝑖 (𝑡) + 𝐮∗𝑖 (𝑡) (12)

𝐮d
𝑖 (𝑡) = − 1

2𝑠𝑇𝜎
exp(||σ𝑖||

2𝑠) |
|

⌊σ𝑖⌉||
1−2𝑠 − 𝜌𝑖 ||⌊σ𝑖⌉||

0 (13)

here
σ𝑖(𝑡) = 𝐱𝑖(𝑡) − 𝐳𝑖(𝑡)
𝐳̇𝑖(𝑡) = 𝐮∗𝑖 (𝑡)

(14)

with 𝐳𝑖(0) = 𝐛𝑖 ∈ R𝑛, and

𝐮∗𝑖 (𝑡) =
⎧

⎪

⎨

⎪

⎩

−𝑐1
(

∇2𝑓𝑖(𝐱𝑖)
)−1 exp(||∇𝑓𝑖(𝐱𝑖)||2𝑠) ||⌊∇𝑓𝑖(𝐱𝑖)⌉||

1−2𝑠 , ∀𝑡 ≤ 𝜇𝑇𝑐
−𝑐2

(

∇2𝑓𝑖(𝐩𝑖)
)−1 ∑

𝑗∈ 𝑘
𝑖

√

𝑐3𝑎𝑖𝑗 exp(||𝐩𝑖𝑗 ||2𝑠)
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠
, ∀𝑡 > 𝜇𝑇𝑐 (15)

long with the following definitions and parameter design rules:

𝛩̄ = max
𝑖∈

{𝛩𝑖}, 𝜆2 = min
𝑘∈

{𝜆𝑘2}, 𝐩𝑖𝑗 =
√

𝑐3𝑎𝑖𝑗 (𝐩𝑖 − 𝐩𝑗 ),

𝑐1 =
1

2𝑠𝜇𝑇𝑐
, 𝑐2 =

2
𝑠(1 − 𝜇)𝑇𝑐

, 𝑐3 ≥
𝛩̄
2𝜆2.

(16)

Here, 𝑎𝑖𝑗 is the element of the adjacency matrix 𝐀𝑘 and 𝜆𝑘2 is the algebraic connectivity of 𝐋𝑘, with 𝑘 ∈ {1,… , 𝐾}. The parameter
𝜇 is used to establish the duration of each step in terms of the total optimization time 𝑇𝑐 . Hence, 0 < 𝜇 < 1. 𝑇𝜎 denotes the
predefined-time for reaching the sliding surface 𝝈 = 𝟎𝑛, provided that 𝑇𝜎 < 𝜇𝑇𝑐 . As usual, solutions to the closed loop system are

| |

0

5

understood in the sense of Filippov due to the introduction of the discontinuous term
|

⌊σ𝑖⌉| in (13).
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Remark 3. Some remarks are made for the previously defined controller:

• The control input 𝐮d
𝑖 (𝑡) has the form of an integral sliding mode controller, with the purpose of eliminating the typical reaching

phase by enforcing the sliding mode from 𝑡 = 0 through setting 𝒃𝑖 = 𝐱𝑖(0). This approach has the advantage of avoiding
significant deviations of the states of the agents due to the disturbances during the reaching phase. More information can be
found in [24,48–52].

• The term 𝐮∗𝑖 (𝑡) is a two-step controller with the purpose of leading the agents toward the global minimizer, under the scope
of the zero-gradient-sum theory ZGS, proposed in [47].

• Notice that the lower bound of the gain 𝑐3 depends on system parameters 𝛩̄ and 𝜆2. Nevertheless, the control parameters are
computed beforehand and then remain constant for 𝑡 ≥ 0. In addition, it is possible to have estimations, average values or
bounds of the system parameters such that they can be used to calculate 𝑐3. Once the gain is set, only local information is
needed to achieve consensus control while minimizing the global cost function.

roposition 2. Let Assumption 1 hold. Consider system (9) under the controller defined in (12) and (13) with 𝜌𝑖 ≥ 𝛿𝑖. Then, the surface
σ𝑖(𝑡) = 𝟎𝑛 is fixed time stable with 𝑇𝜎 as a predefined UBST, regardless of the choice of 𝐛𝑖 in (14). If 𝒃𝑖 = 𝐱𝑖(0) then σ𝑖(𝑡) ≡ 𝟎𝑛,∀𝑡 ≥ 0.

Proof. Define a Lyapunov candidate of the form 𝑉𝑖(σ𝑖) = ||σ𝑖||
2, such that its time derivative yields

𝑉̇𝑖(σ𝑖) = 2σ⊤𝑖 σ̇𝑖 = 2σ⊤𝑖 (𝐱̇𝑖 − 𝐮∗𝑖 ) = 2σ⊤𝑖 (𝐮
d
𝑖 + 𝐰𝑖)

= 2σ⊤𝑖

(

− 1
2𝑠𝑇𝜎

exp(||σ𝑖||
2𝑠) |

|

⌊σ𝑖⌉||
1−2𝑠 − 𝜌𝑖 ||⌊σ𝑖⌉||

0 + 𝐰𝑖

)

= − 1
𝑠𝑇𝜎

exp(||σ𝑖||
2𝑠)||σ𝑖||

2(1−𝑠) − 2𝜌𝑖||σ𝑖|| + 2σ⊤𝑖 𝐰𝑖. (17)

By applying the Cauchy–Schwarz inequality to the last term on the right hand side, one get σ⊤𝑖 𝐰𝑖 ≤ ||σ𝑖||𝛿𝑖 using Assumption 1.
Hence

𝑉̇𝑖(σ𝑖) ≤ − 1
𝑠𝑇𝜎

exp(||σ𝑖||
2𝑠)||σ𝑖||

2(1−𝑠) − 2(𝜌𝑖 − 𝛿𝑖)||σ𝑖||.

inally, since 𝜌𝑖 ≥ 𝛿𝑖 by assumption,

𝑉̇𝑖(σ𝑖) ≤ − 1
𝑠𝑇𝜎

exp(𝑉𝑖(σ𝑖)𝑠)𝑉𝑖(σ𝑖)1−𝑠, (18)

meaning that the system follows Proposition 1 with 𝛼 = 1, and 𝑇𝜎 as predefined UBST. The last part of the proposition follows
by noting that σ𝑖(𝑡) = 𝟎𝑛 is a stable equilibrium due to the previous reasoning, and 𝐛𝑖 = 𝐱𝑖(0) ensures σ𝑖(0) = 𝟎𝑛, completing the
roof. □

roposition 3. Let Assumptions 1 and 3 hold. Consider system (9) under the controller defined in (12), (13), (15) with 𝜌𝑖 ≥ 𝛿𝑖. If
𝑖 = 𝐱𝑖(0). Then, 𝐱∗ = argmin𝐱∈R𝑛 𝐹 (𝐱) is a fixed-time stable equilibrium with 𝜇𝑇𝑐 as a predefined UBST.

roof. As a direct consequence of Proposition 2 and the definition in (14), σ̇𝑖 = 𝟎𝑛 = 𝐱̇𝑖−𝐮∗𝑖 for 𝑡 ≥ 0. On sliding mode, the proposed
ontroller cancels the effect of the unknown disturbance 𝐰𝑖 for 𝑡 ≥ 0. Therefore, the closed-loop system takes the form

𝐱̇𝑖 = 𝐮∗𝑖 = −𝑐1
(

∇2𝑓𝑖(𝐱𝑖)
)−1 exp(||∇𝑓𝑖(𝐱𝑖)||2𝑠) ||⌊∇𝑓𝑖(𝐱𝑖)⌉||

1−2𝑠 . (19)

or agent 𝑖 ∈  , one can define the Lyapunov function candidate 𝑉𝑖(𝐱𝑖) = ||∇𝑓𝑖(𝐱𝑖)||2, which is positive, radially unbounded and
qual to zero if and only if ∇𝑓𝑖(𝐱𝑖) = 𝟎𝑛 due to Assumption 3. The time derivative of 𝑉𝑖(𝐱𝑖) takes the form

𝑉̇𝑖(𝐱𝑖) = 2∇𝑓𝑖(𝐱𝑖)⊤∇2𝑓𝑖(𝐱𝑖)𝐱̇𝑖.

hen it follows from the definition of 𝐱̇𝑖

𝑉̇𝑖(𝐱𝑖) = −2𝑐1 exp(||∇𝑓𝑖(𝐱𝑖)||2𝑠)∇𝑓𝑖(𝐱𝑖)⊤ |

|

⌊∇𝑓𝑖(𝐱𝑖)⌉||
1−2𝑠

= − 1
𝑠𝜇𝑇𝑐

exp(||∇𝑓𝑖(𝐱𝑖)||2𝑠)||∇𝑓𝑖(𝐱𝑖)||2(1−𝑠)

= − 1
𝑠𝜇𝑇𝑐

exp(𝑉𝑖(𝐱𝑖)𝑠)𝑉𝑖(𝐱𝑖)1−𝑠. (20)

which completes the proof by using Proposition 1 with 𝜇𝑇𝑐 as UBST. □

Remark 4. The zero-gradient-sum approach requires that the initial condition of all agents is located at their local minimum,
meaning that all gradients must be equal to zero at 𝑡 = 0. In practical scenarios, this condition is not realistic and so there must
be a prior step before consensus, in which all agents reach their local minima before a predefined time, starting from any initial
condition.
6
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Remark 5. Notice that both controllers 𝐮∗𝑖 (𝑡) and 𝐮d
𝑖 (𝑡) act simultaneously, contrary to [53], who proposed an algorithm in which

the reaching phase is done prior to the optimization phase. In our case, the reaching phase is eliminated under the assumption of
knowledge of 𝐱𝑖(0), which is reasonable in practice due to the knowledge of the local state 𝐱𝑖(𝑡) for all time. Still, even if 𝐱𝑖(0) is
ot accurately available due to the presence of uncertainty, the reaching phase is ensured to last at most 𝑇𝜎 units of time after the
nitial instant as we show in Proposition 2.

heorem 1. Let Assumptions 1–3 hold. Consider system (9) under the controller defined in (12), (13), (15) with 𝜌𝑖 ≥ 𝛿𝑖 and (16). Then,
𝑖(𝑡) = 𝐱∗ is fixed-time stable with (1 − 𝜇)𝑇𝑐 as a predefined UBST.

roof. As a consequence of Propositions 2 and 3, for 𝑡 ≥ 𝜇𝑇𝑐 , the closed-loop system becomes

𝐱̇𝑖 = 𝐮∗𝑖 = −𝑐2
(

∇2𝑓𝑖(𝐩𝑖)
)−1 ∑

𝑗∈ 𝑘
𝑖

√

𝑐3𝑎𝑖𝑗 exp(||𝐩𝑖𝑗 ||2𝑠)
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠
, (21)

which depends on the switching network 𝑘. Consider a common Lyapunov function for all the topologies associated to the network
of the form

𝑉 (𝐩) =
𝑁
∑

𝑖=1
𝑓𝑖(𝐱∗) − 𝑓𝑖(𝐩𝑖) − ∇𝑓𝑖(𝐩𝑖)⊤(𝐱∗ − 𝐩𝑖), (22)

with 𝐩 =
[

𝐩⊤1 ,… ,𝐩⊤𝑁
]⊤. Note that Assumption 3 implies that

𝑉 (𝐩) ≥
𝑁
∑

𝑖=1

𝜃𝑖
2
||𝐩𝑖 − 𝐱∗||2 ≥ 0.

Hence, 𝑉 (𝐩) is positive, radially unbounded and equal to zero if and only if 𝐩𝑖 = 𝐱∗, i.e. when formation is achieved. The time
derivative of (22) becomes

𝑉̇ (𝐩) =
𝑁
∑

𝑖=1
𝐩⊤𝑖 ∇

2𝑓𝑖(𝐩𝑖)𝐱̇𝑖 − (𝐱∗)⊤
𝑁
∑

𝑖=1
∇2𝑓𝑖(𝐩𝑖)𝐱̇𝑖. (23)

The assumption of undirected graphs implies that 𝐩𝑖𝑗 = −𝐩𝑗𝑖. Therefore, according to (6) in Definition 4

(𝐱∗)⊤
𝑁
∑

𝑖=1
∇2𝑓𝑖(𝐩𝑖)𝐱̇𝑖 = −𝑐2(𝐱∗)⊤

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

√

𝑐3𝑎𝑖𝑗 exp(||𝐩𝑖𝑗 ||2𝑠)
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠
= 0. (24)

hen

𝑉̇ (𝐩) =
𝑁
∑

𝑖=1
𝐩⊤𝑖 ∇

2𝑓 (𝐩𝑖)𝐱̇𝑖 = −𝑐2
𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

exp(||𝐩𝑖𝑗 ||2𝑠)
√

𝑐3𝑎𝑖𝑗𝐩⊤𝑖
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠
. (25)

pplying Lemma 2 and pre-multiplying by 𝑁2∕𝑁2

𝑉̇ (𝐩) = −
𝑐2
2

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

exp(||𝐩𝑖𝑗 ||2𝑠)
√

𝑐3𝑎𝑖𝑗 (𝐩𝑖 − 𝐩𝑗 )⊤
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠

= −
𝑐2
2

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

exp(||𝐩𝑖𝑗 ||2𝑠)𝐩⊤𝑖𝑗
|

|

|

⌊

𝐩𝑖𝑗
⌉

|

|

|

1−2𝑠

= −
𝑐2
2
𝑁2

𝑁2

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

exp(||𝐩𝑖𝑗 ||2𝑠)||𝐩𝑖𝑗 ||2(1−𝑠). (26)

Observing that the function inside the double sum in (26) is convex (Lemma 3) and that ||𝐩𝑖𝑗 ||2 = 𝑐3𝑎𝑖𝑗 ||𝐩𝑖 − 𝐩𝑗 ||2, Lemma 4 can be
pplied to obtain

𝑉̇ (𝐩) ≤ −
𝑐2𝑁2

2
exp

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑐3
𝑁2

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

𝑎𝑖𝑗 ||𝐩𝑖 − 𝐩𝑗 ||2
⎞

⎟

⎟

⎠

𝑠
⎞

⎟

⎟

⎠

×
⎛

⎜

⎜

⎝

𝑐3
𝑁2

𝑁
∑

𝑖=1

∑

𝑗∈ 𝑘
𝑖

𝑎𝑖𝑗 ||𝐩𝑖 − 𝐩𝑗 ||2
⎞

⎟

⎟

⎠

1−𝑠

.

(27)

Since
𝑁
∑ ∑

𝑘

𝑎𝑖𝑗 ||𝐩𝑖 − 𝐩𝑗 ||2 = 2𝐩⊤(𝐋𝑘 ⊗ 𝐈𝑛)𝐩,
7

𝑖=1 𝑗∈𝑖
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it follows that

𝑉̇ (𝐩) ≤ −
𝑐2𝑁2

2
exp

((

2𝑐3
𝑁2

𝐩⊤(𝐋𝑘 ⊗ 𝐈𝑛)𝐩
)𝑠)(

2𝑐3
𝑁2

𝐩⊤(𝐋𝑘 ⊗ 𝐈𝑛)𝐩
)1−𝑠

. (28)

Following the mathematical deduction given in [19] and knowing that 𝜆𝑘2 ≥ 𝜆2, then:

𝑉 (𝐩) ≤ 𝛩̄
𝜆𝑘2

𝐩⊤(𝐋𝑘 ⊗ 𝐈𝑛)𝐩 ≤ 𝛩̄
𝜆2

𝐩⊤(𝐋𝑘 ⊗ 𝐈𝑛)𝐩, (29)

After replacing (29) into (28) and rearranging some terms, it yields

𝑉̇ (𝐩) ≤ −
𝑐2

2𝑁−2𝑠
exp

(

𝑁−2𝑠
(2𝑐3𝜆2

𝛩̄
𝑉 (𝐩)

)𝑠)(2𝑐3𝜆2
𝛩̄

𝑉 (𝐩)
)1−𝑠

. (30)

Finally, based on the definition of 𝑐2 and 𝑐3, (30) reduces to

𝑉̇ (𝐩) ≤ − 1
𝛼𝑠(1 − 𝜇)𝑇𝑐

exp(𝛼𝑉 (𝐩)𝑠)𝑉 (𝐩)1−𝑠. (31)

where 𝛼 = 𝑁−2𝑠. Note that the dynamics of the defined common Lyapunov function are independent of the topology. Hence,
according to Proposition 1 and Lemma 1, the switched system is fixed-time stable with (1 − 𝜇)𝑇𝑐 as UBST. □

Corollary 1. In the absence of information about parameters 𝜆2 and 𝛩̄, the MAS will converge in fixed-time to the global optimum with
n UBST of the form 𝑇𝑐

𝑐3
𝛩̄
2𝜆2
, provided that 𝑐3 > 0.

Proof. From (30) and the definition of 𝑐2, let 𝛼 = 𝑁−2𝑠 and 𝛾 = 2𝑐3𝜆2
𝛩̄ . Then

𝑉̇ (𝐩) ≤ −
𝛾1−𝑠

𝛼𝑠𝑇𝑐
exp

(

𝛼 (𝛾𝑉 (𝐩))𝑠
)

(𝑉 (𝐩))1−𝑠 . (32)

Since all parameters are positive, 𝑉̇ (𝐩) ≤ 0, ensuring convergence to the global minimum. Moreover, the solution of the
differential inequality (32) implies

𝑉 (𝐩) ≤
⎡

⎢

⎢

⎣

1
𝛼𝛾𝑠

ln
⎛

⎜

⎜

⎝

1
𝛾
𝑇𝑐
(𝑡 − 𝑡0) + exp

(

−𝛼𝛾𝑠𝑉 𝑠
0
)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

1∕𝑠

, 𝑉0 = 𝑉 (𝐩(𝑡0)).

Notice that 𝑉 (𝐩) = 0 if 𝛾
𝑇𝑐
(𝑡 − 𝑡0) + exp

(

−𝛼𝛾𝑠𝑉 𝑠
0
)

= 1, thus

𝑡 − 𝑡0 ≡ 𝑇 (𝑉0) ≤
𝑇𝑐
𝛾

[

1 − exp
(

−𝛼𝛾𝑠𝑉 𝑠
0
)]

.

Since 0 < exp
(

−𝛼𝛾𝑠𝑉 𝑠
0
)

≤ 1, the fraction 𝑇𝑐
𝛾 = 𝑇𝑐

𝑐3
𝛩̄
2𝜆2

is an UBST.

Notice that if 𝑐3 ≥
𝛩̄
2𝜆2

, then the UBST 𝑇𝑐
𝛾 ≤ 𝑇𝑐 , which is consistent with Theorem 1. □

5. Application to source localization

This section presents the application of the results derived from previous sections to address the source localization problem.
The objective of source localization is to determine the location of a nearby isotropic source by deploying a set of sensors in the
workspace. These sensors measure the presence of the source, which could be an emitter such as a radio signal or a thermal, sound,
or pollution source. In any case, it is detectable through suitable sensing technology. The sensor provides a scalar quantity, such as
the energy or strength of the emitted signal, which diminishes with the distance between the sensor and the source.

5.1. Approximate source localization

Exact or optimal source localization is a highly intricate problem, especially in distributed settings. Consequently, approximate
solutions have been proposed [8,9]. In these approaches, the primary function of sensors is to determine whether the source is
nearby by comparing the measured scalar quantity with a predefined threshold. By placing the sensors uniformly across the region
of interest in the workspace, the point that minimizes the distance to all activated sensors can serve as a good indicator of the source
location. In practical scenarios such as search and rescue operations, where promptly identifying the source position is of utmost
importance, this technique can be employed to obtain a rough estimate of the source location. Subsequently, more sophisticated
techniques can be utilized in a smaller portion of the workspace around the rough estimate to find the exact location of the source.

In the distributed setting, the agents modeled by (9) do not have access to all the sensors. This limited accessibility can be
represented by a 𝑁 × 𝑟 binary matrix 𝐃 = [𝑑𝑖𝓁], where 𝑑𝑖𝓁 = 1 indicates that agent 𝑖 ∈  can access an activated sensor positioned at
𝐬 ∈ R𝑛 (𝓁 = 1,… , 𝑟) and 𝑑 = 0 otherwise. Motivated by the previous discussion, the main objective is establishing a fixed formation
8

𝓁 𝑖𝓁
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Fig. 1. Topologies associated to the switching network.

round the target point 𝐱∗, which minimizes the cumulative distance between the agents’ positions 𝐱𝑖 and the corresponding sensors
efore a predefined time 𝑇𝑐 . Hence, the local cost functions can be defined as:

𝑓𝑖(𝐱𝑖) =
𝑟
∑

𝓁=1
𝑑𝑖𝓁||𝐱𝑖 − 𝐬𝓁||2. (33)

ote that (33) satisfies Assumption 3 with

𝛩𝑖 = 2
𝑟
∑

𝓁=1
𝑑𝑖𝓁 , (34)

ince ∇2𝑓𝑖(𝐱𝑖) =
(

2
∑𝑟

𝓁=1 𝑑𝑖𝓁
)

𝐈𝑛 = 𝛩𝑖𝐈𝑛. Therefore, the controllers developed in this work can be used for the agents to reach a
ormation around the approximate source position 𝐱∗.

.2. Numerical example

Consider a group of five agents whose individual dynamics follows (9), with 𝐱 = [𝑥1, 𝑥2, 𝑥3]⊤ ∈ R3. Their communication is
escribed by a switching network composed of four topologies, as shown in Fig. 1 and, without loss of generality, the weights 𝑎𝑖𝑗 were
et equal to one. The algebraic connectivity associated to each graph is 𝜆2(1) = 1.83, 𝜆2(2) = 0.70, 𝜆2(3) = 1.00 and 𝜆2(4) = 1.38.

Hence, 𝜆2 = 0.70. These agents interact with four sensors located at 𝐬1 = [3, 0, 1]⊤, 𝐬2 = [0, 2, 1]⊤, 𝐬3 = [−1,−1, 1]⊤, 𝐬4 = [4, 3, 1]⊤.
Thus, the local function for each agent can be written as 𝑓𝑖(𝐱𝑖) =

∑4
𝓁=1 𝑑𝑖𝓁||𝐱𝑖 − 𝐬𝓁||2 and the global function as ∑5

𝑖=1 𝑓𝑖(𝐱𝑖). Given an
arbitrary accessibility matrix

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0
0 1 0 1
1 0 0 0
0 0 1 1
1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and taking into consideration (34), it follows that 𝛩1 = 𝛩2 = 𝛩4 = 4 and 𝛩3 = 𝛩5 = 2, hence, 𝛩̄ = 4. The initial state of the agents
is randomly selected in the interval [−4, 4] for coordinates 𝑥1 and 𝑥2 and set to zero for coordinate 𝑥3. The rest of the parameters
are defined as 𝑠 = 0.2, 𝜇 = 0.4, and 𝑇𝑐 = 25𝑠. Consider persistent sinusoidal external disturbances affecting each coordinate on every
agent, described by the local disturbance vector 𝐰𝑖(𝑡) = 0.5[sin (𝑖𝜋𝑡), cos (𝑖𝜋𝑡), sin (−𝑖𝜋𝑡)]⊤. Thus, ||𝐰𝑖(𝑡)|| ≤ 𝛿𝑖 = 0.5

√

2. Then, we set
he disturbance rejection parameter as 𝜌𝑖 = 𝛿𝑖.

Fig. 2 shows the trajectories described by each agent (represented by different colors) w.r.t time on each coordinate 𝑥1, 𝑥2, 𝑥3 and
or pure consensus, i.e., 𝐡𝑖 = 𝟎𝑛. Figs. 2(a) show the system’s behavior when no disturbance rejection occurs. In contrast, Figs. 2(b)
how the behavior when the sliding controller 𝐮𝑑𝑖 is active and considering known initial conditions, i.e., 𝐳𝑖(0) = 𝐱𝑖(0). Under this
remise, σ𝑖(0) = 𝟎𝑛, which translates in no significant deviations of the states of the agents for the optimization time, as pointed out
n Remark 3. On the other hand, Figs. 3 simulate the behavior of the system with uncertainty in the initial conditions of the states,
here 𝐳𝑖(0) is set to zero. Here, the satisfactory performance of controller 𝐮𝑑𝑖 is evident in bringing the system to the sliding phase
𝑖 = 𝟎𝑛 before the predefined time 𝑇𝜎 = 1𝑠 and following a smooth trajectory for the rest of the optimization time.

When comparing Figs. 2 and 3, is evident the excellent performance of the controller in rejecting the bounded disturbance 𝐰𝑖(𝑡)
or both steps of the optimization process. From these figures, one can easily see that each agent is guided toward the minimizer of
ts respective local cost function before 𝜇𝑇𝑐 = 10𝑠. Then, consensus toward the minimizer of the global function is obtained before
predefined time 𝑇𝑐 = 25𝑠. The satisfactory disturbance rejection is even more apparent in the 3D representation of the trajectories

ound in Fig. 4.
For the case of formation control, and inspired by [29], we defined the desired pattern as a pentagon embedded in a circle of

adius R = 0.3, i.e., 𝐡𝑖 = 0.3
[

sin
(

2𝜋
5 (1 − 𝑖)

)

, cos
(

2𝜋
5 (1 − 𝑖)

)

, 0
]⊤

. A 3D representation of the trajectories for this case can be found
9

n Fig. 5.
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Fig. 2. Evolution of the states of the agents with time.

Additionally, Fig. 6 shows the norm of the control input for every agent (top) when the random switching signal 𝜗(𝑡) (bottom)
induces a change in topology every 0.5 s. It is worth noting that there is no communication among agents before 𝜇𝑇𝑐 . Up to this
point, their task is to reach their corresponding minima individually. At 𝑡 = 𝜇𝑇𝑐 , there is a commutation on the controller and
formation (or consensus) control takes place.

6. Conclusion

This study presented a novel fixed-time distributed optimization scheme for achieving formation control in first-order systems
with a predefined convergence-time bound. Contrary to many existing algorithms in the literature, the proposed algorithm exhibits
robustness in the presence of external disturbances and communication issues modeled by a switching network while eliminating
the need for agents to exchange local gradients or Hessians of the cost functions, thereby minimizing communication overhead. The
results underlined their potential for complex control problems and their adaptability to various system dynamics, highlighting their
practical importance in real applications. To this end, its applicability for source localization was verified through several numerical
experiments. Although the scheme proved satisfactory, two critical challenges still need to be addressed, including broader classes
of functions by relaxing the strongly convex condition and the unconstrained nature of the optimization problem. These limitations
will be the main focus of future works.
10



Journal of the Franklin Institute 361 (2024) 106988P. De Villeros et al.
Fig. 3. Evolution of the states of the agents with time (top) and behavior of the sliding surfaces (bottom) with disturbance rejection and 𝐳𝑖(0) = 𝟎𝑛.

Fig. 4. 3D plot of the evolution of the states of the agents toward the estimated source.

Fig. 5. 3D plot of the evolution of the fixed formation of the agents around the estimated source.
11
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Fig. 6. Behavior of the Control input (top) under the dynamic network 𝜗(𝑡) with random switching signal 𝜗(𝑡) (bottom).
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