000136160 001__ 136160
000136160 005__ 20240719195438.0
000136160 0247_ $$2doi$$a10.1016/j.energy.2024.131961
000136160 0248_ $$2sideral$$a139144
000136160 037__ $$aART-2024-139144
000136160 041__ $$aeng
000136160 100__ $$0(orcid)0000-0001-9282-1428$$aTorrubia, Jorge
000136160 245__ $$aRenewable exergy return on investment (RExROI) in energy systems. The case of silicon photovoltaic panels
000136160 260__ $$c2024
000136160 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136160 5203_ $$aThe ongoing energy transition towards renewable sources faces reliance on fossil fuels throughout their life cycle, primarily due to mining and material production for infrastructure. This study proposes the Renewable Exergy Return on Investment (RExROI) metric, which quantifies the renewable exergy obtained from each unit of non-renewable exergy invested in energy systems. It can be seen as a Renewation Index, applicable to any energy production system, indicating the degree of renewability of such technologies. Focused on silicon photovoltaic panels, the study explores five material intensities, nine scenarios based on the capacity factor and lifespan, and two alternatives for electricity used in the manufacture. Results show that material intensity increases RExROI from −0.6 MJ/MJ (non-renewable exergy is higher than electricity produced) to 5.7 MJ/MJ, increasing until 19 MJ/MJ with the best location and lifespan, and reaching 34 MJ/MJ if renewable electricity is used in manufacturing. Thus, carbon intensity can range from 734 to 7 gCO2eq/kWh. Furthermore, some strategies to enhance RExROI are discussed based on the (i) energy sources, (ii) materials, and (iii) production stages of photovoltaic panels. Thus, this study demonstrates the usefulness of RExROI in evaluating the energy-material-emission nexus of energy systems through exergy in the context of energy transition.
000136160 536__ $$9info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101091668/EU/Aragon's REgional Hub for circularity: Demonstration Of Local industrial-urban symbiosis initiatives/REDOL$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-116851RB-I00
000136160 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000136160 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136160 700__ $$0(orcid)0000-0003-3330-1793$$aValero, Alicia$$uUniversidad de Zaragoza
000136160 700__ $$0(orcid)0000-0003-0702-733X$$aValero, Antonio$$uUniversidad de Zaragoza
000136160 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000136160 773__ $$g304 (2024), 131961 [9 pp.]$$pEnergy$$tEnergy$$x0360-5442
000136160 8564_ $$s4582855$$uhttps://zaguan.unizar.es/record/136160/files/texto_completo.pdf$$yVersión publicada
000136160 8564_ $$s2563364$$uhttps://zaguan.unizar.es/record/136160/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136160 909CO $$ooai:zaguan.unizar.es:136160$$particulos$$pdriver
000136160 951__ $$a2024-07-19-18:28:23
000136160 980__ $$aARTICLE