000136189 001__ 136189
000136189 005__ 20250923084423.0
000136189 0247_ $$2doi$$a10.1016/j.jconrel.2024.06.035
000136189 0248_ $$2sideral$$a139084
000136189 037__ $$aART-2024-139084
000136189 041__ $$aeng
000136189 100__ $$aTorres-Herrero, Beatriz
000136189 245__ $$aOpportunities for nanomaterials in enzyme therapy
000136189 260__ $$c2024
000136189 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136189 5203_ $$aIn recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
000136189 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/E15-20R$$9info:eu-repo/grantAgreement/EC/H2020/829162/EU/Redesigning biocatalysis: Thermal-tuning of one-pot multienzymatic cascades by nanoactuation/HOTZYMES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 829162-HOTZYMES$$9info:eu-repo/grantAgreement/ES/ISCIII/CB16-01/00263$$9info:eu-repo/grantAgreement/ES/MCIU/FPU19-01311$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-118485RB-I00
000136189 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000136189 590__ $$a11.5$$b2024
000136189 592__ $$a2.47$$b2024
000136189 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b25 / 239 = 0.105$$c2024$$dQ1$$eT1
000136189 593__ $$aPharmaceutical Science$$c2024$$dQ1
000136189 591__ $$aPHARMACOLOGY & PHARMACY$$b12 / 352 = 0.034$$c2024$$dQ1$$eT1
000136189 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136189 700__ $$0(orcid)0000-0002-2854-2907$$aArmenia, Ilaria
000136189 700__ $$aOrtiz, Cecilia
000136189 700__ $$0(orcid)0000-0003-1081-8482$$aMartínez de la Fuente, Jesús
000136189 700__ $$aBetancor, Lorena
000136189 700__ $$0(orcid)0000-0001-6170-4237$$aGrazú, Valeria
000136189 773__ $$g372 (2024), 619-647$$pJ. control. release$$tJOURNAL OF CONTROLLED RELEASE$$x0168-3659
000136189 8564_ $$s13139126$$uhttps://zaguan.unizar.es/record/136189/files/texto_completo.pdf$$yVersión publicada
000136189 8564_ $$s2618228$$uhttps://zaguan.unizar.es/record/136189/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136189 909CO $$ooai:zaguan.unizar.es:136189$$particulos$$pdriver
000136189 951__ $$a2025-09-22-14:37:28
000136189 980__ $$aARTICLE