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A B S T R A C T   

The Mediterranean Basin has experienced substantial land use changes as traditional agriculture decreased and 
population migrated from rural to urban areas, which have resulted in a large forest cover increase. The com-
bination of Landsat time series, providing spectral information, with lidar, offering three-dimensional insights, 
has emerged as a viable option for the large-scale cartography of forest structural attributes across large time 
spans. Here we develop and test a comprehensive framework to map forest above ground biomass, canopy cover 
and forest height in two regions spanning the most representative biomes in the peninsular Spain, Mediterranean 
(Madrid region) and temperate (Basque Country). As reference, we used lidar-based direct estimates of stand 
height and forest canopy cover. The reference biomass and volume were predicted from lidar metrics. Landsat 
time series predictors included annual temporal profiles of band reflectance and vegetation indices for the 
1985–2023 period. Additional predictor variables including synthetic aperture radar, disturbance history, 
topography and forest type were also evaluated to optimize forest structural attributes retrieval. The estimates 
were independently validated at two temporal scales, i) the year of model calibration and ii) the year of the 
second lidar survey. The final models used as predictor variables only Landsat based metrics and topographic 
information, as the available SAR time-series were relatively short (1991–2011) and disturbance information did 
not decrease the estimation error. Model accuracies were higher in the Mediterranean forests when compared to 
the temperate forests (R2 = 0.6–0.8 vs. 0.4–0.5). Between the first (1985–1989) and the last (2020–2023) de-
cades of the monitoring period the average forest cover increased from 21 ± 2% to 32 ± 1%, mean height 
increased from 6.6 ± 0.43 m to 7.9 ± 0.18 m and the mean biomass from 31.9 ± 3.6 t ha− 1 to 50.4 ± 1 t ha− 1 for 
the Mediterranean forests. In temperate forests, the average canopy cover increased from 55 ± 4% to 59 ± 3%, 
mean height increased from 15.8 ± 0.77 m to 17.3 ± 0.21m, while the growing stock volume increased from 
137.8 ± 8.2 to 151.5 ± 3.8 m3 ha− 1. Our results suggest that multispectral data can be successfully linked with 
lidar to provide continuous information on forest height, cover, and biomass trends.   

1. Introduction 

Forests, the most biodiverse terrestrial ecosystems, are key for 
observing and monitoring Earth condition as they can either tie up 

atmospheric carbon in long-lasting wood and soil stores (carbon sink) or 
contribute as carbon source (e.g., biomass loss due to fire, logging, land 
use change). Forests are also a major component of rural development, 
provide species habitat and protective functions, and contribute goods 
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and services (Ojea et al., 2010). During the past century, environmental 
and anthropogenic factors have caused serious threats to forest ecosys-
tems integrity leading to habitat degradation and the related loss of 
services (Michel and Seidling, 2014; Senf et al., 2017). Many forest 
ecosystems have experienced an increase in disturbance rate, magni-
tude, and frequency, with recent trends reaching unprecedented levels 
(Millar and Stephenson, 2015). Globally, approximately 67 million ha of 
forests are lost through fires each year while further 10 million hectares 
are affected by biotic agents including insects and diseases (Lierop et al., 
2015). In Europe alone, 17% of forests were affected by some type of 
disturbance during the past 20 years (Senf and Seidl, 2020). In 2022, the 
last year with full records, the European Union experienced the 
second-worst year for wildfires, with about 0.84M ha being scorched out 
of which 38% (0.315M ha) were recorded in Spain alone. Indeed, the 
2022 Spanish fire season was characterized by a threefold increase in 
burned area with respect to decadal averages (San-Miguel-Ayanz et al., 
2023). 

Further projected changes in global climate due to increasing 
greenhouse gas concentrations will have severe effects on terrestrial 
biomes, particularly forests (Anderegg et al., 2020; Seidl et al., 2017). 
The rise of temperature and alteration of precipitations patterns are 
accelerating affecting both local and broad-scale ecosystem processes, 
including disturbance regimes (Senf and Seidl, 2020). Indeed, temporal 
trends observed in forest demography suggest a worldwide increase of 
climate-induced tree mortality (Brienen et al., 2015; Senf et al., 2018) 
with similar trends being observed for the Spanish forests (Astigarraga 
et al., 2020). According to future climate projections disturbances will 
further intensify (Seidl et al., 2014) with potentially major impacts on 
global carbon sequestration (Kurz et al., 2008) as forest conversion 
contributes to a large share of greenhouse gas emissions. Therefore, 
understanding forest dynamics by monitoring forest spatial extent and 
structural attributes (i.e., forest height, forest canopy cover, above 
ground biomass) is fundamental to understanding their current state, 
predict future trajectories, and develop adequate management plans and 
policies. 

Reliable and consistent monitoring of forest height, canopy cover, 
and biomass are essential for estimating forest-related carbon emissions, 
analyzing forest degradation, and evaluating the effectiveness of forest 
management strategies in response to current environmental challenges 
(Lang et al., 2023). Forest canopy height correlates with many bio-
physical parameters including basal area, above ground biomass, net 
primary productivity allowing understanding the structure and condi-
tion of forest ecosystems (Bolton et al., 2017; Goetz et al., 2007; Lang 
et al., 2019; Potapov et al., 2021). In addition, canopy height directly 
characterizes habitat heterogeneity, being ranked as a high-priority 
biodiversity variable (Skidmore et al., 2021). Similarly, information 
on forest canopy cover enables the estimation of forest area and thus 
carbon stocks monitoring and associated greenhouse gas emissions and 
removals (Estoque et al., 2021). Further, monitoring changes in canopy 
cover is essential for various applications in ecology, hydrology, and 
forest management, including establishing restoration priorities, un-
derstanding wildlife species habitat, or estimating fire impacts (Gastón 
et al., 2019; Yin et al., 2020). 

Land managers invest large amounts of effort and resources to esti-
mate forest structural attributes for multiple management objectives 
(Hudak et al., 2020). Remote sensing technologies are the pillar of many 
successful programs, such as the National Aeronautics and Space 
Administration (NASA) Carbon Monitoring System and the European 
Space Agency (ESA) Climate Change Initiative, focused on land use 
management, resource allocation, and environmental monitoring. In 
this context, the spatially and temporally sparse in-situ information, 
usually acquired within national forest inventories, is often used to es-
timates wall-to-wall forest attributes through modelling or imputation 
methods. Imputation methods, such as the k-Nearest Neighbour (kNN), 
fill in the missing data points using spatially explicit predictor variables 
derived from remote-sensing sensors based on the similarity between the 

values of the predictors associated with a target pixel and those asso-
ciated with the k nearest training sample units (Nguyen et al., 2018). 
Their main advantage consists in assigning a set of measured attributes 
that actually occur (from the in-situ data) thus ensuring prediction of 
realistic values (Hudak et al., 2008). However, the use of imputation 
methods across large spatial and temporal spans may be problematic 
due to the oversimplification of forest structure distribution, challenges 
in validation, and limitations in capturing spatial and temporal varia-
tions (Johnson et al., 2020; Nguyen et al., 2018; Paik, 1997; Riley et al., 
2016). Methods based on modelling and remote sensing data are 
increasingly used to estimate forest structural attributes (Hudak et al., 
2020; Lang et al., 2019; Tanase et al. 2014, 2021) as they provide more 
accurate estimates by incorporating a wide range of parameters to 
develop complex relationships between the target variable and its pre-
dictors. Nevertheless, such methods may distort marginal distributions 
and covariation between the predictor variables which may result in 
unrealistic predictions (Matasci et al., 2018b). 

Forest structure and its changes may be identified and monitored by 
means of remote sensing using optical (Bolton et al., 2020; Hansen et al., 
2013; Senf et al., 2018), radio detection and ranging or radar (Becker 
et al., 2023; Belenguer-Plomer et al., 2019; Tanase et al., 2015) light 
detection and ranging or lidar (Domingo et al., 2019; Goetz et al., 2010) 
sensors. Optical sensors are suitable for mapping land-cover since large 
changes in forest canopy cover can be indirectly observed. Lidar sensors 
provide the most accurate information to estimate vertical forest 
structure (Nelson et al., 2007; Sexton et al., 2009) while synthetic 
aperture radar (SAR) sensors are more sensitive to changes in forest 
structure when compared to optical data and less limited by spatial and 
temporal availability when compared to lidar. However, working with 
SAR data has its own challenges as the signal is affected by unrelated 
factors (e.g., precipitation, topography) which often hinder the retrieval 
of forest structural information (Tanase et al., 2019). Therefore, inte-
grated frameworks that allows for harnessing the strengths of different 
sensor technologies to improving the information recovered from each 
sensor alone are increasingly developed (Belenguer-Plomer et al., 2021; 
Hudak et al., 2020; Joshi et al., 2016; Tanase et al., 2022; Zhang et al., 
2019). 

As remote sensing technologies advance, new ways to collect, 
distribute, and analyze data become available. The digital revolution 
was accompanied by a ‘sensing’ revolution that provided unprecedented 
amounts of data on most Earth processes (Wilson, 2013). These new data 
streams offered advanced possibilities to further understanding an in-
tegrated earth system. In particular, advances in lidar technology 
coupled with the opening of the Landsat archive in 2008, allowed for the 
development of wide-ranging applications including monitoring 
disturbance, vegetation phenology, and ecosystem dynamics or the 
estimation of forest structural attributes (Bolton et al., 2020; Chen et al., 
2021; Hudak et al., 2020; Pasquarella et al., 2017). An increasing 
number of studies leverage the accurate lidar estimated forest structural 
attributes to extend the information over broader areas and larger time 
spans (Coops et al., 2021). Such studies highlight the importance of 
Landsat time series in understanding forest ecosystem dynamics and 
changes across time and space. The integration of Landsat archives with 
newer lidar datasets has allowed obtaining backdated estimates of forest 
structural attributes (Caughlin et al., 2021; Hudak et al., 2020; Matasci 
et al., 2018b) facilitating synoptic views at landscape scales across the 
past decades (Matasci et al., 2018a). Using similar approaches, we 
aimed to evaluate historical trends (1985–2023) of the Spanish forest’s 
structural attributes (i.e., forest height, forest canopy cover, and above 
ground biomass) at regional level. The selected regions correspond to 
distinct Mediterranean (Madrid region) and temperate (Basque Country) 
biomes (Olson et al., 2001). The specific objectives of the study were to:  

i) leverage the systematic Spanish national lidar surveys to estimate 
reference forest structural attributes including above ground 
biomass, forest canopy cover, and forest height; 
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ii) evaluate active/passive predictor variables synergies and transfer 
the models across time to produce annual, pixel-wise estimates 
for each forest attribute and region; and  

iii) analyze the temporal trend of each forest attribute at regional 
level. 

The evaluated predictor variables included optical reflectance, radar 
backscatter, and pixel-based disturbance history. To our knowledge this 
is the first study appraising synergies between spaceborne optic and 
radar data to predict chronosequence of forest attributes spanning 
several decades. 

2. Material and methods 

2.1. Study area 

The selected areas are in the peninsular Spain and comprise two 
autonomous communities (from herein referred to as regions), Madrid 
and the Basque Country covering 8028 km2 and 7234 km2, respectively 
(Fig. 1). The natural vegetation (forests and shrublands) covers about 
55% of the surface in the Madrid region and 56% in the Basque Country. 
The selection of administrative divisions is related to the self-governing 
status and the subsequent broad-scope competences which include 
agriculture and forestry. As forest related data are estimated by regional 

Agencies differences may arise with respect to the methods and 
temporal scales at which such data are estimated and made available. In 
the context of this study, such data include national and regional forest 
inventories and lidar surveys. 

The Madrid region, in the centre of the Iberian Peninsula, extends 
across elevations between 400 m a.s.l. in the south and 2400 m in the 
north. The relief changes from lowlands to mountains which results in 
variable ecological conditions. According to data from the Spanish 
meteorological agency (AEMET), the climate is Mediterranean with hot 
summers and an average annual rainfall of 450 mm, which occurs 
mainly in spring and autumn, with an important gradient from southern 

lowlands (<500 mm year− 1) towards northern mountains (1500 mm 
year− 1). The average monthly temperature ranges between 1 ◦C in 
winter and 32 ◦C in summer with a gradient from south (hotter) to north 
(colder). According to the forest species map (see section 2.8), the main 
tree species are oaks (i.e., Quercus ilex, and Q. pyrenaica) and pines (i.e., 
Pinus halepensis, P. sylvestris, P. pinea, and P. pinaster) which represent 
26% and 11.5%, respectively, of the natural vegetation areas (Fig. 1a). 
An additional 12% (by area) of the vegetation consists of mixed forest 
species. Grasslands and riparian vegetation represent 16.5% and 2%, 
respectively, with the remaining areas (33%) being covered by shrub-
lands (i.e., Cistus sp., Q. coccifera, Retama sphaerocarpa L., Thymus sp., 
Erica sp., and Macrochloa tenacissima L.). Forest height and biomass 
distribution is heavily skewed as small values dominate (Fig. 1b and 2). 

The Basque Country, on the Bay of Biscay, extends across largely 
mountainous terrain with elevations ranging from the sea level to over 
2600 m a.s.l. It has a mild oceanic climate in the north that gradually 
changes toward a Mediterranean climate with semi-continental char-
acteristics in the south. Average precipitations, typically exceeding 
1000 mm year− 1 in the north, drop to about 450 mm year− 1 in the south. 
The average monthly temperature ranges between 5 ◦C in winter and 
20 ◦C in summer (AEMET). The mountainous terrain modulates the 
temperature with hotter summers being common in the south. Accord-
ing to the forest species map, the main tree species are conifers (43%) 
with Pinus radiata representing about 26% of the forested area which 
stands at about 400 000 ha. Beech forests (Fagus sylvatica) occupy about 
14% of the area while species from Quercus genus (Q. robur, Q. petrea, Q. 
pyrenaica, Q. fgaginea, and Q. ilex) occupy about 22% of the forested area 
(Fig. 1c). Eucalyptus plantations occupy about 6% while the mixed 
Atlantic forests occupy about 10% of the area. When compared to the 
Madrid region these forests are characterized by higher height and 
canopy cover (Fig. 1d and 2). 

2.2. Modelling framework 

The study builds upon existing frameworks (Bolton et al., 2020; 

Fig. 1. Study area with the location of forest inventory plots (4th survey), the main tree species (a, c), and the normalized height estimated from the first lidar survey 
in Madrid (a, year 2010) and the Basque Country (d, year 2012). Main tree species according to the regional forest map (see section 2.8). 
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Hudak et al., 2020) with the main changes related to the use of 
multi-temporal lidar surveys, standardized in-situ data from national 
forest inventories, a focus on largely homogeneous landscapes, 
pixel-wise disturbance history estimated with the Continuous Change 
Detection and Classification – Spectral Mixture Analysis (CCDC-SMA) 
model (Chen et al., 2021), and the use of annual statistics (i.e., per-
centiles) estimated from satellite time series as predictor variables 
(Fig. 3). Briefly, lidar data from the first Spanish national lidar survey 
(2008–2015) were used to estimate reference forest attributes directly 
(i.e., forest height and forest canopy cover) or indirectly, through 
non-parametric models trained with in-situ data (above ground biomass 
and growing stock volume). Additional non-parametric models (i.e. 
random forests) were trained to predict the lidar-based reference forest 
attributes using satellite imagery. A sensitivity analysis was carried out 
to select the optimum combination of predictor variables (optical, radar, 
topographic, disturbance history) in each region and for each forest 
attribute. The trained models were subsequently used to generate 
chronosequence (at annual step) for each forest attribute of interest. 
Temporal model transferability was independently tested against 

reference attributes estimated from the second Spanish national lidar 
survey (2015–2021). For the Basque Country additional independent 
datasets were used for validation including partial forest inventories and 
forest height estimated from stereo-orthophotography. A detailed 
description of each step is provided in the following sections. 

2.3. Field data 

We used field data collected during the fourth Spanish national forest 
inventory (NFI) in 2011 in the Basque Country (n = 1617) and 
2012–2013 in Madrid (n = 1055). The NFI sampling grid follows a 
regular pattern with one sample plot every square kilometre within 
forested areas (Sanz and Soto, 1990). All trees with a diameter at breast 
height (DBH) greater than 7.5 cm and height greater than 130 cm are 
recorded for their species and tree size (DBH and height). Tree height is 
measured indirectly with hypsometer or laser range finders while forest 
canopy cover is estimated visually. The plot radius depends on the in-
dividual tree size with a 5-m radius when the recorded DBH was below 
12.5 cm, a 10-m radius when the recorded DBH was between 12.5 and 

Fig. 2. Distribution of forest canopy cover (a) and height (b) based on the first lidar survey (same years as Fig. 1).  

Fig. 3. Flowchart of the methodology to estimate annual maps of forest structural attributes (forest height, forest canopy cover and above ground biomass) from 
airborne and spaceborne data archives. RF stands for random forests, NFI stands for National Forest Inventory, CCDC-SMA stands for Continuous Change Detection 
and Classification-Spectral Mixture Analysis, AGB stands for Above Ground Biomass, while x and y stand for the last digit of the lidar survey year. 
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25.5 cm, a 15-m radius when the recorded DBH was between 25.5 and 
42.5 cm, and a 25-m radius when the recorded DBH was above 42.5 cm. 
For the Madrid region allometric models (Montero et al., 2005) of each 
species were used to estimate tree level above ground biomass (AGB) 
based on tree size. Tree level data were subsequently summed to obtain 
plot estimates (t ha− 1). For the Basque Country the growing stock vol-
ume (GSV, m3 ha− 1) was estimated for each tree using species specific 
allometric models (Sanz and Soto, 1990) which were subsequently 
aggregated to obtain plot level estimates. GSV was used for the Basque 
Country to take advantage of the additional forest inventories carried 
out in 2005 and 2022 for a subsample of the national forest inventory 
grid. These datasets were available as per plot aggregates (mean height 
and total GSV) as opposed to the per tree measurements provided in the 
NFI database. Based on the 16 051 trees measured in the Madrid region 
the plot average above ground biomass is 101.1 t ha− 1, ranging between 
0 and 618.9 t ha− 1. The plot average GSV in the Basque Country, based 
on the 38 475 measured trees, reaches 157.4 m3 ha− 1 ranging from 0.6 
to 877 m3 ha− 1. In both regions 98% of the measured trees had a height 
estimate. 

2.4. Airborne lidar data 

Classified point cloud data in compressed format (LAZ) were 
downloaded from the Spanish National Center for Geographic Infor-
mation for the available lidar flights: August–November 2010 and 
August–September 2016 (Madrid region) and July–August 2012 and 
May–October 2017 (the Basque Country) for the first and second 
Spanish national lidar survey, respectively. The data were examined for 
extent, point density, consistency, overlapping areas or gaps, and the 
accuracy of the existing classification. Using the ground class, digital 
elevation models (DEM) were interpolated for each flight and used to 
estimate the height above ground (i.e. normalized height) for the 
remaining classes. The normalized point cloud data were used to pro-
duce generic metrics (e.g., cover and density, height percentiles) rep-
resenting proxies of forest structural characteristics. The lidar metrics 
were estimated using the Fusion Area Processor, a free and open source 
lidar processing software developed and maintained at the USDA Forest 
Service (McGaughey, 2021), as it allows for parallel processing of large 
datasets. All lidar metrics were estimated at 30 m pixel spacing due to 
the relatively low lidar point densities (0.5-to 2 points m− 2), the spatial 
resolution of the Landsat data, and the size of the NFI plots. The cut-off 
height was 2 m to limit returns from understory vegetation. 

2.5. Remotely sensed data 

Landsat Collection 2 Level 2 (1985–2023) for path 201 rows 032 
(Madrid region) and 030 (the Basque Country) were used. Image pro-
cessing was carried out in Google Earth Engine and include filtering out 
images with cloud cover above 90%, standardising band names of 
Landsat TM, ETM+, OLI, and OLI-2 sensors, filtering noisy pixels (i.e., 
cloud contamination, cloud shadows, snow, and radiometric-saturation) 
using the available quality bands, and applying topographic corrections 
(Soenen et al., 2005) to account for variations in reflectance values due 
to illumination effects from terrain (Young et al., 2017), a particularly 
relevant issue for the rugged terrain of both study areas (Shepherd and 
Dymond, 2003). In addition, we used spectral unmixing (Souza et al., 
2005) to remove residual cloud and shade as the quality bands provided 
with the Landsat imagery are affected by frequent errors (Chen et al., 
2021; Souza et al., 2013). Pixels with a cloud fraction above 0.3 in the 
Madrid region and above 0.2 in the Basque Country or a shade fraction 
equal to one were masked. The corrected images were used to estimate 
annual statistics for individual bands and selected vegetation indices (as 
described in section 2.7) as well as pixel-wise forest disturbance history, 
all used as predictor variables when generating forest attributes 
chronosequence. 

The forest disturbance metrics were estimated using the CCDC-SMA 

algorithm (Chen et al., 2021) adapted to the specific conditions of the 
Iberian Peninsula. Adaptation included the generation of new spectral 
libraries for the main biomes, Mediterranean and Atlantic, and tuning 
model parameters. Parameter tuning was carried out for each biome by 
cross-checking accuracy result for each parameter combination. The 
minimum number of observations used to mark a change in the har-
monic models was six for both biomes. The CCDC-SMA database was 
used to calculate statistics of forest disturbance considering only dis-
turbances detected within 10 years of the target year as follows: number 
of disturbances; number of years since last disturbance; the magnitude 
(last, maximum, and accumulated - sum) of the soil, photosynthetic 
vegetation (PV), and non-photosynthetic vegetation (NPV) fractions and 
the Normalized Difference Fraction Index (NDFI). The NDFI index, 
derived from the PV, NPV, soil, and shade fractions, is a synthetic index 
sensitive to subtle canopy variations (Bullock et al., 2020). 

The second European Remote Sensing (ERS) satellite (ERS-2) and the 
Environmental Satellite (Envisat) Advanced Synthetic Aperture Radar 
(ASAR) were used to estimate the backscatter intensity for the Madrid 
and respectively the Basque Country. All available SAR images were 
downloaded as multi-look (speckle-reduced), ground range precision 
images (IMP, 12.5 m pixel spacing) from the open-source European 
Space Agency (ESA) repository. Data from two orbital strips (20 images 
from 00051 to 00323 relative orbits) were downloaded, processed, and 
mosaicked for the Madrid region (seven dates from April to October 
2010). Five images (May to September 2011 from relative orbit 00166) 
were downloaded for the Basque Country. Different sensors were used as 
the ERS-2 sensor data acquisition ended in June 2011. The IMP images 
were imported into the commercial GAMMA software and the relative 
state vectors of each image were updated using the Precise Orbit Data 
(POD) downloaded from the ESA repository. The IMP images acquired 
from the same relative orbit were transformed to slant range and 
concatenated to form the original strip. The strips were subsequently co- 
registered using as reference (master) the first date in each strip tem-
poral series, automatically collected offsets, and a lookup table gener-
ated from the master orbital parameters and a DEM (Frey et al., 2013; 
Werner et al., 2005). The DEM was obtained from the first lidar flight 
available in each region. The offsets were modelled using least-squares 
regression and a third-degree polynomial function that was subse-
quently used to correct the lookup table needed to co-register each 
image to the reference image. After co-registration, each strip was 
multi-looked in range (1) and azimuth (4) to obtain a ground pixel 
spacing of approximately 30 m. The SAR intensity was transformed to 
the radar backscatter coefficient (γ◦) after applying the absolute cali-
bration factors available in the metadata. The images were orthor-
ectified, by strip, to the Universal Transverse Mercator (UTM) 
coordinate system using a lookup table estimated from the DEM and the 
orbital information of the master strip. To correct for possible inaccur-
acies in the input data, a refinement of the lookup table was applied in 
form of offsets between the master strip and a DEM-based simulated SAR 
image transformed to the radar geometry (Werner et al., 2002). The 
backscatter intensity was topographically normalized using a 
DEM-based scattering area (Frey et al., 2013). 

2.6. Reference forest structural attributes 

Forest height (the 99th percentile of the normalized elevation, m) 
and cover (first returns above 2 m divided by the total number of first 
returns within the resolution cell, %) were estimated directly from the 
lidar point clouds. Indirect estimation, using NFI plots for model cali-
bration and validation, was used to predict above ground biomass 
(Madrid region) and volume (the Basque Country). Average values of 
lidar-based metrics together with topographic (e.g., elevation, aspect) 
information were extracted at the location of each NFI plot using a 25 m 
radius. Regional forest maps (see section 2.8) were used to extract the 
main forest species at each location. random forests (RF) non-parametric 
modelling applied to regression (Breiman, 2001) was used to estimate 
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above ground biomass and growing stock volume. RF is a flexible 
approach that accounts for non-linear variable interactions. RF gener-
ates a virtual forest of regression trees while employing an out-of-bag 
sampling with replacement strategy to limit overfitting. To further 
limit overfitting, few lidar metrics were used after eliminating the highly 
correlated (r > 0.7) ones. Among correlated metrics those with higher 
correlation with the dependent variable (e.g., AGB) were kept. The data 
was randomly split between training (90%) and validation (10%) using 
10 independent runs. The mean error (ME, eq. (1)), mean absolute error 
(MAE, eq. (2)), root mean squared error (RMSE, eq. (3)), R2 (observed 
vs. predicted) were calculated for each run using the validation data. 
The ME quantifies systematic bias, where a negative ME indicates pre-
dictions systematically smaller than the reference values (Lang et al., 
2023). The overall prediction performance were calculated by averaging 
all runs. The entire NFI dataset was subsequently used to calibrate a full 
model and generate the reference cartographic products. 

ME=
1
n

∑n

i=1
(Predictedi − Observedi) (eq. 1)  

MAE=
1
n

∑n

i=1
|Predictedi − Observedi| (eq. 2)  

RMSE=
∑n

i=1

1
n
(Predictedi − Observedi)

2 (eq. 3)  

2.7. Chronosequence 

For each forest attribute, the lidar-based reference values were used 
to train RF models using many combinations of predictor variables 
starting from individual sensors (i.e., optic and radar) and progressively 
adding auxiliary predictors including forest type (by grouping forest 
species from the same family), topographic variables (elevation, slope, 
orientation, aspect, and roughness), and disturbance statistics. Random 
sampling was used to extract values for reference and predictor variables 
in each region (i.e., Madrid or the Basque Country). Only sample units 
falling in areas classified as forest (n ~ 40 000) were kept and divided in 
training and validation sets. To limit possible variations due to sampling, 
the average error and R2 were estimated across 10 independent runs 
after splitting the data into training (90%) and validation (10%). The 
entire dataset was subsequently used to calibrate a full model and 
generate the annual cartographic products forming the chronosequence 
of each forest structural attribute (i.e. tree height, forest canopy cover, 
above ground biomass). An independent validation was carried out 
using as reference the forest attributes estimated from the second lidar 
survey and the corresponding annual maps. To this end, random sam-
pling was used to match the predicted and the observed values at pixel 
level and estimate the RMSE, ME, MAE, and R2. For the Basque Country 
further comparisons using in situ estimates from 2005 (n = 3103) and 
2022 (n = 420) and forest gridded metrics estimated from a stereo point 
cloud (n = 450 000, 1 ha grid, 2021 survey) were also carried out. 

For each region and forest attribute, a sensitivity analysis was carried 
out to determine the number of predictor variables at which the 
decrease of MAE flattens out. The analysis was carried out by using all 
predictor variables to determine variable importance, determined as the 
mean decrease in error when including the variable in the model, fol-
lowed by runs that used an increasing number of variables (5–60) in 
steps of five after sorting the importance from large to small, i.e., the 
most important variables were added first. RMSE, ME, MAE, and R2 

were estimated for each model to determine the cut-off threshold. The 
selection of the final model, for each region and attribute, was carried 
out considering the trade-off between estimation error, model 
complexity, and the temporal nature of the output cartographic product. 
The aim was to use a reduced number of predictor variables draw from 
few types (e.g., optic, SAR, disturbance, topography) within a common 

framework across regions and forest attributes. Predictor variable se-
lection for each forest structural attribute was carried out by iteratively 
assessing each sensor type and their combination with an increasing 
number of auxiliary predictor types. 

As predictor variables, annual statistics (10th, 25th, 50th, 75th and 
90th percentiles, p) and the standard deviation (stdDev) were estimated 
for the green, red, near-infrared (NIR), and short-wave infrared bands 
(SWIR1, SWIR2) using cloud masked optical images. Images acquired 
from all operational Landsat sensors available each year were used. For 
Landsat 7 images acquired after May 31, 2003 when the Scan Line 
Corrector (SLC) failed (i.e. SLC-off data) the provided SLC gap mask was 
applied. The same statistics were estimated for two vegetation indices 
(VIs), the Normalized Burn Ratio (NBR) and the Enhanced Vegetation 
Index (EVI), and two tasselled cap components (wetness and greenness). 
Statistics (by band and VIs) were also estimated for three vegetation 
seasons, spring, summer, and autumn, using the following date of year 
(doy) intervals: 60–151, 152–243 and 244–334, respectively. As the 
number of valid pixels used to estimate the predictor variables (per-
centiles and standard deviation) varies due to cloud cover and the 
number of active Landsat sensors, four additional variables were always 
included: valid pixels count, and minimum, maximum, and median date 
of year (doy). 

Similarly, annual statistics were estimated from the C-band radar 
backscatter images acquired by the ERS-2 (VV polarization, Madrid re-
gion) and the Envisat’s ASAR (HH polarization, the Basque Country). 
Eight Grey-Level Co-Occurrence Matrix (GLCM) textural features (i.e., 
mean, variance, homogeneity, contrast, dissimilarity, entropy, second 
moment, correlation) (Haralick et al., 1973) were estimated for all di-
rections (0◦, 45◦, 90◦, and 135◦) using the 50th percentile annual sta-
tistic and a 5 × 5 kernel size as it provides more balanced omission and 
commission errors (Balling et al., 2023). Such textural features provide 
neighbourhood information from adjacent pixels potentially improving 
image analysis (Balling et al., 2023; Hethcoat et al., 2021). Due to the 
limited number of images available the seasonal statistics could not be 
estimated for the radar sensors. 

2.8. Forest/non-forest mask 

The forest structural attributes were estimated only in areas classi-
fied as forest in each regional forest map. For the Madrid region the 
forest/shrubland species map was generated in 2008 by the General 
Directorate of Biodiversity and Natural Resources, Ministry of the 
Environment, Territorial Planning and Sustainability with the latest 
update being applied in April 2022. Notice that yearly maps are not 
available as the map is continuously updated on the official repository 
(https://datos.comunidad.madrid/catalogo/). For the Basque Country, 
forest species maps are available for different years (2005, 2010, 2016, 
2018, 2020, 2021, 2022) on the official repository (https://www.geo. 
euskadi.eus/). 

Information from the forest species map closest in time with the lidar 
data acquisition was used when modelling the reference forest attributes 
(i.e., AGB and GSV) for each lidar survey. For the chronosequence 
estimation the latest forest map was used to mask non-forest areas in 
both regions. According to the Spanish national forest inventory data, 
the increase in forest area between the first (1970‵s) and the fourth 
(2010‵s) surveys was about 2% for the Basque Country and 11% for the 
Madrid region. The use of the latest forest species map to mask non- 
forest areas seemed appropriate as it considers the gains during the 
last decades. It also allows consistent comparison across years avoiding 
oscillations due to potentially variable forested areas. 

3. Results 

3.1. Reference data 

Except for forest canopy cover in the Basque Country (R2 = 0.30), 
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strong relationships were observed between the in-situ data and the 
lidar estimated tree height and forest canopy cover (0.61<R2 < 0.74, 
Fig. 4). The root mean absolute error (MAE) for forest height was 1.3 m 
(13% relative MAE) for the Madrid region and 2.8 m (20%) for the 
Basque Country while for the forest canopy cover (FCC) was 12% and 
15%, respectively. The modelling error for AGB in the Madrid region 
was 20.3 t ha− 1 (30%) while for the Basque Country the GSV was 
modelled with a MAE of 49.2 m3 ha− 1 (33%). The most important 
predictor variables for modelling above ground biomass and stock vol-
ume were the canopy average height, the proportion of returns in the 
5–10 m strata, and the main forest species, all within the top five vari-
ables in both regions (Fig. 5). 

3.2. Chronosequence of forest structural attributes 

Overall, differences between models including optical predictor 
variables were marginal, except when information related to topog-
raphy and species was added (Table 1). Out of bag errors for the final 
models (Table 1 last column) were similar with those observed during 
the evaluation of different combinations of attributes. Notice that Table. 

1 shows error metrics only for selected combinations of predictor 
variables. Results for models based on SAR data (except for the reference 
one) as well as those based on seasonal statistics or combination of 
seasonal and yearly statistics of optical data are not shown as their utility 
was limited as explained below. 

The importance of the predictor variables varied across models, re-
gions and forest attributes (Fig. S1). When considering the first 30 most 
important variables across the four model types based on Landsat data 
(e.g. optic, optic-disturbance, optic-disturbance-topography, and optic- 
disturbance-topography-species), three forest attributes (AGB, FCC, H) 
and two regions and (i.e., 24 models), two predictor variables 
(GREENNESS_stdDev and NIR_p10) were common to all models while 
further 10 (NIR_p25, NIR_p50, NIR_stdDev, NBR_stdDev, GREEN_p75, 
SWIR1_stdDev, SWIR2_stdDev, GREENNESS_p10, GREENNESS_p50, 
WETNESS_stdDev) were common to 75% of the models. The auxiliary 
information related to Landsat images availability, count and minimum 
date of year, was important for 80% of the models. For the 12 models 
that included topographic information, elevation was always present 
within the 30 most important variables while species was always present 
for the six models that included this variable. 

For the Madrid region, 18 of the selected predictor variables were 
common between the three forest attributes modelled using the com-
bination of optic and topographic features while for the Basque Country 
11 were common (Fig. S2) when only considering the model selected to 
estimate the chronosequence (i.e. optic-disturbance-topography). 
Across regions, seven variables were common to all six models 

(elevation, GREENNESS_p10, GREENNESS_p50, GREENNESS_stdDev, 
NBR_stdDev, NIR_p10, and NIR_p25) while further 14 were common to 
at least four models (EVI_p10, GREEN_p75, GREEN_stdDev, GREEN-
NESS_p75, GREENNESS_p90, NIR_p50, NIR_p75, NIR_p90 NIR_stdDev, 
SWIR1_stdDev, WETNESS_stdDev count, doy_minimum, and roughness). 

The effect of modelling parameters, i.e., number sampling units (10 
000, 15 000, 20 000, 40 000) and number of trees in the regression 
model (250, 350, 500) on model accuracy was also marginal with me-
dian difference across models below 5% for both regions. Modelling 
errors flatten out when reaching between 20 and 30 variables depending 
on the forest attribute and region (Fig. 6). Although the number of 
predictors at which estimation accuracy flattened varied, a fixed number 
(30, see Fig. S2) was used across both regions when training the final 
models to simplify the process, since adding more predictors did not 
change the results. 

The use of seasonal statistics allowed for marginally smaller MAE 
(Table S1, supplementary material). However, the few image acquisi-
tions available at the beginning (1984–1989) and towards the end 
(2011–2013) of the Landsat 5 mission coupled with the Landsat 7 scan 
line error (since June 2003) and the setbacks of Landsat 8 mission 
development resulted in no statistics for many pixels for some seasons- 
year partitions particularly in the Basque Country where cloud cover 
is frequent. Therefore, seasonal metrics were discarded to avoid 
incomplete mapping products (Fig. 7). Nevertheless, as improved tem-
poral frequencies are becoming available, most notably through image 
collection from virtual constellations such as the Harmonized Landsat 
Sentinel product (Claverie et al., 2018), the use of seasonal metrics may 
become a viable option albeit over shorter monitoring periods. 

3.3. Cross comparisons and trends analysis 

Cross comparisons of the estimated chronosequence maps with in-
dependent reference data obtained from the second lidar flight showed 
large agreement for the Madrid region (0.7 < R2 < 0.8, Table 2). The 
relative MAE was 30% for heights, 42% for AGB, and 45% for FCC while 
the ME was 6.8 t ha− 1, 5 %, and 0.15 m for above ground biomass, forest 
canopy cover, and forest height, respectively. For the Basque Country 
lower agreement was observed (0.6<R2 < 0.7, Table 2) with relative 
MAE reaching 35% for stock volume, 23% for forest canopy cover and 
26% for forest height. All forest metrics were underestimated with ME 
reaching − 30.3 m3/ha− 1, -8% and − 0.9 m for height. For height and 
biomass (or volume), the highest MAE by species was observed for pine 
forests (Fig. S3) in both regions while errors for FCC were similar across 
species. For forested areas, relative MAE (data not shown) reached the 
highest values for small conifers (Madrid region) and eucalypt forests 
(the Basque Country). For shrublands, relative errors of all forest 

Fig. 4. Comparison of above ground biomass (AGB, a) forest canopy cover (b) and forest height (c), and above ground biomass (AGB, c) from in-situ field mea-
surements (4th Spanish National Forest Inventory plots) against the corresponding lidar-based reference layers. Height and forest canopy cover were estimated 
directly form the lidar data. AGB and growing stock volume (GSV) were modelled using random forests and lidar-based metrics based on the first lidar survey. For 
visualization, a conversion factor (0.55) was applied for the Basque Country to estimate above ground biomass from volume. The correction was estimated as the 
mean wood density for the main species (IPCC, 2006). Dashed and dotted lines show linear regression for Madrid (black circles) and Basque Country (grey circles) 
regions, respectively. Black and grey text show errors for Madrid region and the Basque Country, respectively. 
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attributes were twice as higher when compared to forests. Except for 
FCC in the Basque Country, the estimation error increased with 
increasing forest height (Fig. S4). 

Agreement with additional in-situ estimates (2005 and 2022) and 
forest gridded metrics was lower than with the 2nd lidar survey, with R2 

values decreasing (down to 0.24–0.38) and mean absolute errors 

increasing (Table 2). On average, the stock volume was underestimated 
by 10 m3 ha− 1 and the forest height was overestimated by 2.4 m when 
compared to 2005 and 2022 in-situ datasets. When compared to the 
gridded metrics (2021 dataset) the errors reached 80.7 m3 ha− 1 and 4.9 
m for GSV and height, respectively (Table 2). Notice that similar errors 
(81.9 m3 ha− 1for GSV and 3.7 m for height) were also observed between 

Fig. 5. Selected predictor variables for models used to generate the reference above ground biomass in the Madrid region (a) and growing stock volume in the Basque 
Country (b). Variables sorted in descending order by the importance (i.e., decrease in mean squared error from inclusion of the variable across all random for-
est trees). 

Table 1 
Modelling errors for above ground biomass (AGB), forest canopy cover (FCC), tree height (H), and growing stock volume (GSV) as a function of sensors and auxiliary 
variables combinations. R2 represents the coefficient of determination between observed and predicted values while MAE stands for mean absolute error.  

Region Forest 
attribute 

Optic (na 

= 58) 
SAR (n =
14) 

Optic 
Disturbance (n =
75) 

Optic 
Disturbance 
Topography (n =
79) 

Optic 
Disturbance 
Topography 
Species (n =
80) 

Optic 
Disturbance 
Topography 
Species SAR (n =
93) 

Out of bag errors for the selected 
predictors (n = 30, 
Fig. S1)      

R2/MAE    
Madrid AGB (t 

ha− 1) 
FCC (%) 
H (m) 

0.77/13.8 
0.77/0.09 
0.61/2.0 

0.1/30.7 
0.16/0.2 
0.06/3.6 

0.77/13.8 
0.76/0.09 
0.61/2.0 

0.80/13.3 
0.79/0.09 
0.64/1.9 

0.83/11.9 
0.83/0.08 
0.70/1.7 

0.84/12.0 
0.84/0.08 
0.71/1.8 

0.77/13.6 
0.77/0.09 
0.62/1.94 

Basque 
country 

GSV (m3 

ha− 1) 
FCC (%) 
H (m) 

0.39/61.6 
0.48/0.2 
0.44/4.4 

0.03/82.2 
0.11/0.2 
0.05/6 

0.38/60.8 
0.48/0.2 
0.44/4.3 

0.41/60.2 
0.5/0.1 
0.47/4.3 

0.42/59.2 
0.52/0.1 
0.48/4.2 

0.43/58.9 
0.52/0.1 
0.5/4.1 

0.39/61.2 
0.47/0.16 
0.44/4.38  

a n - number of predictor variables used in the model. 

Fig. 6. Decrease of MAE (mean absolute error) and R2 (predicted vs. observed values) as a function of the number of predictor variables for above ground biomass 
(AGB), forest canopy cover (FCC) and tree height (H) in the Madrid region (a, b, c) and the Basque Country (d, e, f). For visualization, a conversion factor (0.55) was 
applied for the Basque Country to estimate above ground biomass from volume (see caption in Fig. 4). 
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the 2022 in-situ data and the 2021 gridded metrics. 
For all forest variables, ascending trends (positive slope) were 

observed since 1985 (Fig. 8). Year to year estimates were rather stable 
for the Madrid region while for the Basque Country higher variation was 
observed particularly at the beginning of the study period. For the final 
years (2019–2023) the trend shows decreasing values in the Basque 
Country in agreement with the large area (40 000 ha) of Pinus radiata 
forests affected by fungi. 

(Mycosphaerella sp.) in 2017 and 2018. Within the analysed period, 
the average forest height increased from 6.6 ± 0.43 m to 7.9 ± 0.18 m in 
Madrid region and from 15.8 ± 0.77 m to 17.3 ± 21 m in the Basque 
Country while the average forest canopy cover increased by 11% (from 
21 ± 2% to 32 ± 1%) and 4% (from 54 ± 4% to 59 ± 3%), respectively. 
Total above ground biomass increased by about 62% in the Madrid re-
gion while total volume increased by 14% in the Basque Country with 
mean values increasing from 31.9 ± 3.6 to 50.4 ± 1 t ha− 1 and 
respectively from 137.8 ± 8.2 to 151.5 ± 3.8 m3 ha− 1. These values 
were estimate as the difference between the modelled data for the years 
falling in the first decade (1985–1989 average) and the years falling in 
the last decade (2020–2023 average). As a static forest mask was used, 

the average values seem related to changes in forest structure across the 
studied period. 

4. Discussions 

We retrieved relevant forest structural variables (i.e., height, forest 
canopy cover and, biomass) from long-term archives of remotely sensed 
data to understand the evolution of forested areas for the last four de-
cades at regional levels for temperate and Mediterranean forests in the 
Iberian Peninsula. The study dealt with a range of issues including 
sensors synergies and limitations, modelling approaches, and predictor 
variables selection, to ensure a temporally and spatially consistent 
dataset. We used a bottom-up approach starting with the in-situ mea-
surements carried out on gridded variable-radius field-based plots. To 
avoid random variations in the extracted lidar metrics a fixed radius was 
used (25 m following the National Forest Inventory) under the 
assumption that expansion of field measurements holds for small areas 
usually occupied by homogeneous forest patches. This also allowed 
binning many lidar hits as the first Spanish national lidar flight point 
density was low (0.5 points m− 2). The reference forest variable 

Fig. 7. Number of mapped forest pixels as a function of the type of statistics estimated from optical data.  

Table 2 
Cross-comparison of chronosequence maps against the 2nd lidar survey (n = 45 000) and auxiliary datasets in 2005, 2021, and 2022 (only in Basque Country) for the 
above ground biomass (AGB), growing stock volume (GSV), forest canopy cover (FCC) and height (H).  

Region Forest attribute Cross 
2nd lidar flight 

comparison 
In situ 
2005 

In situ 
2022 

Gridded metrics from stereo point cloud (2021)a   

R2/Mean Absolute Error 
Madrid AGB (t ha− 1) 

FCC (%) 
H (m) 

0.76/18. 
0.81/0.12 
0.71/2.3 

-/- -/- -/- 

Basque Country GSV (m3 ha− 1) 
FCC (%) 
H (m) 

0.60/66.9 
0.67/0.16 
0.62/5.0 

0.22/94.3 
-/− 0.23/5.8 

0.31/103.8 
-/− 0.28/6.0 

0.35/80.7 
0.40/0.19 
0.38/4.93  

a Available at 100 m pixel spacing on the Basque Country spatial data repository (geo.euskadi.eus). 

Fig. 8. Forest structure trend between 1985 and 2023 for the Madrid region and the Basque Country for above ground biomass (AGB) and growing stock volume 
(GSV), mean forest canopy cover (FCC), and mean forest height. Notice that the trend for total biomass (and volume) value is affected by year-to-year variation in the 
number of mapped pixels, related to cloud masking, albeit such variation is marginal (standard deviation < 5000 ha) 
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estimated from lidar data showed relatively small ME (Fig. 4) when 
compared to the in-situ estimates, except for height in the Basque 
Country. The height overestimation for the NFI plots may be related to i) 
systematic errors of lidar-based heights for sloping terrain and ii) field 
measurement errors. As previous studies (Khosravipour et al., 2015; 
Sibona et al., 2017) suggest that only marginal differences (0.5 m–1 m) 
occurs when estimating tree height from small footprint lidar data for 
slopes around 20◦ degree, as those encountered in the Basque Country, it 
seems most of the ME may be related to errors of the indirect in-situ 
height measurements. This assumption seems valid considering the 
higher ME for the Basque Country where forests are taller (14.5 vs 9.0 
m) and denser (65% vs. 55% cover) when compared to the Madrid re-
gion. The ME for the remaining lidar-based structural characteristics 
was relatively low, suggesting a suitable training dataset for long-term 
chronosequence modelling. The four most important lidar metrics 
used to model above ground biomass and stock volume reference values 
(Fig. 5) were common for the studied regions suggesting consistency 
albeit additional metrics were needed to model AGB in the Madrid 
region. 

Overall, the estimation error over the Basque Country were consis-
tently higher when compared to the Madrid region regardless of the 
forest structural attribute of interest. Such differences may be partly 
related to the frequent cloud cover and thus the few optical images 
available to construct robust annual statistics (percentiles), particularly 
during winter and spring, which negate the advantages of using vege-
tation specific annual temporal profiles. In addition, the taller denser 
forests in this region result in the saturation of the optical signal with 
increasing canopy closure and thus weaker relationships with forest 
structural variables such as biomass and height (Lu et al., 2012; Zhao 
et al., 2016). To reduce estimation errors SAR data may be used (Santoro 
et al. 2020, 2021). However, in this study, the use of SAR predictor 
variables alone rendered low accuracies even after adding auxiliary 
variables related to forest type and topography. Such results may be 
explained by the few fine resolution images (around 5) acquired during 
any given year and the suboptimal wavelength (C-band), and polariza-
tion (co-polarized), available on the ERS (VV) and ASAR (HH) platforms. 
In addition, the steep acquisition geometries (looking angle around 23◦) 
posed further challenges as topography has large influence on the SAR 
signal. Previous studies (Santoro et al., 2015) showed that, at C-band, 
hyper-temporal series may enable GSV modelling. However, such esti-
mates were possible at lower spatial resolutions (1000 m). Such an 
approach was beyond the scope of this study due to the heterogeneity of 
our landscape. Further, SAR data temporal span was much shorter 
(1991–2011) when compared to the Landsat archives (1985–2023) 
which limited the formation of homogeneous chronosequence. Howev-
er, one should notice that SAR percentiles importance was ranked 
among the top 10 in mixed sensor models particularly for FCC while 
textural features were among the top 10 most important variables when 
estimating height and biomass (Fig. S1). Therefore, looking forward, 
there is scope for using such sensors as current SAR missions (e.g., 
Sentinel-1) provide dense time series and will be available during long 
time spans. 

Limited decrease of MAE and increase of R2 was observed when 
additional predictor variable types (disturbance information, topog-
raphy and, species) were added to the Landsat variables with the largest 
contributions being related to species and topography related informa-
tion. The decrease in MAE and increased in R2, split equally between the 
two types of predictor variables, were larger for the Mediterranean 
forests (R2 increased by 0.1 and MAE decreased by 10%) with lower 
gains (about half) being observed for the temperate forests. Neverthe-
less, as the available forest species maps were static (Madrid region) or 
available for few years (the Basque Country) their utility was limited, 
particularly in the Basque Country where forest disturbance rates are 
higher. Using static maps may undermine estimation of forest attributes 
for years far away from the temporally closest species map as land cover 
information becomes increasingly inaccurate. As such, species were 

removed from the final models. Nonetheless, species information may be 
considered when available on regular basis, although it seems the in-
formation content provided by the Landsat full annual archive and the 
topography largely compensates the lack of a species layer in our study 
areas. Such compensation may be related to the seasonal profiles con-
structed using percentile information as reflectance across seasons var-
ies for different species due to phenological differences across elevation 
gradients. 

As observed in other studies (Bolton et al., 2020), information on 
past disturbance events seemed redundant as disturbance related pre-
dictors were ranked below the 10th most important predictor variable 
except when modelling height in the Basque Country. However, even in 
this case the two selected variables (magnitude of soil fraction for the 
last disturbance and the sum of soil fraction magnitude for all distur-
bances) were ranked in the bottom five (26 and 27). This may be related 
to infrequent disturbances which render relatively few samples (12–15% 
depending on the region) containing disturbance information as also 
mentioned in Bolton et al. (2020). A second factor may be related to the 
period (10 years) used to estimate the disturbance related metrics (e.g. 
number of disturbances, time since last disturbance, magnitude of soil 
and vegetation fractions) for any given pixel. Increasing the period to 20 
years may provide consistency with forest growth stages making such 
metrics more relevant. However, it would also limit the temporal span of 
the chronosequence by the same period, as a minimum number of years 
need to be allowed to estimate the disturbance metrics. For example, 
increasing the period from 10 to 15 or 20 years would allow for 
modelling chronosequence of 22 and 17 years, respectively, which limits 
long-term trend analysis when compared to the almost 40 years span of 
the Landsat archive. 

The consistent estimates, when cross validating against metrics 
estimated from the 2nd lidar flight, suggest that the proposed approach 
may be used to evaluate long term trends thus enabling regional and 
national-level strategic planning and policy development (White et al., 
2016). However, at pixel level, the relatively large errors, except for the 
forest canopy cover, may limit the utility of the estimates for operational 
planning particularly for the tall and dense temperate forests. Such 
limitations were highlighted by the large discrepancies observed when 
comparing our pixel wise estimates with those estimated from in-situ 
measurements (Table 2). Such results were not unexpected given the 
inherent sensitivity of optical sensors to forest cover (Hansen et al., 
2013; Potapov et al., 2015; Townshend et al., 2012) and their limitations 
when estimating vertical structure due to asymptotic relationships be-
tween spectral reflectance and forest structure (Goetz and Dubayah, 
2011; Todd et al., 2008). Nevertheless, our R2 values for height and 
volume were similar (Basque Country) or higher (Madrid region) when 
compared to those of Bolton et al. (2020) when using Landsat short (<10 
years) time-series. The proposed modelling framework, based the 
analysis of the full Landsat archive, allowed for the estimation of longer 
temporal trends when compared to Bolton et al. (2020) despite the much 
larger areas modelled here (thousands vs. hundreds km2). Nevertheless, 
for the Basque Country the presented trends should be taken with 
caution due to the lower fit of the models when compared to the in-situ 
data. 

Our temporal analysis showed consistent trends during the past four 
decades for both regions with forests being characterized by increased 
forest canopy cover, average height, and carbon stock. Higher differ-
ences between the beginning and the end of the observation period were 
observed in the Madrid region in close agreement with studies in com-
parable (climate and extent) regions (Delgado-Artés et al., 2022): our 
estimated forest canopy cover increase (11%) was similar with the in-
crease in area dominated by dense forest in the Castello region (9%). In 
the Basque Country the trends, while still positive, showed much lower 
gains particularly for GSV. Such differences are explained by the active 
forest management in the north of Spain where most productive forest 
are found. As forest management aims for consistent annual harvests 
and rural abandonment is less of an issue such trends were expected. 
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Another factor that may have influenced the analysis in the Basque 
Country was the large area affected by fungi in 2017–2018. The removal 
of the affected trees coupled with the short time until the end of the 
analysed period did not allow for forest recovery thus decreasing the 
final values. 

As opposed to other studies (Bolton et al., 2020; Hudak et al., 2020), 
our approach takes advantage of i) multi-temporal wall-to-wall lidar 
cover which results in an unbiased sample as training data from the 
entire territory is available; ii) in-situ data acquired with a consistent 
sampling design and data collection protocols; iii) negligible lag (<1 
year) between in-situ data collection and lidar acquisitions; and iv) 
consistent modelling approaches across regions, time spans, and forest 
variables. Further, the temporally independent dataset estimated using 
similar lidar sensors allowed for large-scale validation of temporal 
consistency. However, as recognized by other authors, such approaches 
are limited by the two-phase modelling and the associated challenges to 
account for passing uncertainties from model to model which, when not 
accounted for, results in underestimated values (Saarela et al., 2016). 
Furthermore, uncertainties in the estimated forest variables encompass 
other error sources, not specifically accounted for, such as i) in situ 
measurement errors; ii) positioning errors (plot to lidar, lidar to satel-
lite); iii) errors in the lidar X, Y, Z coordinates; iv) interpolation errors or 
v) modelling errors. Such additive errors may degrade the fit statistics 
reporting model precision (Hudak et al., 2020). 

5. Conclusions 

The results presented here highlight the benefit of using intra-annual 
Landsat time series for forest structural parameters estimation. Char-
acterizing annual spectral profiles and within year variation allowed for 
estimating consistent time series albeit with different accuracies 
depending on the target variable and biome. The method was tested for 
relevant forest attributes used to predict multiple ecosystem services 
across forests spanning a large climatic gradient. The strength of our 
approach resides in the use of consistent datasets, being in-situ, lidar 
data or remotely sensed imagery, and modelling approaches based on 
unbiased training sample extracted from the entire population. Except 
for biomass, all forest structural characteristics are estimated directly 
from the first lidar survey thus removing intermediate modelling, 
arguably a large source of uncertainty. With this unbiased sample we 
trained a non-parametric model that was subsequently transferred for-
ward and backward in time to estimated pixel level structural attributes, 
thus generating chronosequence of above ground biomass, forest canopy 
cover and forest height over the last four decades. The temporal con-
sistency of the estimated variables was subsequently validated using the 
second national lidar survey. The proposed framework was designed to 
maximize the temporal span of the chronosequence by taking advantage 
of the entire Landsat archives. To this end, the shorter time-series ac-
quired by contemporary SAR sensors, historical disturbance, and static 
information on species were not considered for the final models. The loss 
of such variables was largely compensated using annual reflectance/ 
indices profiles and their variation. Forest estimates were consistent 
across time as error metrics extracted from similar reference data (i.e., 
lidar surveys) where comparable with those obtained during model 
calibration. Temporal analysis showed increasing forest cover, height, 
and biomass particularly for the Mediterranean forests. Such trends are 
consistent with rural abandonment and the related collapse of agricul-
tural practices as well as the encroachment of woodlands and scrublands 
in central Spain. The proposed framework is currently evaluated, 
adapted, and implemented on a region-by-region basis across the 
peninsular Spain. 
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Núñez, P., Pallqui Camacho, N.C., Parada, A., Pardo-Molina, G., Peacock, J., Peña- 

M.A. Tanase et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.envres.2024.119432
https://doi.org/10.1016/j.envres.2024.119432
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref1
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref1
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref1
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref1
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref2
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref2
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref2
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref2
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref3
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref3
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref4
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref4
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref4
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref5
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref5
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref5
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref6
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref6
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref6
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref7
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref7
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref7
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref8
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref8
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref8
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref8
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref8
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref9
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10
http://refhub.elsevier.com/S0013-9351(24)01337-9/sref10


Environmental Research 259 (2024) 119432

12

Claros, M., Pickavance, G.C., Pitman, N.C.A., Poorter, L., Prieto, A., Quesada, C.A., 
Ramírez, F., Ramírez-Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomão, R. 
P., Schwarz, M., Silva, N., Silva-Espejo, J.E., Silveira, M., Stropp, J., Talbot, J., ter 
Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello- 
Raventos, M., Umetsu, R.K., van der Heijden, G.M.F., van der Hout, P., Guimarães 
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