000136193 001__ 136193
000136193 005__ 20250923084428.0
000136193 0247_ $$2doi$$a10.1007/s11071-024-09830-2
000136193 0248_ $$2sideral$$a139140
000136193 037__ $$aART-2024-139140
000136193 041__ $$aeng
000136193 100__ $$0(orcid)0000-0002-1184-5901$$aLozano, Álvaro$$uUniversidad de Zaragoza
000136193 245__ $$aDominant patterns in small directed bipartite networks: ubiquitous generalized tripod gait
000136193 260__ $$c2024
000136193 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136193 5203_ $$aThe synchronization patterns exhibited by small networks of neurons that regulate biological processes (CPGs) have aroused growing scientific interest. In many of these networks there is a main behavioral pattern within the parameter space. In particular, in the context of insect locomotion, tripod walking stands out as a predominant pattern, both in natural observations (where insects walk on tripod gait) and in mathematical models. This predominance appears to be stable under parameter variations within the network, suggesting a possible correlation with the underlying network topology. Tripod walking can be naturally extended to all CPGs with a bipartite connectivity. Then a natural question arises: Are “generalized tripod gaits” equally dominant among synchronization patterns within those networks? To investigate this, we carried out a comprehensive study covering all bipartite networks of up to nine neurons. For each of those networks we numerically explore the phase space using a quasi-MonteCarlo method to see what are the main synchronization patterns that the network can achieve. Then, all those patterns are grouped according to their dynamics. Generalized tripod gait was observed in all cases examined as the dominant pattern again. However, certain cases revealed additional stable patterns, mainly associated with the 3-colorings of the respective graph structures.
000136193 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA-ER22/23R$$9info:eu-repo/grantAgreement/ES/DGA/E24-23R$$9info:eu-repo/grantAgreement/ES/DGA/LMP94_21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
000136193 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000136193 590__ $$a6.0$$b2024
000136193 592__ $$a1.201$$b2024
000136193 591__ $$aMECHANICS$$b12 / 171 = 0.07$$c2024$$dQ1$$eT1
000136193 591__ $$aENGINEERING, MECHANICAL$$b17 / 182 = 0.093$$c2024$$dQ1$$eT1
000136193 593__ $$aAerospace Engineering$$c2024$$dQ1
000136193 593__ $$aApplied Mathematics$$c2024$$dQ1
000136193 593__ $$aOcean Engineering$$c2024$$dQ1
000136193 593__ $$aControl and Systems Engineering$$c2024$$dQ1
000136193 593__ $$aMechanical Engineering$$c2024$$dQ1
000136193 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ1
000136193 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136193 700__ $$0(orcid)0000-0001-7111-5022$$aVigara, Rubén$$uUniversidad de Zaragoza
000136193 700__ $$0(orcid)0000-0002-3431-0926$$aMayora-Cebollero, Carmen$$uUniversidad de Zaragoza
000136193 700__ $$0(orcid)0000-0002-8089-343X$$aBarrio, Roberto$$uUniversidad de Zaragoza
000136193 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000136193 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000136193 773__ $$g112 (2024), 15549–15565$$pNonlinear dyn.$$tNonlinear Dynamics$$x0924-090X
000136193 8564_ $$s3051534$$uhttps://zaguan.unizar.es/record/136193/files/texto_completo.pdf$$yVersión publicada
000136193 8564_ $$s1777729$$uhttps://zaguan.unizar.es/record/136193/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136193 909CO $$ooai:zaguan.unizar.es:136193$$particulos$$pdriver
000136193 951__ $$a2025-09-22-14:41:30
000136193 980__ $$aARTICLE