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A B S T R A C T

Topological image analysis is a powerful tool for understanding the structure and topology of images, being
persistent homology one of its most popular methods. However, persistent homology requires a chain of
inclusions of topological spaces, which can be challenging for digital images. In this article, we explore the
use of zigzag persistence, a recent variant of traditional persistence, for digital image processing. To this end,
new algorithms are developed to build a simplicial complex associated to a digital image and to compute the
relationships between homology classes of a sequence of binary images via zigzag persistence. Additionally,
we provide a simple software to use them. We demonstrate its effectiveness by applying it to a real-world
problem of analyzing honey bee sperm videos.
1. Introduction

Topological image analysis has emerged as a powerful tool for
understanding the structure and topology of images. This approach
relies on the use of algebraic topology to analyze images and extract
topological features that are invariant under various image transforma-
tions. One of the most popular methods of topological image analysis
is the use of persistent homology [1], which provides a powerful tool
for detecting and characterizing topological features of images, such as
connected components (0-dimensional homological features), holes (1-
dimensional homological features), voids (2-dimensional homological
features) and so on, which do not depend on specific measurements.
These topological features are graphically represented in an easy and
intuitive way by means of a barcode, a complete invariant which
provides explainable information on the shape of the data. In the
barcode, longer intervals correspond to more robust features, whereas
shorter intervals are more likely to be noise in the data. The field
of TDA has proven useful in many applications such as medical biol-
ogy [2], physics [3], and atmospheric science [4]. Recently, persistent
homology has also been used in combination with convolutional neural
networks (CNNs); given a dataset, persistent homology is applied to
produce some topological features that can then be fed into machine
learning models to improve their results and provide explainable out-
puts [5]. Persistent homology has been already applied to a wide range
of data and image analysis tasks, such as edge detection [6], skin
lesions [7], cell trajectory inference [8], and many more.
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Persistent homology requires a chain of inclusions of topological
spaces. The idea is to construct a sequence of nested subspaces of the
original space, where each subspace includes the previous one. The
sequence of nested subspaces is defined by an increasing filtration. By
computing the homology groups of each subspace, one can track the
topological features, i.e., when each feature appears and disappears.
The need for each subspace to include the previous one is an important
restriction. In particular, if one has to work somehow with a sequence
of images, the foreground pixels of each previous image must be
maintained in each step (new ones may appear, though).

Zigzag persistence is a recent variant of the traditional persistence
algorithm in algebraic topology, which is also used to extract topologi-
cal features from datasets. It was introduced by Carlsson and Silva [9]
as a generalization of the original persistence algorithm for the case
of a sequence of topological spaces that are not related by means of
an increasing filtration. In zigzag persistence, the chain of inclusions
is defined by a zigzag filtration, which allows homology classes to
be transported between different subspaces in the filtration by zigzag
paths. Zigzag paths are sequences of inclusion maps that can be used
to track the evolution of topological features, even when the features
undergo non-linear transformations or noise. Compared to traditional
persistence, zigzag filtration is also defined by a sequence of subspaces,
but the crucial difference is that inclusion can go in any direction
in each step. In practice, it is not necessary to define explicitly the
inclusion (and surjection) maps, but simply providing the topological
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subspaces (the maps can be constructed automatically through unions
or intersections). In other words, one important advantage is that there
is no need to relate the images by means of an increasing filtration
when working with digital images. This way, zigzag persistence is more
flexible than persistent homology.

Zigzag persistence has been applied to topological data analy-
sis [10], but there are barely any applications of zigzag persistence to
digital images. To the best of our knowledge, the only application of
zigzag persistence on digital images is a work about analyzing stacks
of neuronal images [11].

There are some reasons why zigzag persistence is not so widely used
for images: It is a relatively new and advanced topic in topological data
analysis and requires a deeper understanding of algebraic topology and
computational geometry than traditional persistence, which make it
more challenging for its use. Indeed, there are currently fewer software
packages available for computing zigzag persistence compared to tra-
ditional persistence, and none of them is specialized in digital images.
The contributions of this work are the following:

1. An algorithm to build a simplicial complex associated to a binary
digital image smaller than the ones used in the literature, but
with the same topological information. This makes the zigzag
computation more efficient.

2. An algorithm to compute the relationship between the
𝑛-homology classes of a sequence of binary images (of the same
size, without any relationship among them) via zigzag persis-
tence, using the algorithm for zigzag persistence of topological
spaces introduced in [9].

3. An easy-to-use and open-source software (with GUI) to compute
the previous algorithm for a sequence of binary images and plot
the corresponding barcodes.

4. A dataset for experiments and also an example of zigzag ap-
plication to a real-world problem (that cannot be tackled with
persistent homology): analysis of videos of sperm of honey bee
drones, where we can use our software to track motile sperma-
tozoa and as a preprocessing step to detect static spermatozoa in
noisy images.

The rest of the paper is organized as follows: Section 2 presents the
roposed algorithms to compute zigzag persistence of digital images.
he developed software is discussed in Section 3. Section 4 shows a
otential real-world application of the new algorithms and a dataset
or experiments. Finally, the conclusions and further work are detailed
n Section 5. The following repository contains our programs:

https://github.com/jodivaso/ImageZigZag

. New general algorithms for computing zigzag persistence of
igital images

The theory of zigzag persistence [9] is defined for diagrams of
opological spaces of the form:

1 ↔ 𝑋2 ↔ ⋯ ↔ 𝑋𝑚

here the arrows can point either left or right.
Considering the induced morphisms on the homology groups of each

opological space, for each 𝑛 ∈ N one obtains a sequence of vector
spaces and linear maps:

𝑉1 ≡ 𝐻𝑛(𝑋1) ↔ 𝑉2 ≡ 𝐻𝑛(𝑋2) ↔ ⋯ ↔ 𝑉𝑚 ≡ 𝐻𝑛(𝑋𝑚)

which is called a zigzag module. Zigzag modules can be decomposed as
a direct sum of submodules 𝑊 𝑖 of the form

0 ↔ ⋯ ↔ 0 ↔ 𝑊 𝑖
𝑎𝑖
= F ↔ ⋯ ↔ 𝑊 𝑖

𝑏𝑖
= F ↔ 0 ↔ ⋯ ↔ 0

for some 1 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑚, where F is the base field and all arrows are
the identity map, see [9] for further details. In this way, zigzag modules
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can be classified up to isomorphism by a multi-set of intervals {[𝑎𝑖, 𝑏𝑖]}
ith 1 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑚, which leads to the graphical representation of
igzag modules by means of barcode diagrams (see [9]).

As said in the introduction, although persistent homology has been
sed in many different problems in image processing, up to our knowl-
dge there is only one application of zigzag persistence to digital
mages [11], being implemented for a particular situation. In this work,
e propose a general algorithm for applying zigzag persistence to any

equence of binary images (with the same size).
Zigzag persistence is implemented in the Dionysus 2 software [12].

o use this program, we need to construct a simplicial complex as-
ociated with a digital image. A simplicial complex is a particular
ase of topological space defined by means of points (called vertices),
ine segments (edges), triangles, and their 𝑛-dimensional counterparts
see [13] for details). A binary (2D) image will be given by a matrix of
ixels having two possible values: black and white (usually coded as 0
nd 255, respectively). In this paper, we consider white as foreground
nd black as background (one can also choose the opposite convention),
nd we use 8-adjacency between pixels, because it is the most suitable
ne for our problems (see Section 4).

In a first step of our work we implemented directly the construction
f the simplicial complex corresponding to the triangulation of the
ubical complex of a binary image, but many simplices were obtained
nd the zigzag persistence computation was slow. To design our new
lgorithm 1, we have made use of the Vietoris–Rips simplicial complex
ssociated to a binary image, considering each white pixel as a point
n a two-dimensional Euclidean space (that is also a way to represent
he topological properties of the image, see [14]) and discrete Morse
heory [15] (in particular, the notion of discrete vector field, which
llows us to remove unnecessary edges and triangles). Given a simplicial
omplex, a discrete vector field 𝑉 is a list of pairs of simplices 𝑉 =
(𝜎𝑖, 𝜏𝑖)}𝑖∈𝐽 such that each 𝜎𝑖 is a face of 𝜏𝑖 (with some additional
ypotheses). The simplices that do not appear in the vector field are
alled critical. If the vector field is admissible (see [15] for details), then
he initial simplicial complex can be reduced to a smaller one, with
he same homology groups, where only the critical simplices appear.
n our case, for example, when three white pixels appear in the image
t positions (𝑖, 𝑗), (𝑖 + 1, 𝑗) and (𝑖, 𝑗 + 1), the Vietoris–Rips complex
ncludes a triangle 𝑇 with vertices at these three pixels and an edge

between the vertices (𝑖, 𝑗 + 1) and (𝑖 + 1, 𝑗). However, if the pixel at
𝑖 + 1, 𝑗 + 1) is black, then a vector given by the pair (𝜎 = 𝐸, 𝜏 = 𝑇 )
an be defined and then both simplices are removed from the simplicial
omplex maintaining the homology groups. With our new Algorithm 1,
he number of vertices, edges and triangles in the complex is smaller
han in the triangulation of the cubical complex of a binary image and
n the Vietoris–Rips complex and the computation of zigzag persistence
s faster, see the repository for the detailed comparison. Fig. 1 shows
n example of application of Algorithm 1.

lgorithm 1. Input: a binary image 𝐼 , with 𝑟 rows and 𝑐 columns.
utput: a simplicial complex 𝐾.

1. Start with 𝐾 = ∅.
2. For each white pixel in 𝐼 at position (𝑖, 𝑗), add to 𝐾 the vertex

𝑖 ∗ 𝑐 + 𝑗.
3. For each pair of white pixels in 𝐼 at positions (𝑖, 𝑗) and (𝑖+1, 𝑗) or

(𝑖, 𝑗) and (𝑖, 𝑗 + 1), add to 𝐾 an edge between the corresponding
vertices.

4. For each pair of white pixels at (𝑖, 𝑗) and (𝑖+1, 𝑗+1) such that the
pixels at (𝑖 + 1, 𝑗) and (𝑖, 𝑗 + 1) are both black, add to 𝐾 an edge
between the corresponding vertices. For each pair of white pixels
at (𝑖, 𝑗) and (𝑖+1, 𝑗−1) such that the pixels at (𝑖+1, 𝑗) and (𝑖, 𝑗−1)
are both black, add to 𝐾 an edge between the corresponding
vertices.

5. For each pair of white pixels at (𝑖, 𝑗) and (𝑖+1, 𝑗+1) such that the
pixels at (𝑖+ 1, 𝑗) and (𝑖, 𝑗 + 1) are both white, add to 𝐾 an edge
between the corresponding vertices to (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1) and
add two triangles with the vertices corresponding to the pixels

at (𝑖, 𝑗), (𝑖+1, 𝑗) and (𝑖+1, 𝑗+1), and (𝑖, 𝑗), (𝑖, 𝑗+1) and (𝑖+1, 𝑗+1).

https://github.com/jodivaso/ImageZigZag
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6. Return 𝐾.

Now, given a sequence of binary images, in Algorithm 2 we study
the relationship between the homology classes of each image by com-
bining Algorithm 1 with the computation of zigzag persistence (of a
sequence of simplicial complexes). To this aim, we follow the same idea
as in [9, Example 1.1]: given a sequence of simplicial sets 𝐾1,… , 𝐾𝑚,
we consider the union sequence:

𝐾1 ↪ 𝐾1 ∪𝐾2 ↩ 𝐾2 ↪ 𝐾2 ∪𝐾3 ↩ ⋯ ↪ 𝐾𝑚−1 ∪𝐾𝑚 ↩ 𝐾𝑚

This way, when computing the homology groups and the corre-
sponding barcode of the zigzag filtration, the relation between the
homology classes of the initial simplicial complexes 𝐾𝑖 is obtained
(each bar corresponds to a homology class that appears in different
simplicial complexes; different bars correspond to different homology
classes in the complexes). Given two consecutive simplicial complexes
𝐾𝑖 and 𝐾𝑖+1 (corresponding, respectively, to the images 𝐼𝑖 and 𝐼𝑖+1),
the union is computed without considering the vectors of the discrete
vector field which have been only applied in one of the images (these
vectors may not be compatible with the zigzag filtration).

Algorithm 2. Input: a sequence of binary images 𝐼1,… , 𝐼𝑚 of the same
size (that is, the same numbers of rows and columns) and an integer
𝑛 ≥ 0.
Output: The zigzag barcode describing the continuity of the 𝑛-homology
classes between the different images and a list of generators associated
with each of the bars in the barcode.

1. For each 0 ≤ 𝑖 ≤ 𝑚, apply Algorithm 1 to the binary image 𝐼𝑖
and construct the associated simplicial complex 𝐾𝑖.

2. For each 0 ≤ 𝑖 < 𝑚, compute the union of the simplicial
complexes 𝐾𝑖 and 𝐾𝑖+1 and add the simplices corresponding to
vectors which appear only in one of the images. We denote this
union by 𝐾 ′

𝑖 .
3. Consider the following sequence of maps:

𝐾1 ↪ 𝐾 ′
1 ↩ 𝐾2 ↪ 𝐾 ′

2 ↩ ⋯ ↪ 𝐾 ′
𝑚−1 ↩ 𝐾𝑚

4. Compute the zigzag persistence of the sequence of vector spaces:
𝐻𝑛(𝐾1) → 𝐻𝑛(𝐾 ′

1) ← 𝐻𝑛(𝐾2) → ⋯ ← 𝐻𝑛(𝐾𝑚)
5. Draw the barcode and return the generators.

Algorithm 2 can be used to study the relationship between the 𝑛-
homology classes of a sequence of binary images (of the same size)
without any relationship between them. For instance, let us consider
as a didactic example the three binary images of Fig. 2. In the first two
images, three 1-dimensional classes appear, whereas the last one only
contains two. One of the holes lives in the three images (top left corner;
some pixels are different, but the hole is essentially the same); another
1-dimensional class appears in the first image (top right) and disappears
in the third one; there is a hole that is only shown in the first image
(bottom) and finally, another homology class appears in the second
image (bottom right corner) and is still alive in the third image. We
can obtain this information by computing the zigzag barcode following
our Algorithm 2, as shown in Fig. 3.

As a remark, we would like to observe that, to apply Algorithm 2,
it is not necessary to relate the binary images by means of a filtration
(which is a necessary condition to apply persistent homology). This
allows us to apply our algorithm to problems that have not been tackled
before with topological data analysis, as the applications presented in
Section 4.

We have enhanced Algorithm 2 by allowing three optional pa-
rameters: interval-length, an integer representing the minimum
length necessary for a zigzag interval to be considered in the barcode
(to discard very short bars, which correspond to homology classes that
persist a very short period of time), and generator-min-length
113

and generator-max-length, the minimum and maximum number
Fig. 1. On the left, a digital image; on the right, its simplicial complex representation.

Fig. 2. Sequence of three binary digital images.

Fig. 3. Zigzag barcode of images in Fig. 2.

respectively of simplices in a generator that are necessary for a bar to
be considered in the barcode (to discard, for instance, small holes). This
lead to the following algorithm.

Algorithm 3. Input: a sequence of binary images 𝐼1,… , 𝐼𝑚 of the
same size (that is, the same numbers of rows and columns) and integers
𝑛, interval-length, generator-min-length, generator-
max-length ≥ 0.
Output: A subset of the zigzag barcode of the images of dimension 𝑛
containing the bars with length greater than or equal to interval-
length and such that the corresponding generators are made of 𝑙
simplices, with generator-min-length ≤ 𝑙 ≤ generator-max-
length.

1–4. Same steps as in Algorithm 2.
5. Select those intervals in the barcode with length greater than or

equal to interval-length and such that the corresponding
generators are made of 𝑙 simplices, with generator-min-
length ≤ 𝑙 ≤ generator-max-length.

6. Draw the barcode and return the generators of the selected
intervals.

3. Description of the new software

Algorithms 1, 2 and 3 have been implemented as Python functions
using the library Dionysus 2 [12] for computing the zigzag modules.
These algorithms are also implemented in a Jupyter notebook, available
in the repository. To allow users to apply our programs in an easier
way, we have also developed a graphical interface. The new software
inputs a set of binary images and it allows the user to decide the order
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of the images (to compute the zigzag persistence). As parameters, as
specified in Algorithm 3, the user can choose the dimensions for which
the barcode will be determined (0 or/and 1), the minimum length of a
bar to be showed and the minimum and maximum number of simplices
(vertices or edges) in a generator that are needed to be showed in the
barcode. It is also possible to decide whether the interval generators
are shown in the barcode. The program then applies Algorithm 3 to
compute the associated zigzag barcode. Fig. 4 shows the interface of
our application. The result is a graphical representation of the barcode
diagrams shown within the application, see Fig. 5.

4. Applications

In this section, we present two applications of our algorithms for
computing zigzag persistence of a sequence of binary images. Both
applications are illustrated with images obtained from videos of sperm
of honey bee drones, which have been acquired using an Olympus
BX40 microscope (Olympus Optical Co., Tokyo, Japan). The aim of the
analysis of these images is to evaluate the sperm motility and concen-
tration by identifying two types of spermatozoa: motile ones, which
show a circular shape in most videos, and static ones, which show a
linear shape. In a previous work [16], an open-source software called
CASABee was developed in Python using libraries such as OpenCV
(for image processing). The program inputs one or several videos and
analyzes them in order to study sperm motility and concentration
by identifying both the motile and static sperm that appear in the
videos. Fig. 6 shows two examples of CASABee analysis, showing the
classification of spermatozoa in motile (circles) and static (red lines).
Once the spermatozoa are identified in the videos, CASABee produces
the following numerical results: total number of sperms, number of
static spermatozoa, number of motile spermatozoa, motile percentage,
and concentration. Now, we consider our new software for computing
zigzag persistence of a sequence of binary images and apply it for the
computation of both static (in Section 4.1) and motile spermatozoa (in
Section 4.2). In addition, Section 4.3 presents more experiments with
an artificial dataset of different basic shapes moving in the space.

4.1. Combining mathematical morphology operators

Mathematical morphology or simply morphology is a field that pro-
vides several techniques for processing digital images It is based on
the study of spatial structures on an image and it is applied to a large
number of imaging problems and applications (see, for instance, the
recent papers [17,18]). The main mathematical morphology operators
are dilation and erosion. In a binary image, dilation enlarges the number
of foreground pixels (in our case, white pixels) by turning into white
the black pixels that are neighbors of white pixels (the notion of
neighborhood is defined by means of a structuring element, see [19] for
details), while erosion erases (turns into black) white pixels that are
neighbors of a black one.

Let 𝐼 be a binary image and 𝐾 its associated simplicial complex
(obtained, for instance, by applying Algorithm 1). Given 𝑗 ≥ 0, let us
denote by 𝐷𝑗𝐼 (resp. 𝐸𝑗𝐼) the binary images obtained by applying 𝑗
dilations (resp. 𝑗 erosions) to 𝐼 , and by 𝐷𝑗𝐾 (resp. 𝐸𝑗𝐾) the corre-
sponding simplicial complexes. It is easy to observe that the following
relations are satisfied:
⋯ ⊆ 𝐸𝑗𝐾 ⊆ 𝐸𝑗−1𝐾 ⊆ ⋯ ⊆ 𝐸𝐾 ⊆ 𝐾

𝐾 ⊆ 𝐷𝐾 ⊆ ⋯ ⊆ 𝐷𝑗−1𝐾 ⊆ 𝐷𝑗𝐾 ⊆ ⋯

In other words, a filtration is obtained, and this makes it possible
to apply persistent homology. This approach has been considered, for
instance, in [20].

However, in other problems dilation and erosion are combined in a
way such that they do not provide a filtration. For instance, one could
be interested in applying 𝑖 dilations followed by 𝑗 erosions, and one
wants to know the most adequate numbers 𝑖 and 𝑗. In that situation,
114
Fig. 4. Interface of the new application.

Fig. 5. Results of the new application.

Fig. 6. Examples of CASABee analysis. Phase contrast images from two video sequences
of different sperm motility (a, c), and the resulting CASABee output (b, d), showing
the classification of spermatozoa in motile (circles) and static (red lines).
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the corresponding images and simplicial complexes do not provide a
filtration and, therefore, one cannot apply persistent homology. To
solve this problem, we propose to apply zigzag persistence by using
our Algorithms 2 and 3, which determine the relationship between the
𝑛-homology classes of the different images.

As a particular case of this situation, we consider images obtained
from videos of sperm of honey bee drones. In order to detect the
static spermatozoa, the CASABee sofware presented in [16] works as
follows. First, the enhanced frames of the video (after smooth filter
and normalization) are examined and binarized using an appropriate
threshold. Then, dilation is applied and the intersection of all the
binary images, corresponding to white pixels appearing in all of them,
is computed. In the next step, the contours in the binary image are
determined. Those with an area greater than 20% of the average size of
the spermatozoa (given by a parameter chosen by the user) and those
in which the proportion between the contour area and the bounding
box area is less than 0.3 (to discard artifacts) are selected. Some
fragments of circles appearing in the image are removed by applying
the Hough transform [21], a feature extraction technique used in image
analysis to detect arbitrary shapes, most commonly circles or lines. To
achieve this, parameters for the minimum radius and maximum radius
of the detected circles are required, together with two other parameters
related with the threshold. Finally, some ‘‘broken’’ contours are joined
by drawing lines between closed pixels in the direction of the contour.
The program was evaluated and showed good results [16]. It is able to
detect correctly static spermatozoa in most situations. However, there
are a few videos in which it also detects as spermatozoa some areas
that are not, see for instance Fig. 7. In that figure (which corresponds
to a frame of a video), there are many static spermatozoa (red lines)
that are detected incorrectly, mainly corresponding to noise in the
image. Indeed, experts only count 4 static spermatozoa in that video,
but CASABee detects (wrongly) many more.

In order to solve this problem, we propose to use zigzag persis-
tence combined with morphological operations. The idea consists in
considering the intersection of all frames (after binarization and en-
hancement, as explained before) and then applying a different number
of erosions and dilations. This produces a sequence of binary images,
and the barcode obtained by computing the zigzag persistence of
degree 0 of this sequence allows one to identify the static spermatozoa
as the components which survive at least 5 steps (a value obtained
experimentally for our problem, and related with the thickness of the
spermatozoa), and discard artifacts and noise. The proposed method
consists in applying the following steps:

1. We consider the intersection of the enhanced binary images of
all frames (as explained in the previous paragraph, before the
step of computing the contours).

2. We dilate twice, in order to remove small holes in the different
components.

3. For 𝑖 = 1, 2,… , 10, we apply 𝑖 erosions followed by 𝑖−1 dilations.
We obtain a list of binary images 𝐼1, 𝐼2,… , 𝐼10.

4. We erode each image 𝐼𝑖 twice. We obtain binary images 𝐼 ′1, 𝐼
′
2,

… , 𝐼 ′10.
5. We do the difference between the image obtained in Step 1 and

each image 𝐼 ′𝑖 of the previous step. We obtain different binary
images 𝐼 ′′1 , 𝐼

′′
2 ,… , 𝐼 ′′10, with the same size, which do not provide

a filtration.
6. We apply to each image the same postprocessing as the CASABee

software (draw the contours, select those with an adequate area,
etc.). The result is a list of binary images, again with the same
size and without defining a filtration.

7. We apply Algorithm 3 to the images obtained in the
previous step, with 𝑛 = 0, 𝚒𝚗𝚝𝚎𝚛𝚟𝚊𝚕 − 𝚕𝚎𝚗𝚐𝚝𝚑 = 5,
𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚘𝚛 − 𝚖𝚒𝚗 − 𝚕𝚎𝚗𝚐𝚝𝚑 = 10 (these have been obtained
experimentally for our problem, and they are considered to be
adequate; the parameter generator-max-length has not
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any limitation in this case).
Fig. 7. Example of CASABee output with noise detected as static spermatozoa.

Fig. 8. Results of the zigzag approach to detect static spermatozoa (without noise).

8. The barcode and the generators provide us the connected com-
ponents corresponding to static sperm, discarding artifacts and
noise in this way.

This approach based on zigzag persistence improves the CASABee
results since noise is not selected anymore; see for instance Fig. 8
(only static spermatozoa are displayed). This method can be applied
for all videos and we obtain the graphical interpretation of the different
connected components behavior by means of the barcode.

4.2. 1-homology tracking

Zigzag persistence can also be used to track the 1-homology com-
ponents in a sequence of binary images. For instance, we consider
again our images obtained from videos of sperm of honey bee drones,
observing in this case the motile spermatozoa (circles in Fig. 6). In order
to detect the motile spermatozoa, the CASABee program extracts all
the video frames and enhances each image by means of a smooth filter
and image normalization. Then, the Hough transform is applied again
to select the circles. To detect spermatozoa that appear in the borders
of the video and that are not closed circles, CASABee adds a border to
each frame with a symmetry criterion. Furthermore, circles with a high
density of white pixels, corresponding to artifacts (and not to motile
spermatozoa), were discarded.

The circles selected in the first frame were then tracked in all the
images in the following manner. Each circle in the first frame was
labeled with an integer number. In the next frame, circles whose center
was inside each circle detected in the first frame were looked for. If
there was only one circle in this situation, then this circle was labeled
with the same number as the previous one. If there were at least two
circles satisfying the condition, then we chose the one whose center was
closest to the center of the previous circle. We continued this process for
all frames of the image. Once all the circles of the first frame had been
tracked in all the frames, the circles which appeared in at least half of
the frames were selected. Those that ended with the same label (which
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Fig. 9. Results of the zigzag approach to detect motile spermatozoa (1-homology
tracking).

means that they corresponded to the same motile spermatozoon) were
combined, and the circles with the correct numbers were relabeled.
Although this method works well for most motile spermatozoa, we
propose the following alternative method by using zigzag persistence:

1. For each frame in the video, we consider a binary image and
we draw on it the circles detected by the Hough transform (as
explained previously in this subsection).

2. We apply Algorithm 3, in this case with parameter 𝑛 = 1, and
interval-length computed as the half of the number of
frames of the video. The size of generators depend on the values
of some parameters of the CASABee software, concretely on the
minimum and maximum radius, which restrict the size of the
circles detected by the program using Hough transform.

3. The barcode and the generators provide us now the tracking of
the motile spermatozoa in the videos.

Fig. 9 shows an example of the result of applying this method.
The video is the one already presented in Fig. 7. For the analysis,
interval-length is set to 15 (to capture holes that appear in,
at least, half of the frames). In this case, generator-min-length
is set to 8 (to remove minor holes that could appear if spermatozoa
overlap).1 We do not impose any limitation on generator-max-
length. The video has a total of 23 spermatozoa and the program
detects 21. Two of them are never detected, but for this video it is an
expected result since they appear close to a border and only half of the
sperm is seen (one above and one below in Fig. 7). CASABee is able
to detect them because it does border symmetry. Some spermatozoa
disappear in the zigzag tracking because their intensity is reduced in
the last frames.

Our method is an alternative to track 1-homology classes that can be
useful when other techniques (such as Hough transform) cannot be ap-
plied or when we are interested in having the graphical representation
by means of the barcode.

4.3. More experiments with a new dataset

The repository also contains a new dataset (19 videos with 60
frames, 1 video with 160 frames) for testing and information on how to

1 In this potential example of application of honey bee sperm analysis,
this is usually avoidable, as scientists can dilute the sample to reduce the
concentration. However, such a problematic video does contain overlapped
spermatozoa.
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Fig. 10. Initial and final frame of three videos presented in the dataset.

Table 1
Accuracy and time comparison among the different approaches. For the baseline
approaches we only show the best results. Parentheses indicate the detector and the
tracking algorithm used for the best result.

Method H0 H1 Time (s) Parameter tuning?

ZigZag 97.54 98.95 9296 No

Baseline method 1
(findContours+MIL)

98.95 99.01 1031 Yes

Baseline method 2
(findContours+MIL)

98.95 99.01 1027 Yes

Baseline method 3
(findContours)

96.34 96.57 2.58 Yes

reproduce the results. Some examples of frames contained in the dataset
are shown in Fig. 10. Specifically, the dataset contains:

1. Processed frames of several sample videos contained in the
CASABee software about detecting motile spermatozoa.

2. Artificially generated videos of objects of different shapes (let-
ters, squares, cars, etc.) that move around the space.

Experiments with this dataset show that the zigzag method al-
lows tracking the connected components (0-homology) and holes (1-
homology) with good results (about 99% and 98% accuracy, respec-
tively). The experiments also show that the total computation time
(simplicial complex construction + zigzag persistence) is much better
when our Algorithm 1 is used, compared to, for instance, cubical
complexes (about 23% of reduction in that case). The repository also
contains comparisons to three object tracking approaches. The first
two are based on the OpenCV Tracker API [22,23] using six tracking
algorithms (CSRT [24], MIL [25], KCF [26], Mosse [27], Median-
Flow [28] and Boosting [29]), combined to Hough circle transform
and findContours as detectors. The third is the well-known basic
method consisting of contour detection and centroid matching based
on the Euclidean distance (note that false positives could easily arise
from incorrect matchings).

Table 1 presents a summary of the results. Baseline methods always
performed better using findContours as detector (Hough transform
achieves at most a 77.45% of accuracy in H1; some false positives could
be detected using this approach) and MIL as the tracking algorithm
(similar results also with Boosting and CSRT). The parameters of the
detectors in the baseline approaches were manually fine-tuned to get
this performance. In view of the results, the three baseline approaches
work well and results are very similar to the zigzag ones in terms of
accuracy (we refer to the repository for further details).

The main benefit of the zigzag method is that it allows one to
perform the three steps automatically, i.e., it allows tracking objects
in an automatic way (in the sense that the method indicates in which
frames each object appears and disappears). In addition, as opposed
to the Hough transform, this method also allows one to track holes
other than circles. The drawback is the time: as expected, the zigzag
persistence computation is much slower than the use of a specialized
tracking algorithm or the contour and centroid matching computation.
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5. Conclusions and further work

In this work, we propose general algorithms to compute zigzag
persistence over digital images. Our algorithms have demonstrated
their effectiveness by helping in a real-world problem that cannot
be addressed with persistent homology. Specifically, we have shown
how our approach can be used to analyze videos of sperm of honey
bee drones, allowing us to track motile sperm using 1-dimensional
homology. We have also developed a user-friendly graphical interface
that makes it easy to use our algorithms. Our code is open-source and
freely available, which means that it can be easily adapted for specific
purposes. As further work, we intend to study and integrate the recent
advances for faster zigzag persistence computation [30], since potential
real-world applications related to digital images or videos (such as
those ones presented in Section 4) usually require much execution time.
In fact, the inclusion of our modifications based on zigzag persistence
in CASABee causes the analysis time of a video to increase from a few
seconds to a few minutes. Furthermore, although our algorithms and
programs have been presented only for 2𝐷-images, they can be easily
extended for 𝑛-dimensional images. To this aim, it is only necessary to
implement or use an algorithm computing the associated simplicial (or
cubical) complex. A more difficult problem consists in working with
grayscale images, where the sublevel sets filtration can be considered,
and study how to combine this filtration with the zigzag modules.
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