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Abstract: Picard iteration is on the basis of a great number of numerical methods and applications
of mathematics. However, it has been known since the 1950s that this method of fixed-point ap-
proximation may not converge in the case of nonexpansive mappings. In this paper, an extension
of the concept of nonexpansiveness is presented in the first place. Unlike the classical case, the new
maps may be discontinuous, adding an element of generality to the model. Some properties of the
set of fixed points of the new maps are studied. Afterwards, two iterative methods of fixed-point
approximation are analyzed, in the frameworks of b-metric and Hilbert spaces. In the latter case, it is
proved that the symmetrically averaged iterative procedures perform well in the sense of convergence
with the least number of operations at each step. As an application, the second part of the article
is devoted to the study of fractal mappings on Hilbert spaces defined by means of nonexpansive
operators. The paper considers fractal mappings coming from φ-contractions as well. In particular,
the new operators are useful for the definition of an extension of the concept of α-fractal function,
enlarging its scope to more abstract spaces and procedures. The fractal maps studied here have
quasi-symmetry, in the sense that their graphs are composed of transformed copies of itself.

Keywords: nonexpansive maps; iteration; fixed-point theorems; fractal maps; contractions; α-fractal
functions; quasi-normed spaces

1. Introduction

Mean values methods were investigated by important mathematicians like Cesàro or
Fejér for the summation of divergent series (see, for instance, the references [1–3]). W.R.
Mann proposed in 1953 the use of averaged values for the treatment of nonconvergent
iteration processes [4]. The main purpose of their work was the resolution of differential
and integral equations modeling several physical problems, by means of the method of
successive approximations.

A bit later, Krasnoselskii [5] proved that the Picard iterations of a nonexpansive
mapping T defined on certain normed space X may not converge, even if the map has a
unique fixed point. However, the sequence defined recursively as:

fn+1 :=
fn + T fn

2

for n ≥ 0 and f0 ∈ X does converge to it. This finding confirmed that averages method
is very useful in the cases where the typical map iteration fails to approach a fixed point.
Since then, more sophisticated iterative methods based on means have appeared, as that
proposed by Ishikawa [6].

The first aim of this article is the presentation of a new concept of nonexpansiveness,
presenting maps that include the usual nonexpansive mappings like a particular case. This
will be done in the context of b-metric spaces.

Definition 1. A b-metric space X is a set endowed with a mapping d : X × X → R+ with the
following properties:

1. d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y.
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2. d(x, y) = d(y, x) for any x, y ∈ X.
3. There exists s ≥ 1 such that d(x, y) ≤ s(d(x, z) + d(z, y)) for any x, y, z ∈ X.

The constant s is the index of the b-metric space, and d is called a b-metric.

Example 1. Let X = Rm be the m-dimensional Euclidean space, and u = (u1, u2, . . . , um),
v = (v1, v2, . . . , vm). The map d : X × X → R+ defined as:

d(u, v) =
m

∑
j=1

|uj − vj|2,

is a b-metric with index 2 (see for instance [7]).

Nowadays, a large number of papers are devoted to the study of several types of
single and multivalued contractions defined on b-metric spaces. The reader can consult the
references [8–11] as a small and far from representative sample of articles on this topic.

The self-maps to be studied here are given by the following definition.

Definition 2. Let E be a b-metric space, and T : E → E be a self-map such that for any f , g ∈ E:

d(T f , Tg) ≤ ad( f , g) + B min{d( f , T f ), d(g, Tg)}. (1)

If a ≤ 1 and B ≥ 0, T is a nonexpansive partial contractivity.

For B = 0, we have a nonexpansive mapping.
Section 2 collects some properties of the new operators. In particular, it studies the

main characteristics of the set of fixed points, whenever the space of definition owns
some specific structure. Section 3 is devoted to the study of the convergence of the Mann
iterations (called also Krasnoselskii–Mann iterations) of a nonexpansive partial contractivity,
given by the following recursive scheme:

fn+1 = (1 − an) fn + anT fn. (2)

for n ∈ N0, 0 ≤ an ≤ 1 (see for instance [4]). When an is a constant, the algorithm is usually
called Krasnoselskii iteration [5]. We first prove the convergence of the Mann’s method in a
b-metric space in the case as < 1, where s is the index of the b-metric, whenever the scalars
are suitably chosen. Afterwards, the case a = 1 is considered in the framework of a Hilbert
space. The properties of the sequence of iterates are described and the weak convergence
to a fixed point is proved for a wide range of values of the sequence (an).

In particular, it is proved that the symmetrically weighted average:

fn+1 =
fn + T fn

2
, (3)

corresponding to the case where an = 1/2 for all n, converges strongly to a fixed point with
asymptotic stability when as < 1. If the underlying space is Hilbert and a = 1, the average
(3) converges weakly to a fixed point. In the latter case, this symmetric pattern is optimum
in the sense of performing the least number of operations at each step.

Section 4 is similar to Section 3, but the method studied is a three-steps algorithm
called SP-iteration [12]. This is given by the following recursion:

fn+1 = (1 − an)gn + anTgn, (4)

gn = (1 − bn)hn + bnThn, (5)

hn = (1 − cn) fn + cnT fn, (6)
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for an, bn, cn ∈ [0, 1]. In particular, the convergence of the symmetric averaged iterations,
corresponding to the case where an = bn = cn = 1/2 is proved. This choice is optimum
in the sense of minimum number of operations at each step in the case a = 1. Section 5
applies the results obtained to the definition of fractal maps F∗ : I → V, where I is a real
compact interval and V is a Hilbert space. The mappings constructed are called in this
paper nonattracting fractal maps, due to the fact that they cannot be approached by means
of the usual Picard iterations, in general. This topic was initiated in the reference [13]
in the context of Banach spaces and algebras. Section 6 is devoted to the definition of
fractal mappings valued on Hilbert spaces through φ-contractions on the Bochner space
of square-integrable mappings. The methods of their successive approximations are also
considered. Section 7 constructs mappings of α-fractal type, but in a wider and more
abstract setting. These maps generalize the so called α-fractal functions, thoroughly studied
in recent mathematical literature (see for instance [13–16] and references therein). Roughly
speaking, a geometric object is symmetric if it is composed of similar pieces. The fractal
maps studied here own a quasi-symmetry, in the sense that their graphs are composed of
transformed copies of itself, that is to say, if G is the graph of a fractal map, it satisfies the
set equation:

G = ∪M
m=1Wm(G),

where Wm are set-valued operators to be defined later in this text (see for instance Theorem 5
of [13]).

Remark 1. In this paper, T f and T( f ) will be used indistinctly to denote the image of an element
f by the map T.

2. Nonexpansive Partial Contractivities

For a basic introduction to b-metric spaces the reader can consult the references [7,17–19],
for instance. We extend the definition of partial contractivity presented in the reference [20].

Definition 3. Let E be a b-metric space, and T : E → E be a self-map such that for any f , g ∈ E:

d(T f , Tg) ≤ ad( f , g) + B min{d( f , T f ), d(g, Tg)}. (7)

1. If a < 1 and B ≥ 0, T is a partial contractivity.
2. If a ≤ 1 and B ≥ 0, T is a nonexpansive partial contractivity.

For B = 0 we obtain the classical contractive/nonexpansive mappings.

Example 2. Let E = [0, 1] be endowed with the usual metric, and T : E → E be defined as
Tx = 0 for x ∈ [0, 1/2) and Tx = x/4 for x ∈ [1/2, 1]. It is an easy exercise to check that T is a
nonexpansive partial contractivity, where a = 1/4 and B = 1/2.

Other examples can be found in [19]. In previous works, we proved that several
well known types of contractions are partial contractivities whenever the constants satisfy
certain conditions. This is true for Zamfirescu and quasi-contractions in particular.

Definition 4. Let X be a b-metric space and T : X → X be a map such that there exist constants
α, b, k with 0 < α < 1, 0 < b, k < 1/2 and for any x, y ∈ X one of the following conditions
is satisfied:

1. d(Tx, Ty) ≤ αd(x, y);
2. d(Tx, Ty) ≤ b(d(x, Tx) + d(y, Ty));
3. d(Tx, Ty) ≤ k(d(x, Ty) + d(y, Tx)).

Then, T is called a Zamfirescu contraction [21].
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Proposition 1. Let X be a b-metric space and T be a Zamfirescu contraction with constants α, b, k.
If b < s−1(s + 1)−1 and k < s−1/2, then T is a partial contractivity with constants:

a = max{α,
bs

1 − bs2 ,
ks

1 − ks
} < 1

and

B = max{ b(1 + s2)

1 − bs2 ,
2ks

1 − ks
}.

Proof. See reference [20].

Remark 2. For a metric space, the index s is one, and all the Zamfirescu maps are partial contrac-
tivities, according to the last result.

Something similar happens with quasi-contractions. Let us begin with the definition.

Definition 5. For a b-metric space (X, d), a self-map T : X → X is a quasi-contraction if there
exists a real constant λ, 0 < λ < 1, such that for all x, y ∈ X:

d(Tx, Ty) ≤ λ max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (8)

Proposition 2. If (X, d) is a b-metric space and T : X → X is a quasi-contraction with ratio
λ > 0 such that λ < s−1(s + 1)−1, then T is a partial contractivity with:

a =
λs

1 − λs2

and

B =
λs2

1 − λs2 .

Proof. See reference [19].

Remark 3. For a metric space, a quasi-contraction is a partial contractivity whenever λ < 1/2,
according to the last result.

Unlike the classical nonexpansive mappings, a nonexpansive partial contractivity
need not be continuous (see for instance Example 2). This fact adds an element of generality
to partial contractivities. However, if B = 0, then it is Lipschitz continuous.

In the following, we give some properties of the set of fixed points of a nonexpansive
partial contractivity.

Proposition 3. Let E be a b-metric space, and T be a continuous nonexpansive partial contractivity.
Then, the set of fixed points Fix(T) is a closed set.

Proof. It is a consequence of the continuity of T and the definition of fixed point.

In the case of specific normed spaces, we can add some important properties to the
set of fixed points of a nonexpansive partial contractivity, where the continuity of T is not
needed. Let us start with a definition.

Definition 6. Let E be a b-metric space and T : E → E. The map T is quasi-nonexpansive if
Fix(T) ̸= ∅, and ∀ f ∈ E, ∀ f ∗ ∈ Fix(T).

d(T f , f ∗) ≤ d( f , f ∗).
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Example 3. Let E = [0, 1], and T : E → E defined as: Tx = 0 for x ∈ [0, 1/2] and Tx = kx,
where k < 1, for x ∈ (1/2, 1]. The only fixed point of T is zero, and T is quasi-nonexpansive and
discontinuous in the interval [0, 1].

Example 4. Let E = [0, 1], and T : E → E defined as: Tx = kx cos(1/x) where k < 1, for x ̸= 0
and T0 = 0. T is quasi-nonexpansive and continuous in the interval [0, 1].

Proposition 4. Let E be a b-metric space and T : E → E be a nonexpansive partial contractivity.
If Fix(T) ̸= ∅, then T is quasi-nonexpansive and T is continuous on Fix(T).

Proof. It is a consequence of the definitions of nonexpansive partial contractivity and
quasi-nonexpansive maps.

The next result can be read in the reference [22], Theorem 1.

Theorem 1. Let E be a strictly convex Banach space, and C ⊆ E, such that C is nonempty, closed,
and convex. Let T : C → C be a quasi-nonexpansive self-map. Then, the set Fix(T) is closed
and convex.

Corollary 1. Let E be a strictly convex Banach space, and C ⊆ E, such that C is nonempty, closed,
and convex. Let T : C → C be a nonexpansive partial contractivity. If Fix(T) ̸= ∅, then Fix(T)
is a closed and convex set, and T is continuous on it.

Proof. It is a consequence of Proposition 4 and Theorem 1.

Corollary 2. Let E be a strictly convex Banach space, C ⊆ E, such that C is nonempty, closed, and
convex. Let T : C → C be a nonexpansive partial contractivity. If Fix(T) ̸= ∅, then Fix(T) is a
singleton or it is infinite. If a + B < 1 then Fix(T) = { f ∗}.

Proof. The first part is a consequence of Corollary 1. The second statement was proved in
Theorem 2.1 of reference [20].

Corollary 3. If E = LP(I), for 1 < p < ∞, C ⊆ E satisfies the conditions described previously,
and T : C → C is a nonexpansive partial contractivity such that Fix(T) ̸= ∅, then Fix(T) is
closed and convex.

Proof. The Lebesgue spaces where 1 < p < ∞ are strictly convex, and we have the
hypotheses of Corollary 1.

Let us inquire about the existence of a fixed point with minimal distance to any g ∈ E.
The next result can be read in [23], for instance.

Theorem 2. Let E be a reflexive Banach space, if F ⊆ E is nonempty, closed, and convex, then F
is proximal, that is to say, for any g ∈ E there exists f ∗ ∈ F such that ||g − f ∗|| = d(g, F) :=
inf{||g − f || : f ∈ F}. If additionally E is strictly convex then the “best approximation” f ∗ ∈ F
to g is unique.

Corollary 4. Let E be a uniformly convex Banach space, C ⊆ E, such that C is nonempty, closed,
and convex. Let T : C → C be a nonexpansive partial contractivity. If Fix(T) ̸= ∅, then for any
g ∈ E there exists a unique f ∗ ∈ Fix(T) such that ||g − f ∗|| = d(g, Fix(T)).

Proof. Uniformly convex Banach spaces are strictly convex. According to Theorem of
Milman–Pettis they are reflexive spaces as well (see for instance [24]). By Corollary 1,
Fix(T) is closed and convex, and the result is a consequence of Theorem 2.
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In particular, this result holds for nonexpansive partial contractivities defined on
Lebesgue spaces E = Lp(I) with 1 < p < ∞.

3. Mann Iterations for Nonexpansive Partial Contractivities

As noticed in the introduction, for a nonexpansive self-map, the Picard iterations
may not converge, even if the fixed point exists and is unique [5]. In this case, some
other approximation methods may be necessary. In the following, we consider one of the
simplest iteration procedures for fixed point approaching, in the context of quasi-normed
and normed spaces.

Definition 7. If E is a real linear space, the mapping | · |s : E × E → R+ is a quasi-norm of index
s if:

1. | f |s ≥ 0; f = 0 if and only if | f |s = 0.
2. |λ f |s = |λ|| f |s.
3. There exists s ≥ 1 such that | f + g|s ≤ s(| f |s + |g|s) for any f , g ∈ E.

The space (E, | · |s) is a quasi-normed space. If E is complete with respect to the b-metric
induced by the quasi-norm, then E is a quasi-Banach space. Obviously, if s = 1, then E is a
normed space.

Example 5. Let Lp(I) be a Lebesgue space with 0 < p < 1, and let the map d : X × X → R+ be
defined as:

d( f , g) = (
∫

I
| f − g|pdµ)1/p.

Lp(I) is a quasi-Banach space with index s = 21/p−1.

Let E be a quasi-normed space, C ⊆ E be nonempty, closed, and convex, and T : C → C
be a nonexpansive partial contractivity. Let us assume that Fix(T) ̸= ∅. The Mann iterative
scheme [4] is given by:

fn+1 = (1 − an) fn + anT fn. (9)

for n ∈ N0, 0 ≤ an ≤ 1. When an = 1 for all n we obtain the Picard iteration, as a particular
case. If an = λ for any n we have the Krasnoselskii [5] iteration:

fn+1 = (1 − λ) fn + λT fn, (10)

In the following, we prove that for some values of an the Mann iterations associated
with a partial contractivity T converge to a fixed point if Fix(T) ̸= ∅. In reference [20], it
was proved that if the ratio a is lower than one and there exists a fixed point, it is unique.

Let ( fn) be the sequence of Mann iterates (9) of an element f := f0 ∈ C and f ∗ ∈
Fix(T). Then:

| fn+1 − f ∗|s = |(1 − an)( fn − f ∗) + an(T( fn)− f ∗)|s ≤ s(1 − an)| fn − f ∗|s + san|T( fn)− f ∗|s.

Due to the contractivity condition (7):

|T( fn)− f ∗|s ≤ a| fn − f ∗|s,

and hence:

| fn+1 − f ∗|s ≤ (s(1 − an) + sana)| fn − f ∗|s = s(1 − an(1 − a))| fn − f ∗|s. (11)

Repeating the argument for consecutive values of n, we obtain:

| fn+1 − f ∗|s ≤ sn+1( n

∏
j=0

(1 − aj(1 − a))| f0 − f ∗|s.
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Let us assume in the first place that as < 1. Let us choose a number k such that
s(1 − aj(1 − a)) < k for any j. Then:

1 − ks−1

1 − a
< aj ≤ 1. (12)

In order to satisfy the condition:

1 − ks−1

1 − a
< 1

it is necessary that as < k. Then, let us take k ∈ R such that as < k < 1.
We have that:

| fn+1 − f ∗|s ≤ kn+1| f0 − f ∗|s, (13)

Consequently, the Mann iterations ( fn) converge to the fixed point f ∗ with global
asymptotical stability for values (an) satisfying the condition (12) for j ≥ 0. Additionally,
any ball B( f ∗, r) centered at the fixed point f ∗ is an invariant set for the Mann iterations
(see reference [25]). In the normed case (s = 1), it suffices that the sequence (an) be such
that inf an > 0.

Case a = 1

Let us consider now that s = 1, that is to say, E is a normed space, and assume that T
is a nonexpansive partial contractivity where a = 1. We will denote the norm on E with the
usual notation || · ||. Let us consider the following definition about a sequence in E and a
self-map T (see for instance the references [26,27]).

Definition 8. Let E be a normed space, C ⊆ E and T : C → C be such that Fix(T) ̸= ∅ and a
sequence ( fn) ⊆ C. We say that ( fn) has:

1. The limit existence property (LE property for short) if limn→∞ || fn − f ∗|| exists and is finite
for any f ∗ ∈ Fix(T).

2. The approximate fixed point property (AF for short) if limn→∞ || fn − T fn|| = 0.

Proposition 5. Let E be a normed space, C ⊆ E nonempty, closed, and convex, and T : C → C be
a nonexpansive partial contractivity such that Fix(T) ̸= ∅. For any f0 ∈ C, the Mann iteration
( fn) has the LE property for any choice of the scalars (an).

Proof. If ( fn) is the sequence of Mann iterates for any (an), according to (11) for a = s = 1:

|| fn+1 − f ∗|| ≤ || fn − f ∗||.

The sequence of real numbers || fn − f ∗|| is decreasing and bounded, and consequently,
it is convergent for any f0 ∈ C. Hence, the sequence has the LE property.

Let use see that choosing the scalars (an) suitably, the Mann iteration has the AF
property as well. For it, we need a previous Lemma, that can be read in the reference [28].

Lemma 1. Let E be a uniformly convex Banach space, and a sequence (λn) ⊆ E be such that
there exist p, q ∈ R satisfying the condition 0 < p ≤ λn ≤ q < 1 for all n ∈ N. Let
(xn), (yn) be sequences of E such that lim supn→∞ ||xn|| ≤ r, lim supn→∞ ||yn|| ≤ r, and
lim supn→∞ ||λnxn + (1 − λn)yn|| = r for some r ≥ 0. Then, limn→∞ ||xn − yn|| = 0.

Proposition 6. Let E be a uniformly convex Banach space, C ⊆ E nonempty, closed, and convex,
and T : C → C a nonexpansive partial contractivity such that Fix(T) ̸= ∅. If the scalars an are
chosen such that 0 < inf an ≤ sup an < 1, the Mann iteration has the AF property for any f0 ∈ C.
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Proof. For f0 ∈ C, let ( fn) be the Mann iteration with scalars chosen as described in the
statement of this proposition. Let f ∗ ∈ Fix(T), by Proposition 5 lim || fn − f ∗|| = l ∈ R.
The definition of nonexpansive partial contractivity (7) implies that:

||T fn − f ∗|| ≤ || fn − f ∗||

and
lim sup

n→∞
|| fn − f ∗|| = l,

lim sup
n→∞

||T fn − f ∗|| ≤ l.

Moreover:

lim sup
n→∞

||(1 − an)( fn − f ∗) + an(T fn − f ∗)|| = lim sup
n→∞

|| fn+1 − f ∗|| = l.

According to the previous lemma, limn→∞ || fn − T fn|| = 0, and ( fn) has the AF
property.

For the next definition the reader can consult the reference [29].

Definition 9. A normed space E satisfies the Opial’s condition if for any sequence ( fn) ⊆ E such
that ( fn) converges weakly to f ∈ E:

lim inf
n→∞

|| fn − f || < lim inf
n→∞

|| fn − g||. (14)

for any g ̸= f .

Proposition 7. Let E be a Hilbert space, C ⊆ E be nonempty, closed, and convex, and T : C → C
be a nonexpansive partial contractivity. If a sequence ( fn) ⊆ C converges weakly to f ∈ C and it
satisfies the AF property with respect to T, then f ∈ Fix(T).

Proof. Let ( fn) be a sequence satisfying the condition AF (Definition 8), and f be the weak
limit of ( fn). Since E is a Hilbert space, it satisfies the Opial condition (see for instance
Lemma 1 of reference [29]). If T f ̸= f :

lim inf
n→∞

|| fn − f || < lim inf
n→∞

|| fn − T f || ≤ lim inf
n→∞

(|| fn − T fn||+ ||T fn − T f ||).

The AF property implies that lim infn→∞ || fn − T fn|| = 0. Applying the contractivity
condition in the second sunmmand, we have:

lim inf
n→∞

|| fn − f || < lim inf
n→∞

(|| fn − f ||+ B||T fn − fn||) = lim inf
n→∞

|| fn − f ||.

This is a contradiction, and consequently, f = T f ∈ Fix(T).

Theorem 3. Let E be a Hilbert space, C ⊆ E be nonempty, closed, bounded, and convex, and
T : C → C be a nonexpansive partial contractivity such that Fix(T) ̸= ∅. Then, the Mann iterates
such that 0 < inf an ≤ sup an < 1 converge weakly to a fixed point f ∗ of T for any f0 ∈ C.

If additionally (|| fn||) converges to || f ∗||, or f ∗ is a cluster point of ( fn), then ( fn) converges
strongly to f ∗.

Proof. According to Propositions 5 and 6, the Mann iterates satisfy the LE and AF proper-
ties. Since C is nonempty, closed, bounded, and convex in a Hilbert space, then it is weakly
compact [30]. For f0 ∈ C, let us consider the Mann iterates with scalars satisfying the
condition described, ( fn) ⊆ C. Since C is weakly compact, there exists a weakly convergent
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subsequence ( fnj). This subsequence satisfies the LE and AF properties as well. Let f ∗ be
the weak limit of ( fnj). Since C is weakly closed, f ∗ ∈ C.

Arguing as in the previous proposition for the sequence ( fnj), f ∗ ∈ Fix(T).
If there exists another subsequence ( fnk ) converging weakly to g∗ and f ∗ ̸= g∗, using

similar arguments we have that g∗ ∈ Fix(T). Using Opial and LE conditions:

lim
n→∞

|| fn − f ∗|| = lim
n→∞

|| fnj − f ∗|| < lim
n→∞

|| fnj − g∗|| = lim
n→∞

|| fn − g∗||,

and
lim

n→∞
|| fn − g∗|| = lim

n→∞
|| fnk − g∗|| < lim

n→∞
|| fnk − f ∗|| = lim

n→∞
|| fn − f ∗||.

This is a contradiction, consequently, f ∗ = g∗ and ( fn) converges weakly to f ∗. If
(|| fn||) converges to || f ∗||, let us consider that:

|| fn − f ∗||2 =< ( fn − f ∗), ( fn − f ∗) >= || fn||2 − 2 < fn, f ∗ > +|| f ∗||2.

The last quantity converges to:

|| f ∗||2 − 2 < f ∗, f ∗ > +|| f ∗||2 = 0,

and consequently, limn→∞ || fn − f ∗|| = 0.
If f ∗ is a cluster point of ( fn), due to the LE property, the convergence is also strong.

Corollary 5. With the hypotheses of the previous theorem, if ( fn) is the sequence of Mann iterates
and f ∗ is its weak limit, then:

< fn, g >→< f ∗, g >,

for any g ∈ E.
If E is the real Lebesgue space L2(I), where I is a compact interval:∫

I
fngdµ →

∫
I

f ∗gdµ,

for any g ∈ L2(I) and, in particular: ∫
I

fndµ →
∫

I
f ∗dµ.

This fact makes the Mann method suitable to approximate the integral of a fixed point mapping
in L2(I).

Remark 4. The results given in this section are true in particular for Krasnoselskii iteration (10)
whenever 0 < λ < 1.

Remark 5. The reader may note that the Picard iteration (particular case of Mann iteration when
an = 1 for all n) does not lie in the range of convergence given in Theorem 3. The choice an = 1/2
for all n is optimum in the sense of performing the least number of operations at each step.

Corollary 6. Let E be a Hilbert space, and T : C → C, where C is nonempty, bounded, closed,
and convex, be a nonexpansive mapping. Then, Fix(T) ̸= ∅ and the Mann iterates such that
0 < inf an ≤ sup an < 1 converge weakly to a fixed point of T for any f0 ∈ C.

Proof. A nonexpansive mapping is a nonexpansive partial contractivity with B = 0. With
the conditions given on E, C, and T, Browder’s Theorem implies that Fix(T) ̸= ∅ (see
reference [31]). Applying Theorem 3 we obtain the weak convergence of the Mann iterates
to a fixed point of T.
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4. SP-Algorithm for Nonexpansive Partial Contractivities

We study now the SP-algorithm (see, for instance, [12]) for nonexpansive partial
contractivities. This is a three-step iterative procedure given for n ≥ 0 by:

fn+1 = (1 − an)gn + anTgn, (15)

gn = (1 − bn)hn + bnThn, (16)

hn = (1 − cn) fn + cnT fn, (17)

for an, bn, cn ∈ [0, 1].
For an = cn = 1 for all n, we have the Karakaya algorithm (see, for instance, [20,32]).

In reference [19], we studied the convergence of this method for a quasi-normed space with
index s under the hypothesis as < 1. We obtained that, if f ∗ ∈ Fix(T), for values of the
scalars such that:

1 − s−1

1 − a
<

1 − k
1 − a

< an, bn, cn ≤ 1, (18)

where the SP-iterates satisfy the following inequality:

| fn+1 − f ∗|s ≤ (ks)3| fn − f ∗|s. (19)

where k is a constant such that a < k < s−1. Thus, the algorithm is convergent and the
order is O((ks)3n).

Case a = 1

In the next theorem, we consider f ∗ ∈ Fix(T) in the case a = s = 1.

Theorem 4. Let E be a uniformly convex Banach space, C ⊆ E nonempty, closed, and convex, and
T : C → C be a nonexpansive partial contractivity such that Fix(T) ̸= ∅. The SP-algorithm has
the LE and AF properties whenever the scalars an, bn, cn are chosen such that:

0 < inf an ≤ sup an < 1,

0 < inf bn ≤ sup bn < 1,

0 < inf cn ≤ sup cn < 1.

Proof. By (33) of [19], the SP-iterates of any f0 ∈ C satisfy the inequality:

|| fn+1 − f ∗|| ≤ || fn − f ∗||. (20)

Then, the sequence ( fn) is decreasing and bounded and consequently convergent.
Thus, the SP-iterates of a nonexpansive partial contractivity have the LE property (see
Definition 8). Let us define:

l := lim
n→∞

|| fn − f ∗||. (21)

Additionally, for the definition of nonexpansive partial contractivity:

||T fn − f ∗|| ≤ || fn − f ∗||, (22)

and consequently:
lim sup

n→∞
||T fn − f ∗|| ≤ l. (23)

Applying the expression (32) of reference [19]:

||Tgn − f ∗|| ≤ ||gn − f ∗|| ≤ || fn − f ∗||. (24)



Symmetry 2024, 16, 738 11 of 19

Consequently:

lim sup
n→∞

||Tgn − f ∗|| ≤ lim sup
n→∞

||gn − f ∗|| ≤ l. (25)

Moreover:

l = lim
n→∞

|| fn+1 − f ∗|| = ||(1 − an)(gn − f ∗) + an(Tgn − f ∗)||. (26)

Lemma 1 implies that the sequence (gn) has the AF property:

lim
n→∞

||gn − Tgn|| = 0. (27)

Let us check now that (gn) has the LE property as well.:

|| fn+1 − f ∗|| = ||(1 − an)(gn − f ∗) + an(Tgn − f ∗)|| ≤ ||gn − f ∗||+ an||Tgn − gn||,

then:
l ≤ lim inf

n→∞
||gn − f ∗||,

and thus, by (25):
lim

n→∞
||gn − f ∗|| = l. (28)

Consequently, (gn) has the LE property. Let us check now the properties of the
sequence (hn):

l = lim
n→∞

||gn − f ∗|| = lim
n→∞

||(1 − bn)(hn − f ∗) + bn(Thn − f ∗)||.

Using the definitions of nonexpansive partial contractivity, hn and the expression (31)
of reference [19]:

||Thn − f ∗|| ≤ ||hn − f ∗|| = ||(1 − cn)( fn − f ∗) + cn(T fn − f ∗)|| ≤ || fn − f ∗||, (29)

and thus:
lim sup

n→∞
||Thn − f ∗|| ≤ lim sup

n→∞
||hn − f ∗|| ≤ l. (30)

By (28):

l = lim
n→∞

||gn − f ∗|| = lim
n→∞

||(1 − bn)(hn − f ∗) + bn(Thn − f ∗)||.

This equality along (30) implies that:

lim
n→∞

||hn − Thn|| = 0, (31)

and (hn) has the AF property. Then:

||gn − f ∗|| = ||(1 − bn)(hn − f ∗) + bn(Thn − f ∗)|| ≤ ||hn − f ∗||+ bn||Thn − hn||,

and thus:
l = lim inf

n→∞
||gn − f ∗|| ≤ lim inf

n→∞
||hn − f ∗||. (32)

By (30) and (32), (hn) has the LE property and:

l = lim
n→∞

||hn − f ∗|| = lim
n→∞

||(1 − cn)( fn − f ∗) + cn(T fn − f ∗)||.

According to Lemma 1, the last equality along with (21) and (23) provide the AF
property of ( fn) : limn→∞ || fn − T fn|| = 0.
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Thus, we have proved that the SP-iterates have the LE and AF properties for any
f0 ∈ C.

As a consequence, we have the following results.

Theorem 5. Let E be a Hilbert space, and T : C → C, where C is nonempty, closed, bounded, and
convex, be a nonexpansive partial contractivity such that Fix(T) ̸= ∅. Then, the SP-algorithm
with 0 < inf an ≤ sup an < 1, 0 < inf bn ≤ sup bn < 1, 0 < inf cn ≤ sup cn < 1, converges
weakly to a fixed point of T for any f0 ∈ C.

Corollary 7. Let E be a Hilbert space, and T : C → C, where C is nonempty, bounded, closed, and
convex, be a nonexpansive mapping. Then, Fix(T) ̸= ∅ and the SP-algorithm with 0 < inf an ≤
sup an < 1, 0 < inf bn ≤ sup bn < 1, 0 < inf cn ≤ sup cn < 1, converges weakly to a fixed point
of T for any f0 ∈ C.

The proofs are similar to the given for the Mann iteration. If additionally f ∗ is a
cluster point of ( fn) or (|| fn||) converges to || f ∗||, then ( fn) converges strongly to f ∗, for
the reasons given in Theorem 3.

Corollary 5 is true for SP-iterations as well. The choice an = bn = cn = 1/2 for all n is
optimum in the sense of performing the least number of operations at each step.

5. Nonattracting Fractal Mappings on a Hilbert Space

In this section, we define fractal maps through an operator on the Hilbert space of
square-integrable Hilbert-valued maps B2(I, V), where I = [0, 1] and V is a real Hilbert
space, associated with an Iterated Function System. B2(I, V) is endowed with an inner
product defined for F, G ∈ B2(I, V), as:

< F, G >=
∫

I
< F(t), G(t) > dt,

and norm:
||F||2 = (

∫
I
||F(t)||2dt)1/2,

where || · || is the norm associated with the inner product in V. B2(I, V) is a Hilbert space.
It agrees with the Lebesgue space L2(I, V), when V = R.

Since the operator to be defined is nonexpansive, the fractal mappings cannot be
approached, in general, by the Picard iterations of the operator, and in this sense we call
them nonattracting fractal functions.

Let us consider a natural number N > 1 and a partition of the interval I = [0, 1],
0 = t0 < t1 < . . . < tN = 1. Let us define subintervals Im = [tm−1, tm) for m = 1, . . . N − 1,
and IN = [tN−1, tN ]. Consider affine maps Lm(t) = cmt + dm, satisfying the so-called
join-up conditions:

Lm−1(t0) = tm−1, Lm(tN) = tm. (33)

Let Fm : I × V → V, where V is a Hilbert space with associated norm || · ||, be defined
as:

Fm(t, v) = Rm(t, v) + Qm(t), (34)

where Rm : I × V → V and Qm : I → V. Let us assume that:

||Fm(t, v)|| ≤ K, ||Qm(t)|| ≤ K′, (35)

for t ∈ I, v ∈ V, m = 1, · · · , N and K + K′ ≤ 1. Let us assume that Rm, Qm are Bochner
square-integrable maps. Let us assume that Rm are uniformly nonexpansive in the second
variable, that is to say:

||Rm(t, v)− Rm(t, v′)|| ≤ ||vs. − v′||, (36)
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for any t ∈ I, m = 1, . . . N and v, v′ ∈ V. The mappings Wm(t, v) = (Lm(t), Fm(t, v), ) for
m = 1, 2, . . . , N, compose an iterated function system whose attractor is the graph of an
integrable map (see for instance [13]).

Let C ⊆ B2(I, V) be nonempty, closed, and convex and let us define T : C → C as:

TG(t) = Fm(L−1
m (t), G ◦ L−1

m (t)), (37)

for t ∈ Im. The conditions given on Fm imply that T : C → C, where C = B̄(0, 1) is the
closed unit ball (see reference [13] for details). The operator T is nonexpansive, due to
condition (36).

The next result, due to F.E. Browder in an article of 1965, gives sufficient conditions for
the existence of fixed points of nonexpansive mappings on subsets of Hilbert spaces [31].

Theorem 6. Let C be a nonempty closed bounded convex subset of a Hilbert space H, and T : C →
C be a nonexpansive map, then T has a fixed point in C.

According to this result, the operator T defined by the expression (37) satisfies the
conditions of Browder’s Theorem and it has some fixed point F∗ ∈ B̄(0, 1) ⊆ B2(I, V). The
graph of F∗ : I → V has a fractal structure (see Theorem 5 of the reference [13]). The map
F∗ need not be unique, and the Picard iterations of T may fail to converge to it, and in this
sense, we call F∗ a nonattracting Hilbert-valued fractal mapping.

The results obtained in the second section provide the following theorems, which collect
several properties of the set of fixed points of T and the convergence of the iterations studied.

Theorem 7. Let C = B̄(0, 1) ⊆ B2(I, V) and T : C → C, defined as in (37). Let NT := Fix(T)
be the set on nonattracting fractal maps associated with T. Then:

1. NT is nonempty, closed, and convex.
2. NT is either a singleton or is infinite.
3. For any G ∈ C, there exists a unique F∗ ∈ NT with minimal distance to G, that is to say,

||G − F∗||2 = inf{||G − F||2 : F ∈ NT}.
4. If a sequence (Fn) ⊆ C converges weakly to F ∈ C and it satisfies the AF property, then

F ∈ NT , that is to say, F is a nonattracting fractal function associated with T.

Theorem 8. Let C = B̄(0, 1) ⊆ B2(I, V) and T : C → C, defined as in (37).

1. The Mann iterates chosen such that 0 < inf an ≤ sup an < 1, converge weakly to a
nonattracting fractal function F∗ for any G0 ∈ C. If additionally, ||Gn||2 converges to ||F∗||2
either F∗ is a cluster point of (Gn), the convergence is strong.

2. If (Gn) is the quoted Mann iterates and F∗ is its weak limit, then:

< Gn, G >→< F∗, G >,

for any G ∈ C.
3. For V = R, that is to say, E is the real Lebesgue space L2(I) then:∫

I
GnGdµ →

∫
I

F∗Gdµ,

and in particular: ∫
I

Gndµ →
∫

I
F∗dµ.

4. Krasnoselskii iterations with 0 < λ < 1 satisty the properties (1)–(3).
5. SP-iterations with scalars such that 0 < inf an ≤ sup an < 1, 0 < inf bn ≤ sup bn < 1,

0 < inf cn ≤ sup cn < 1, satisfy the properties (1)–(3).
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6. Fractal Mappings Defined through φ-Contractions

In this section, we consider fractal functions defined by an operator T satisfying an
inequality of φ-contractive type. That is to say:

||TG − TG′||2 ≤ φ(||TG − TG′||2), (38)

where φ : R+ → R+ satisfies certain conditions, and G, G′ ∈ B2(I, V). In reference [19], a
(φ − ψ) partial contractivity was defined in a b-metric space X, through the inequality:

d(Tx, Ty) ≤ φ(d(x, y)) + ψ(d(x, Tx)),

for any x, y ∈ X, whenever φ and ψ meet specific conditions. A mapping T fulfilling (38) is
a (φ − ψ) partial contractivity for ψ = 0.

There is a great number of results about the existence of fixed points of mappings
satisfying (38). We recall important results from Matkowski [33] and Boyd and Wong [34]
as a couple of examples. The next theorem can be read in reference [33].

Theorem 9. Let (X, d) be a complete metric space, and T : X → X satisfying:

d(Tx, Ty) ≤ φ(d(x, y)),

for any x, y ∈ X, where φ : R+ → R+ is nondecreasing and such that limn→∞ φn(δ) = 0 for any
δ > 0. Then, T has a unique fixed point x∗ ∈ X and the Picard iterations of any point converge
to it.

Remark 6. The order of convergence of the Picard iterations is obviously d(Tnx, x∗) ≤ φn(d(x0, x∗)).

Definition 10. A self-map T satisfying the conditions given in Theorem 9 is a φ-contraction, and
φ is a comparison function.

Example 6. The map φ(δ) = δ/(1 + δ) for δ ≥ 0 is a comparison function.

Proposition 8. If T is a φ-contraction on a complete metric space, then T is nonexpansive, and
consequently, it is quasi-nonexpansive and Lipschitz continuous.

Proof. The conditions imposed to a comparison function imply that φ(δ) < δ for any δ > 0.
By Matkowski’s Theorem, T has a fixed point x∗. Then, for any x ∈ X:

d(Tx, x∗) ≤ φ(d(x, x∗)) ≤ d(x, x∗),

and T is quasi-nonexpansive. For all x, y ∈ X:

d(Tx, Ty) ≤ φ(d(x, y)) ≤ d(x, y),

and consequently, T is nonexpansive and Lipschitz continuous.

Definition 11. A comparison function φ that satisfies the condition δ − φ(δ) → ∞ when δ tends
to infinity is called a strict comparison function, and T is a strict φ-contraction.

For a strict comparison function we have a different way to evaluate the order of
convergence of the Picard iterations of a φ-contraction. This result is due to Russ in the
reference [35].

Theorem 10. If T is a strict φ-contraction and x∗ ∈ X is its fixed point then, for any x ∈ X:

d(Tnx, x∗) ≤ φn(δ0),
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where δ0 := sup{δ ∈ R+ : δ − φ(δ) ≤ d(x, Tx)}.

We recall another important result of fixed point existence due to Boyd and Wong [34].
Let us denote, for a metric d, the range of d as P, that is to say: P := {d(x, y) : x, y ∈ X},
and let P̄ be its closure.

Theorem 11. Let (X, d) be a complete metric space, and T : X → X satisfying:

d(Tx, Ty) ≤ φ(d(x, y)),

for any x, y ∈ X, where φ : P̄ → R+ is upper semicontinuous from the right and such that
φ(δ) < δ for any δ > 0. Then, T has a unique fixed point and the Picard iterations of any point
converge to it.

Turning to the fractal mappings, we consider now the interval, partition, and maps
Lm as in Section 5, and Fm(t, v) = Rm(t, v) + Qm(t), where Rm is such that the operator
Hm : B2(I, V) → B2(I, V), defined as Hm(G)(t) = Rm(t, G(t)), is a φ-contraction for
m = 1, . . . N, that is to say:

||Hm(G)− Hm(G′)||2 ≤ φ(||G − G′||2),

for any G, G′ ∈ B2(I, V). Then, the operator defined by TG(t) = Fm(L−1
m (t), G ◦ L−1

m (t)) for
t ∈ Im is also a φ-contraction since:

||TG − TG′||22 =
N

∑
m=1

∫
Im
||Rm(L−1

m (t), G ◦ L−1
m (t))− Rm(L−1

m (t), G′ ◦ L−1
m (t))||2dt,

||TG − TG′||22 =
N

∑
m=1

cm

∫
I
||Rm(t, G(t))− Rm(t, G′(t))||2dt,

||TG − TG′||22 =
N

∑
m=1

cm

∫
I
||Hm(G)(t)− Hm(G′)(t)||2dt =

N

∑
m=1

cm||Hm(G)− Hm(G′)||22

and thus:
||TG − TG′||22 ≤ (φ(||G − G′||2))2,

since ∑N
m=1 cm = 1 due to conditions (33). Consequently, T is a φ-contraction, it has a

unique fixed point F∗ ∈ B(I, V) and the Picard iterations are convergent (Theorem 9).
As said previously, the conditions given for the function φ imply that φ(δ) < δ for

δ > 0, and consequently, T is nonexpansive and continuous (Proposition 8). The results
given in Section 5 are applicable to it. In this case we have a result of strong convergence
for Krasnoselskii algorithm specific for Hilbert spaces.

Theorem 12. Let us assume that the comparison function φ is such that φ(t) ≤ at for any t > 0
and a < 1. Then, the Krasnoselskii iterations of the operator T are strongly convergent to the fixed
point for 0 < λ < 1 with order of convergence O(kn), where:

k := ((1 − λ)2 + 2aλ(1 − λ) + λ2)
1
2 .

Proof. Let us consider the Krasnoselskii operator:

T̄(G) = (1 − λ)G + λTG,

for G ∈ B2(I, V). Then, for any G, G′ ∈ B2(I, V),

||T̄G− T̄G′||22 = (1−λ)2||G−G′||22 + 2λ(1−λ) < TG−TG′, G−G′ > +λ2||TG−TG′||22,
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Applying the Cauchy–Schwartz inequality in the second summand, and the conditions
on T and φ:

||T̄G − T̄G′||22 ≤ ((1 − λ)2 + 2aλ(1 − λ) + λ2)||G − G′||22.

It is an easy exercise to prove that:

k := ((1 − λ)2 + 2aλ(1 − λ) + λ2)
1
2 < 1.

Consequently, T̄ is a Banach contraction with ratio k, and its iterations are conver-
gent.

7. Mappings of α-Fractal Type

Let us consider the maps Lm, defined as in Section 5 and Fm(t, v) = Rm(t, v) + Qm(t).
Given two mappings F, F′ ∈ B2(I, V), we now define Qm as:

Qm(t) = F ◦ Lm(t)− Rm(t, F′(t)),

for m = 1, . . . N. Let us assume that Rm are as in the previous section, that is to say, the
operators Hm defined as Hm(G)(t) = Rm(t, G(t)) are φ− contractions on B2(I, V):

||Hm(G)− Hm(G′)||2 ≤ φ(||G − G′||2),

where φ is a comparison function. As seen before, T is a φ-contraction as well. This iterated
function system defines a map Fφ : I → V as the unique fixed point of the operator T. In
previous papers, Fφ : I → V has been called the fractal convolution of F and F′ when Rm
are linear contractions, and denoted as Fφ = F ∗ F′ (see for instance [13]).

Figures 1 and 2 illustrate the action of the system {(Lm(t), Rm(t, v))} on the real func-
tion F(t) = e−t sin(4πt) in the interval I = [0, 1]. In this example, V = R, F′(t) =

cos(π(1−2t)
2 ), the number of evenly sampled subintervals is N = 10, and Rm(t, v) =

t cos(Nv)/(N + 1).

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

Figure 1. Graph of the function F(t) = e−t sin(4πt) in the interval I = [0, 1].

For a linear contraction Rm(t, v) = αm(t)v (where αm is a real function such that
−1 < |αm(t)| < 1), Hm(G)(t) = αm(t)G(t) is a φ-contraction for φ(t) = At, and A =
sup{|αm(t)| : m = 1 . . . , N; t ∈ I}, assuming that A exists. For this kind of fractal maps, it
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is easy to establish the distance between F and its fractal counterpart, usually denoted as
Fα. We have (see for instance [13,14]):

||Fα − F||2 ≤ A
1 − A

||F − F′||2. (39)

However, in the general case, this bound is not that easy. We will approach this
problem with the help of approximate operators. We begin with a definition.

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

Figure 2. Graph of the fractal version of the function F(t) = e−t sin(4πt) in I = [0, 1].

Definition 12. Let be given a metric space (X, d), two self-maps T, U : X → X are approximate
operators if there exists k ≥ 0 such that d(Tx, Ux) ≤ k for any x ∈ X.

The bound k determines the distance between the fixed points of T and U, according
to the next result, which can be read in the reference [30], Theorems 7.5 and 7.6.

Theorem 13. Let be given a metric space (X, d), and two approximate operators T, U : X → X be
such that d(Tx, Ux) ≤ k for any x ∈ X.

If T is a strict φ-contraction whose fixed point if xT ∈ X and xU ∈ Fix(U), then:

d(xT , xU) ≤ δk, (40)

where δk = sup{δ ∈ R+ : δ − φ(δ) ≤ k}.
If T is a φ-contraction, where φ is subadditive and ∑∞

n=0 φn(δ) < ∞ for any δ > 0, then:

d(xT , xU) ≤ s(k), (41)

where s(k) = ∑∞
n=0 φn(k).

Let us consider the operator of fractal interpolation, for the maps Fm described at the
beginning of this section. Then:

TG(t) = F(t) + Rm(L−1
m (t), G ◦ L−1

m (t))− Rm(L−1
m (t), F′ ◦ L−1

m (t)),

for t ∈ Im. Let us define U(G) = F for all G ∈ B2(I, V). Then, T and U are approximate
operators in the case where k := supδ φ(δ) < ∞ since, arguing as in Section 6:

||TG − UG||2 = ||TG − F||2 ≤ φ(||G − F′||2) ≤ k.

Let Fφ be the fixed point of T. According to Theorem 13:
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1. If T is a strict φ-contraction, then:

||Fφ − F||2 ≤ δk = sup{δ ∈ R+ : δ − φ(δ) ≤ k}.

2. If T is a φ-contraction, where φ is subadditive and ∑∞
n=0 φn(δ) < ∞ for any δ > 0,

then:

||Fφ − F||2 ≤ s(k) =
∞

∑
n=0

φn(k).

If φ is unbounded, but T : C → C where C is bounded and closed, we can consider
k := φ(diam(C)) where diam(C) := sup{||G − G′||2 : G, G′ ∈ C}.

A different approach for real continuous functions can be read in the reference [14].

8. Conclusions

The first aim of this article was the presentation of a new type of nonexpansiveness,
which includes the usual nonexpansive mappings like a particular case. The new self-maps
T : E → E so defined have been called nonexpansive partial contractivities. Some poperties
of the set of their fixed points Fix(T) have been studied. For instance, Fix(T) is convex
and closed if the space E is a strictly convex Banach space. Consequently, the set of fixed
point is empty, a singleton, or infinite. If additionally E is uniformly convex, then Fix(T)
is a Chebyshev set, that is to say, for every element of the space, there is a fixed point of
minimal distance.

Afterwards, two iterative procedures for the approximation of fixed points in the
context of normed spaces have been studied: Mann and SP-algorithms. For every method,
two different cases have been considered. The fist one concerns quasi-normed spaces, and
a ratio a of the self-map linked to the partial contractivity. It has been proved that if as < 1,
where s is the index of the quasi-norm, and the scalars are suitably chosen, the algorithms
converge strongly to a fixed point, with asymptotic statiblity. In a second instance, the
nonexpansive case has been studied (a = 1). It has been proved that the sequence of iterates
satisfy the LE and AF properties, whenever the space E is a uniformly convex Banach space,
and the scalars associated with the algorithms take intermediate values. If E is a Hilbert
space, the algorithms converge weakly to a fixed point. In particular, it is proved that the
symmetrically averaged iterative procedures perform well in the sense of convergence with
the least number of operations at each step, in the case where a = 1 and E is Hilbert.

These findings have been used for the definition of fractal mappings of type F∗ : I → V,
where I is a real compact interval and V is a Hilbert space. These maps are fixed points
of a nonexpansive operator defined on the space of square-integrable Bochner mappings,
which contain the space L2(I) as a particular case (for V = R). In this text, they are called
nonattracting fractal mappings, in the sense that they cannot be approximated by the
typical Picard iterations of the operator in general.

In a very different approach, other fractal mappings on Hilbert spaces have been
defined through φ-contractions. Apart of their existence, the strong convergence of the
Picard and Krasnoselskii iterations has been proved.

Finally, mappings of α-fractal type have been considered, in a framework much more
general than the usual real case. The maps here defined are not linked to a scale factor, and
they are defined by means of φ-contractions. The new maps Fφ are fractal perturbations
of mappings F : I → V, where I is a real compact interval and V is a Hilbert space. The
distance between Fφ and F has been bounded with the use of approximate operators.
The fractal maps studied here own a quasi-symmetry, in the sense that their graphs are
composed of transformed copies of itself.
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