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Andrew Davison, Ian Reid y Brian Williams. Gracias tanto por el
software inicial de SLAM monocular como por el de relocalización.
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Resumen

A pesar de los grandes avances que ha supuesto la ciruǵıa laparoscópica
en el ámbito quirúrgico, esta aún presenta dificultades en su realización cau-
sadas principalmente por la complejidad de sus maniobras y sobre todo por
la pérdida de la percepción de profundidad (se ha pasado de una ciruǵıa
completamente 3D –ciruǵıa abierta o laparotomı́a–, donde el cirujano teńıa
un contacto directo con los órganos, a una ciruǵıa realizada a través de una
cámara, donde la escena 3D se proyecta a un plano 2D –imagen–, y un in-
strumental especial).

El principal objetivo de esta tesis es hacer frente, en la medida de lo posi-
ble, a esa pérdida de percepción 3D haciendo uso de algoritmos de Simultane-
ous Localization and Mapping (SLAM por sus siglas en inglés) desarrollados
en los campos de la robótica móvil y la visión por computador a lo largo de
estos últimos años. Estos algoritmos permiten localizar, en tiempo real (25
∼ 30 imágenes por segundo), una cámara que se mueve libremente dentro
de un entorno ŕıgido desconocido y, al mismo tiempo, construir un mapa de
ese entorno únicamente haciendo uso de las imágenes capturadas por dicha
cámara.

Este tipo de algoritmos ha sido ampliamente validado tanto en entornos
de construcción humana (edificios, habitaciones, ...) como en entornos de
exteriores mostrando una gran robustez ante oclusiones, movimientos brus-
cos de la cámara o entornos atestados de objetos. En esta tesis se pretende
extender un poco más el uso de este tipo de algoritmos mediante su apli-
cación a la ciruǵıa laparoscópica. Debido a la naturaleza de las imágenes del
interior del cuerpo (escenas deformables, brillos, condiciones de iluminación
variable, limitaciones en los movimientos, ...), aplicar esta clase de algoritmos
a laparoscopia supone un completo desaf́ıo.

El conocimiento de la localización de la cámara (laparoscopio en ciruǵıa
laparoscópica) con respecto a la escena (cavidad abdominal) y el mapa 3D de
esta abren varias posibilidades de gran interés dentro del campo quirúrgico.
Este conocimiento permite: realizar inserciones en realidad aumentada sobre
las imágenes del laparoscopio (ej. alineamiento de modelos TAC 3D preoper-
atorios); mediciones de distancias 3D intracavitarias; o reconstrucciones 3D
fotorrealistas de la cavidad abdominal recuperando sintéticamente la profun-
didad perdida. Estas nuevas cualidades aportan seguridad y rapidez a los
procedimientos quirúrgicos sin perturbar el flujo de trabajo clásico. Por lo
tanto, estas nuevas herramientas están disponibles en el arsenal del cirujano
siendo este quien decide si usarlas o no. Además, el conocimiento de la lo-
calización de la cámara con respecto a la cavidad abdominal del paciente es



fundamental para el futuro desarrollo de robots que operen automáticamente
ya que, gracias a esa localización, el robot seŕıa capaz de localizar, con re-
specto al paciente, cualquier otra herramienta que fuese controlada por él
mismo.

De forma detallada, las contribuciones de esta tesis han sido:

1. Demostrar la viabilidad de aplicar algoritmos de SLAM en ciruǵıa la-
paroscópica mostrando experimentalmente la obligatoriedad de emplear
un emparejamiento de datos robusto.

2. Robustecer uno de estos algoritmos, en concreto el EKF-SLAM, adap-
tando un sistema de relocalización y mejorando la asociación de datos
mediante un algortimo de emparejamiento robusto.

3. Desarrollo de un método de emparejamiento robusto (algoritmo 1-Point
RANSAC).

4. Desarrollo de un procedimiento quirúrgico que facilita el uso de SLAM
visual en laparoscopia.

5. Validar extensivamente el algoritmo de EKF-SLAM robusto (EKF + re-
localización + 1-Point RANSAC) obteniendo errores milimétricos y fun-
cionando en tiempo real sobre simulaciones y ciruǵıas humanas reales.
La ciruǵıa seleccionada ha sido la eventroplastia (reparación de hernias
ventrales).

6. Demostrar el potencial que tienen estos algoritmos en laparo-
scopia: permiten hacer inserciones en realidad aumentada, recuperar
sintéticamente la profundidad del campo operativo perdida por usar
cámaras monoculares, y realizar medidas de distancias únicamente con
una herramienta de laparoscopia y las imágenes obtenidas por el la-
paroscopio.

7. Hacer una validación cĺınica mostrando que estos algoritmos permiten
acortar los tiempos quirúrgicos de las operaciones y además aportar
seguridad a estas.



Abstract

In spite of the great advances in laparoscopic surgery, this type of surgery
still shows some difficulties during its realization, mainly caused by its com-
plex maneuvers and, above all, by the loss of the depth perception. Unlike
classical open surgery –laparotomy– where surgeons have direct contact with
organs and a complete 3D perception, laparoscopy is carried out by means
of specialized instruments, and a monocular camera (laparoscope) in which
the 3D scene is projected into a 2D plane –image.

The main goal of this thesis is to face with this loss of depth perception by
making use of Simultaneous Localization and Mapping (SLAM) algorithms
developed in the fields of robotics and computer vision during the last years.
These algorithms allow to localize, in real time (25 ∼ 30 frames per second),
a camera that moves freely inside an unknown rigid environment while, at
the same time, they build a map of this environment by exploiting images
gathered by that camera.

These algorithms have been extensively validated both in man-made en-
vironments (buildings, rooms, ...) and in outdoor environments, showing
robustness to occlusions, sudden camera motions, or clutter. This thesis
tries to extend the use of these algorithms to laparoscopic surgery. Due to
the intrinsic nature of internal body images (they suffer from deformations,
specularities, variable illumination conditions, limited movements, ...), ap-
plying this type of algorithms to laparoscopy supposes a real challenge.

Knowing the camera (laparoscope) location with respect to the scene (ab-
dominal cavity) and the 3D map of that scene opens new interesting possibil-
ities inside the surgical field. This knowledge enables to do augmented reality
annotations directly on the laparoscopic images (e.g. alignment of preopera-
tive 3D CT models); intracavity 3D distance measurements; or photorealistic
3D reconstructions of the abdominal cavity recovering synthetically the lost
depth. These new facilities provide security and rapidity to surgical proce-
dures without disturbing the classical procedure workflow. Hence, these tools
are available inside the surgeon’s armory, being the surgeon who decides to
use them or not. Additionally, knowledge of the camera location with respect
to the patient’s abdominal cavity is fundamental for future development of
robots that can operate automatically since, knowing this location, the robot
will be able to localize other tools controlled by itself with respect to the
patient.

In detail, the contributions of this thesis are:



1. To demonstrate the feasibility of applying SLAM algorithms to la-
paroscopy showing experimentally that using robust data association
is a must.

2. To robustify one of these algorithms, in particular the monocular EKF-
SLAM algorithm, by adapting a relocalization system and improving
data association with a robust matching algorithm.

3. To develop of a robust matching method (1-Point RANSAC algorithm).

4. To develop a new surgical procedure to ease the use of visual SLAM in
laparoscopy.

5. To make an extensive validation of the robust EKF-SLAM (EKF +
relocalization + 1-Point RANSAC) obtaining millimetric errors and
working in real time both on simulation and real human surgeries. The
selected surgery has been the ventral hernia repair.

6. To demonstrate the potential of these algorithms in laparoscopy: they
recover synthetically the depth of the operative field which is lost by
using monocular laparoscopes, enable the insertion of augmented reality
annotations, and allow to perform distance measurements using only a
laparoscopic tool (to define the real scale) and laparoscopic images.

7. To make a clinical validation showing that these algorithms allow to
shorten surgical times of operations and provide more security to the
surgical procedures.

xii
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1
Introduction

1.1 Laparoscopy

Laparoscopic surgery is a modern technique of minimally invasive surgery
(MIS). In this technique, operations inside the abdominal cavity are per-
formed with small incisions (5-10 mm) through the abdominal wall in con-
trast with large incisions of classical open surgery (laparotomy).

Laparoscopy requires of a telescopic rod lens system connected to a video-
camera (endoscope or laparoscope) that gathers images of the abdominal
cavity. These images are displayed on some monitor (TV, computer screen)
and used by surgeons during the operation in order to see the interior of
the abdomen. Since the abdominal cavity is dark, attached to the lens is
a fiber optic cable system connected to a “cold” light source (halogen or
xenon) that illuminates the operative field. The abdominal wall has to be
separated from the internal organs, and then the abdomen is insufflated with
carbon dioxide gas (CO2) and blown up like a balloon creating a workspace
called pneumoperitoneum. CO2 is used because it is a gas produced by the
human body, therefore, it is easily absorbed by tissues and removed by the
respiratory system. Additionally, CO2 is non-flammable, which is important
because electrosurgical devices are commonly used in laparoscopic proce-
dures. Finally, both camera and tools are inserted in the abdominal cavity
through 5-10 mm cannula-shaped input ports called trocars.

Despite the incisions of the input ports being small, laparoscopy has its
own risks. Precisely the most important ones are caused by trocars. During
their insertion, they can damage internal organs (small or large bowel) caus-
ing perforations and peritonitis, or penetrate blood vessels causing vascular
injuries such as hematomas or hemorrhages that may be life-threatening.

1



2 1. Introduction

Electrosurgical tools can cause electrical burns that can lead to organ per-
forations and even peritonitis. Patients with existing pulmonary or heart
disorders may not tolerate pneumoperitoneum resulting in a need for conver-
sion to open surgery after the initial attempt at the laparoscopic approach.
Besides, the pressure exerted by CO2 may cause difficulties in the venous
return and increase the cardiac output making this surgery more dangerous
for this type of patients. Finally, since not all of the CO2 introduced into the
abdominal cavity is removed through the incisions, it tends to rise and push
the diaphragm, muscle that separates the abdominal cavity from the tho-
racic cavity and facilitates breathing, putting pressure on the phrenic nerve
and causing sensation of pain that disappears as CO2 is eliminated through
respiration.

Nevertheless, these risks are thoroughly compensated with the advantages
of this kind of surgery versus laparotomy. Although there exists a minimal
risk of hemorrhages, this is much lower than in laparotomy, reducing the
chance of needing a blood transfusion. Smaller incisions reduce muscular
injuries in the abdominal wall resulting in a lesser post-operative aesthetic
impact, and a lower risk of wound infections and pain; therefore, less antibi-
otics and pain medication are needed. Smaller incisions also shorten recovery
time, often with a same day discharge, which leads to a faster return to every-
day living. Besides, reduced exposure of internal organs to possible external
contaminants decreases the risk of acquiring infections.

From the surgeons’ perspective, laparoscopy presents several disadvan-
tages with respect to laparotomy. The limited range of motion of surgical
tools, that results in a loss of dexterity; the tool tip that moves in the oppo-
site direction to the surgeon’s hands, due to it pivoting around the fulcrum
(entering point in the abdominal cavity), making laparoscopic surgery non-
intuitive; and the indirect manipulation of tissues through the laparoscopic
tools, that results in a reduction of tactile sensation making diagnosis of tis-
sues tissues by feeling more difficult (e.g. to detect tumors), and perform
delicate procedures such as suturing, make the learning curve be complex
and require to make a great effort to learn this technique. Additionally, since
the operations are usually performed through monocular images (the major-
ity of endoscopes are monocular), surgeons are faced with the loss of depth
perception. Besides, the endoscope Field of View (FoV) is limited and not
all the operative field is visible at each moment, as a consequence, surgeons
require a deep knowledge of the patient’s anatomy. This knowledge is also
required when surgeons need to remove critical structures such as tumors or
work in critical areas such as areas near vital blood vessels.

The first use of a laparoscope was performed in a dog by Georg Kelling
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in 1901. In 1910, Hans Christian Jacobaeus, based on Kelling’s works, re-
ported the first human laparoscopic human intervention [Hat+06]. However,
the use of laparoscopy was very limited, only diagnosis and performance
of simple gynecologic procedures were performed, until 1975 when Taras-
coni performed the first organ resection (salpingectomy) first reported in the
Third AAGL (American Association of Gynecologic Laparoscopist) Meeting
in 1976, and later published in [Tar81]. Nowadays, laparoscopy is very ex-
tended and practically any abdominal or pelvic surgery can be performed
with this technique (cholecystectomies, hepatectomies, bowel resections, her-
nia repairs, ...). The present and future of laparoscopy is strongly tied to the
developments in computer vision and robotics which ease the dexterity and
improve the depth perception, the FoV, and the tactile sensation by means of
robots, stereo endoscopes, SLAM algorithms or haptic interfaces. It is worth
to mention the DaVinci System as an example of these developments.

1.2 SLAM

Simultaneous Localization And Mapping (SLAM) is a classical problem and
one of the most researched topics in mobile robotics. Given a mobile sensor
moving along an unknown trajectory in an unknown environment, SLAM
is able to simultaneously estimate both the environment structure (a 3D
map of the environment) and the sensor location with respect to that map.
This estimation process is carried out taking the information gathered by the
sensor as the sole input data to the SLAM algorithm. Additionally, SLAM
is usually required to work in real-time at frame rate.

In the most typical SLAM problem, sensory information comes from pro-
prioceptive sensors –odometry or inertial measurement units– and extero-
ceptive sensors, that measure entities external to the robot. Traditionally,
laser has been the predominant exteroceptive sensor used in SLAM, although
other sensors, like sonars, have also been used. It is only very recently that
cameras have been adopted massively by the robotic community as the main
SLAM sensor. In this thesis, a monocular camera (laparoscope) is used as the
unique sensor and full 3D SLAM is performed. This configuration is usually
named monocular SLAM.

The monocular SLAM problem is particularly challenging because only
a sequence of 2D projections of a 3D scene is available; in any case, 30 Hz
real-time systems estimating up-to-scale 3D camera motions and maps of
3D points using commodity cameras and computers are widely available for
mobile robotics environments nowadays. All these systems provide extensive
experimental validation of the SLAM algorithms and real-time performance
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for man-made, mainly rigid, scenes which are typical in mobile robotics.
Monocular SLAM has been possible thanks to intense research on salient

feature detection and description [Can86; HS88; ST94; Low04; RD05] and
spurious rejection [FB81; NT01] which has provided with an automated way
of robustly matching features along images. Finally, it has been tackled from
two radically different approaches. On the one hand, algorithms based on
keyframes (keyframe methods) which try to adapt traditional pairwise offline
Stucture form Motion (SfM) + Bundle Adjustment (BA) methods to achieve
sequential online estimation. In order to do so, a sparse set of keyframes is
chosen and SfM methods and BA are applied over a subset of them that are
close to the current frame. One of the best performers in this vein is the
Parallel Tracking And Mapping (PTAM) algorithm proposed by Klein and
Murray [KM07]. On the other hand, filtering methods which apply Bayesian
filtering techniques that, at each step, integrate the information from the cur-
rent frame into a multidimensional probability distribution that summarizes
the information gathered for all previous frames along the sequence. Davison
was the first to demonstrate real-time performance with this approach using
an Extended Kalman Filter (EKF) [Dav03; Dav+07].

1.3 The aim: Laparoscopy as a monocular SLAM
problem

The main goal of this thesis is to demonstrate the feasibility of applying
SLAM algorithms, that come from robotics and computer vision and that
recover the 3D of a scene and the camera motion in real time, to laparoscopic
environments.

Laparoscopy can be posed as a monocular SLAM problem. In la-
paroscopy, a surgeon explores the abdominal cavity by pivoting the laparo-
scope around the fulcrum. Then, the tip of the laparoscope moves inside
the abdomen gathering images from this cavity. SLAM algorithms enable
to estimate an up-to-scale 3D map of the observed cavity from these images
without resorting to any additional sensor such as optical or magnetic track-
ers, accelerometers, structured light, or artificial landmarks. Furthermore,
it is worth noting that SLAM not only recovers the 3D model, but also the
actual trajectory followed by the laparoscope.

SLAM opens new interesting possibilities inside the surgical field. The
knowledge of the laparoscope location with respect to the abdominal cavity
enables to do augmented reality annotations directly on laparoscopic images
(e.g. alignment with preoperative 3D CT models, signal critical regions like
blood vessels, or provide other additional information); intracavity 3D dis-
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tance measurements, provided that the absolute scale of the map is recovered
from the observation of a known-size surgical tool; or photorealistic 3D re-
constructions of the adominal cavity recovering synthetically the lost depth
and improving the FoV. These new facilities provide security and rapidity to
surgical procedures.

Furthermore, the camera location knowledge with respect to the patient’s
abdominal cavity is fundamental for future development of robots that can
operate automatically since, thanks to this location, the robot will be able
to localize other tools, controlled by itself, with respect to the patient.

1.4 Related Work

The usage of SLAM-like methods in MIS can be traced back to the seminal
work in providing 3D models from body monocular image sequences pro-
posed by Burschka et al. [Bur+05]. Assuming scene rigidity, the system
produces a map for registering preoperative CT scans with the endoscopic
images. Its main limitations are map size and the lack of robustness with
respect to outlier matches. Computer vision methods based on a discrete set
of views have been applied to medical images, assuming scene rigidity, in or-
der to just compute the 3D structure of the cavity. In [WSC07], the classical
two view RANSAC structure from motion is applied to mannequin images
to determine the 3D structure; a constraint-based factorization 3D modelling
method produces a dense 3D reconstruction in near real time. In [Dan+07],
structure from motion is used to build a photorealistic 3D reconstruction of
the colon; in a first stage, images are processed pairwise to produce an initial
3D map; in a second stage, all the maps are joined in a unique photorealistic
3D cavity model. In [Mir+12], these methods have been refined and extended
to deal with multiple views with a significant boost in performance in rigid
medical scenes. Thanks to careful feature selection and a quite robust spuri-
ous tracking ASKC [Wan+08] (Adaptive Scale Kernel Consensus), they are
able to estimate both 3D models of the cavity and the location of the camera
with respect to this cavity up to submillimeter accuracy in a cadaver for en-
donasal skull surgery. Hu et al. in [Hu+12], in a similar vein, propose a 3D
structure estimation from multiple images. They deal with outliers by means
of the trifocal tensor, then a bundle adjustment optimization is performed
reporting accuracies slightly over a millimeter.

Cavity 3D reconstruction from medical sequences of a non-moving stereo
endoscope has been proposed in [MDCM01] and [SDY05]. Visual SLAM
methods have proven to be valid to process medical images coming from
a moving stereo endoscope in [Mou+06], where an EKF stereo SLAM, as-
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suming smooth camera motion and scene rigidity, is validated over synthetic
sequences and qualitatively over in-vivo animal sequences; no usage of algo-
rithms robust to spurious data is reported. In [MY10], the scene non-rigidity
is considered: EKF visual SLAM is combined with a dynamic periodic model,
learnt online, to estimate the respiration cycle from stereo images.

Intensive research is being done in designing medical miniaturised devices
that can provide depth map as stereo endoscopes while avoiding the corre-
spondence problem. A monoport structured light device based on a stereo
scope is presented in [Mau+12], preliminary but promising results are re-
ported. In [Sch+12], a catadioptric structured light prototype specifically
designed to recover the lumen of a tubular cavity is described, reporting 0.1
mm accuracy tested on a phantom and ex-vivo animal. In [Haa+13], a mono-
port prototype combining time-of-flight (ToF) and RGB is proposed; despite
the low resolution of the depth map, promising results are reported. All
these previous devices are still under development, but in any case the rich
3D information that they can provide suggests a promising venue of research
for SLAM algorithms.

Our proposal is also based on EKF SLAM, however, we deal with monoc-
ular sequences, our method is robust to outliers, and we provide extensive
validation over both synthetic data and real human in-vivo sequences.

Malti et al. [MBC11] propose a two-phase 3D monocular reconstruction
of the abdominal cavity based on NRSfM (Non-Rigid Structure from Mo-
tion). The first phase consists in exploring the abdominal cavity in order to
obtain an initial 3D rigid reconstruction using two views and the essential
matrix + camera resection + bundle adjustment combination. Afterwards,
in the second phase, this reconstruction is exploited to infer 3D scene defor-
mations during operation. The algorithm is one of the first to deal with the
scene non-rigidity under general deformation. However, the correspondences
are assumed known, computing time is not reported, and only a qualitative
validation over one sequence is provided.

Recently, methods based on photometric properties are being used in en-
doscopic sequences. In [MBC12], the results of [MBC11] are taken as input to
provide a dense 3D model based on shape from shading; only a quantitative
validation for synthetic data, and qualitative validation for one in-vivo se-
quence of the uterus are provided. Collins et al. [CB12b] propose shape from
shading in real time at 23Hz for medical rigid scenes thanks to a GPGPU
implementation; in-vivo and ex-vivo experimental validation is provided but
the authors acknowledge poor conditioning and the strong assumption of a
constant albedo as prior data. The same authors propose in [CB12a] a pre-
liminary work based on photometric stereo with learnt reflectance models
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in order to estimate a 3D reconstruction of an organ from one image using
three different color light sources; for this, the tip of the endoscope has to be
modified to include three color filters. The method is able to compute the
absolute depth without detecting image features, although it is sensitive to
illumination changes. They provide preliminary experiments over one in-vivo
pig liver sequence, including comparison with respect to ground-truth. The
main advantage of photometric methods with respect to feature-based ones is
their ability to deal with textureless images. However, they are still sensitive
to illumination changes.

All the aforementioned methods are able to yield camera location with
respect to the observed scene, a basic requirement for augmented reality
insertions, navigation, or multimodal image fusion that have proven to be
useful in medical applications (e.g. [Oku+11; Nic+11]). In [Tot+11], EKF
stereo SLAM is also used to artificially expand the intraoperative field-of-view
of the laparoscope (dynamic view expansion).

Finally, it is worth mentioning the recent review about optical 3D recon-
struction from medical image laparoscopic sequences provided by Maier-Hein
et al. [MH+13].

1.5 Contributions of this Thesis

Due to the specific characteristics of laparoscopic scenes (sudden endoscope
motions, endoscope extraction and reinsertion, tissue deformations, ...), the
use of SLAM algorithms is possible provided that a robust and efficient spu-
rious detector and a good relocalization system are available.

Without loss of generality, the monocular EKF-SLAM proposed in
[Dav03; CDM08] has been chosen as a basic demonstrator of the feasibility
of this type of algorithms in laparoscopy because it is well known, mature,
and performs well in small environments like rooms (abdominal cavity is
even smaller) and in real time. Nevertheless, other methods, like the pro-
posal of Klein and Murray [KM07], would perform equally well provided that
they comply with the two previous conditions (relocalization system and a
robust-to-spurious policy).

The first version of the EKF-SLAM integrated the Joint Compatibility
Branch and Bound (JCBB) algorithm [NT01] for robust data association.
JCBB performs well when low spurious rates are present, however, its expo-
nential computational cost in the number of spurious violates the real-time
restrictions when the number of outliers increases. Additionally, this ver-
sion lacked of a relocalization system what hindered to process laparoscopic
sequences that included sudden laparoscope motions, occlusions or laparo-
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scope extractions and reinsertions into the abdominal cavity. Nevertheless,
this version allowed to prove the potential use of monocular SLAM in la-
paroscopy.

This initial version has been robustified by integrating the Randomised
List Relocalisation (RLR) system [WKR07] and substituting JCBB by the
new 1-Point RANSAC algorithm (1-PR) developed in this thesis.

Finally, the combination of EKF-SLAM + RLR + 1-PR has been ex-
tensively validated with real human laparoscopic sequences of ventral hernia
repairs. This validation has been carried out in terms of accuracy, obtaining
millimetric reconstructions, and clinical utility.

In detail, the main contributions of this thesis are:

1. A proof of concept demonstrating the potential use of visual
SLAM applied to laparoscopy. In Chapter 2, it has been proposed
to use EKF + JCBB SLAM to process real hand-held monocular laparo-
scopic sequences in order to improve the FoV by means of photorealistic
reconstructions; to measure distances; and to insert augmented reality
annotations. However, JCBB data association violates the real-time
constraints when several outliers are present in the image (a very com-
mon situation in laparoscopy), due to its exponential computational
complexity in the number of spurious. Furthermore, this combination
lacks of a relocalization system. It makes impossible to run laparo-
scopic sequences if the laparoscope is suddenly moved or extracted and
reinserted into the abdominal cavity, or if there are large occlusions.
This contribution was reported in [GG+09b; GG+09a].

2. Developing the 1-Point RANSAC (1-PR) algorithm for robust
data association. This RANSAC-based algorithm, detailed in Chap-
ter 3, exploits the probabilistic prediction of the EKF filter to generate
hypotheses of the measurements using only one point (measurement)
as dataset. The hypotheses are voted by the other non-integrated mea-
surements. The most voted hypothesis is integrated with an EKF up-
date in order to detect the spurious matches. This algorithm overcomes
JCBB, since it can cope with high spurious rates in real time, and works
after integrating a subset of points (one point), what corrects part of
the system errors allowing to obtain more accurate estimations. This
contribution was reported in [Civ+09a; Civ+10].

3. Integrating the Randomised List Relocalisation system (RLR)
along with EKF + 1-PR. RLR, proposed in [WKR07], is a relocal-
ization system that detects the losses of tracking and freezes the recov-
ered map in order to avoid a possible map corruption. Then, it tries
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to relocalize the camera searching for putative matches between the
current image and the frozen map and applying RANSAC + 3-Point-
Pose algorithm. When it finds a good camera location, it unfreezes
the map and reactivates the normal system behavior. In Chapter 3,
it is integrated with EKF + 1-PR in order to obtain a possible robust
EKF-SLAM to be used in laparoscopy. This contribution was reported
in [GGCM11].

4. A surgical protocol for using visual SLAM in ventral hernia
repair surgeries. In order to use visual SLAM in an operating room,
a surgical protocol easily integrable into surgical procedures has been
developed. This protocol is presented in Chapter 4. This contribution
was reported in [Gil+11a; Gil+11b].

5. An extensive accuracy validation of the EKF + 1-PR + RLR.
The validation has been performed both with real laparoscopic se-
quences corresponding to fifteen ventral hernia repairs, and with sim-
ulations. The ventral hernia repair operation has been chosen because
surgeons need to measure the hernia dimensions, and hence these mea-
surements are used as ground truth to validate the system. Finally,
SLAM reconstructions are compared with measurements and with sim-
ulation ground truth obtaining millimetric errors and working in real
time in both cases (real surgeries and simulations). Chapter 4 thor-
oughly details the ventral hernia repair based on visual SLAM and the
validation. This contribution was reported in [GG+14].

6. A clinical validation of the EKF + 1-PR + RLR. A validation
of the system is not complete without a clinical validation. The sys-
tem has demonstrated not to disturb the classical ventral hernia repair
workflow. Besides, it has allowed to shorten surgical times of operations
and provide more security to the surgical procedures. Thus, the system
may be incorporated as an additional tool inside the surgeon’s armory.
This validation is also detailed in Chapter 4, and the contribution was
reported in [Ber+].

It is worth noting that the works [Gil+11a], [Gil+11b] and [Ber+] corre-
spond with clinical publications, and, for that reason, the first authors are
surgeons. However, these publications would not exist without the engineer-
ing contribution by the author of this thesis that has been essential in all of
them.





2
Monocular EKF-SLAM

In the last years, SLAM research has focused on monocular cameras as the
unique sensorial input, giving origin to monocular SLAM methods. 30 Hz
real-time systems estimating full 3D camera motions and maps of 3D points
using commodity cameras and computers have been reported [Dav03; KM07;
ED08]. Traditionally, there have been two different approaches to monocular
SLAM: keyframe methods and Bayesian filtering methods. They are briefly
summarized in Section 2.1.

The main goal of this thesis is to demonstrate that these methods can be
applied in laparoscopic surgery. Thus, without loss of generality, the monoc-
ular Extended Kalman Filter SLAM (EKF-SLAM) proposed in [Dav03;
CDM08] has been chosen as a basic demonstrator of the feasibility of this
type of algorithms in laparoscopy.

The original implementation of monocular EKF-SLAM, proposed by
Davison [Dav03], encodes the map features in a 3D vector which represents
the world point localization (Euclidean parametrization). However, this para-
metrization suffers from large linearization errors when there are points that
have been seen with low parallax. Since EKF estimation strongly depends
on measurement model linearity, bad linearizations will produce a degrada-
tion of this estimation. The inverse depth (ID) parametrization, proposed by
Civera et al. [CDM08], improves this situation, however, it increases the size
map, and hence increments the computational cost of the estimation. There-
fore, the best way to operate with monocular EKF-SLAM is to encode low
parallax features in ID and, as the estimation evolves and they are seen with
enough parallax, convert them to Euclidean. Section 2.2 details the monocu-
lar EKF-SLAM, the Euclidean parametrization and the ID parametrization
and its conversion to Euclidean.

11
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Additionally, the EKF update stage assumes a perfect data association.
This, however, is not true and just one spurious match may wreck the esti-
mation. Joint Compatibility Branch and Bound (JCBB), detailed in Section
2.3, is a state-of-the-art algorithm for data association in EKF-SLAM. This
algorithm detects and removes the spurious measurements before the EKF
update, improving the robustness of SLAM.

Finally, monocular SLAM recovers a sparse 3D map of the scene and the
camera motion along with the corresponding covariances. Both the map and
the motion can be used as a geometrical backbone to support useful informa-
tion such as 3D distance measurements, augmented reality (AR) insertions
or photorealistic reconstructions (Section 2.4).

The first contribution of this thesis is a proof-of-concept, reported in
[GG+09b; GG+09a], that proves the feasibility of using monocular visual
SLAM algorithms in laparoscopic surgery showing its potential in this sur-
gical field (Section 2.5). It is worth noting that this contribution, up to the
author’s knowledge, is the first one which applies monocular visual SLAM
algorithms in real laparoscopic human surgeries.

2.1 SLAM Methods

Monocular SLAM has been tackled by means of methods based on keyframes,
which try to adapt traditional pairwise offline Stucture form Motion (SfM)
+ Bundle Adjustment (BA) in order to achieve sequential online estimation,
or by means of methods based on filtering, which apply Bayesian filtering
techniques that, at each step, integrate the information from the current
frame into a multidimensional probability distribution which summarizes the
information gathered for all previous frames along the sequence.

2.1.1 Keyframe Methods

Keyframe methods are strongly related to SfM methods, whose origins can
be traced back to the so-called Photogrammetry (second half of 19th cen-
tury). Photogrammetry aims to extract geometric information from images.
Initially, it started with a set of features manually identified by the user, and
then applied non-linear optimization techniques, known as BA [MBM01], to
minimize the reprojection error. Nowadays, research on computer vision has
allowed to achieve complete automation by assuming rigidity in the scene
and by automatizing the feature extraction, matching, and spurious detec-
tion between images.

SfM has been usually processed by pairwise geometry algorithms [HZ04]
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and refined by global optimization procedures (BA) [Tri+00] in order to
minimize the reprojection error and refine the estimation into a globally
consistent one. One of the main drawbacks of the traditional SfM + BA
combination is its incapacity to deal with long sequences of images, since it
was initially thought for the processing of sparse sets of images (SfM relates
pairs –at most triplets– of images, but lacks a global formulation for an image
stream). Recently, there has been significant novel research in the field aiming
to extend the capabilities of SfM methods to sequentially process large image
sequences, the estimation being carried out in real-time [KM07; Mou+09]. In
this vein, one of the best performers in visual SLAM is the Parallel Tracking
And Mapping (PTAM) algorithm proposed by Klein and Murray [KM07].
This keyframe-based algorithm makes use of two parallel processing threads.
The first one performs camera tracking assuming a known map of natural
features at 30 fps. The second constructs a consistent map performing global
BA over selected frames of the sequence which summarize the whole sequence.

2.1.2 Filtering Methods

Filtering methods are based on Bayes filters [TBF05]. They estimate re-
cursively a probability distribution function over the unknown parameters
(camera location and 3D map of the scene) of a state vector from measure-
ments gathered by a sensor (camera) and the dynamic and measurement
models in two steps: prediction, and update. In the first one, the proba-
bility distribution function for the frame at time instant k − 1 is projected
into the frame at time instant k based on the probabilistic dynamic model
of the system. In the update stage, measurements are collected, according
to the measurement model known in advance, and fused with the probability
distribution function from the prediction step using Bayes’ rule.

The key difference between filtering methods and keyframe ones is that
they do not operate in a pairwise manner –estimating location from one frame
with respect to another– nor do they pile up measurements waiting for a BA
optimization. Instead of that, the overall state of the system is summarized
into a multidimensional probability distribution, which is updated as new
measurements arrive and their information is integrated in it. Therefore, its
computational complexity scales with the size of the state and not with the
number of frames, being naturally suited for the processing of large streams
of measurements.

Historically, the Extended Kalman Filter (EKF), the non-linear version
of the Kalman Filter, was the first filtering technique to offer a solution to
the SLAM task (EKF-SLAM) [SSC87; Dis+01; Cas+99], and also the first
one to demonstrate real-time performance in visual SLAM [Dav03; Dav+07].
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In addition to EKF, other different filters have been proposed trying to relax
the EKF assumptions, but generally incurring in higher computational cost:
the Unscented Kalman Filter [JU97], Particle Filters [Mon+02], and Sum of
Gaussians Filter [DW+03]. Particle Filters and the Unscented Kalman Filter
have been used for visual SLAM in [ED06] and [HKM09], respectively.

One of the drawbacks of EKF-SLAM is its quadratic computational cost
with respect to the state size. SLAM research has pursued to reduce this
computational cost, leading to interesting results. Information filters have
taken advantage of the sparsity of the problem when presented in information
form –dual of the covariance form–, e.g. [Thr+04; ESL05]. Submapping-
based techniques have also been developed to cope with the complexity of
the filtering-based SLAM estimation [ENT05]. EKF-based submapping has
been applied to the visual estimation case in [Cle+07; Paz+08; PT08].

In spite of the quadratic computational cost, EKF filtering has been cho-
sen in this thesis because it is well known, mature, and performs well in small
environments where it reaches real time. Thus, an improved version of Davi-
son’s work [Dav03; Dav+07] will be used as a starting point. This version
will be robustified by combining EKF with RANSAC and will be adapted
and validated to work over real human laparoscopic sequences in the next
chapters.

2.2 Monocular EKF-SLAM

EKF, the first Bayesian filtering solution successfully applied to the SLAM
estimation problem, was proposed for monocular visual SLAM in [Dav03].
This algorithm estimates recursively a probability distribution function over
the unknown parameters of a state vector x from measurements gathered by
a sensor and the dynamic and measurement models in two steps: prediction,
and update. In the first one, the probability distribution function p (xk−1)
from step k − 1 is projected into step k based on the probabilistic dynamic
model of the system p

(
xk|k−1|xk−1|k−1,uk

)
–equation (2.1). In the update

stage, measurements zk are collected, according to the measurement model
p
(
zk|xk|k−1

)
, known in advance, and fused with the probability distribution

function from prediction step using the Bayes’ rule –equation (2.2).

p
(
xk|k−1

)
=

∫
p
(
xk|k−1|xk−1|k−1,uk

)
p (xk−1) dxk−1 (2.1)

p
(
xk|k

)
= η p

(
zk|xk|k−1

)
p
(
xk|k−1

)
. (2.2)

η corresponds to the normalization constant that converts p
(
xk|k

)
into a

probability distribution function. It is worth noting that in order to com-
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pute the probability distribution recursively, the algorithm requires the initial
probability distribution over x, p (x0).

In the case of the Kalman Filter, it is assumed that dynamic and measure-
ment models are linear and represented by multivariate normal distributions
–equation (2.3). Under these assumptions and knowing the initial Gaussian
probability distribution at time k = 0, the a posteriori distribution over the
estimated parameters is Gaussian and thus, it may be represented by its
mean and covariance x ∼ N (x̂,P). However, most of the real systems are
not linear but show some degree of linearity. The EKF relaxes the linearity
assumption by linearizing the dynamic and measurement models in the mean
value at every step of the estimation. Hence, the more linear both models
are, the better the EKF estimation is. It is worth noting that the EKF does
not give the real a posteriori probability distribution function, but only a
Gaussian approximation.

p (x) = det (2πΣ)−
1
2 exp{−1

2
(x− µ)>Σ−1 (x− µ)} , (2.3)

The EKF prediction and update stages involve working with the mean x̂
and the covariance P of the state. The prediction equations are:

x̂k|k−1 = fk(x̂k−1|k−1, ûk) (2.4)

Pk|k−1 = FkPk−1|k−1F
>
k + GkQkG

>
k (2.5)

being f
(
x̂k|k−1, ûk

)
the non-linear equation modeling the dynamic evolution

of the system; uk the input given to the system (uk = 0 in monocular
SLAM); Fk the derivatives of the dynamic model with respect to the state
vector (Fk = ∂fk

∂x ); Qk the state noise covariance; and Gk the derivatives of

the dynamic model with respect to such noise (Gk = ∂fk
∂nk

), being nk the state
noise.

The equations of the update state are:

νk = zk − h(x̂k|k−1) (2.6)

Sk = HkPk|k−1H
>
k + Rk (2.7)

Kk = Pk|k−1H
>
k S−1k

x̂k|k = x̂k|k−1 + Kkνk (2.8)

Pk|k = (I−KkHk)Pk|k−1 (2.9)

where zk are measurements gathered at step k; h
(
x̂k|k−1

)
the function that

defines the sensor measurement model; Hk the derivatives of the measure-
ment function by the state vector (Hk = ∂hk

∂x ); Rk the covariance of the
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measurement noise; νk and Sk the filter innovation and its covariance; and
Kk the filter gain.

Therefore, to compute the EKF estimation, it is mandatory to define the
state vector (x), the dynamic model or state transition equations (f), and the
measurement model (h). These definitions, for the case of the visual SLAM
problem, are detailed in Sections 2.2.1, 2.2.2 and 2.2.3, respectively.

2.2.1 State Vector Definition

In visual SLAM, the world map and the camera location are represented in
a stochastic framework. This probabilistic representation at step k is coded
in a unique state vector modeled as a multivariate Gaussian, xk:

xk =
(
x>v ,y

>
1 ,y

>
2 , · · · ,y>n

)>
. (2.10)

It is composed of the camera state, xv, and the map defined by the location
of every point, yi. See Section 2.2.4 for map point management details.

The camera state, xv, is formed by position, rWC , orientation encoded in
a quaternion, qWC , and linear and angular velocities, vW and ωC .

The map is composed of n point features, (y>1 , · · · ,y>n )>, whose locations
are encoded either in Euclidean coordinates, yi = (Xi, Yi, Zi)

>, or in inverse
depth (ID), yi = (xi, yi, zi, θi, φi, ρi)

>.
The original monocular EKF-SLAM by Davison uses only Euclidean para-

metrization, which suffers from large linearization errors in the measurement
model at low parallax. In order not to degrade the EKF estimation, low par-
allax features (features whose depth is much bigger than camera translation
or recently initialized features which, even if close to the camera, produce
low parallax) must be treated separately from the main map until there is
enough information to insert them into the filter (delayed initialization). In
the presence of this situation, the system initialization requires an initial
known map obtained from a pattern.

Low parallax features are important because, although they cannot be
used to estimate camera translation, they contribute to the estimation of
orientation, and hence to improve the EKF performance.

Unlike Euclidean point coding, ID point coding [CDM08] improves the
measurement linearity at low parallax. As a result, ID improves EKF perfor-
mance, even for maps only composed of close features, by taking into account
low parallax features. Besides, it avoids the use of a pattern during system
initialization and the delayed feature initialization by immediate insertion of
new features into the main map.
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An ID feature is a 6 parameter vector:

yi = (xi, yi, zi, θi, φi, ρi)
> (2.11)

where xi, yi, zi correspond to camera location when the point was observed
for the first time, and θi and φi are azimuth and elevation angles which define
the ray unit vector m(θi, φi). Point depth is coded by its inverse ρi = 1/di,
so a point world location xi is (Figure 2.1):

xi =

Xi

Yi

Zi

 =

xiyi
zi

+
1

ρi
m(θi, φi) (2.12)

m(θi, φi) = (cosφi sin θi,− sinφi, cosφi cos θi)
> (2.13)

Figure 2.1: Camera-(1) defines the world frame, W . A feature is observed for
the first time by camera-(i), the feature world location is defined with respect
to the camera-(i) pose, (xi, yi, zi)

>, using the distance between camera-(i) and
the feature, di = 1/ρi, and a unit directional vector, m(θi, φi), defined by its
azimuth and elevation angles. The α angle stands for the feature parallax
between camera-(i) and camera-(j) which can be computed with m(θi, φi)
and hW directional vectors, both of them defined in the world frame.

The only drawback of ID is that it doubles the size of each feature vector
(it needs a 6D vector versus the 3D vector required by Euclidean parametri-
zation) affecting directly to the computational cost of the EKF update. In
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order to obtain accuracy without compromising the computational cost, the
use of ID is restricted to low parallax map features converting them to Eu-
clidean when they are seen with enough parallax. The parallax of a feature
is defined as the angle α between the directional vector m(θi, φi) when the
feature was initialized and the vector hW , in the world frame, that joins the
current camera with the feature (Figure 2.1). The criterion for conversion is
determined by the next linearity index (Ld):

Ld =
4σd
‖hW ‖

|cosα| (2.14)

σd =
σρ
ρ2i
, cosα =

m>hW

‖hW ‖
(2.15)

σρ =
√

Pyi(6, 6), hW = xi − rWC
j (2.16)

where ρi and σρ are the feature inverse depth and its standard deviation
obtained from the state vector and the feature covariance matrix; m corre-
sponds to Equation 2.13; and hW is obtained from the 3D current camera
(rWC
j ) and feature (2.12) world positions. After each EKF estimation, Ld

is computed for all ID features and those whose Ld < 10% are converted to
Euclidean encoding.

2.2.2 Dynamic Model

Regarding the state transition equation for the camera, a dynamic constant
velocity model that encodes its smooth motion is proposed:

fv =


rWC
k+1

qWC
k+1

vWk+1

ωCk+1

 =


rWC
k +

(
vWk + VW

k

)
∆t

qWC
k × q

((
ωCk + ΩC

)
∆t
)

vWk + VW

ωCk + ΩC

 (2.17)

where q
((
ωCk + ΩC

)
∆t
)

is the quaternion defined by the rotation vector(
ωCk + ΩC

)
∆t.

The state noise vector (n) is assumed to be composed of linear, aW , and
angular acceleration, αC , acting as inputs producing, at each step, an impulse
of linear velocity, VW = aW∆t, and angular velocity ΩC = αC∆t. Both of
them are modeled as zero mean Gaussian processes with known covariance,
diag (QaW ,QαC ).

Regarding the state transition equation for the scene points, a static
model with zero state noise to encode the scene as perfectly rigid is proposed:
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yik+1
= yik . (2.18)

The complete dynamic model (fk) is the stacking of (2.17) and an instance
of (2.18) for each map point. The final state noise (nk) is assumed to be
a zero mean multivariate normal distribution with known covariance Qk =
diag

(
QaW ,QαC , 01, · · · , 0n

)
, where each 0i corresponds to the i-th map point.

2.2.3 Measurement Model

The measurements, zk = h (xk), are provided by a pinhole camera:

h =

(
u

v

)
=

 u0 − f
dx

hCx
hCz

v0 − f
dy

hCy
hCz

 (2.19)

where u, v are the pixel coordinates of the observation in the image.
u0, v0, f, dx, dy are the camera intrinsic parameters corresponding to the

principal point, the focal length, and the pixel size. hC =
(
hCx , h

C
y , h

C
z

)>
is

the vector joining the current camera location with the observed map feature,
expressed in the camera frame which. For Euclidean parametrization it is:

hC = RCW

 Xi

Yi

Zi

− rWC

 . (2.20)

In the case of ID, (Xi, Yi, Zi)
> in Equation (2.20) are replaced by Equation

(2.12).
Equation 2.19 gives the 2D image coordinates assuming a pure projective

model. Therefore, in order to compensate the lens radial distortion, a two-
parameter distortion model [MBM01] is applied. In this model, the ideal
projective coordinates h = (u, v)> are recovered from the real distorted ones
hd = (ud, vd)

>:

h =

(
u0 + (ud − u0)(1 + κ1r

2
d + κ2r

4
d)

v0 + (vd − v0)(1 + κ1r
2
d + κ2r

4
d)

)
(2.21)

rd =

√
(dx (ud − u0))2 + (dy (vd − v0))2 (2.22)

where κ1 and κ2 are the radial distortion coefficients. The distorted coordi-
nates are computed from the ideal ones as follows:
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hd =

 u0 + (u−u0)
(1+κ1r2d+κ2r

4
d)

v0 + (v−v0)
(1+κ1r2d+κ2r

4
d)

 (2.23)

r = rd(1 + κ1r
2
d + κ2r

4
d) (2.24)

r =

√
(dx (u− u0))2 + (dy (v − v0))2 (2.25)

Notice that r is available from (2.19, 2.25), but rd must be numerically
solved from (2.24). Finally, Equation (2.23) is used to compute the distorted
point.

Regarding the covariance of the measurement noise (Rk), it corresponds
to the image measurement error covariance and is assumed to be a diagonal
matrix.

2.2.4 Data Association & Map Management

The EKF prediction x̂k|k−1 (2.4, 2.5), provides a prior over the current pose
which is used to restrict the search of visual feature correspondences. This
is known as active search and has two advantages due to the limited search
area. First, it allows the system to run in real time, and second, it reduces
the chance of spurious matches.

Additionally, the EKF prediction also provides an estimate for the rela-
tive pose of every map point with respect to the camera. This prediction is
accurate enough to synthesize in a patch the point image appearance, com-
pensating for rotation and scale variations along the sequence. Therefore, the
combination of the FAST feature extractor [RD05] and simple patch correla-
tion is used to extract and recognize the map features because it is cheap and
performs satisfactorily. Besides, this combination is favored in the particular
case of laparoscopy where, due to the small depth variation of the abdominal
cavity and the limited laparoscope movements (it only pivots and slides over
the fulcrum), features do not undergo severe perspective changes. According
with this, each map point is identified by an 11 × 11 pixel planar texture
patch extracted when the point is first observed, being unnecessary to resort
to expensive invariant descriptors and extractors which would be overkill in
SLAM.

Data association is performed by means of active search and synthesized
point patches. Then, every map point is exhaustively searched inside the
elliptical region defined by its innovation (2.6, 2.7) on the current image by
means of normalized correlation with its synthesized patch (Figure 2.2). The
pixel scoring highest, zi, if over a threshold, is selected as the match in the
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Figure 2.2: Individually compatible –IC– matches. Each map point is pre-
dicted in a location on the image ( ) along with its innovation (elliptical
region). Its corresponding measurement ( ) it sought inside the elliptical
region by means of correlation with the synthesized patch of the point.

new image. This stage produces the set of putative individual compatible
(IC) matches:

zICk = (z1, · · · , zmk
)> (2.26)

corresponding to some of the visible map points.
These IC matches are assumed to be correct and used in the EKF update

stage (2.8, 2.9) where they feed the estimation. This is the most expensive
step in terms of computational cost with a quadratic computational cost in
the map size (O(n2)).

Regarding map management, the feature initialization criterion is tar-
geted to keep in the field of view a predetermined number of visible features.
When the number of visible features in the camera field of view is less than a
threshold, features are initialized within a randomly located window favoring
less populated areas (image regions with few or no map features). Each new
feature is extracted from a new window and initialized in the map. New
features are encoded in ID and, as the estimation improves, converted to
Euclidean.

A feature is removed from the map if it is repeatedly predicted to be
in the image but it is not successfully matched. The reobservation rate is
predefined to be higher than 40% for the case of laparoscopic sequences.
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2.3 Robust Data Association: JCBB

The computation of reliable correspondences from sensor data is at the core
of most estimation algorithms in robotics, and in EKF in particular. The
search for correspondences, or data association, is usually based, in a first
stage, on comparing local descriptors of salient features in the measured
data. The ambiguity of such local description usually produces incorrect
correspondences (spurious) at this stage. The next stage assumes that the
previous one has produced a perfect set of putative matches; however, if one
or more of the matches are spurious, the whole estimation process might
become wrecked. In order to avoid this situation, robust data association is
necessary.

Robust data association is basically a search problem in the space of
observation-feature correspondences. Given m observations and a map with
n features, the problem consists in traversing a m-height (n+1 )-ary tree (it
includes the possibility that a measurement can be spurious; the size of this
space is (n + 1)m) looking for the best set of correspondences between the
measurements and the map features. In order to reduce the size of the tree,
the correspondences are selected by means of a test of compatibility between
the measurements and the map points, and a selection criterion choosing the
best pair among the set of all compatible matches for each measurement.
Finally, robust methods analyze the consistency of these pairings against a
global model assumed to be generating the data, and discarding as spurious
any pair that does not fit into it.

In the case of EKF-SLAM, the quality of the SLAM reconstruction
strongly depends on the data association accuracy. Active search along with
normalized patch correlation extract a set of IC matches; however, it is not
guaranteed that this set is free of spurious matches. Nevertheless, doing so,
the space of observation-feature correspondences is bounded to the matches
that are the best IC matches. This dramatically decreases the size of the
space to 2m (the IC and the spurious possibilities), although the computa-
tional complexity continues being exponential. The analysis of consistency
is carried out by Joint Compatibility Branch and Bound (JCBB) [NT01],
which is a state-of-the-art robust data association method within the EKF-
SLAM and has already been successfully used in visual [Cle+07; WKR07]
and non-visual [FNL02] SLAM.

JCBB traverses the 2 -ary tree looking for the maximum set of jointly
compatible matches. Given the set of jointly compatible matches Hi−1 =
{m1, · · · ,mi−1}, a new match mi is jointly compatible if the set Hi =
{Hi−1,mi} agrees with Equation (2.30). The JCBB consistency equations
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are:

νHi = (zm1 − hm1(ym1), · · · , zmi − hmi(ymi))
> (2.27)

SHi =


Sm1 · · · Sm1,mi

...
. . .

...

Sm1,mi · · · Smi

 (2.28)

Di = ν>Hi
S−1Hi

νHi (2.29)

J Ci = Di < χ2
α,2i (2.30)

where zm and hm(ym) are the point observation and the measurement model
applied to the point ym. νHi and SHi are the innovation and its covariance
for the possible jointly compatible set Hi. Finally, Di and J Ci are the joint
compatibility score (innovation Mahalanobis distance) and the joint compat-
ibility test. In this test, α is the desired confidence level (typically α = 95%),
and 2i are the degrees of freedom because each monocular SLAM match has
2 measurements (u, v).

JCBB exploits the maximum-set criterion to bound the search inside the
tree. When a node is reached, the maximum number of non-spurious matches
that can be established from this node is counted. If this number is lower
than the best pre-selected maximum set, the node is not explored. Figure
2.3 shows a small example with three matches. JCBB explores the green
branch discovering that the maximum number of spurious matches is one.
Automatically, all red branches are pruned because they contain two or more
spurious matches, and hence they will not be explored. Blue branches have
to be analyzed because they, theoretically, also have one spurious match.
However, some of them may not be jointly compatible. In the case of one
or more being jointly compatible –i.e. passing the joint compatibility test
(2.30)–, they compete with the green branch. The final selected branch is
that with the lowest joint compatibility score (2.29).

In conclusion, JCBB goes across the bounded tree detecting spurious
matches based on a predicted probability distribution over the measurements.
It does so by extracting from all the possible matches the maximum set that is
jointly compatible with the multivariate Gaussian prediction. Consequently,
JCBB entails two weaknesses: 1) its exponential computational cost in the
number of spurious matches caused by traversing the tree, that causes JCBB
to work only in real time for moderate spurious rates; and 2) its accuracy,
which is questioned because JCBB operates on the linearized predicted state
which, presumably, does not correspond to the real state of the system. Both
limitations are overcome in Chapter 3.
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Figure 2.3: Example of JCBB working for 3 IC matches (each level of the
tree corresponds to an IC match). The green branch is the pre-selected best
branch with one spurious match. Red branches are pruned because they
contain two or three spurious matches (they are worse than green branch).
Blue branches theoretically contain one spurious match and they should be
explored if they pass the joint compatibility test (2.30). In case of two or more
branches being jointly compatible and have the same number of spurious than
the pre-selected branch, the final selected branch is that with the lowest joint
compatibility score (2.29).

2.4 SLAM Capabilities

Visual SLAM is an ideal environment to be used as a geometrical backbone
to support useful information, above all for medical applications. The sparse
3D map of the scene and the camera motion provided by SLAM enable to
do 3D distance measurements, insertions in augmented reality (AR), and to
obtain photorealistic reconstructions.

2.4.1 Distance Measurement

Distance measuring will be a fundamental pillar to validate the SLAM ac-
curacy in laparoscopy. This validation will be performed over ventral hernia
repairs in Chapter 4. In this type of intervention it is mandatory to determine
the hernia size in order to apply an adequate prosthetic mesh. Hence, this
hernia size will be considered as ground truth and will be used to contrast
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the dimensions provided by SLAM.
Monocular SLAM methods recover the map up to an unknown scale fac-

tor, implying that only relative distances can be measured. However, in
practice, a known dimension can provide the unknown scale factor, and hence
real distances may be recovered. Given the probabilistic nature of the SLAM
map, the distance estimates are accompanied by an error estimate. Relative
distances, along with the corresponding error estimates, can be computed in
real time while exploring a scene.

From the 3D map, up to a scale factor, and an element, e.g. a laparoscopic
tool, with two points (r1, r2) inside the map whose relative distance is known,
s, the real distance between two other map points (i, j) is:

d(i, j) = s
dm(i, j)

dm(r1, r2)
(2.31)

where dm(i, j) and dm(r1, r2) are the Euclidean distances between points (i, j)
and reference points (r1, r2), respectively, measured in the SLAM map.

As the distance is a function of the SLAM state vector, x, the covariance of
the distance estimation can be propagated linearly from the SLAM covariance
by means of the corresponding Jacobian matrix, J:

J =
∂d(i, j)

∂x
(2.32)

x =
(
x>v ,y

>
1 , · · · ,y>r1, · · · ,y>r2, · · · ,y>i , · · · ,y>j , · · ·

)>
. (2.33)

Since d(i, j) only depends on i, j, r1 and r2, and J is sparse, reduced Jacobian
(Jr) and covariance (Pr) matrices are used instead of the full matrices to
compute the measurement error estimate (σ2d):

σ2d = JrPrJ
>
r (2.34)

Pr =


Pyr1yr1 Pyr1yr2 Pyr1yi Pyr1yj

Pyr2yr1 Pyr2yr2 Pyr2yi Pyr2yj

Pyiyr1 Pyiyr2 Pyiyi Pyiyj

Pyjyr1 Pyjyr2 Pyjyi Pyjyj

 (2.35)

Figure 2.4 shows a measurement experiment over two planar patterns.
The first pattern is a black square which is used as reference and in which
one of its edges defines the reconstruction scale considered to be the unit –the
two edge corners are the reference points (r1, r2)– (the red double arrow in
Figure 2.4a). The second pattern is a black rectangle whose dimensions, rel-
ative to the defined scale, are 2× 1 (cyan double arrows in Figure 2.4a). The
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(a) Pattern measurement
ground-truth (cyan) and
reconstruction scale (red).

(b) Vertical estimated mea-
surement along with 2σ error
(cyan).

(c) Horizontal estimated mea-
surement along with 2σ error
(cyan).

Figure 2.4: Pattern measurement. Red arrow corresponds with the recon-
struction scale. Cyan arrows correspond with the dimensions to be measured.

experiment consists in estimating the dimensions of the rectangular pattern,
relative to the scale, along with their error by means of SLAM. Therefore,
both patterns are located in two different planes and a sequence is gathered
and processed with monocular SLAM. Figures 2.4b and 2.4c show that the
estimated dimensions are 2.0 ± 0.066 and 0.98 ± 0.032. Hence, it can be
concluded that both estimations are accurate and precise. This experiment,
which can be found in the video [GGc], was fundamental in order to success-
fully communicate to the surgeons the potential of the visual SLAM methods
for in-body laparoscopic imagery.

2.4.2 Augmented Reality

AR annotations in endoscopic images need accurate real-time estimates for
the live camera motion with respect to the observed scene. Monocular SLAM
based only on images gathered by a camera has proven capable of providing
camera motion in real-time at 30 Hz for rigid scenes [Dav+07; KM07]. AR is
useful in laparoscopic surgery because it enables to visualize notations and to
fuse other modal images, such as 3D models of CT or MR, with laparoscopic
images live during surgery.

2.4.3 Photorealistic Reconstruction

The SLAM map also allows to build a mesh of triangular elastic textured tiles
on it. This is a generalization for 3D scenes of the mosaic method proposed
in [Civ+09b]. The tiles are defined by a standard 2D Delaunay triangulation
over a projection of the 3D map on the absolute XY plane (XY plane in the
absolute reference W ). Each 3D triangle texture is gathered from the images
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that observe the complete corresponding triangle. Figure 2.5 sketches the
photorealistic modeling process.

Since triangulation is a live process –map points, and consequently tri-
angles, are continuously created, erased and their estimates changed–, main-
tenance operations are performed to deal with new and deleted triangles as
the SLAM estimation evolves, and to take textures from the images for the
triangles.

In the case of laparoscopy, this real-time photorealistic modeling process
eases the 3D cavity visualization. The textured 3D model allows the synthesis
of a panorama that expands the limited field of view (FoV) of the laparoscope.

(a) Features in 3D, the current image
and the world X-Y plane.

(b) Features projected onto a X-Y
plane and triangulation on this plane.

(c) Triangulated image backprojection
to obtain textures.

(d) Final photorealistic reconstruc-
tion.

Figure 2.5: Steps of the photorealistic reconstruction.
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2.5 EKF-SLAM in Laparoscopy. A Proof of Con-
cept

The first contribution of this thesis is to prove the feasibility of using monoc-
ular visual SLAM algorithms with real monocular laparoscopic sequences. In
order to use SLAM, two assumptions have been made: the abdominal cavity
is rigid, and the laparoscope undergoes a smooth and non-pure rotational
motion. These conditions are fulfilled by a number of medical applications,
such as laparoscopic ventral hernia repairs. The chosen algorithm is one of
the leading-edge monocular SLAM algorithms (EKF + JCBB).

SLAM has been applied over two laparoscopic abdominal exploration se-
quences. The primary result has been a sparse up-to-scale 3D map composed
of salient points –features– of the observed cavity for each sequence. This
SLAM map has shown to be adequate to support 3D distance measurements
along with the measurement error.

Additionally, the map has been used as a backbone for real-time photore-
alistic modeling to ease the 3D cavity visualization. The textured 3D model
allows to synthesize a panorama that expands the laparoscope FoV. Finally,
since the camera motion with respect to the 3D map is accurately known in
real time, AR annotations can be supported live in medical sequences.

2.5.1 Image Processing

Monocular SLAM in robotics uses a correlation score based on luminance,
neglecting color information. As laparoscope captures color images, a proce-
dure to convert color images to B&W must be applied. One of the quickest
procedures is to select one out of the three channels that compose a color
image. The channel selected must preserve high frequencies in order to ease
the performance of the feature extractor (features are high frequency com-
ponents). As can be seen in Figure 2.6, in contrast to the red channel, green
and blue channels preserve high frequencies, and hence both channels are
possible candidates. Finally, the green channel has been the preferred one
because visually it seems to contain a richer contrast than the blue one and
a nice texture to produce distinctive patches for recognition.

On the other hand, human tissues are prone to produce reflections caused
by illumination. These reflections can erroneously fire the feature extractor
and then incorrect map points could be initialized. Additionally, as in laparo-
scopic scenes the light source is fixed to the laparoscope, when it is moved,
the light source is also moved and reflections change producing erroneous
data associations. In order to avoid both situations, reflections are removed
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(a) Color

(b) Red channel (c) Green channel (d) Blue channel

(e) Red channel Fourier spec-
trum

(f) Green channel Fourier spec-
trum

(g) Blue channel Fourier spec-
trum

Figure 2.6: Color frame and its decomposition in color channels along with
their corresponding Fourier spectrums. The red channel (2.6b) has very light
areas with small contrast (no high frequency details), as shown by its Fourier
spectrum (2.6e). On the contrary, green (2.6c) and blue channels preserve
more high frequency details (2.6f, 2.6g). Visually, the green channel seems
to have more contrast than the blue.

assuming that they produce pixels with a high luminance. If any pixel in
a patch around a detected feature is over a threshold (200 over 255), this
feature is rejected. Figure 2.7 shows a frame of a laparoscopic sequence. Fig-
ures 2.7a and 2.7b, show how specularities have been detected and initialized
as map points. However, these specularity features have been rejected in
Figures 2.7c and 2.7d.
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(a) Color frame with specularities. (b) B&W frame with specularities.

(c) Color frame without specularities. (d) B&W frame without specularities.

Figure 2.7: Four figures corresponding to the same frame from the same
sequence processed without reflection filtering (2.7a, 2.7b) and with reflection
filtering (2.7c, 2.7d). In the unfiltered case, the feature detector has detected
some specularities (white points) as valid features. These specularities are
not present in the filtered case.

2.5.2 Experimental Results

Experimental validation is performed on real images 360x288@25 Hz gathered
from a hand-held monocular laparoscope observing two abdominal cavities
(341 and 186 frames respectively). The goal of the validation is to prove the
feasibility of using SLAM in laparoscopy. To this end, three experiments over
these two sequences were carried out showing SLAM performing photoreal-
istic reconstructions, distance measurements, and AR annotations.

The sequences were the only data input to the algorithm, achieving real-
time performance in all the experiments measuring up to 25 features. Laparo-
scope intrinsic parameters were calibrated using a standard planar pattern
calibration method, based on Zhang’s initial solution [Zha00], followed by
Bundle Adjustment.
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(a) Some frames of a laparoscopic sequence of an abdominal cavity exploration (341 frames).

(b) Photorealistic reconstruction with a measurement between two points of the organ. The
scale is defined with two other organ points.

(c) Historical evolution of the measurement and
its error. Notice that the error reduction as the
camera moves and gathers information from dif-
ferent points of view providing higher parallax.

Figure 2.8: Hand-held laparoscope sequence of an abdominal cavity explo-
ration (341 frames).

In the case of the 341-frame sequence (Figure 2.8), from which several
frames are shown in Figure 2.8a, a 3D distance measurement experiment
was performed (Figure 2.8b). The sequence corresponds to a laparoscope
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exploration inside the abdominal cavity. No tool was inserted; therefore, in
order to make the distance measurement, two arbitrary points were marked
as reference which define the unity of the scale factor (blue arrows in Figure
2.8b). Another two arbitrary points were selected and their relative distance
was measured (the red arrow in Figure 2.8b). The distance along with its
error were computed relative to the defined scale. Assuming the scale was the
real scale, the conversion to real distances is immediate according to (2.31,
2.35). Figure 2.8c shows the estimate history both for the distance and the
error. Initially, error uncertainty is large, but as the camera translates and the
scene is seen with parallax, point location error decreases and consequently
the distance error decreases too. Since the uncertainty is computed in real
time, visual feedback gives the surgeon information on how to move the
camera in order to reduce the distance error. This experiment can be found
in the video [GGb].

In the case of the 186-frame sequence (Figure 2.9), where several frames
are shown in Figure 2.9a, an AR reality experiment was carried out. The
sequence corresponds to a laparoscopic abdominal exploration during a hu-
man ventral hernia repair. Since the 3D map and the camera location with
respect to the map are available in real time, it is possible to anchor AR
annotations to map points. Figure 2.9b shows an AR cylinder both in 3D
and superimposed on the live laparoscopic image. As the virtual insertions
are fixed to the map, they can be observed at their real location even when
they are out of the camera FoV. This experiment can be found in the video
[GGa].

For both sequences a textured triangular mesh model was obtained (Fig-
ures 2.8b and 2.9b). Despite the sparse map being composed of a reduced
number of points, the 3D live photorealistic models provide an easy under-
standing of the 3D cavity structure. Videos [GGb] and [GGa] show both
photorealistic reconstruction processes. Besides, video [GGd] shows in more
detail the photorealistic reconstruction for the 186-frame sequence.

It is worth noting that these experiments, corresponding with the first
monocular SLAM experiments over real human laparoscopic sequences in
the literature, along with the experiment of Figure 2.4, were crucial to speak
with surgeons and to prepare an intervention where SLAM could be relevant
and easily validated.

2.6 Conclusions

Unlike previous works where human cavity reconstructions are obtained us-
ing fixed or moving stereo endoscopes, or monocular endoscopes are used on
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(a) Some frames of a laparoscopic sequence of an abdominal cavity exploration (186 frames).

(b) AR cylindrical insertion back projected in live laparoscopic video and the pho-
torealistic 3D model recovered.

Figure 2.9: Hand-held laparoscope sequence of an abdominal cavity explo-
ration (186 frames).

phantoms, this chapter presents the first results of using monocular SLAM
in real human laparosocopic surgeries. The proof of concept with real la-
paroscopic imagery has shown the potential of this robotics technique in the
medical field, however, although the combination of EKF + JCBB has proven
to be very promising, some problems must still be overcome.

Monocular SLAM recovers a 3D map of the cavity and the trajectory
followed by the laparoscope, in real time at 25 fps, using the laparoscopic se-
quence as only input, opening new venues for the surgery of the future. SLAM
may be exploited to increase synthetically the FoV by means of photorealistic
reconstructions computed in real time, to do internal distance measurements
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along with their error, and to insert AR notations that facilitate the opera-
tion. All these capabilities have been shown on real images gathered from a
monocular laparoscope observing the abdominal cavity.

After testing the feasibility of EKF + JCBB in laparoscopic imagery, sev-
eral issues are still open. The current algorithm assumes: 1) scene rigidity; 2)
smooth laparoscope motion; 3) that the laparoscope is always inside the cav-
ity; and 4) low motion clutter and occlusions. These assumptions do not hold
in general medical scenes: non rigidity is almost prevalent, sudden motions
are frequent, the laparoscope is extracted and reinserted inside the cavity,
and tools cause a significant motion clutter and occlusions. They produce
tracking failures and an increment of the number of spurious matches. Fig-
ure 2.10 shows these drawbacks extracted from a real laparoscopic sequence;
it depicts the size map, the inlier and the outliers matches, and a tracking
failure caused by laparoscope extraction and reinsertion (blue dashed rect-
angle); it can be seen how in some frames the number of spurious matches
is similar to the number of inliers. Regarding tracking failure, relocation al-
gorithms such as [WKR07; CN08] recover the track of the system when it is
lost providing robustness to the whole system. Regarding spurious matches,
JCBB works fine in man-made environments (mobile robotics scenes) where
the scene is completely static and thus the number of spurious low. However,
its exponential computational complexity causes this algorithm to not run in
real time when several spurious are present, as shown in Section 3.2. Addi-
tionally, JCBB uses the EKF prediction to detect spurious matches, which
entails linearization errors. If the linearization is not a good approximation,
the reconstruction error will degrade as the estimation evolves. Therefore, a
more efficient data association is mandatory for using monocular SLAM in
laparoscopic surgery. These questions are addressed in Chapter 3.

After the system improvement of Chapter 3, an extensive validation of the
accuracy is necessary for showing the system feasibility in medical imagery.
This validation is performed in Chapter 4.
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Figure 2.10: Map size –black–: the total number of map features. Inlier
matches –red–: measured features. Spurious matches –magenta–: matches
found inside the active search region (IC matches) but marked as spurious
by robust data association. The blue dashed rectangle corresponds to frames
where tracking was lost.





3
Robust Monocular SLAM

The EKF + JCBB combination shows several weaknesses that make it un-
feasible in real laparoscopic surgeries.

On one hand, when the laparoscope suffers sudden motions, the laparo-
scope is extracted and reinserted into the abdominal cavity, the image is
blurred, there are large occlusions, or the scene is deformed changing its ap-
pearance, the tracking will fail because no features will be matched in several
consecutive frames (Figure 3.3). In order to avoid this situation, a robust
relocalization algorithm is mandatory. The relocalization algorithm must
detect loss of tracking and stop EKF integration to avoid a possible map
corruption due to incorrect data associations, and then enable a recovery
procedure. If tracking is lost, the relocalization must find matches between
the current image and the already estimated map in a data-driven manner
without assuming priors about the camera location with respect to the map.
Randomized List Relocalization (RLR) ([WKR07]) is one of the best relo-
calization performers in visual SLAM and has been chosen and integrated in
the system (Section 3.1).

On the other hand, JCBB presents a limitation concerning computational
cost that makes this algorithm inappropriate to be used in laparoscopy. The
Branch and Bound search, that JCBB uses for extracting the largest jointly
compatible set of matches, has exponential complexity in the number of spu-
rious matches. This complexity does not present a problem for small numbers
of matches, but very large computation times arise when the number of spu-
rious grows. In the case of laparoscopic sequences, this is a very common
situation due to small tissue deformations, where matches are found inside
the active search region but they are not jointly compatible. In addition
to computational cost, JCBB entails a problem of accuracy. JCBB oper-

37
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ates over the prediction for the measurements before fusing them. Such a
probabilistic prediction comes from the linearization of the dynamic and mea-
surement models and the assumption of Gaussian noise, so it will presumably
not correspond to the real state of the system. Both limitations are greatly
overcome with the replacement of JCBB in favor of the 1-Point RANSAC
(1-PR) algorithm (Section 3.2). The computational complexity of 1-PR is
linear in the state and measurement size and exhibits low cost variation with
the number of outliers. Additionally, 1-PR operates over hypotheses after
the integration of a data subset, which have corrected part of the predicted
model error with respect to the real system.

Two contributions of this thesis have been: 1) the development and ex-
haustive validation of 1-PR (Section 3.2) reported in ([Civ+09a; Civ+10]);
and 2) the application of the EKF + 1-PR + RLR combination in laparoscopy
(Section 3.3) reported in [GGCM11] and [GG+14].

3.1 Relocalization

Active search is one of the system strengths, since it enables the system
real-time operation, but it is also one of its weaknesses. The system works
fine provided that the mapped features are found inside the elliptical search
window. However, if the camera suffers from sudden motions, the image is
blurred, there are large occlusions, or the scene is deformed, tracking will fail
because no features will be matched within several frames.

In order to avoid this problem, the use of a relocalization system is a
must. The ideal relocalization system should detect loss of tracking and stop
EKF integration to avoid map corruption due to incorrect data associations,
and then enable a recovery procedure. The tracking should deemed lost if
all attempted matches in a frame have been unsuccessful, the camera pose
uncertainty has grown too large, or if all the predicted mapped features
are out of the predicted camera FoV. During the recovery procedure, the
relocalization should find matches between the current image and the already
estimated map in a data-driven manner without assuming priors about the
camera localization with respect to the map.

Randomized List Relocalization (RLR), proposed in [WKR07] and based
on Randomized Trees [LF06], is a cutting-edge feature-based relocalization
in visual SLAM that complies with the requirements demanded to an ideal
relocalization system.

RLR casts the image-to-map matching as a classification problem. When
the system detects a tracking failure, a few thousand of the strongest FAST
features [RD05], detected in the current image, are fed to the classifier to
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find putative image-to-map matches.

Figure 3.1: RLR classifier. Hypotheses selection for an input patch (putative
matches) in RLR. The selected hypotheses are those whose value is greater
than a threshold, in this example the threshold is 4.

Figure 3.2: Randomised List Structure, example with a “don’t care bit”. The
input patch is fed to the list. The test Q′2 measures noise –it does not agree
with (3.2)–, and then it is marked as “don’t care” Finally two binary words
are composed and used to recover their respective posteriors.
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Internally, the RLR classifier is implemented as N lists of D sequential
random binary tests and C classes –one per map point– (Figure 3.1 shows an
example of a small RLR classifier. Typical classifier values are: N = 40, D =
18, C = [100 − 200]. Figure 3.2 depicts a list with D = 3). For each list,
the result of the tests forms a binary word which indexes into an array of 2D

posteriors. Each binary test Q′i compares the Gaussian-smoothed intensity
values of the feature patch Iσ(·) at two different pixel locations a and b:

Q′i =

{
0, if Iσ(ai)− Iσ(bi) >= zi

1, otherwise.
(3.1)

Both a and b are randomly determined when the binary test is created.
Equation (3.1) has a zi term which is used for the purpose of not measuring
noise and favoring repeatability in areas of uniform color. Each zi takes a
random value in the range [0− 20] which is also fixed during the test creation.
Besides, each test Q′i is explicitly checked to see if its result is close to a noise
threshold according to:

|Iσ(ai)− Iσ(bi)− zi| < thnoise. (3.2)

If this is the case, the i -th bit is set to a “don’t care” state (the test takes both
“0” and “1” values). Thus, when the test word is formed, the scores for all
possible values of the word are obtained from the array of posteriors achieving
more noise tolerance. Figure 3.2 depicts a Randomised List structure with
D=3 and 6 different classes. In this example, test Q′2 agrees with (3.2) and
hence two binary words are composed and their corresponding posteriors
recovered.

The array of posteriors stores, for each entry, a binary score string of one
bit per class (each map feature is a class). Then, when a class activates one
array entry during training, its corresponding bit is set to 1. If the class
has never activated an entry, its corresponding bit will be 0. The feature
correspondence hypotheses are selected by counting the times that a class is
present in all indexed posteriors of the N lists. When a class appears in more
than a threshold of posteriors, it is included in the set of potential feature
correspondences (putative matches) that will be used during relocalization.
As can be seen, map features may be similar to each other and then multiple
feature correspondence hypotheses must be considered. Figure 3.1 depicts
this procedure. In this figure, all recovered posteriors of the N lists are
added and the classes C1 and C6 are selected as putative matches for the
input patch because their sums are greater than the threshold established to
4.
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Once the set of putative matches has been obtained, RANSAC is ap-
plied over this set in order to relocalize the camera with respect to the map.
Camera location is hypothesized from three feature correspondences using
the 3-Point-Pose (PnP) algorithm proposed in [FB81]. Each camera loca-
tion hypothesis is rated according to how many other map features can be
matched in the image. Once a good pose hypothesis is found, it is optimized
in a “moving camera observing a fixed map” manner, and then the SLAM
system is reinitialized. If the pose estimate is indeed close enough to the true
estimate, then one or two fixed map EKF iterations are sufficient to refine
the camera pose. It should be noticed that map integrity is fundamental not
only for tracking, but also for relocalization.

Figure 3.3: Example of relocalization after laparoscope extraction and rein-
sertion in a 874 frame laparoscopic sequence. Upper left, system just before
tracking loss. Upper right, laparoscope partially out of the cavity. Lower left,
unstable relocalization. Lower right, system after total tracking recovery.

Regarding the classifier training, a two-stage online procedure is applied
for every map feature. First, at feature initialization, a new class is added in
the classifier and 400 warped versions of the texture patch around the feature
are GPU-synthesized from the image where the feature is first observed. The
warped patches are used to train the classifier. The second stage harvests
texture patches during EKF operation which are used for online training.
RLR considers each class score independently, facilitating the continuous
online training, since the classification rate of any class is not affected by the
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(a) The system is on track. (b) A large occlusion causes
the tracking loss.

(c) Finally, the system relo-
calizes and tracking is recov-
ered.

Figure 3.4: Example of relocalization after a large occlusion for the operation
in Figure 4.9c.

addition of other classes. The classifier is also exploited for selecting the most
distinctive features at initialization: only features scoring low in the classifier
with respect to other features already in the map are eventually initialized.
Doing so, the map features are trackable, locally salient and also distinctive
for recognition and relocalization.

RLR has proven to be valid in the laparoscopic experiments performed
in this thesis. Figure 3.3, corresponding to video [GGf] (0:38 - 0:49), shows
a real laparoscopic example of a loss of tracking due to an extraction and
reinsertion of the laparoscope and its posterior relocalization. Figure 3.4
shows another real laparoscopic example of a loss of tracking in this case
caused by a large occlusion. This example can be found in video [GGh] (1:13
- 1:32).

3.2 1-Point RANSAC

A robust search for correspondences, or data association, generally operates
by checking the consistency of the data against the global model assumed
to be generating the data, and discarding as spurious any that does not
fit into it. Among robust estimation methods, Random Sample Consensus
(RANSAC) [FB81] stands out as one of the most successful and widely used,
especially in the Computer Vision community. One contribution of this thesis
is the integration of RANSAC into the EKF framework –1-Point RANSAC
(1-PR).

As a motivation and in order to highlight the requirements and benefits
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of the RANSAC, a simple 2D line estimation example with spurious data
is used to explain the standard RANSAC algorithm (Figure 3.5) and, after
that, its adaptation to the EKF framework with the proposed 1-PR algorithm
(Figure 3.6). 1-PR is thoroughly detailed along this section and is shown as
a practical matching algorithm.

Standard RANSAC starts from a set of data, 2D points in this simple
example, and the underlying model that generates the data, a 2D line. In
the first step, RANSAC constructs hypotheses for the model parameters and
selects the one that gathers most support. Hypotheses are randomly gener-
ated from the minimum number of points necessary to compute the model
parameters, which is two in the case of line estimation. Support for each hy-
pothesis can be computed in its most simple form by counting the data points
inside a threshold (related to the data noise), although more sophisticated
methods have been used [TZ00].

Hypotheses involving one or more outliers are assumed to receive low
support, as is the case in the third hypothesis in Figure 3.5. The number of
hypotheses nhyp necessary to ensure that at least one spurious-free hypothesis
has been tested with probability p can be computed from this formula:

nhyp =
log (1− p)

log (1− (1− ε)m)
, (3.3)

where ε is the outlier ratio and m the minimum number of data points nec-
essary to instantiate the model. The usual approach is to adaptively com-
pute this number of hypotheses at each iteration, assuming the inlier ratio is
the support set divided by the total number of data points in this iteration
[HZ04].

Data points that voted for the most supported hypothesis are considered
clear inliers. In a second stage, clear inliers are used to estimate the model
parameters. Individual compatibility is checked for each one of the rest of
the points against the estimated model. If any of them is rescued as inlier, as
happens in the example in Figure 3.5, the model parameters are re-estimated
again in a third step.

Figure 3.6 illustrates the idea behind 1-PR in the same 2D line estimation
problem. As the first key difference, the starting point is a data set and its
underlying model, but also a prior probability distribution over the model
parameters. RANSAC hypotheses are then generated based on this prior
information and data points, differently from standard RANSAC hypothesis
based solely on data points. The use of prior information can reduce the
size of the data set that instantiates the model to the minimum size of one
point, and it is here where the computational benefit of this method with
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Figure 3.5: RANSAC steps for the simple 2D line estimation example: First,
random hypotheses are generated from data samples of size two, the minimum
to define a line. The most supported one is selected, and data voting for this
hypothesis are considered inliers. Model parameters are estimated from those
clear inliers in a second step. Finally, the remaining data points consistent
with this latest model are rescued and the model is re-estimated again.

respect to RANSAC arises: according to Equation 3.3, reducing the sample
size m greatly reduces the number of RANSAC iterations and hence the
computational cost.

The order of magnitude of this reduction can be better understood if in-
stead of this simple estimation example, a real visual estimation application
is used. According to [Nis04], at least five image points are necessary to
estimate the 6 degrees of freedom (DoF) camera motion between two frames
(so m = 5). Using Equation (3.3), assuming an inlier ratio of 0.5 and a prob-
ability p of 0.99, the number of random hypotheses would be 146. Using the
1-PR scheme, assuming that probabilistic a priori information is available,
the sample size m can be reduced to one point and the number of hypotheses
would be reduced to 7. Having an a priori probability distribution over the
camera parameters is unusual in classical pairwise Structure from Motion
(SfM) which assumes widely separated views [HZ04], and methods like stan-
dard RANSAC, which generate hypotheses from candidate feature matches,
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are mandatory in this case. But in sequential SfM from video ([Dav03; KM08;
Mou+09]), smooth interframe camera motion can be reasonably assumed and
used to generate a prior distribution (prediction) for the image correspon-
dences. For the specific case of the EKF implementation of sequential SfM,
this prior probability is naturally propagated by the filter and is straightfor-
wardly available.
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Figure 3.6: 1-PR steps for the simple 2D line estimation example: As a key
difference from standard RANSAC, the algorithm assumes that an a priori
probability distribution over the model parameters is known in advance. This
prior knowledge allows to compute the random hypotheses using only 1 data
point, hence reducing the number of hypotheses and the computational cost.
The remaining steps do not vary with respect to standard RANSAC in Figure
3.5.

.

3.2.1 Related Work

Data Association

RANSAC [FB81] was introduced early in visual geometric estimation [TM93]
and has been the preferred outlier rejection tool in the field. Recently, an
important stream of research has focused on reducing the model verification
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cost in standard RANSAC ([RFP08; CM08; Cap05; Nis05]) via the early
detection and termination of bad hypotheses. The 1-PR algorithm proposed
here is related to this stream in the sense that it also reduces the hypothesis
generation and validation cost. Nevertheless, it does so in a different man-
ner: instead of fast identification of good hypotheses among a large number
of them, the number of hypotheses is greatly reduced from the start by con-
sidering the prior information given by a dynamic model.

Incorporating probabilistic information into RANSAC has rarely been
discussed in the computer vision literature. Only Moreno et al. ([MNLF08])
have explored the case where weak a priori information is available in the
form of probabilistic distribution functions.

More related to this method, the combination of RANSAC and Kalman
filtering was proposed by Vedaldi et al. [Ved+05]. 1-PR might be considered
a specific form of Vedaldi’s quite general approach. They propose an iterative
scheme in which several minimal hypotheses are tested; for each hypothesis,
all the consistent matches are iteratively harvested; no statement about the
cardinality of the hypotheses is made. Here, a definite and efficient method,
in which the cardinality of the hypotheses generator size is 1, and the inlier
harvesting is not iterative but in two stages, is proposed. The method is
described in reproducible detail to deal efficiently with the EKF algorithm
by splitting the expensive EKF covariance update in two stages in order to
reach real time.

RANSAC using 1-point hypotheses has also been proposed in [SFS09] as
the result of constraining the camera motion. While at least 5 points would
be needed to compute monocular SfM for a calibrated camera undergoing
general 6 DoF motion [Nis04], fewer are needed if the motion is known to be
less general: as few as 2 points in [OM01] for planar motion and 1 point in
[SFS09] for planar and nonholonomic motion. As a clear limitation of both
approaches, any motion performed out of the model will result in estimation
error. In fact, it is shown in real-image experiments in [SFS09] that although
the most constrained model is enough for RANSAC hypotheses (reaching
then 1-PR), a less restrictive model offers better results for motion estimation.

In the case of the 1-PR method, extra information for the predicted cam-
era motion comes from the probability distribution function that the EKF
propagates over time. The method presented is then, in principle, not re-
stricted to any specific motion, being suitable for 6 DoF estimation. The
only assumption is the existence of tight and highly correlated priors. This
assumption is reasonable within the EKF framework since the filter itself
only works in such circumstances.

Among non-RANSAC-based methods for data association, JCBB has
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been the preferred technique within the EKF framework being successfully
used both in visual [Cle+07; WKR07] and non-visual SLAM [FNL02]. As
discussed in Section 2.3, JCBB extracts the maximum set of matches that
is jointly compatible with the multivariate Gaussian prediction from all IC
matches. Nevertheless, JCBB entails two limitations: its exponential com-
putational cost in the number of measurements, and its lack of accuracy for
operating on the linearized predicted state of the measurements, which are
overcome by 1-PR. Regarding the former, the computational complexity of
1-PR is linear in the number of measurements with low cost variation in the
number of spurious matches (outliers). Regarding the latter, JCBB operates
with the prediction of the measurements before fusing them, in contrast, 1-
PR, and RANSAC in general, operates after fusing a subset of them, which
corrects part of the predicted model error with respect to the real system.

Two methods are also of interest for this work. First, Active Matching
(AM) [CD08] which is a clear inspiration for 1-PR. In AM, feature measure-
ments are integrated sequentially; the choice of a measurement, at each step,
is driven by expected information gain; the results of each measurement in
turn are used to narrow the search for subsequent correspondences. 1-PR can
be seen as lying in the middle ground between RANSAC or JCBB, which ob-
tain point correspondence candidates and then aim to resolve them, and AM
with its fully sequential search for correspondences. The first step of 1-PR
is very similar to AM confirming that integrating the first match highly con-
strains the possible image locations of other features but, afterwards, both
algorithms diverge. A problem with AM is the unreasonably high compu-
tational cost when scaling to large numbers of feature correspondences per
frame (1-PR has much better properties in this regard), though an improve-
ment to AM has also addressed this issue in a different way [Han+10].

The second method is Randomized Joint Compatibility proposed by Paz
et al. [PTN08]. This basically randomizes the jointly compatible set search
by avoiding the complete Branch and Bound search. At the first step, an ini-
tial small set of jointly compatible inliers is obtained via Branch and Bound
search in random sets. Then, the joint compatibility of each remaining match
is checked against the initial set. Although this approach lowers the compu-
tational cost of the JCBB, it still faces the accuracy problems derived from
the use of the predicted measurement function before data fusion.

Benchmarking

Carefully designed benchmark datasets and methods have come into stan-
dard use in the vision community [SS02; Eve+10]. Robotic datasets have
reached a high level of detail presenting either detailed benchmarking proce-
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dures [Kü+09], or datasets with reliable ground truth and open resources for
comparison [Smi+09; BMG09].

The RAWSEEDS dataset [RAW11], which includes monocular streams
for large scale scenarios, has been used for the validation of 1-PR. While be-
ing suitable to benchmark very large real-image experiments, robotic datasets
face two main inconveniences: First, the robot motion is planar in all the
datasets, thus not allowing to evaluate full 6-DoF motion estimation. And
second, GPS only provides translational data so angular estimation cannot
be benchmarked. Simulation environments, like the one described in [FP09],
can provide the translational and angular ground truth for any kind of camera
motion. Nevertheless, these simulation environments usually cannot repre-
sent full real world complexity.

The benchmarking method proposed and used in this thesis overcomes
all these limitations. It consists of comparing the estimation results against
a Bundle Adjustment solution over high resolution images. Full 6 DoF mo-
tion can be evaluated with low user effort (only the generation of a Bundle
Adjustment solution is required), requirements for hardware are low (a high
resolution camera), and any kind of motion or scene can be evaluated, since
the method operates over the real images themselves.

This approach is not entirely new: the use of a global Bundle Adjustment
solution to benchmark sequential algorithms has already been used in [ED07;
Mou+09]. The contribution here is the validation of the algorithm showing
that the Bundle Adjustment uncertainty is much lower than the sequential
methods to benchmark. As another novelty, global Bundle Adjustment is
applied over high resolution images further improving accuracy. While it is
true that a Bundle Adjustment solution may still suffer from scale drift, it will
be much lower than that of the sequential algorithms. Also, scale drift can
be driven close to zero by carefully choosing the images over which to apply
Bundle Adjustment, in order to form a well-conditioned network [Tri+00], so
the validity of the method is not compromised.

3.2.2 1-PR EKF Algorithm

Algorithm 1 outlines the proposed combination of 1-PR inside the EKF
framework in its most general form in the belief that this method may be of
application in a large number of estimation problems. Figures 3.7 and 3.8
illustrate the algorithm steps over a laparoscopic image.
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Algorithm 1 1-Point RANSAC EKF

1: INPUT: x̂k−1|k−1,Pk−1|k−1 {EKF estimate at step k − 1}
2: th {Threshold for low-innovation points.}
3: OUTPUT: x̂k|k,Pk|k {EKF estimate at step k}
4:

{A. EKF prediction and individually compatible matches}
5: [x̂k|k−1,Pk|k−1] = EKF prediction(x̂k−1|k−1,Pk−1|k−1,u)

6: [ĥk|k−1,Sk|k−1] = measurement prediction(x̂k|k−1,Pk|k−1)

7: zIC = search IC matches(ĥk|k−1,Sk|k−1)
8:

{B. 1-Point hypothesis generation and evaluation}
9: zli inliers = [ ]

10: nhyp =∞ {Initial value. Updated in the loop}
11: for i = 0 to nhyp do
12: zi = select random match(zIC)
13: x̂i = EKF state update(zi, x̂k|k−1) {Only state; NO covariance}
14: ĥi = predict all measurements(x̂i)
15: zthi = find matches below a threshold(zIC , ĥi, th)
16: if size(zthi ) > size(zli inliers) then
17: zli inliers = zthi

18: ε = 1− size(zli inliers)
size(zIC)

19: nhyp = log(1−p)
log(1−(1−ε))

20: end if
21: end for
22:

{C. Partial EKF update using low-innovation inliers}
23: [x̂k|k,Pk|k] = EKF update(zli inliers, x̂k|k−1,Pk|k−1)
24:

{D. Partial EKF update using high-innovation inliers}
25: zhi inliers = [ ]
26: for every match zj above a threshold th do
27: [ĥj ,Sj ] = point j prediction and covariance(x̂k|k,Pk|k, j)

28: νj = zj − ĥj

29: if νj
>

Sj
−1
νj < χ2

α,d {α: Confidence level; d: DoF} then

30: zhi inliers = add match j to inliers(zhi inliers, zj)
31: end if
32: end for
33: [x̂k|k,Pk|k] = EKF update(zhi inliers, x̂k|k,Pk|k)
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(a) Individually compatible –IC– matches. State prediction ( ) with their
corresponding elliptical search regions.

(b) Consensus hypothesis and low-innovation matches. The match gen-
erating the hypothesis ( ). Low-innovation supporting matches ( ).
Non-supporting matches ( ).

Figure 3.7: 1-PR stages corresponding to one frame for the operation in
Figure 4.9a (I): (a) Individually compatible –IC– matches. (b) RANSAC
winner hypothesis and consensus low-innovation matches. The estimated
state is represented by its projection in the image, ( ) stands for the estimate
and the ellipse stands for the covariance. The measurements are displayed as
( ). Different colors are used to code different matching categories. Zoom
is made over 4 paradigmatic matches for each class of matches.
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EKF Prediction and Individually Compatible Matching (lines 5–7)

The algorithm begins with standard EKF prediction: the estimation for the
state vector xk−1|k−1 at step k − 1, modeled as a multidimensional Gaus-
sian xk−1|k−1 ∼ N

(
x̂k−1|k−1,Pk−1|k−1

)
, is propagated to step k through the

known dynamic model fk:

x̂k|k−1 = fk
(
x̂k−1|k−1,uk

)
(3.4)

Pk|k−1 = FkPk−1|k−1F
>
k + GkQkG

>
k . (3.5)

In the above equation uk stands for the control inputs to the system at
step k; Fk is the Jacobian of fk with respect to the state vector xk|k−1 at
step k; Qk is the covariance of the zero-mean Gaussian noise assumed for the
dynamic model, and Gk is the Jacobian of fk with respect to that noise at
step k.

The predicted probability distribution for the state xk|k−1 can be used to
ease the correspondence search (active search), as described in Section 2.2.4
for the visual SLAM case. Propagating this predicted state through the
measurement model hi offers a Gaussian prediction for each measurement:

ĥi = hi
(
x̂k|k−1

)
(3.6)

Si = HiPk|k−1H
>
i + Ri , (3.7)

where Hi is the Jacobian of the measurement hi with respect to the state
vector xk|k−1, and Ri is the covariance of the Gaussian noise assumed for
each individual measurement. The actual measurement zi should be exhaus-
tively searched for inside the 99% probability region defined by its predicted

Gaussian, N
(
ĥi,Si

)
, by comparison to the chosen local feature descriptor.

Figure 3.7a shows measurement predictions of the map points (ĥ: ), their
elliptical search region and their corresponding found measurements (z: )
obtained for a monocular laparoscopic example. All measurements (z) com-
pose a set of individually compatible matches (zIC = (z1, · · · , zi, · · · , zn)>).

Active search allows computational savings and also constraints the
matches to be individually compatible with the predicted state xk|k−1. Nev-
ertheless, ensuring geometric compatibility for each separated match zi does
not guarantee the global consensus of the whole set. Therefore, the joint
compatibility of the data against a global model still has to be checked for
the set of individually compatible matches zIC previous to the EKF update.

1-Point Hypothesis Generation and Evaluation (lines 9–21)

Following the principles of RANSAC, random state hypotheses x̂i are gen-
erated and data support is computed by counting measurements below a
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threshold. It is assumed here that the predicted measurements are highly
correlated, such that every hypothesis computed from one match reduces
most of the common uncertainty producing an inlier uncertainty close to the
measurement noise Ri.

As the key difference with respect to standard RANSAC, random hy-
potheses will be generated not only based on the data zIC but also on the
predicted state xk|k−1 ∼ N

(
x̂k|k−1,Pk|k−1

)
. Exploiting this prior knowledge

allows to reduce the sample size necessary to instantiate the model parame-
ters from the minimal size to define the DoF of the model to only one data
point. Since the termination criterion of the RANSAC algorithm in (3.3)
grows exponentially with the sample size, using only one point reduces dras-
tically the number of hypotheses to try.

Another key aspect for the efficiency of the algorithm is that each hy-
pothesis x̂i generation only needs an EKF state update using a single match
zi. A covariance update, which is of quadratic complexity in the size of the
state, is not computed and hence the cost per hypothesis is low. Hypoth-
esis support is calculated by projecting the updated state into the camera,
which can also be performed at very low cost compared with other stages
in the EKF algorithm. All features whose Euclidean distance between their
measurement and their new estimate is lower than an arbitrary threshold
(originally this threshold was established as 2 times the measurement noise)
are considered as supporters.

Figure 3.7b shows a match generating a hypothesis, its supporting match
set (low-innovation inliers), and the non-supporting matches for the monoc-
ular laparoscopic example.

Partial Update with Low-Innovation Inliers (line 23)

Data points voting for the most supported hypothesis, zli inliers, are desig-
nated as low-innovation inliers. They are assumed to be generated by the
true model, since they are at a small distance from the most supported hy-
pothesis. The rest of the points may be outliers but also inliers, even if they
are far from the most supported hypothesis.

It is well known that distant points are useful for estimating camera rota-
tion while close points are necessary to estimate translation. In the RANSAC
hypothesis generation step, a distant feature would generate a highly accurate
1-point hypothesis for rotation, while translation would remain inaccurately
estimated. Other distant points would in this case have low innovation and
would vote for this hypothesis. But as translation is still inaccurately esti-
mated, nearby points would presumably exhibit high innovation even if they
are inliers.
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(a) Low-innovation inliers update & high-innovation inliers rescue. Set of
low-innovation inliers ( ). Rescued high-innovation inliers ( ) are now
inside the search region and then accepted. Spurious matches ( ) remain
out of the new search region.

(b) Final update. The updated state results from the integration of high
and low-innovation inliers ( ). Outliers ( ) are not integrated.

Figure 3.8: 1-PR stages corresponding to one frame for the operation in
Figure 4.9a (II): (a) Low-innovation partial update and the rescued high-
innovation inliers. (b) Fully updated map. The estimated state is represented
by its projection in the image, ( ) stands for the estimate and the ellipse
stands for the covariance. The measurements are displayed as ( ). Different
colors are used to code different matching categories. Zoom is made over 4
paradigmatic matches for each class matches.
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So after having determined the most supported hypothesis and the other
points that vote for it, some inliers still have to be “rescued” from the high-
innovation set. Such inliers will be rescued after a partial state and covariance
update using only the reliable set of low-innovation inliers:

x̂k|k = x̂k|k−1 + K′
(
zli inliers − h′

(
x̂k|k−1

))
(3.8)

Pk|k =
(
I−K′H′

)
Pk|k−1 (3.9)

K′ = Pk|k−1H
′>
(
H′Pk|k−1H

′> + R′
)−1

(3.10)

where H′ = (H′1, · · · ,H′i, · · · ,H′n)> stands for the Jacobian of the measure-
ment equation h′

(
x̂k|k−1

)
that projects the low-innovation inliers into the

sensor space. R′ is the covariance assigned to the sensor noise.

Partial Update with High-Innovation Inliers (lines 25–33)

After a partial update using low-innovation inliers, most of the correlated er-
ror in the EKF prediction is corrected and the covariance is greatly reduced.
This high reduction will be exploited for the recovery of high-innovation in-
liers: as correlations have weakened, consensus for the set will not be neces-
sary to compute and individual compatibility will suffice to distinguish inliers
from outliers.

An individual Gaussian prediction hj ∼ N
(
ĥj ,Sj

)
will be computed

for each high innovation measurement zj by propagating the state after the
first partial update xk|k through the projection model. The match will be
accepted as an inlier if it passes a χ2 test, based on the new and more accurate
innovation covariance, with an α confidence level (typically α = 95%) test
and d DoF (d = 2 in the monocular visual SLAM case). Matches which
do not pass the test are marked as spurious (outliers). The final number of
spurious matches is rather low, but their rejection is a must for performance.

Figure 3.8a shows the EKF update with the final low-innovation inlier set.
Some of the previous non-supporting matches are now supporting matches
and are rescued (high-innovation inliers). The final non-supporting matches
are the final spurious matches.

After testing all the high-innovation measurements, a second partial up-
date will be performed with all the points classified as inliers, zhi inliers,
following the usual EKF equations. Figure 3.8b shows the final EKF update
after integrating the high-innovation inliers.

It is worth mentioning that splitting the EKF update does not have a
noticeable effect on the computational cost. If n is the state size and m
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the measurement vector size, and in the usual SLAM case where the state is
much bigger than the locally measured set n >> m, the main EKF cost is the
covariance update which isO

(
mn2

)
. If the update is divided into two steps of

measurement vector sizes m1 and m2 (m = m1 +m2), this covariance update
cost stays almost the same. Some other minor costs grow, like the Jacobian
computation which has to be done twice. But also some others are reduced,
like the measurement covariance inversion which is O

(
m3
)
. Nevertheless,

the effect of the last two is negligible and for most EKF estimation cases the
cost is dominated by the covariance update and remains approximately the
same.

3.2.3 1-PR EKF Exhaustive Algorithm

The previous section detailed the original and most general version of the
1-PR algorithm. However, in the case of monocular EKF, and laparoscopy
in particular, an exhaustive version of 1-PR may be used (Algorithm 2). An
explanation of this algorithm can be found in the video [GGh](1:33 - 2:02).

In monocular EKF SLAM the cardinality of the individual compatible
match set is low, in the order of tens, and hypotheses generation is cheap since
they are generated from just one measurement. As a result, the cardinality
of the hypothesis set is the same as the IC match set. Therefore, it is possible
to exhaustively test all hypotheses.

The exhaustive 1-PR mainly differs from the original (Algorithm 1) in
the random hypothesis generation. Tasks of the original version such as
selecting a random match from the set of IC matches, or recomputing the
number of hypotheses, which required to ensure that at least one spurious-
free hypothesis has been tested, are not needed in the exhaustive version
where all IC matches are considered as hypotheses.

Besides, unlike the original hypothesis generation and consensus stage,
where the supporting test consists on an arbitrary threshold (typically, it
was 2 times the measurement noise), in the exhaustive 1-PR only a cheap χ2

test is applied to identify the support for the hypothesis. Since the predicted
measurements are assumed to be highly correlated, every hypothesis com-
puted from one match reduces most of the common uncertainty producing
an inlier uncertainty close to the measurement noise Rk, so that the innova-
tion covariance may be approximated as the measurement noise covariance
Sk ≈ Rk. Therefore, this approximation enables the use of the cheap χ2 test.

Although in the exhaustive version the hypothesis generation is not ran-
dom, the RANSAC name is still kept because, in any case, this method is
quite akin to the popular algorithm.
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Algorithm 2 Exhaustive Hypotheses 1-PR EKF-Update

1: IN: x̂k|k−1,Pk|k−1 {EKF prediction at step k}
2: zIC ,Rk {IC matches & Meas. Error Covariance}
3: OUT: x̂k|k,Pk|k {EKF estimate at step k}
4: {A. 1-Point hypothesis generation and consensus}
5: for every zi match in zIC do
6: x̂i = EKF state update(zi, x̂k|k−1)

7: ĥi = predict all measurements(x̂i)
8: [zsui , z

ns
i ] = find supporters(zIC , ĥi, χ

2
2,0.95,Rk)

9: if size(zsui ) > size(zli inliers) then
10: zli inliers = zsui ; znonsupport = znsi
11: end if
12: end for
13: {B. Partial EKF update using low-innovation inliers & rescue high-

innovation inliers}
14: [x̂lik|k,P

li
k|k] = EKF update(zli inliers, x̂k|k−1,Pk|k−1)

15: for every zj match in znonsupport do
16: [ĥj ,Sj ] = point j prediction and covariance(x̂lik|k,P

li
k|k, j)

17: νj = zj − ĥj

18: if νj
>

Sj
−1
νj < χ2

2,0.95 then

19: zhi inliers = add match j to inliers(zhi inliers, zj)
20: end if
21: end for
22: {C. Partial EKF update using high-innovation inliers}
23: [x̂k|k,Pk|k] = EKF update(zhi inliers, x̂lik|k,P

li
k|k)

3.2.4 Experimental Validation: Benchmark Method for 6
DoF Camera Motion Estimation

The first step of the method takes an image sequence of the highest resolution
in order to achieve the highest accuracy. In this Section, a 1224× 1026 pixel
sequence was taken at 22 frames per second. A sparse subset of n camera lo-
cations xC1

BA –Equations (3.11, 3.12)– are estimated, by Levenberg-Marquardt
Bundle Adjustment with a robust likelihood model [Tri+00], over the corre-
sponding n images in the sequence {I1, · · · , In}. Images are manually selected
to ensure they form a strong network. The reference frame is attached to
the camera C1, corresponding to the first frame of the sequence I1. For the
next “1-Point RANSAC vs 5-Point RANSAC ” and “1-Point RANSAC vs
JCBB” experiments (below in this section), 62 overlapping camera locations
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were reconstructed by manually matching 74 points spread over the images.
15− 20 points are visible in each image.

xC1
BA =


xC1
1,BA

...

xC1
n,BA

 , (3.11)

xC1
i,BA =

(
XC1
i,BA, Y

C1
i,BA, Z

C1
i,BA, φ

C1
i,BAθ

C1
i,BA, ψ

C1
i,BA

)>
(3.12)

where each camera location is represented by its position(
XC1
i,BA, Y

C1
i,BA, Z

C1
i,BA

)>
and its orientation encoded as Euler angles(

φC1
i,BA, θ

C1
i,BA, ψ

C1
i,BA

)>
. The covariance of the solution is computed by

back-propagation of reprojection errors PC1
BA =

(
J>R−1J

)−1
, where J is the

Jacobian of the projection model and R is the covariance of the Gaussian
noise assumed in the model.

The input sequence is then reduced by dividing its width and height by
four. The algorithm to benchmark is applied over the subsampled sequence.
The reference frame is also attached to the first camera C1, which is taken
to be the same first one as in Bundle Adjustment. Each image for which a
Bundle Adjustment estimate is available is selected and stored xC1

i,MS along

with its individual covariance PC1
i,MS directly extracted from the EKF at each

step.
Since the reference has been set to the same first image of the sequence,

the Bundle Adjustment and sequential estimation solutions only differ in the
scale of the reconstruction. Therefore, in order to compare them, the relative
scale s is estimated first by minimizing the error between the two trajectories.

The Bundle Adjustment trajectory is then scaled xC1
BA = fscale

(
xC1
BA

)
and,

together with its covariance PC1
BA = JscaleP

C1
BAJ>scale.

Finally, the error is computed as the relative transformation between the
two solutions:

ε = ⊕xC1
BA 	 xC1

MS ; (3.13)

and the corresponding covariance of the error is computed by propagating
the covariances of the global optimization and sequential estimate:

Pε = JεBAPC1
BAJ>εBA + JεMSPC1

MSJ>εMS . (3.14)

It was checked in the experiments that the covariance term from Bun-
dle Adjustment, JεBAPC1

BAJ>εBA, was negligible with respect to the summed
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covariance Pε. Since this is the case, the Bundle Adjustment results can
be considered as a reliable ground truth to evaluate sequential approaches.
In the following figures, only uncertainty regions coming from filtering,
JεMSPC1

MSJ>εMS are shown.
The same subsampled sequence was used for all the experiments in the

following “1-Point RANSAC vs 5-Point RANSAC ” and “1-Point RANSAC
vs JCBB” experiments (below in this section). The camera moves freely
in 6 DoF in a computer lab, with the maximum distances between camera
locations being around 5 meters. Filter tuning parameters were equal for all
the experiments: motion dynamic and measurement model noise were kept
the same, the number of measured features in the image was limited to 30 and
all the thresholds (e.g. for feature deletion, cross-correlation, inverse depth to
Euclidean conversion and initialization) were also kept the same. The reader
should be aware that despite all the care taken, the experiments are not
exactly the same: One of the reasons is that the outlier rate is different for
each method; some methods need to initialize more features in order to keep
measuring 30. Nevertheless, it is thought that this is the fairest comparison,
since the algorithms try to measure always the same number of points and
hence gather an equivalent amount of sensor data.

(a) Sample images from the sequence used for
benchmarking.
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Blue triangles: Cameras from Bundle Adjustment

Red stars: 3D points from Bundle Adjustment

(b) Reference solution computed by Bundle
Adjustment.

Figure 3.9: Images extracted from the sequence used in the experiments and
reference camera positions extracted.

Figure 3.9 shows example images from the sequence used in the following
two sections for 1-PR and JCBB benchmarking. The 62 camera locations
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from the 2796 images long sequence are also displayed. Results for different
experiments using this benchmarking method have been grouped for better
visualization and comparison: Figures 3.10 and 3.12 show estimation errors
for different tunings of 1-PR and JCBB; and Figure 3.13 details their com-
putational cost. All the experiments were run on an Intel(R) Core(TM) i7
processor at 2.67GHz.

1-Point RANSAC vs 5-Point RANSAC

First, the performances of 5-point RANSAC (5-PR) and 1-PR are compared,
to ensure that there is no degradation of performance when the sample size
is reduced. Figures 3.10a and 3.10b show the errors of both algorithms with
respect to the reference camera motion, along with their 99% uncertainty
regions. It can be observed that reducing the sample size from 5 to 1 does
not have a significant effect either on the accuracy or the consistency of the
estimation. On the contrary, the figure even shows 1-PR outperforming 5-PR.
This may be attributed to the fact that, unlike in classical SfM algorithms
[RFP08], the theoretical number of hypotheses, given by Equation 3.3, was
not inflated in the experiments. By increasing the number of iterations, 5-
PR comes close to 1-PR; but it is remarkable that without this augmentation
1-PR already shows good behavior. The standard deviation of image noise
was chosen to be 0.5 for the experiments since subpixel matching is used.

While the accuracy and consistency remains similar, the computational
cost is much higher for the usual 5-PR than the proposed 1-PR. The details
of the computational cost of both algorithms can be seen in Figures 3.13a
and 3.13b. The cost of RANSAC is low compared with the rest of the EKF
computations for the 1-PR case, but it is several orders of magnitude higher
and is the main cost in the 5-PR case. This is caused by the increase in
the number of random hypotheses in frames with a large number of spurious
matches. Figures 3.11a and 3.11b show the number of hypotheses in both
cases, revealing that in 5-PR this is two orders of magnitude.

Hypothesis generation from a single point opens the possibility of an ex-
haustive approach rather than a random one: while an exhaustive generation
of all the possible combinations of 5 points in the measurement subset would
be impractical, an exhaustive generation of 1-point hypotheses implies only as
many hypotheses as measurements. Figure 3.10c details the errors for the 1-
point exhaustive hypothesis generation case. Compared with 1-point random
hypothesis generation in Figure 3.10b, a similar accuracy and consistency is
observed. Figure 3.11c shows the number of iterations needed for compari-
son with the random adaptive case (Figure 3.11b). The computational cost
is increased but, as shown in Figure 3.13c, it is still dominated by the EKF
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(a) 5-PR, σz = 0.5 pixels.
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(b) 1-PR, σz = 0.5 pixels.

0 20 40 60

−0.1

−0.05

0

0.05

0.1

0.15
X Error

#Frame

 

 

0 20 40 60

Y Error

#Frame

 

 

0 20 40 60

Z Error

#Frame

 

 

0 20 40 60
−0.1

−0.05

0

0.05

0.1
Roll Error [rad]

#Frame

 

 

0 20 40 60

Pitch Error [rad]

#Frame

 

 

0 20 40 60

Yaw Error [rad]

#Frame

 

 

(c) 1-PR exhaustive hypothesis, σz = 0.5 pixels.
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(d) 1-PR, σz = 0.2 pixels.

Figure 3.10: Camera location error (thick blue line) and uncertainty (thin red
line) for different RANSAC configurations. Similar error and consistency are
shown for 5-PR and 1-PR in Figures 3.10a and 3.10b, respectively. Figure
3.10c also reports similar results for exhaustive hypothesis testing. Figure
3.10d shows smaller errors as a result of making 1-PR stricter by reducing
the standard deviation of measurement noise.
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(a) Number of iterations along the sequence
for 5-PR.
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(c) Number of iterations along the sequence
for exhaustive hypothesis generation.

Figure 3.11: Number of iterations for 5-PR and 1-PR. Notice that the several
orders of magnitude for the 5-PR case cause a large cost overhead when
compared with 1-PR (Figures 3.13a, 3.13b and 3.13c detail the computational
cost for the three cases respectively).

update cost. Both options are thus suitable for real-time implementation.
Analyzing the computational cost in Figure 3.13b it can be concluded

that the cost for 1-PR is always low compared with EKF computation even
when the spurious match rate is high (the spurious match rate is shown in
Figure 3.14b). As will be shown later, the latter becomes an important ad-
vantage over JCBB, whose cost grows exponentially with the rate of spurious
matches. This efficiency opens the possibility of making the RANSAC algo-
rithm stricter by reducing the measurement noise standard deviation and
hence discarding high noise points in the EKF. Such analysis can be done
by reducing the standard deviation from 0.5 to 0.2 pixels: high noise points
were discarded as outliers, as can be seen in Figures 3.14b and 3.14d. The
computational cost increases, as shown in Figure 3.13e with respect to 3.13b,
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but still remains small enough to reach real-time performance at 22 Hz. The
benefit of discarding high noise points can be observed in Figure 3.10d: er-
rors and their uncertainty were reduced (but still kept mostly consistent) as
a result of measuring more accurate points.

1-Point RANSAC vs Joint Compatibility Branch and Bound
(JCBB)

RANSAC and JCBB tuning is a thorny issue when benchmarking both al-
gorithms. Since both cases assume Gaussian distributions for the measure-
ments and decide based on probability, choosing equal significance levels for
the probabilistic tests of both algorithms is considered the fairest. The sig-
nificance level was chosen to be 0.05 in the χ2 test that JCBB performs to
ensure joint compatibility for the matches. Consistently, the probabilistic
threshold for RANSAC was set to 95% for voting (line 15 in Algorithm 1 in
Section 3.2.2) and for the rescue of high-innovation matches (line 29 in the
algorithm).

The results of benchmarking JCBB are shown in the following figures.
First, Figure 3.12a details the errors and uncertainty regions for the EKF
using JCBB. It can be observed that the estimation in Figure 3.12a shows
larger errors and inconsistency than the 1-PR one in Figure 3.12b, repeated
here for visualization purposes. The reason can be observed in Figure 3.14
where the outlier rates for 1-PR and JCBB are shown: the number of matches
considered outliers by 1-PR is greater than by JCBB. The points accepted
as inliers by JCBB are the ones that spoil the estimation.

A stricter version of JCBB has been benchmarked by reducing the stan-
dard deviation of uncorrelated measurement noise to 0.2 pixels, as was done
with 1-PR. The spurious match rates of both algorithms, shown in Figures
3.14c and 3.14d, show that 1-PR remains more discriminative and hence pro-
duces a more accurate estimation than JCBB (Figure 3.12c). 1-PR errors for
the same tuning are repeated in Figure 3.12d for comparison purposes. Also,
as previously noted, the computational cost of JCBB grows exponentially
when made stricter: Figure 3.13f shows peaks over one second in the worst
cases.

JCBB can also be made stricter by increasing the significance level α of
the χ2 test it performs to check the joint compatibility of the data. Several
experiments were run varying this parameter. The lowest estimation errors,
shown in Figure 3.12e, were reached for α = 0.5 instead of the usual α = 0.05.
Estimation errors for this best JCBB tuning are still larger than in any of
the 1-PR experiments.
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(a) JCBB, σz = 0.5 pixels
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(b) 1-PR, σz = 0.5 pixels

0 20 40 60
−0.15

−0.1

−0.05

0

0.05

0.1

0.15
X Error

#Frame

 

 

0 20 40 60

Y Error

#Frame

 

 

0 20 40 60

Z Error

#Frame

 

 

0 20 40 60
−0.1

−0.05

0

0.05

0.1
Roll Error [rad]

#Frame

 

 

0 20 40 60

Yaw Error [rad]

#Frame

 

 

0 20 40 60

Pitch Error [rad]

#Frame

 

 

(c) JCBB, σz = 0.2 pixels
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(d) 1-PR, σz = 0.2 pixels
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(e) JCBB, σz = 0.2 pixels, α = 0.5

Figure 3.12: Camera location errors when using JCBB is shown in Figures
3.12a and 3.12c, for standard deviations of 0.5 and 0.2 pixels respectively.
Figures 3.12b and 3.12d show 1-PR results for the same filter tuning, are
repeated here for comparison. It can be seen that 1-PR outperforms JCBB
in both cases. Figure 3.12e shows the best JCBB tuning found which still
gives worse results than 1-PR.
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(a) 5-PR, σz = 0.5 pixels
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(b) 1-PR, σz = 0.5 pixels
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(c) 1-point exhaustive hypothesis, σz = 0.5
pixels
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(d) JCBB, σz = 0.5 pixels
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(e) 1-PR, σz = 0.2 pixels
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(f) JCBB, σz = 0.2 pixels

Figure 3.13: Detail of times and map sizes for different RANSAC and JCBB
configurations in double y-axis figures: times are shown as areas and mea-
sured in seconds on the left y-axis; the map size is displayed as a a red line
and is measured on the right y-axis. 1-PR exhibits much lower computational
cost than 5-PR and JCBB. 1-PR also shows only a small increase when made
exhaustive or stricter, making it suitable for real-time implementation at 22
Hz for the map size detailed in the figures.
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(a) JCBB, σz = 0.5 pixels.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

#Frame

ou
tli

er
s/

(in
lie

rs
+

ou
tli

er
s)

 

 

(b) 1-PR, σz = 0.5 pixels
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(c) JCBB, σz = 0.2 pixels
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(d) 1-PR, σz = 0.2 pixels.

Figure 3.14: Spurious match rate for JCBB and RANSAC when measurement
noise standard deviation σz is reduced to 0.2 pixels. It can be observed that
reducing the measurement noise makes both techniques stricter, but 1-PR
remains more discriminative.

3.2.5 Experimental Validation: Monocular EKF-Based Esti-
mation for Long Outdoor Sequences

Three different sequences from the RAWSEEDS [RAW11] dataset have been
used to test the validity of the 1-PR EKF for long-term camera motion esti-
mation. All sequences were recorded by a 320× 240 Unibrain camera with a
wide-angle lens capturing at 30 fps. The estimated camera trajectories were
validated against GPS data by means of an Euclidean distance:

εk =

√(
rWCk
− rWGPSk

)> (
rWCk
− rWGPSk

)
. (3.15)

rWCk
corresponds with the estimated position (not the orientation) for camera

k and rWGPSk
corresponds with the GPS position for the same camera after

aligning and scaling both trajectories by means of optimization.
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Table 3.1: EKF-based visual estimation error for long camera trajectories.

Trajectory
length [m]

Sensor
used

Mean
error [m]

Maximum
error [m]

% mean error over
the trajectory

146 monocular 1.3 4.2 0.9%

153 monocular 1.9 3.3 1.1%

650 monocular 6.4 11.1 1.0%
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Figure 3.15: Histograms of the errors for the three experiments.

In the first sequence, consisting of 6000 images, the robot translates
around 146 meters. The second sequence has 5400 images and the robot
describes a similar trajectory length, around 153 meters. Finally, a very long
and challenging sequence is evaluated that consists of 24180 frames (13.5
minutes of video) in which the robot describes a trajectory of 650 meters.

In order to reduce scale drift error, around two hundred features per frame
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(a) 146 meters trajectory (b) 156 meters trajectory

(c) 650 meters trajectory

Figure 3.16: Estimated trajectories from monocular data and GPS data.
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had to be measured. This high number increased the computational cost of
the EKF beyond real-time bounds. In the particular experiments presented,
the algorithm ran at about 1 Hz.

Table 3.1 details the maximum and mean errors obtained in these ex-
periments. It is worth noting that although for the three experiments the
accumulated drift makes the error noticeable when plotted with the GPS
trajectory, the relative error with respect to the trajectory keeps a low value
(1% of the trajectory length).

Figure 3.15 shows histograms of the errors for the three sequences. Sub-
figures 3.15c and 3.15d show histograms of the errors for the 650 meters ex-
periment in two different versions of the 1-PR algorithm: the first one using
Algorithm 1 and the second one replacing the random hypothesis generation
with exhaustive hypothesis generation (Algorithm 2) as evaluated in Figure
3.10c. The conclusion from Section 3.2.4 –“1-Point RANSAC vs 5-Point
RANSAC ”– is confirmed here: exhaustive hypothesis generation improves
very slightly the estimation errors.

Figure 3.16 shows the estimated (in black) and the GPS (in red) trajec-
tories over a top view extracted from Google Maps for each sequence. The
accuracy of the estimated trajectories is clear from visual inspection.

3.3 Laparoscopic Experiments

In order to prove the EKF + 1-PR (in its exhaustive version –Algorithm 2)
+ RLR combination performance in laparoscopy, two series of laparoscopic
sequences were captured. The performance relies on the configuration of three
thresholds: 1) FAST feature initialization threshold, which corresponds with
a Shi-Tomasi score, and indicates how distiguible is the point (the higher
the score is, the more distinguible the point is); 2) matching normalized
correlation threshold (when it tends to 100%, the correlation is better); and 3)
reobservation rate threshold, which determines the life time of features (when
it tends to 0%, it is more difficult to remove features from the map). In case
of laparoscopic sequences, these thresholds are defined as 30, 40% and 40%,
respectively. In contrast, they are stricter for traditional robotics sequences
(scenes of man-made environments) whose typical values are defined as 300,
95% and 75%.

The first series consists of a 874 frame laparoscopic sequence at
360x288@25 Hz. The sequence, which corresponds to an abdominal explo-
ration where a real human ventral hernia (hole) can be seen, is the same as
the second experiment (Figure 2.9) of Section 2.5.2. However, in this section,
only 186 frames could be processed with the EKF + JCBB combination. The
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complete sequence contains some typical challenging issues of laparoscopic se-
quences: sudden motions, surgical tool clutter, temporary tissue deformation
and laparoscope extraction and reinsertion into the abdominal cavity. These
issues result in a high spurious rate that must be coped with in real time.

This series was processed in the year 2010 on an Intel Core i7 processor
at 2.67 GHz, and reported in [GGCM11]. The number of features that the
algorithm tried to measure in each frame was fixed to 45. A video is available
in [GGf].

The second series is composed of fifteen in-vivo human laparoscopic ven-
tral hernia repairs. These interventions were captured between April 2011
and July 2012 at 384x288@25 Hz and were processed and reported in the
year 2013 in [GG+14].

All operations of this series were run on an Intel Core i7 processor at 2.93
GHz. The number of features that the algorithm tried to measure in each
frame was fixed to 40 and, unlike the first series, the map size was limited
to 100 points. Other differences with respect to the first series are related
with the code, where some parts corresponding with the map management
were optimized, and with the configuration of the relocalization, where the
time to try hypotheses was reduced from 20ms to 10ms and the artificially
assigned camera covariance when a good pose is found was halved.

For all operations in both series, laparoscope intrinsic parameters were
calibrated using a standard planar pattern calibration method, based on
[Zha00] (Figure 4.11), followed by bundle adjustment. A two parameter
radial distortion model was applied (Section 2.2.3).

3.3.1 Results

First series - 2010: 874 frame laparoscopic sequence

Figure 3.17 shows for each frame of the only sequence of this series: the map
size, the number of measured features, and the number of outliers. A feature
is considered as an outlier if it is matched by image correlation inside the
active search region but deemed as inconsistent by the 1-PR. Some frames
present equal or even higher number of outliers than inliers. This demon-
strates the effectiveness of 1-PR when facing with high outlier rates. Some
of these high spurious rates correspond with temporary tissue deformation
caused by tools interacting with the tissue, or by surgeons pushing the cavity
from outside (Figure 3.18). When temporary deformations happen, some
matches are not found simply because the corresponding points are imaged
out of the search window due to the severe deformation. Other matches with
smaller deformation are imaged inside the elliptical search window but even-
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tually marked as spurious by 1-PR. The 1-PR performance over this sequence
can be seen in video [GGf] (0:31 - 0:38 and 0:53 - 1:06).
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Figure 3.17: Total number of map features –black line. Measured features
–red line. Spurious matches –magenta line, i.e. matches found inside the
active search region marked as spurious by 1-PR. The blue dashed rectangle
corresponds to frames where tracking is lost.

Figure 3.18: Left, frame #375 cavity undeformed, most of the map points
are successfully reobserved. Right, frame #388 a significant number of map
points around the tool-tissue contact point are marked as outliers and hence
not measured avoiding map corruption; green circles enclose points marked
as outliers; blue points close to the tool suffer such a big deformation that
they are imaged out of the search window and hence not matched.
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Figure 3.19 presents the total cycle time budget identifying EKF predic-
tion, 1-PR, EKF update, EKF update for rescued matches, and initialization
and map management. The EKF prediction represents an almost impercep-
tible share. It is also worth noting that the approximately constant time
consumed by 1-PR, which is about 20% of the total budget. Notice also that
the low CPU time consumed by the update for rescued matches signals that
those rescued matches are just a few; however, they are very informative be-
cause they normally correspond with recently initialized points close to the
camera which produce valuable translation information. Map management
uses a significant fraction of the computation budget and needs a more care-
ful optimization, above all with the integration of the RLR into the EKF
+ 1-PR system. This optimization will be performed in the second series
experiments of 2013.
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Figure 3.19: Computation time budget and map size in double y-axis figure;
times are shown in milliseconds (ms) on the left axis. The map number of
features is shown on the right axis. The magenta dashed rectangle signals
frames where the tracking was lost.

Figure 3.20 shows the total computation time per frame as a histogram.
It can be observed that the majority of frames take more than 40 ms but
less than 100 ms. This data shows that the system is very close to real-
time performance, which is easily achievable by optimization (and eventually
achieved in the second series experiments of 2013).

During laparoscopic procedures is frequent extracting and reinserting the
laparoscope into the body. This represents an extreme situation for relocal-
ization. In Figure 3.3, four selected frames illustrate the tracking loss and
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Figure 3.20: Histogram showing the computational cost.

recovery. Before total recovery, an unstable relocation stage is observed. This
loss of tracking and its posterior relocalization can be found in video [GGf]
(0:40 - 0:48).

An important quality of the produced map is the point persistence. The
histogram in Figure 3.21 shows how long map features live. It is clear that
an important fraction of the 396 initialized features dies early because they
cannot be successfully reobserved. However, for a map of about 100 features,
there are 54 features (≈ 50%) that have survived more that 600 frames. These
persistent features, selected in a survival-of-the-fittest way, are well spread
over the observed cavity, locally salient, and suitable for camera relocalization
(Figure 3.22).

Second series - 2013: Fifteen laparoscopic ventral hernia repair

The proposed combination has been able to successfully compute the map
and the camera trajectory for the fifteen laparoscopic ventral hernia repair
sequences (Figure 4.9). It has been able to cope with a variety of illumina-
tions, textures and input port geometries achieving real-time performance in
all sequences.

To analyze the cycle time budget, the sequence corresponding to Fig-
ure 4.9c, and available in video [GGh] (1:13 - 1:32), has been selected because
it is archetypical. It includes EKF routine operation and relocalization after
tracking loss due to occlusion (Figure 3.4). Figure 3.23 displays the cycle
time budget split in: EKF prediction, putative IC matching, 1-PR hypothe-



3.3. Laparoscopic Experiments 73

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

Life time of features

#Frames. Bin size = 10

F
re

q
u
e
n
c
y

Figure 3.21: Histogram displaying feature persistence. 396 are initialized in
the experiment. 54 of them survive for more than 600 frames. A new feature
is tested for 10 frames, if trackable is kept otherwise is removed. For this
reason, persistence lower that 10 correspond to non trackable features.

Figure 3.22: Features surviving for more than 600 frames are surrounded by
a green circle.

ses generation and consensus, low innovation inliers update, high-innovation
rescue and update, and map management (feature creation and removal). IC
matching is time consuming due to image correlation and patch warping. As
it can be seen in the image, all frames were processed in real time (25 Hz;
<40 ms) even those corresponding with relocalization. In comparison with
Figure 3.19 of the previous series, it is remarkable the drastic time reduction
in the map management stage caused by code optimization.

Figure 3.24a displays the cost-per-frame histogram for all frames in all
sequences (6473 frames). The cycle time mode is around 13 ms, the mean
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Figure 3.23: Cycle time split in the six main parts of the EKF cycle and map
size for an archetypal execution corresponding to operation Figure 4.9c.

and the median being around 18 ms. Faster frames (<10 ms) correspond to
relocalization when no features are detected (since in that case no relocal-
ization hypotheses are generated), and with first sequence frames when the
map is small. Times around 38 ms correspond to frames when the system
has just relocalized and the camera location is still not refined. Thus, it can
be concluded that robust real-time performance can be achieved.
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Figure 3.24: (a) Cycle times and (b) outlier histograms for all frames in all
sequences.
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Typical map sizes are between 50 and 100 points. Up to 40 map features
are measured per frame. Figure 3.24b shows a histogram of the outlier count
for all frames in all the sequences. Although nearly 30% of frames do not
contain any spurious match, only one of the sequences can be successfully
processed if 1-PR is disabled. Therefore, it can be concluded that algorithms
robust to spurious data are a must for EKF SLAM even in the case of a low
spurious-matches rate. 1-PR cost is linear in number of measurements and
state size while the outliers have a low influence on the computational cost
(<20% of the total budget corresponding to 1-PR hypotheses generation and
consensus). Hence, the proposed system can achieve real time even when
∼25% of frames contain more than 3 outliers. In contrast, methods like
exhaustive JCBB, with exponential complexity in the number of outliers,
would not perform in real time.

3.4 Conclusions

3.4.1 1-Point RANSAC

This Chapter presents a novel RANSAC algorithm which, for the first time
and differently from standard purely data-driven RANSAC, incorporates a
priori probabilistic information into the hypothesis generation stage. As a
consequence of using this prior information, the sample size for the hypoth-
esis generation loop can be reduced to the minimum size of 1 point data.
1-PR has two main strengths that worth summing up here. First, as in stan-
dard RANSAC, model constraints are checked after hypothesis data has been
fused with the a priori model. Second, using 1-point plus prior knowledge
hypotheses greatly reduces the number of hypotheses to construct, and hence
the computational cost compared with usual RANSAC based solely on data.
In a practical sense, 1-PR presents a linear computational complexity in the
number of outliers that means an overhead of less than 20% of the standard
EKF cost, making it suitable for real-time implementation in visual SLAM.

Comparing with JCBB, where its relevance resides on their generality, the
main advantage of 1-PR is its efficiency. The rich variety of correlation pat-
terns that a covariance matrix can encode is manageable by JCBB. However,
1-PR exploits the very simple pattern where all the correlations are mainly
explained by sensor motion, and hence small size data subsets are enough to
constraint the rest of the measurements. Therefore, 1-PR is directed to the
particular case of rigid scenes, thus for more complex models like non-rigid
scenes, 1-PR may not offer such a satisfactory result.

Nevertheless, it is also true that estimation from a moving sensor data
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stream in an almost rigid scene covers a great percentage of SLAM prob-
lems; and a specific method more efficient than general methods can be of
importance. In this sense, 1-PR outperforms existing approaches by present-
ing lower cost and scaling well with the state vector and measurement size,
and also with the outlier rate (1-PR presents a linear cost in the number of
outliers versus the exponential complexity of JCBB).

Besides its efficiency, 1-PR has also some advantages in dealing with non-
linearities as a result of checking rigidity after data fusion where some of the
inaccuracies introduced by non-linearities have been compensated. On the
contrary, JCBB checks rigidity before data fusion which is a serious drawback
of the algorithm.

This chapter also presents a method for benchmarking 6-DoF camera-
motion-estimation results. The method shows three clear advantages: Firstly,
it is intended for real image sequences and includes effects difficult to repro-
duce by simulation (like non-Gaussian image noise, shaking handy motion,
image blur or complex scenes). Secondly, it is easily reproducible as the
only hardware required is a high resolution camera. And thirdly, the effort
required by the user is low. The uncertainty of the estimated solution also
comes as an output of the method and the appropriateness of BA estima-
tion as reference can be validated. The method has been used to prove the
claimed superiority of the 1-PR method.

The general EKF + 1-PR algorithm has been experimentally tested for
the case of large camera trajectories in outdoor scenarios. Errors around 1%
of the trajectory have been obtained for trajectories up to 650 meters from
a publicly available dataset. The number of tracked features in the image
has to be increased to two hundreds in order to avoid scale drift. This high
number makes this case currently moves away from real-time performance,
and the method runs at 1 frame per second.

Finally, it is also worth remarking that, although this thesis is focused on
the particular case of monocular EKF-SLAM, the 1-PR method is indepen-
dent of the type of sensor used. The only requirement is the availability of
highly correlated prior information, which is typical of EKF-SLAM for any
kind of sensor used. Also, as highly correlated priors are not exclusive to
EKF-SLAM, the applicability of 1-PR could be even broader. As an exam-
ple, the camera pose tracking in keyframe schemes [KM07; Mou+09] would
benefit from 1-PR cost reduction provided that a dynamic model were added
to predict camera motion between frames.
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3.4.2 Laparoscopic Experiments

An improved robust version of the EKF-SLAM has been proposed in this
chapter. The new version includes the integration of a relocalization system
(RLR) into the EKF framework and the substitution of JCBB data associa-
tion by 1-PR procedure.

This new combination has been tested over two laparoscopic sequence
series. The first one consists of a 874 frame laparoscopic sequence. This se-
quence is the same as the second experiment (Figure 2.9) of the Section 2.5.2
and was processed in 2010 with an unoptimized version of the new combi-
nation. The second series is composed of fifteen in-vivo human laparoscopic
ventral hernia repairs, which were processed in 2013 with an optimized code
version achieving real-time performance.

The integration of RLR enables to recover the system after tracking losses.
This is essential in laparoscopy where instrument occlusions or typical laparo-
scope maneuvers may cause the loss of tracking. RLR detects these losses
and stops the EKF integration persevering the integrity of the map from a
possible corruption. Then, RLR searches for possible putative matches be-
tween the current image and the fixed map. After a set of putative matches
is found, RLR tries to recover the tracking by 3-point-pose PnP algorithm
and RANSAC. When a good camera location is found, RLR reactivates the
normal EKF working.

1-PR has also demonstrated to greatly outperform JCBB. 1-PR along
with RLR have shown their performance over the 874 frame sequence of the
first series. For this sequence, the EKF + JCBB combination (Chapter 2)
only could process 186 out of 874 frames, but the new combination processed
the complete sequence. This is mainly possible thanks 1-PR copes with a
high number of outliers caused by a laparoscopic tool interaction (JCBB
does not), and thanks RLR system which allows to support losses of tracking
avoiding a complete system failure.

Then, the combination of EKF + 1-PR + RLR has shown to be ap-
propriate to build a map from laparoscopic sequences. This combination
has demonstrated to be able to cope with typical challenges in this kind of
sequences: sudden motions, surgical tool cluttering, temporary tissue defor-
mation, large occlusions and laparoscope extraction and reinsertion in the
abdominal cavity.

Since the system is based on an EKF filter, the computational cost is
quadratic in the map size and linear in the number of measured features
in the image. In laparoscopic experiments, a significant number of map
points need to be measured to achieve robust relocalization. In the first
series of experiments, the map size was above 100 features and the number
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of measured features was fixed to 45 resulting times lower than 3 times real-
time (120 ms). However, in the second series, an optimized version of the
code along with the reduction of measured features (40) and the limited map
size to 100 features, achieve times lower than 40 ms per frame (25 Hz), thus
it works in real time.

It must be noted that the proposed algorithm is able to compute a nice
summary of the scene after processing the whole sequence. A survival-of-
the-fittest process selects what scene features are included in the map. Only
locally salient, trackable, and distinctive for relocation points are included
in the final map. This rigid map is excellently exploited by relocalization
procedure to recover from tracking losses and to relocate at reinsertions.
The computed map might well be the starting point for learning priors to
process sequences corresponding to similar procedures performed to different
patients.

All results have been validated over real sequences, so it can be concluded
that monocular SLAM in the abdominal cavity is a valid mapping method
that does not need any additional sensor but just a standard monocular
endoscope and commodity computers.

Despite an experimental validation has been provided for the method, it
would be interesting to compare its solution with respect to a ground truth.
Chapter 4 is devoted to an extensive validation of the accuracy of this system.
Additionally to the accuracy validation, another validation from clinical point
of view is carried out, showing the possible advantages that monocular visual
SLAM entails with respect to the patient and inside the operating room.



4
Exhaustive System Validation

Chapter 3 has shown the maturity of visual SLAM algorithms in the field of
robotics both for relative small environments, like the first experiment com-
pared with a bundle-adjustment ground truth, and for large environments,
like those several-hundred-meter trajectories validated with GPS data. How-
ever, to date, the performance of these algorithms applied in medical imaging
has not thoroughly been validated over real surgeries. Most of works in med-
ical imaging make subjective or objective validations of the algorithms by
using external trackers, phantoms, synthetic data, ex-vivo data, in-vivo an-
imal data, or a combination of them (e.g. [MY10; Mir+12; Hu+12]). The
most important contribution of this thesis is precisely the exhaustive vali-
dation of these algorithms with human real laparoscopic interventions. The
validation has been carried out with simulations and real in-vivo surgeries.

Fifteen laparoscopic ventral hernia repair (LVHR) operations have been
captured to validate monocular visual SLAM because: 1) the scene is al-
most rigid and textured; 2) the standard LVHR procedure includes accurate
distance measurements that can be used as ground-truth; 3) the surgical pro-
cedure has not been modified at all, except for the addition of an exploratory
endoscope maneuver; 4) SLAM exploits the images simplifying the surgical
procedure without a disruptive modification of the workflow; and 5) image
sequences exhibit significant inter-patient variability in texture, illumination,
input port placement, and exploratory trajectory.

This chapter is devoted to detailing the visual SLAM validation over
laparoscopic surgeries both from engineering and clinical points of view. Both
validations have been reported in [GG+14] and [Ber+], respectively. Section
4.1 describes the ventral hernia repair procedure. Section 4.2 explains the new
exploratory endoscope maneuver needed to use SLAM in LVHR proposed in

79
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[Gil+11a; Gil+11b]. Section 4.3 details the simulations performed to validate
the accuracy of the scene reconstruction and the trajectory recovered by
SLAM at different camera configurations [GG+14]. Section 4.4 explains the
protocol followed for data acquisition. Finally, Sections 4.5 and 4.6 show the
engineering and clinical validation of these methods in laparoscopic images
[GG+14; Ber+].

It is worth noting that the works [Gil+11a], [Gil+11b] and [Ber+] corre-
spond with clinical publications, and, for that reason, the first authors are
surgeons. However, these publications would not exist without the engineer-
ing contribution by the author of this thesis that has been essential in all of
them.

4.1 Ventral Hernia Repair Procedure

A ventral hernia is a defect –hole– that appears in the internal abdominal
wall due to muscular strain, weak abdominal muscles, or as a result of previ-
ous surgery (incisional hernias). Ventral hernias are dangerous because part
of an organ –usually the bowel or intestine– might protrude through the her-
nia and cause an obstruction or strangulation of the organ accompanied by
intense pain and necrosis. The reported overall prevalence of ventral hernias
ranges from 2% to 13% [MH85; SR93; Ban+12] for the incisional case being
a common pathology confronted by surgeons.

Repair of a ventral hernia ideally involves placement of a prosthetic mesh
in the preperitoneal subaponeurotic plane, in a tension-free manner with the
edges well beyond the borders of the hernia defect. Uniformly distributed
intra-abdominal pressure contributes to fixation of the mesh (Pascal’s prin-
ciple), reducing the risk of recurrence. Both open surgery with retromus-
cular mesh placement and laparoscopic surgery with intraperitoneal mesh
placement can benefit from uniformly distributed intra-abdominal pressure
(Figure 4.1).

Historically, the most widely used surgical treatment for ventral hernias
was the open retromuscular (Rives-Stoppa) repair procedure, which had the
best outcomes for most incisional hernias and some primary ventral hernias.
This procedure involves extensive parietal dissection and placement of a non-
resorbable polypropylene or polyester mesh behind the posterior rectus fas-
cia. Developments in biocompatible materials and endoscopic surgery [LB93]
have enabled laparoscopic placement of bilaminar intraperitoneal prosthetic
mesh, with minimal dissection. The mesh overlies the hernia defect and
extends 3–5 cm beyond the borders of the defect [LeB+03; LeB07], and is
fixed to the abdominal wall with tackers using the double-crown technique
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Figure 4.1: Intra-abdominal pressure helps to secure the prosthetic mesh in
the intraperitoneal sublay position to the abdominal wall.

[MC+05], or transfascial sutures, or a combination of these methods; an
evaluative review of the fixation methods can be found in [LeB07]. Primary
closure of the hernia has good outcomes, but is technically complex [Ban+12;
Ore+11]. Recently, biological adhesives such as fibrin have been used to fix
the prosthetic mesh in place [Ste+10]. However, there are still uncertainties
in the laparoscopic technique regarding the optimal mesh type, mesh fixation
method, and measurement of hernia defect size; and the incidence of seromas.
A video showing the LVHR procedure is available in [GGg].

The LVHR technique offers the advantages of the laparoscopic approach,
i.e., a short hospital stay, less postoperative pain, and fast postoperative
recovery. The procedure carries an acceptable risk of complications, a low
risk of recurrence, and an excellent cosmetic result. LVHR is considered to
be a good alternative to open surgery, at least in experienced hands [Ore+11;
Sau+11].

In the LVHR procedure, the hernia defect is measured in-vivo to cover the
defect with a customized-in-size patch. The elliptical patch axes are those
of the defect plus the predefined safety margin (3-5 cm). If possible, a piece
of a sterilized tape measure is introduced inside the abdominal cavity and
at least one of the two main hernia axes is measured (Figure 4.2c). If the
tape measurement cannot be taken, other less accurate indirect methods as
external measurement based on needle insertion (Figures 4.2a and 4.2b) are
used. A video showing these two measuring techniques is avaliable in [GGi].

In this thesis, a cross-fertilization between LVHR and visual SLAM algo-
rithms is established. On one hand, LVHR provides internal measurements
that can be used as a ground-truth to validate the SLAM geometrical ac-
curacy. A 0.5 cm tape measurement resolution determines the ground-truth
accuracy. On the other hand, visual SLAM can be used as a computerized
method of measuring the hernia dimensions by making use of only the im-
age sequence gathered by the laparoscope, and a standard computer. The
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visual SLAM method can be smoothly integrated into the LVHR procedure
to provide measurements, that are as accurate as the classical methods (Fig-
ure 4.2), but take less time and do not require insertion of needles or a tape
measure into the abdominal cavity.

(a) Internal view of the needles at the bor-
ders of the defect.

(b) External measurement between the nee-
dle insertion points.

(c) Tape measure method, with direct inter-
nal measurement of the defect.

Figure 4.2: (a, b) Needle insertion method. (c) Tape measure method.

4.2 Hernia Repair SLAM Assisted Procedure

In order to enable the use of SLAM in LVHR, a new exploratory laparoscope
maneuver, proposed in [Gil+11a; Gil+11b], extends the standard LVHR pro-
cedure at the measurement stage. This new exploratory laparoscope maneu-
ver is performed aimed at translating the endoscope tip while the region of
interest is kept in the field of view (FoV) (Figure 4.3c). Doing so, it is pos-
sible to gather a sequence with enough parallax for an accurate SLAM. This
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(a) Tape measurement considered as
ground-truth.

(b) Two points over a forceps define the
scale (magenta crosses). Five or more
points over the hernia defect boundary (yel-
low points).

(c) Internal and external hand-held exploratory laparoscope motion. It is worth noting
that the hernia is always inside the FoV. Notice also the fulcrum effect between internal
and external maneuver (when surgeon moves the laparoscope to left, the laparoscope tip
move to right and vice versa).

Figure 4.3: Measurement process (I): internal measurement of the hernia,
definition of the ellipse, and exploratory maneuver for the operation in Fig-
ure 4.9b.
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(a) SLAM measurement, map and ellipses pro-
jected as augmented reality over a sequence
frame.

(b) Camera trajectory, 3D map and el-
lipses in 3D. Top view.

Figure 4.4: Measurement process (II): estimated ellipses with the estimated
hernia dimensions, 3D map and camera trajectory for the operation in Fig-
ure 4.9b.

sequence is processed to estimate a cavity map and the endoscope trajectory.
Two videos explaining this maneuver can be found in [GGe] and in [GGh]
(0:11 - 1:12).

Unlike visual SLAM using stereo images, monocular SLAM provides an
up-to-scale 3D model of the cavity. To compute the actual measurements
of the defect, the real scale of the 3D model is defined using a laparoscopic
tool with a known tip size. Before the exploratory maneuver, additional key
points are manually enforced to be in the map: two predefined points over a
forceps to define the reconstruction scale, s, and several points (five or more)
scattered over the defect boundary to estimate the hernia contour and size
(Figure 4.3b).

The hernia defect is modeled as a virtual 3D ellipse in a three-stage way.
In the first stage, an initial guess of the dominant plane defined by the five
or more defect boundary points is computed by least squares. This guess is
covariance-weighted in the second stage by an information filter extracting
the needed covariances from the probabilistic map of the EKF monocular
SLAM. After that, the points are projected on the weighted plane where the
planar ellipse is fitted. Finally, the defect major and minor axis sizes are es-
timated from the ellipse (Figure 4.4a). Their dimensions are computed from
the scale factor s according with (2.31) where dm(i, j) and dm(r1, r2) corre-
spond with the length of one of the axes and the relative distance between
the two forceps points, respectively, both in the SLAM map.

Resulting from the exploration, the SLAM algorithm estimates the scene
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3D map, the endoscope trajectory (Figure 4.4b) and the hernia dimensions. A
second concentric ellipse defining the virtual border of the patch is visualized
as an augmented reality annotation. Live augmented reality is possible due
to the real-time 3D estimation of the endoscope position with respect to the
3D cavity (Figure 4.4a).

4.3 Simulation

The difficulty of obtaining an exact ground truth from in vivo data makes
that the validation of the SLAM be an intricate issue. For that reason, a rep-
resentative simulation has been designed in order to quantitatively evaluate
the accuracy and robustness of the method.

The simulation mocks up the 3D geometry of the ventral hernia repair
procedure where the human torso is modeled by means of an array of points
on an ellipsoidal cap (Figure 4.5). Typical local non-rigid deformations of
hernia repair emulating external forces, respiration or heartbeats have been
applied over the cap. In the left flank of the cap, a virtual 30o DoV (Direction
of View) (Figure 4.6) and 60o FoV (Field of View) endoscope, and a virtual
tool tip defining the reconstruction scale have been inserted. From this setup,
a synthetic image sequence is generated by moving the virtual endoscope
around the fulcrum mimicking the real laparoscope movements. The 3D
model points are projected according to the pinhole + two-radial-distortion
parameter model (Section 2.2.3) and adding zero mean Gaussian noise with
0.5 pixels standard deviation. It has been simulated not only at the actual
endoscope resolution 384 × 288 pixels but also double 768 × 576 and half
192× 144.

The simulation focuses mainly on the 384 × 288 resolution because it
corresponds to the endoscope used in the real surgeries. This simulation
can be found in the video [GGh] (2:02 - 2:34). The simulation errors are
aligned with respect to the last ground-truth camera. When the system is
initialized, the translation and rotation uncertainties are large and hence
their estimates are not very accurate. However, as the laparoscope moves
and the cavity is seen with parallax, the errors decrease and the estimates
improve. Presumably, the last estimated camera possesses the best estimates
and the lower errors, and then the rest of the cameras must be aligned with
it.
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Figure 4.5: Simulation. Human torso modeled as an ellipsoidal cap. Navy
blue corresponds to undeformed areas. Celeste corresponds to deforming
areas.

Figure 4.6: Laparoscopic 30o optics. Notice that the DoV (black arrow) does
not correspond with the laparoscope main axis (red).
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L ,



4.3. Simulation 87

  

−2

0

2
X

  

−2

0

2
Y

300 600

−1

0

1
Z

Translation Camera Error

Frame

E
rr

o
r 

[m
m

]

(a) 384x288 Camera translation error
(red) and the corresponding ±3σ accep-
tance region (blue).
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(b) 384x288 Camera rotation error (red)
and the corresponding ±3σ acceptance
region (blue).

Figure 4.7: Estimation camera error for the simulation results.

which is the same for both sets. The SLAM errors of the translation and
rotation are computed as:

ε = ⊕xCL
G 	 xCL

S ; (4.3)

and the corresponding error covariance is computed by propagating the
SLAM covariances:

Pε = JεSPCL
S J>εS , JεS =

∂ε

∂xCL
S

(4.4)

where PCL
S is the SLAM covariance aligned with respect to camera CL. Notice

that unlike (3.13), where the trajectory must be previously scaled, SLAM
recovers a scaled trajectory because the virtual tool tip defines the real scale
factor.

Figures 4.7a and 4.7b display the estimation error history for the camera
translation and rotation respectively. Both the error and the ±3σ acceptance
region are represented. It can be concluded that the EKF provides a consis-
tent estimation because the estimated value is mostly within the 3σ interval.
Additionally, thanks to the covariance estimation, it can be evaluated how
accurate the available estimation is at a given time step. The time evolution
shows how initially the covariance grows due to the exploratory motion that
departs from the initial camera location. As the estimation evolves, some
features are reobserved and then the estimation error decreases.

Figure 4.8a displays the estimation error distributions for the camera
estimation history by means of box-and-whisker diagrams. The left and right
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covariances after processing the whole
384 × 288 sequence. The laparoscope
(gray) is passing though the ground-
truth fulcrum (magenta).

Figure 4.8: Estimation error for the simulation results.
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of the box represent the first and third quartiles, the line inside the box is the
median; the ends of the whiskers represent the minimum and maximum of
all of the data. The errors are in the interval [0.6, 1.1] mm with 0.82 mm as
the median for translation, and [0.27, 0.49] deg with 0.38 deg as the median
for rotation.

The estimated map corresponds to the “rigid envelope” where none of
the points in the cap are deformed. During the simulation, observations
corresponding to non-rigid deformations are successfully marked as spurious
by 1-PR and are not considered in the estimation (video [GGh] –2:12 - 2:15–).
It is worth noting that if 1-PR is disabled, some spurious matches are marked
as inliers and the estimation fails. For each time step and for each map point,
the EKF provides both an estimate for the location and its covariance. As
more images are processed, the covariance for a given point is reduced if the
point is reobserved. Figure 4.8c displays the estimated map with absolute
errors and Figure 4.8e displays the estimated map with the corresponding
ellipsoidal 3σ acceptance regions after processing the whole sequence. Both
figures show that most of the points have a small error except those at the
map boundaries. Points on the boundary are only detected in a few images
providing little parallax, hence, their location error is great. In any case, it
has been verified that the estimation error normalized with the estimated
covariance approximately distributes as a χ2 with 3 DoF (Figure 4.8d). It
can be concluded that the map estimation is consistent, hence estimated
covariances provide a per point accuracy measurement.

Figure 4.8b displays box-and-whisker diagrams for the estimation error
for all the map points after processing the whole sequence. The errors are
in the interval [0.15, 0.71] mm with 0.36 mm as the median, the maximum
error is 10.44 mm corresponding to a point on the boundary.

From the 384× 288 simulation, it can be concluded that the map estima-
tion is accurate up to 1 mm for most of the points, in any case, the estimated
covariance provides an assessment for each point accuracy. Regarding the
effect of the camera resolution, the half and double resolution simulations
show that EKF can make the most of the available resolution because error
increases inversely with respect to the resolution (Figures 4.8a and 4.8b).
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4.4 Experimental Validation Description

The goal of the experimental validation1 is to prove the feasibility of using
monocular visual SLAM in real surgical procedures. LHVR has been selected
as a paradigmatic example because:

1. The scene is almost rigid and textured.

2. The standard procedure already includes accurate distance measure-
ments that can be used as ground-truth to assess the visual SLAM
geometrical accuracy.

3. The flexibility and robustness of visual SLAM methods are clearly
tested because the surgical procedure has not been modified at all,
except for the addition of an exploratory endoscope manoeuvre with a
trajectory similar to other endoscope routine motions.

4. The SLAM version, just by making better use of the images, would
simplify the surgical procedure without a disruptive modification of
the workflow.

5. The image sequences exhibit significant inter-patient variability in tex-
ture, illumination, input port placement, and exploratory trajectory.

Fifteen in-vivo human LVHR interventions occurred between April 2011
and July 2012 were captured at 384x288@25 fps with an optics with 30o DoV
(Figure 4.6) and 60o FoV angles (Figure 4.9 shows a thumbnail of each of
them). The standard LVHR procedure has been extended with the additional
exploratory endoscope maneuver (Section 4.2). For twelve of the operations,
it was possible to take internal tape measurements for, at least, one main
axis of the hernia (ground-truth) (Figures 4.13, 4.14, and 4.15). External
measurements were taken for eleven of the operations (Figure 4.10 shows ten
of them). The reasons for not taking some of the measurements were the
difficulty in maneuverability or surgical time saving due to some patients’
medical conditions.

4.4.1 Data Acquisition

The data acquisition equipment used during LVHR sequences consisted of a
monocular endoscope (Image 1, Karl Storz, Germany) with a free PAL video

1The experiments developed in this work were approved by Comité Ético de Investi-
gación Cĺınica de Aragón (CEICA) and governed according to the provisions of the Spanish
Law 14/2007 regarding biomedical research.
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(a) H-SE (b) HVSE (c) HVS- (d) H-S-

(e) HVSE (f) HVSE (g) HVSE (h) H-SE

(i) H-S- (j) H-S- (k) HVSE (l) –SE

(m) –SE (n) –SE (o) HV-E

Figure 4.9: The thumbnails –labeled from (a) to (o)– corresponding to the
15 ventral hernia repair surgeries used to validate the system. The “HVSE”
code in the captions stands for the availability of (H) Horizontal tape mea-
surement, (V) Vertical tape measurement, (S) SLAM measurement, and (E)
External measurement. The SLAM map was successfully computed for all
of them, while ellipse measurement was not possible in (o) due to the lack of
texture around the defect.

output; a standard computer (Intel Core i7 CPU, 2.93 GHz, 4 GB RAM)
equipped with a frame grabber; and a videocamera. In order to make the
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most of each operation ensuring the data capture and minimizing technical
problems during surgeries, the next action protocol for each operation was
established:

1. Computer connection with the endoscope: The frame grabber of the
computer was connected to a free PAL output of the endoscope. Frames
were subsampled and captured at 384x288@25 fps in order to avoid
the combing effect due to interlacing. The sequences were captured
uncompress to avoid losses in the image quality.

2. Installation of the external camera: All interventions except the cor-
responding to operation 4.9l were externally filmed with the external
videocamera hanged on the roof lamps of the operating theatre. Video
and audio of the external recordings were essential to: obtain external
measurements; obtain measure times of the SLAM, internal, and exter-
nal measuring methods; and capture the basic endoscope movements
of the method. Figure 4.10 shows 10 out of 11 external measurements
captured with the external camera.

3. Endoscope configuration: A correct endoscope illumination is manda-
tory for a correct visual SLAM performance. The endoscope illumina-
tion was configured to be greater than 60%.

4. Measurements: At the moment of measuring, the three methods
(SLAM, internal, and external) were carried out whenever was possi-
ble. In the case of SLAM method, the only one performed in the fifteen
surgeries, a laparoscopic tool had to be fixed inside the laparoscope field
of view. The other two are not available in all surgeries usually due to
difficulty in maneuverability or patients’ medical conditions.

5. Laparoscope calibration: When the surgery ended and previously to the
optics removal from endoscope, a calibration planar pattern was imaged
for laparoscope calibration according to Zhang’s method [Zha00]. As
the laparoscope has a 30o DoV, eight photos of the planar pattern were
taken with a special laparoscopic positioning as shows Figure 4.11.

During surgeries all essential information was taken down. After the
operation, this information was compared with the external and internal
videos to ensure the correctness of data. The external recording for the
intervention 4.9l is not available, therefore, the external measurements and
times were taken trusting in operating room notes.
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(a) Corresponds to Fig-
ure 4.9a.

(b) Corresponds to Fig-
ure 4.9b.

(c) Corresponds to Fig-
ure 4.9e.

(d) Corresponds to Fig-
ure 4.9f.

(e) Corresponds to Fig-
ure 4.9g.

(f) Corresponds to Fig-
ure 4.9h.

(g) Corresponds to Fig-
ure 4.9k.

(h) Corresponds to Fig-
ure 4.9m.

(i) Corresponds to Fig-
ure 4.9n.

(j) Corresponds to Fig-
ure 4.9o.

Figure 4.10: External measurements taken with the external videocamera
corresponding to 10 out of 11 operations with external measurements.
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(a) Two left images: laparoscope positioning, Z axis aims to the
pattern center. Notice that the 30o optics DoV means that the Z
axis is not the same that the laparoscope main axis. Four right
images: planar pattern images, one per each side.

(b) Left images: laparoscope positioning, the
laparoscope is 90o counter clock-wise rolled
around the Z axis which aims to the pattern
center. Right images: planar pattern images
of two opposite sides.

(c) Left images: laparoscope positioning, the
laparoscope is 90o clock-wise rolled around
the Z axis which aims to the pattern center.
Right images: planar pattern images of the
another two opposite sides.

Figure 4.11: Procedure to take the calibration images. Laparoscope posi-
tioning and the eight images of the planar pattern needed to calibrate.

4.5 SLAM Engineering Validation

For the EKF SLAM validation, the same parameters, experimentally tuned,
were applied for all of the experiments: image measurement error of 0.5
pixels standard deviation; 40% is the acceptance threshold for normalized
correlation score to eventually accept a map point match in the new image;
new features are assigned an initial 1 inverse depth, with an initial σρ = 1,
in order to have an initial direct depth acceptance region starting in 0.3
and extending to include infinite; regarding linear and angular accelerations,
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standard deviations are 2.5 1
s2

and 3 rad
s2

respectively, as monocular cannot
observe the scale, both depth and linear acceleration have no length units;
finally, map management initializes features in order to have 40 map points
observable in the image.

The proposed EKF SLAM has been able to successfully compute the map
and the camera trajectory for the fifteen sequences (Figure 4.9). It has been
able to cope with a variety of illuminations, textures and input port geome-
tries. If a weakness has to be mentioned, it is the inability to perform the
measurement in one of the sequences (Figure 4.9o) because of the lack of tex-
ture around the defect. In the rest of sequences, the EKF SLAM was always
able to measure both ellipse axes because the defect visibility is required
during the surgery and SLAM profits from that. In the failing case, the
EKF SLAM was able to build the map; however, the clicked points signaling
the defect were not trackable due to the lack of stable texture in the defect
boundary area and the particular point detection method. A more dedicated
work in image processing (e.g. using contours) is quite likely to overcome this
limitation. In contrast, classical tape measuring procedure sometimes fails to
produce the measurement because of the limited maneuverability resulting
from the port placement.

The surgical time consumed by SLAM is mainly due to the exploration,
which takes less than 1 minute irrespective of the sequence. Since the algo-
rithm runs live (Figure 4.12c), no additional time is needed for the processing,
except for selecting the points over defect boundary and over the forceps to
define the scale. Both are easy to automate with the corresponding surgical
time saving. In contrast, the internal tape measurement procedure, used as
a ground truth in this validation, is rather uncertain (the time length ranges
from 2 to 5 minutes). It has to be noted that in three cases where longer
times were anticipated, the surgeons did not even try to measure. In any
case, SLAM recovers not only two measurements but a full 3D model and
the support for augmented reality.

To validate the SLAM geometrical accuracy, the dimensions of the hernia
defect’s main axes have been estimated from the 3D recovered model and
compared with those of internal tape measurement (the ground-truth), accu-
rate up to 0.5cm. Figures 4.13, 4.14, and 4.15 show captures comparing the
internal measurements with the SLAM measurements. No significant differ-
ences can be observed so it can be concluded that SLAM is as accurate as
the internal tape measurement. Figures 4.12a - 4.12b depict measurements
in the two axes.
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(a) Horizontal axis measurement compar-
ison.
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(b) Vertical axis measurement compari-
son.
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(c) Measuring time comparison.

Figure 4.12: Measurement procedure comparison. Both accuracy (a), (b) and
surgical time (c) are exhaustively plotted, one bar per operation per method.
Missing data are represented as a missing bar. The labels correspond with
those on Figure 4.9.

4.6 Clinical Validation

In addition to the engineering validation, a clinical validation has also been
made. The clinical validation consists in a descriptive and comparative
prospective study analyzing data from the fifteen LVHR. All LVHR were per-
formed with a bilaminar intraperitoneal tissue-separating mesh. The mesh
was fixed in place using transfascial non-absorbable sutures at the four cardi-
nal points (four vertices of the hernia), and the edges of the mesh were fixed
using absorbable tackers according to the double-crown technique [MC+05].
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(a) Corresponds to Figure 4.9b. (b) Corresponds to Figure 4.9c.

(c) Corresponds to Figure 4.9e. (d) Corresponds to Figure 4.9f.

(e) Corresponds to Figure 4.9g. (f) Corresponds to Figure 4.9k.

Figure 4.13: Comparison between ground-truth internal measurements and
SLAM measurements (I). Internal measurements in both axes.

For each LVHR procedure, measurements were performed using three meth-
ods: the two classical methods (needle and tape. Figure 4.2), and the Visual
SLAM Measurement (VSM) method.

The study protocol, including the documents for obtaining informed con-
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(a) Corresponds to Figure 4.9a. (b) Corresponds to Figure 4.9d.

(c) Corresponds to Figure 4.9h. (d) Corresponds to Figure 4.9i.

(e) Corresponds to Figure 4.9j.

Figure 4.14: Comparison between ground-truth internal measurements and
SLAM measurements (II). Internal measurements only in one axis.

(a) Corresponds to Figures 4.9l, 4.9m, 4.9n (b) Corresponds to Figure 4.9o.

Figure 4.15: Comparison between ground-truth internal measurements and
SLAM measurements (III). (a) No internal but SLAM measurements. (b)
No SLAM but internal measurements.

sent from patients, were approved by Comité Ético de Investigación Cĺınica
de Aragón (CEICA) and were in accordance with the Spanish law 14/2007
regarding biomedical research.
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4.6.1 Surgical procedure

Antibiotic and antithrombogenic prophylaxis were administered to all pa-
tients. Abdominal access was established. The edges of the parietal defect
were drawn on the skin, guided by tactile localization. A pneumoperitoneum
was created by inserting a Veress needle into the left upper quadrant. A pres-
sure of 12 mmHg was used to safely separate the viscera from the abdominal
wall. Three trocars were placed along a line as far as possible from the hernia
defect: two 5-mm diameter working trocars, and a central 10-mm diameter
trocar for the camera and for inserting the prosthetic mesh (Figure 4.16). A
camera with 30o DoV (Figure 4.6) was used to examine the anterior abdomi-
nal wall, particularly the areas around the trocars. The abdominal cavity was
explored to locate the viscera, identify adhesions, and locate and evaluate all
hernia defects. 13 patients had a defect in the central abdominal wall or the
right flank, and in these patients the ports were placed in the left flank. 2
patients had a defect in the left flank, and in these patients the ports were
placed in the right flank.

Figure 4.16: Trocar locations in the left flank.

After creating the pneumoperitoneum, the fat and visceral adhesions were
dissected from the hernia sac. Adhesiolysis was performed at the borders
of the hernia defect to locate the edges of the intact abdominal wall. For
adhesions close to the intestines, monopolar coagulation was avoided to avoid
inadvertent perforation.
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To assess the size of the defect without enlarging the hernia, the pneu-
moperitoneum pressure was reduced to 8 mmHg. The two diameters of the
defect were measured to determine the required size of the prosthetic mesh us-
ing the three measurement methods. First, four needles were placed through
the abdominal wall under endoscopic guidance to determine the sizes of the
two main axes of the defect, which was considered to be elliptical in shape;
after correct insertion of the needles, an external tape measure was used to
measure the distances between them (Figures 4.2a and 4.2b). Second, a ster-
ilized tape measure was introduced into the abdominal cavity to measure the
two axes of the defect (Figure 4.2c). Third, the defect was measured using
the VSM method; the surgeon fixed a forceps inside the abdominal cavity
and moved the tip of the laparoscope in a cross-shape, keeping the tip of the
forceps and the defect in the field of view (Figure 4.3c); after the surgery
was finished, the endoscopic sequence was processed to estimate the size of
the defect (Figure 4.4a); in the first image of the sequence, several points
were marked: two predefined points on the forceps, whose relative distance
was known, to define the scale, and five or more points at the borders of the
defect to estimate the hernia contour and size (Figure 4.3a).

The mesh was rolled along its major axis and grasped with forceps to
insert it through the 10 mm trocar. Inside the abdominal cavity, the mesh was
unrolled and oriented to cover the borders of the hernia defect. The mesh was
fixed at the four cardinal points with non-absorbable monofilament sutures,
and then fixed along the edges with tackers according to the double-crown
technique, with 1 cm between tackers. An abdominal compression bandage
was applied postoperatively. Oral ingestion was started after 8 hours and
ambulation was started after 12 hours. Patients returned for a follow-up
visit after 30 days.

The main steps of the whole procedure for the LVHR are shown in this
video [GGg]. Besides, the video [GGi] shows the needle and the internal tape
measurement methods.

4.6.2 Results

Fifteen ventral hernias were repaired (Figure 4.9), 9 females (60%) and 6
males (40%). The mean patient age was 42 years (range, 27–69 years). Ten
patients (67%) had recurrent hernias and five (33%) had primary hernias.
The mean operation time was 80 min (range, 40–120 min). Patient comor-
bidities included obesity (n = 9), hypertension (n = 7), smoking and alco-
holism (n = 3), diabetes mellitus (n = 2), chronic obstructive pulmonary
disease (n = 2), ischemic heart disease (n = 2), chronic renal failure (n =
1), and human immunodeficiency virus infection (n = 1). Six of the patients
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did not have any comorbidities. The size of the defect ranged from 1×2 cm
to 4×7 cm. There were no cases of seroma, hematoma, relapse, infection, or
other complications related to the prosthetic material.

Figures 4.17a and 4.17b show the measurements obtained by the three
methods: needles, tape, and VSM. The VSM method failed in one patient be-
cause of particularly poor image quality (Figure 4.9o), but both axes could be
measured using the VSM method in all the other patients (93%). Regarding
needle and tape methods, 7 patients had extensive intra-abdominal adhe-
sions whose laparoscopic adhesiolysis was very time-consuming. As these
patients were classified as ASA III patients and suffered from intraoperative
hemodynamic instability during anesthesia, only one of the two measurement
methods was used in order to minimize the operation time; the tape method
was applied in 4 patients (Figures 4.9c, 4.9d, 4.9i, 4.9j) and the needle method
was applied in 3 patients (Figures 4.9l, 4.9m, 4.9n). The tape method was
finally applied in 12 patients obtaining 19 out of 24 measurements (79%; 1
measurement per hernia defect axis), or 19 out of 30 measurements (63%) if
all 15 patients are considered. The main reason for inability to perform all
measurements was the difficulty of the procedure because of limited range of
motion of the laparoscopic tools. Finally, the needle method was only used
in 11 out of 15 patients (73%).

The accuracy of measurement methods was compared. The tape method
was the most accurate (accuracy up to 0.5 cm because of tape resolution).
The needle method was rather inaccurate, always resulting in an excessively
large value (average excess of 3 cm). There were no significant differences be-
tween the VSM and tape methods, indicating that both methods are equally
accurate.

Figure 4.17c shows the time taken to perform measurements. VSM was
the fastest method with a mean time of 40 s (range, 29–60 s). The needle
method had a mean time of 169 s (range, 66–300 s). The tape method had
a mean time of 186 s (range, 110–322 s); note that this mean time would be
greater if all 24 measurements had been obtained.

4.7 Conclusions and Future Work

Traditional endoscopic surgery displays and disposes of the image sequence.
However, monocular SLAM, with the addition of an exploratory maneuver,
is able to exploit the sequence allowing to use it to estimate measurements.

This thesis provides the first human in-vivo experimental validation for
the feasibility of using EKF monocular SLAM as a proper method to deal
with medical endoscope sequences. The 15 studied patients showed vari-
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(a) Horizontal measurements of hernia de-
fect size using the three different methods.
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(b) Vertical measurements of hernia defect
size using the three different methods.
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(c) Times taken by the three different
methods.

Figure 4.17: (a, b) Measurements of hernia defect size using the three differ-
ent methods. Use of the tape obtained 63% of the total measurements, use
of the needle obtained 73%, and use of VSM obtained 93%. Measurement
using the tape is considered to be the most accurate. Measurement using
VSM was found to be as accurate as measurement using the tape, but mea-
surement using the needle was significantly less accurate. (c) Time taken to
perform measurements using the different methods. The VSM method was
the fastest.

ability in terms of textures, illumination, port placement, and exploratory
trajectories. In spite of this variability, all the image sequences could be
processed using the monocular SLAM method (VSM), indicating that this
method is useful in a variety of situations.

The method has proved to be fast, non-invasive, and easily incorporated
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to the existing LVHR surgical workflow by using solely images gathered from
a hand-held standard monocular endoscope, standard laparoscopic tools and
a simple cross-shaped motion performed by the surgeon.

4.7.1 Engineering Validation

A scene rigid model is assumed; however, thanks to 1-PR, the method has
proven robust with respect to scene local non-rigid deformations such as
respiration or external forces. The validation is based on synthetic data and
on sequences coming from a real surgical environment over fifteen human
in-vivo laparoscopic ventral hernia repair surgeries.

Unlike other experimental validations based on phantoms or animal im-
agery, the method has been tested over fifteen human surgeries that displayed
the typical inter-patient variability (different textures, illumination, input
port placement and exploratory trajectories) (Figure 4.9). Despite the vari-
ability, all the sequences have been processed with the same tuning, therefore
they provide experimental evidence of the method usability.

The accuracy of the EKF monocular SLAM + 1-PR has been proved.
In any case, any real-time visual SLAM method, either monocular or stereo,
would perform equally well on condition that it has a robust-to-spurious
policy.

The method cannot deal with non-rigid nor with textureless scenes. Be-
sides, offline camera calibration is required.

Regarding the non-rigidity, Agudo et al. [ACM12b; ACM12a] have proved
that the combination EKF-FEM (Finite Elements Method) can deal with de-
formations in real time. This approach is relevant for medical images because
it can exploit the biomechanical availability. One of the immediate goals is
to adapt these methods to the system. Concerning calibration, it would be
desirable to solve the complete problem (3D structure recovery, camera loca-
tion and camera calibration) during the exploratory movement. Finally, the
lack of texture could be tackled using a monocular SLAM based on points
and edges and researching the combination with photometric methods.

In the particular case of the hernia measurement, another minor limita-
tion is that currently the scale and the hernia defect have to be selected by
clicking on the images; an automatic detection of both would ease the use of
the system.

Since the system is based on an EKF implementation, it only can han-
dle a few hundred points. However, methods based on keyframe + bundle
adjustment such as [KM07] can render a map composed of a few thousand
points. This signals a clear way for increasing the map density.
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Finally, a more ambitious goal is to exploit the camera location as a back-
bone for augmented reality providing additional visual information (multi-
modal registration images –CT or MRI– or another kind of annotations) in
real time.

4.7.2 Clinical Validation

Compared with the traditional surgical methods of treating ventral hernias,
LVHR in general and the VSM method in particular have irrefutable benefits,
including accurate confirmation of the diagnosis and objective measurement
of the hernia defect. These techniques can be used to identify and measure
both the main defect and secondary defects, to ensure that the implanted
mesh will cover all defects.

Use of VSM to perform measurements during LVHR minimizes the risk
of infection, because VSM prevents exposure of the abdominal cavity to ad-
ditional external instruments. Unlike the needle method, the VSM method
does not cause injury to areas with scar tissue, and therefore does not ex-
pose the patient to the risk of contamination from areas of inflammation or
microabscesses resulting from previous laparotomy.

This study focused on perfecting a method of measuring the size of the
hernia defect. To date, no significant assessment of measurement method
has been reported in the literature. The needle method provides approximate
measurements, but the measurements tend to be too large because the needles
are not inserted perfectly perpendicularly. This method is also invasive and
carries a risk of hemorrhage if a blood vessel is injured. The tape method
is accurate but is difficult to perform and can be time consuming making
the measurement unfeasible. The VSM method is non-invasive, fast, and
accurate.

On the contrary to the other methods assessed, VSM does not need ad-
ditional tape measure or needles, which simplifies the workflow. The system
was able to obtain accurate measurements. This system can be extended to
support augmented reality insertions, to guide the surgeon during alignment
of the prosthesis with respect to the border of the hernia defect and increase
the ease of the procedure. Augmented reality insertions may also be used to
display preoperative information to provide assistance during the procedure.

It would be interesting to extend this method to other surgical procedures
such as flexible endoscopy and thoracoscopy. This method may also be useful
for intra-abdominal measurements of organs such as the spleen or adrenal
glands, to determine the required size of the extraction ports.
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Conclusions and Future Work

5.1 Conclusions

From a robotics and computer vision point of view, laparoscopy can be posed
as a monocular SLAM problem. In traditional laparoscopy, images gathered
by laparoscope are shown in a screen and then disposed of. However, if
laparoscopy were treated as a monocular SLAM problem, these images would
be exploited, recovering, in real time, a 3D reconstruction of the abdominal
cavity and the laparoscope localization with respect to that reconstruction.

SLAM algorithms have been thoroughly studied and validated in mo-
bile robotics environments (indoors, outdoors, man-made environments, ...).
However, not any previous work to this thesis, and devoted to applying SLAM
in some endoscopic technique (endoscopy, laparoscopy, colonoscopy, ...), has
extensively validated this type of algorithms. All of them make subjective
validations, analyzing the appearance of the reconstruction, or objective val-
idations by means of phantoms, ex-vivo data, in-vivo data from animal, or
using additional devices only applicable in lab environments. This lack of
validation makes unfeasible an immediate SLAM use in clinical applications.

This thesis has shown the feasibility of using these algorithms inside a
clinical environment. For that, 15 real human laparoscopic sequences corre-
sponding to ventral hernia repairs have been used to perform an exhaustive
validation. In this type of operations, the surgeon needs to measure the di-
mensions of the hernia defect. These dimensions have been used as a ground
truth to validate the monocular SLAM reconstructions. Additionally, several
simulations with different system configurations have also been performed.
Both real sequences and simulations have shown that it is possible to ob-
tain 3D reconstructions in real time (25 fps) with millimetric errors. On the

105
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other hand, the validation with real sequences has shown the robustness of
this type of algorithms in the presence of inter-patient variability (different
textures, illumination, input port placement and exploratory trajectories)
since all sequences were processed with the same tuning.

In order to show the feasibility of these algorithms in laparoscopy, an
EKF-based SLAM has been chosen. It has been selected the EKF technique
because it is mature, thoroughly known, and works well in real time (25 ∼ 30
fps) in small environments.

This thesis demonstrates that a monocular SLAM system will work in
laparoscopy provided that it has implemented a robust and efficient spurious
rejector system, and a good relocalization system. Due to the intrinsic nature
of laparoscopic images, they are prone to contain a great number of spurious
matches and to suffer from losses of tracking.

The main sources of spurious generation and losses of tracking are: tem-
porary deformations caused by respiration, heartbeats, or external forces like
forces exerted by laparoscopic tools; occlusions caused by tools or even by
tissues or organs; blurred images; sudden laparoscope motions; or the ex-
traction and reinsertion of the laparoscope into the abdominal cavity. These
issues have been efficiently solved with the proposed 1-PR spurious detector
and with the RLR system [WKR07].

The SLAM algorithm assumes that the scene is completely rigid. This
assumption along with the 1-PR treatment of spurious have allowed that
small deformations being considered as mismatches. In this way, it has been
prevented that deformable features being integrated in the scene estimation.
In the case they were integrated, the estimation would degrade, and even
wreck, leading to a complete SLAM system failure. Finally, this way of
treating small deformations has given rise to small maps with a tens of rigid
points that are easily identifiable, reobservable, and well distributed along
the scene. This kind of map allows that the RLR algorithm works efficiently
in the presence of tracking losses, enabling monocular SLAM to process rel-
atively long sequences of intracavitary explorations.

Recovered reconstructions have been demonstrated to be useful to syn-
thetically recover the lost FoV by means of photorealistic reconstructions;
to recover the lost depth caused by working with 2D images; to allow to
make 3D distance measurements inside of body, or even they could be used
to make surface measurements. In addition, they are used as a backbone for
augmented reality annotations.

From a clinical point of view, these methods have shown to reduce the
time taken by operations (that means less anesthesia required) and to pro-
vide security (both avoiding to introduce external devices inside the body and



5.2. Future Work 107

enabling the possibility of making augmented reality annotations). Addition-
ally, these methods have shown to be non-invasive and easily incorporated
in routine surgical procedures without disturbing either surgeons or classical
procedures. Therefore, in the future, these methods will become an essential
surgical tool in the surgeon’s armory.

5.2 Future Work

Despite the promising results shown in this thesis, monocular SLAM in la-
paroscopy, and in endoscopy in general, still presents several issues that must
be solved before a real application inside the surgical room.

In the first place, the camera calibration problem should be faced with.
Currently, camera calibration is performed after surgical intervention in or-
der to avoid a possible contamination of the laparoscope, which is sterilized
previous to the operation. This is one of the main issues because these al-
gorithms are not usable in a surgical room yet. The ideal SLAM system
should solve the complete problem (estimate the 3D structure of the scene,
the camera location with respect to this structure, and the camera calibration
parameters) during exploratory movements inside the abdominal cavity.

In the second place, these algorithms work with point features extracted
from images, thus they cannot deal with textureless scenes. An interesting
research would be to tackle this problem by means of SLAM systems that
handle point features, edges and regions of interest, or even combining them
with photometric methods.

In the third place, current SLAM methods assume that the scene is com-
pletely rigid. This assumption is extremely strong for internal scenes of the
body. Recently, there is a great research in deformable SLAM field. Works
such as those of Agudo et al. [ACM12b; ACM12a] have proved that the com-
bination EKF-FEM can deal with deformations in real time. This approach
is relevant for medical images because it can exploit the biomechanical char-
acteristics of the tissues in order to support possible deformations instead of
treating them as spurious.

In the fourth place, for the particular SLAM case presented in this thesis,
EKF has a quadratic computational cost in the state size (directly related
with map size), therefore, it only handles a few hundred points in real time.
Adapting any method based on keyframes + BA such as the proposed by
Klein & Murray [KM07] would be an interesting work. These methods enable
to work with a few thousand points rendering dense scene maps that help a
better understanding of the scene.

In the fifth place, this thesis has proposed to use the 3D reconstruction
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as a backbone for augmented reality. The use of augmented reality has been
shown with simple annotations over laparoscopic images and it has been
mentioned its possible use along with multimodal registration images –CT
or MRI– in real time. A research along this line would be very interesting and
relevant since it would allow to show patient’s preoperative data in real time
during intervention. This would help tremendously surgeon’s work during
surgical procedures that entail a high level of risk.

Finally, this thesis proposes to apply SLAM techniques in laparoscopy
and demonstrates their feasibility over 15 ventral hernia repairs. It would
be interesting, from a clinical point of view, to search for other surgical pro-
cedures that could benefit from SLAM results. Some examples are thoracic
surgery (thoracoscopy), joint surgery (arthroscopic surgery or arthroscopy),
or gastrointestinal tract surgery (endoscopy, colonoscopy).

5.3 Conclusiones

Desde el punto de vista de la robótica y la visión por computador, la la-
parcosopia se puede interpretar como un problema de SLAM monocular.
En la laparoscopia tradicional las imágenes capturadas por el laparoscopio
únicamente son mostradas en un monitor para posteriormente ser desechadas.
Sin embargo, si se tratase la laparoscopia como un problema de SLAM monoc-
ular, esas imágenes seŕıan explotadas recuperando en tiempo real una recon-
strucción 3D de la cavidad abdominal al mismo tiempo que se localizaŕıa el
laparoscopio con respecto a esa reconstrucción.

Los algoritmos de SLAM han sido profundamente estudiados y validados
en entornos de robótica móvil (exteriores, interiores, construcciones humanas,
...), sin embargo, ningún trabajo anterior a esta tesis, y dedicado a aplicar es-
tos algoritmos sobre técnicas endoscopicas (endoscopia, laparoscopia, colono-
scopia, ...), ha validado de una forma extensiva este tipo de algoritmos. Estos
trabajos hacen validaciones subjetivas, analizando la apariencia de la recon-
strucción, o bien con maniqúıes, datos ex-vivo, datos in-vivo de animales, o
usando dispositivos adicionales lo que hace que queden bastante lejos de una
posible inmediata aplicación cĺınica.

En esta tesis se ha demostrado la viabilidad de estos algoritmos dentro
de un entorno cĺınico mediante la realización de una validación experimen-
tal exhaustiva con 15 operaciones reales de hernia ventral. En este tipo de
operaciones el cirujano necesita medir las dimensiones del defecto herniario.
Estas dimensiones han sido usadas como referencia para comprobar las recon-
strucciones obtenidas por el SLAM monocular. Además de la validación con
secuencias reales, también se han realizado simulaciones con diferentes config-
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uraciones del sistema. Tanto las secuencias reales como las simulaciones han
mostrado que se puede obtener reconstrucciones en tiempo real (25 fps) con
errores milimétricos. Por otra parte, la validación sobre las 15 operaciones ha
demostrado la robustez de estos algoritmos ante la variabilidad interpaciente
(diferentes texturas, iluminaciones, disposiciones de los trocares y trayecto-
rias exploratorias) ya que todas las secuencias han sido procesadas con los
mismos parámetros de configuración.

Para mostrar la viabilidad de estos algoritmos en laparoscopia, se ha
elegido un algoritmo de SLAM basado en EKF. Se ha seleccionado esta
técnica de SLAM por ser una técnica madura, profundamente conocida, y que
funciona bastante bien y en tiempo real (25 ∼ 30 fps) en entornos reducidos.

En esta tesis se ha demostrado que un sistema de SLAM monocular fun-
cionará correctamente en laparoscopia siempre y cuando tenga implementado
un sistema robusto y eficaz de detección y rechazo de espurios, y un sistema
de detección de pérdida del tracking con su posterior relocalización. Debido
a la naturaleza intŕınseca de las imágenes laparoscópicas, estas son propen-
sas a contener grandes cantidades de espurios además de sufrir pérdidas de
tracking.

Las fuentes principales de generación de espurios y de pérdidas de tracking
son: la presencia de deformaciones temporales causadas por la respiración,
los latidos del corazón o por fuerzas externas como las ejercidas por las her-
ramientas; las oclusiones causadas por las herramientas o incluso por tejidos
u órganos; imágenes borrosas; movimientos repentinos del laparoscopio; o
la extración y reinserción del laparoscopio dentro de la cavidad abdominal.
Todos estos problemas son eficazmente resueltos con el algoritmo 1-PR prop-
uesto para el tratamiento de espurios y con el sistema de relocalización RLR
[WKR07].

El algoritmo de SLAM utilizado asume que la escena es completamente
ŕıgida. Esta asunción de rigidez junto con la asociación de datos robusta del
1-PR han permitido que pequeñas deformaciones hayan sido consideradas
como espurios. De esta forma, se ha impedido una posible integración de
caracteŕısticas deformables dentro de la estimación de la escena, lo que habŕıa
causado una degradación de esta e incluso un fallo completo del sistema de
SLAM. Finalmente, este tratamiento de las deformaciones ha dado lugar a
mapas de unas decenas de caracteŕısticas ŕıgidas fácilmente identificables,
reobservables y bien distribuidas a lo largo de la escena. Este tipo de mapa
permite que el algoritmo RLR se relocalice de una forma bastante eficiente
ante posibles pérdidas de tracking, habilitando el procesamiento de secuencias
de exploraciones intracavitarias relativamente largas.

En cuanto a las reconstrucciones obtenidas, estas han demostrado ser
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útiles para ampliar sintéticamente el FoV perdido mediante reconstrucciones
fotorrealistas; recuperar la profundidad perdida por trabajar con imágenes
2D; permitir realizar mediciones de distancias 3D en el interior del cuerpo, e
incluso se podŕıan realizar mediciones de superficies; y soportar anotaciones
en realidad aumentada.

Desde el punto de vista cĺınico, estos métodos han demostrado reducir
el tiempo de las operaciones (menos anestesia para el paciente) y aportar
seguridad (tanto por evitar la posible introducción de elementos extraños
dentro del cuerpo, como por la posibilidad de realizar anotaciones en reali-
dad aumentada). Adicionalmente, estos métodos son no invasivos y fáciles
de incorporar en las rutinas quirúrgicas, sin llegar a ser una molestia para el
cirujano ni interferir con los procedimientos habituales. Por lo tanto, en el
futuro, estos métodos se pueden convertir en una nueva herramienta impre-
scindible dentro del arsenal quirúrgico del cirujano.

5.4 Trabajo Futuro

A pesar de los resultados prometedores mostrados en esta tesis, el SLAM
en laparoscopia, y endoscopia en general, todav́ıa presenta ciertos problemas
que deben de ser solventados antes de tener un sistema para uso en quirófano.

En primer lugar está el problema de calibración de la cámara. Actual-
mente la calibración se realiza tras la intervención quirúrgica para evitar una
posible contaminación del laparoscopio, el cual está esterelizado, antes de la
operación. Este es uno de los principales motivos por el que estos algoritmos
aún no se pueden utilizar dentro de quirófano. El sistema de SLAM ideal
seŕıa aquel que permitiese resolver el problema completo (estimación de la es-
tructura 3D de la escena, de la localización de la cámara y de su calibración)
durante los movimientos exploratorios dentro de la cavidad abdominal.

En segundo lugar, estos sistemas, al funcionar sobre caracteŕısticas pun-
tuales extráıdas de las imágenes, no soportan escenas sin textura. Seŕıa in-
teresante abordar este problema mediante la utilización de sistemas de SLAM
que soporten, además de caracteŕısticas puntuales, segmentos y regiones de
interés o incluso combinarlos con métodos fotométricos.

En tercer lugar, los métodos actuales de SLAM asumen que la escena
es completamente ŕıgida. Esta asunción es muy fuerte para el interior de
cavidades corporeas. Actualmente hay una gran investigación en el campo
del SLAM en escenas deformables. Trabajos como los presentados por Agudo
et al. [ACM12b; ACM12a] han demostrado que la combinación de SLAM
con elementos finitos pueden tratar las deformaciones en tiempo real. Este
acercamiento es bastante relevante para el caso de las imágenes médicas ya
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que permitiŕıa explotar las caracteŕıticas biomecánicas de los tejidos para
soportar las posibles deformaciones sin tener que tratarlas como espurios.

En cuarto lugar, para el caso particular presentado en esta tesis, el SLAM
empleado está basado en una implementación en EKF, la cual tiene un coste
computacional cuadrático en el tamaño del estado (tamaño del mapa). Por
lo tanto, solo se pueden manejar mapas de unos pocos cientos de puntos. Una
investigación interesante seŕıa el adaptar algún método basado en keyframes
+ BA como el propuesto por Klein y Murray [KM07]. Estos métodos per-
miten trabajar con miles de puntos obteniendo reconstrucciones densas de la
escena lo que ayudaŕıa a una mejor comprensión de esta.

En quinto lugar, en esta tesis se ha propuesto utilizar la reconstrucción
3D de la escena como soporte para realidad aumentada. El uso de la reali-
dad aumentada se ha mostrado con simples anotaciones sobre las imágenes
de laparoscopia, y se ha nombrado su posible utilización junto con registro
multimodal de imágenes de TAC o MRI en tiempo real. Una investigación en
esta ĺınea seŕıa muy interesante y relevante ya que permitiŕıa mostrar datos
preoperativos del paciente en tiempo real durante la operación, ayudando
enormemente al trabajo del cirujano en los procedimientos quirúrgicos que
conlleven un elevado nivel de riesgo.

Finalmente, en esta tesis se ha propuesto emplear las técnicas de SLAM en
laparoscopia y se ha demostrado su aplicación sobre 15 eventroplastias. Seŕıa
interesante, desde el punto de vista cĺınico, buscar otros procedimientos, no
solo laparoscópicos, que se pudieran beneficiar de los resultados obtenidos por
el SLAM. Algunos ejemplos podŕıan ser la ciruǵıa torácica (toracoscopia), la
ciruǵıa en articulaciones (artroscopia), o la relacionada con el tubo digestivo
(endoscopia, colonoscopia).
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[GGc] Óscar G. Grasa. Pattern Measurement Video. http : / /

webdiis.unizar.es/~oscgg/videos/patternMeasurements.

mp4.
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[GGi] Óscar G. Grasa. Video of the Classical Measurement Methods
of the Hernia Defect. http://webdiis.unizar.es/~oscgg/
videos/ClassicalMethods.mp4.

http://dx.doi.org/10.1109/TMI.2013.2282997
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_2.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_2.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_3.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_3.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_3.avi
http://webdiis.unizar.es/~oscgg/videos/patternMeasurements.mp4
http://webdiis.unizar.es/~oscgg/videos/patternMeasurements.mp4
http://webdiis.unizar.es/~oscgg/videos/patternMeasurements.mp4
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_1.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_1.avi
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_miccai09_1.avi
http://webdiis.unizar.es/~oscgg/videos/essr11.mp4
http://webdiis.unizar.es/~oscgg/videos/essr11.mp4
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_icra11.mp4
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_icra11.mp4
http://webdiis.unizar.es/~oscgg/videos/LVHR.mp4
http://webdiis.unizar.es/~oscgg/videos/LVHR.mp4
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_TMI13.mp4
http://webdiis.unizar.es/~oscgg/videos/garcia_etal_TMI13.mp4
http://webdiis.unizar.es/~oscgg/videos/ClassicalMethods.mp4
http://webdiis.unizar.es/~oscgg/videos/ClassicalMethods.mp4


118 BIBLIOGRAPHY
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