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Caṕıtulo 1

Curva ROC

1.1. Conceptos previos

En el ámbito de la estad́ıstica, los problemas de clasificación son un tipo de problema

de aprendizaje supervisado donde se estima la pertenencia de la observación o individuo

a una categoŕıa o clase, a partir de la información proporcionada por un conjunto de

variables explicativas. Cuando el conjunto de categoŕıas posibles es dicotómico, se define

como clasificación binaria.

Definición 1. Sea X el espacio de variables explicativas e Y el conjunto de clases

posibles. En clasificación binaria, Y = {0, 1}. Se define como clasificador o modelo de

clasificación a la función f : X → Y que predice la clase yi ∈ Y de una observación i,

dada la información de las variables explicativas xi = (xi1, . . . , xin) ∈ X .

Los problemas de clasificación binaria son frecuentes en diversos campos, como la

medicina, donde abordan, por ejemplo, la detección o diagnóstico de enfermedades,

entre otros propósitos. Existen diversas técnicas para abordar los problemas de

clasificación, y la elección de la más adecuada depende de los datos y del problema

en cuestión. El desaf́ıo radica en encontrar el modelo de clasificación óptimo según

el criterio de evaluación espećıfico para ese problema. El trabajo de esta tesis

se centra principalmente en problemas de clasificación binaria en el ámbito de la

salud y la medicina, teniendo como objetivo principal la estimación de modelos

de clasificación bajo criterios de optimalidad derivados de la curva ROC (Receiver

Operating Characteristic curve, en inglés).

En el contexto de un problema de clasificación binaria, el modelo f(xi) suele arrojar

un valor predicho continuo. Para decidir en qué clase es clasificado el individuo i se

establece un punto de corte c. Si la predicción del modelo supera el punto de corte

establecido (f(xi) ≥ c), el individuo se clasifica en una determinada clase; de lo

contrario, se clasifica en la otra clase. En lo que sigue, supondremos que si la predicción
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supera el punto de corte, el individuo es clasificado en la clase 1 (clase positiva), y en

la clase 0 (clase negativa) en caso contrario. En el contexto del diagnóstico médico, la

clase positiva se refiere a la categoŕıa que incluye a los pacientes enfermos (presencia

del evento), mientras que la clase negativa incluye a los pacientes sanos (ausencia del

evento).

Definición 2. Sea xi el vector de variables explicativas del individuo i, yi su clase de

pertenencia, f(xi) el clasificador binario y c el punto de corte establecido. Entonces,

se define como:

• Verdadero positivo: Individuo i que pertenece a la clase positiva (yi = 1) y

1f(xi)≥c = 1. Se denota por VP (o TP, siglas en inglés) al número de verdaderos

positivos.

• Falso positivo: Individuo i que pertenece a la clase negativa (yi = 0) y 1f(xi)≥c = 1.

Se denota por FP al número de falsos positivos.

• Verdadero negativo: Individuo i que pertenece a la clase negativa (yi = 0) y

1f(xi)≥c = 0 Se denota por VN (o TN, siglas en inglés) al número de verdaderos

negativos.

• Falso negativo: Individuo i que pertenece a la clase positiva (yi = 1) y 1f(xi)≥c = 0.

Se denota por FN al número de falsos negativos.

donde 1 denota la función caracteŕıstica o indicadora.

Para evaluar la capacidad discriminatoria o rendimiento de un clasificador, se

definen un conjunto de métricas de evaluación cuyo valor depende del número de

verdaderos positivos (VP), falsos positivos (FP), verdaderos negativos (VN) o falsos

negativos (FN), dado un punto de corte establecido.

Definición 3. Denotando por X las variables explicativas, Y la clase real, c el punto

de corte establecido y f(X) la salida predicha por el modelo. Entonces, se define como:

• Tasa de verdaderos positivos (TPR, siglas en inglés) o sensibilidad (Se):

TPR(c) = V P
V P+FN

= P (f(X) ≥ c|Y = 1)

• Tasa de verdaderos negativos (TNR, siglas en inglés) o especificidad (Spe):

TNR(c) = V N
V N+FP

= P (f(X) < c|Y = 0)

• Tasa de falsos positivos (FPR, siglas en inglés) o error tipo I:

FPR(c) = FP
V N+FP

= P (f(X) ≥ c|Y = 0)=1-especificidad

4
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• Tasa de falsos negativos (FNR, siglas en inglés) o error tipo II:

FNR(c) = FN
V P+FN

= P (f(X) < c|Y = 1)=1-sensibilidad

• Valor predictivo positivo (VPP, siglas en inglés):

V PP (c) = V P
V P+FP

= P (Y = 1|f(X) ≥ c)

• Valor predictivo negativo (VPN, siglas en inglés):

V PN(c) = V N
V N+FN

= P (Y = 0|f(X) < c)

• Accuracy (proporción de predicciones correctas): V P+V N
V P+FP+FN+V N

Es evidente que el clasificador perfecto es aquel que no arroja ningún falso positivo

ni falso negativo o, en otras palabras, cuya tasas de verdaderos positivos y negativos (o

sensibilidad y especificidad, respectivamente) son igual a 1. Sin embargo, esta situación

no suele darse en la realidad, y lo que se busca es maximizar una métrica de evaluación

en función del interés y contexto del problema. El punto de corte es ajustado para

optimizar el rendimiento del modelo en términos de la métrica de evaluación escogida.

La curva ROC es una herramienta estad́ıstica que representa en un solo gráfico los

valores de sensibilidad y especificidad para los diferentes puntos de corte, permitiendo

visualizar la variación del rendimiento del modelo en función de estos puntos. El

concepto fue desarrollado durante la Segunda Guerra Mundial para el análisis de

receptores de radar tras el ataque de Pearl Harbor en 1941. El objetivo fue detectar con

precisión los aparatos japoneses enemigos en el campo de batalla a partir de sus señales

de radar. Según el umbral o punto de corte establecido, el radar pod́ıa identificar una

amenaza real (considerada como un verdadero positivo), no detectarla (falso negativo),

o percibir un ruido de la señal como una amenaza real (falso positivo). Más tarde, a

partir de la década de 1960, la curva ROC se hizo popular en estudios de psicoloǵıa

experimental y psicof́ısica [37, 10, 109]. Su interés también creció en el campo de la

medicina debido al potencial de su análisis en la toma de decisiones médicas [62],

especialmente al inicio en el campo de la radioloǵıa [41].

Desde entonces, la curva ROC ha sido utilizada en diversas disciplinas,

especialmente en el ámbito del diagnóstico cĺınico, y ha sido ampliamente estudiada

en la literatura debido a sus propiedades y utilidad como herramienta para evaluar la

capacidad de los modelos de clasificación [129, 81]. En la siguiente sección se presenta

su definición formal y los resultados derivados de interés.

1.2. Definición y propiedades

Definición 4. Dado un clasificador binario, sea FYk
la función de distribución de la

variable aleatoria Yk que denota los resultados del clasificador para la clase k ∈ {0, 1}

5
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y c el punto de corte. Entonces, se define la curva ROC como la función:

ROC(c) = {(FPR(c), TPR(c)), c ∈ R}
= {(1− especificidad(c), sensibilidad(c)), c ∈ R}
= {(1− Spe(c), Se(c)), c ∈ R}
= {(1− FY0(c), 1− FY1(c)), c ∈ R} (1.1)

La definición de la curva ROC permite derivar una serie de propiedades y resultados

de interés. Estas propiedades son la base de la estimación de métodos de clasificación

con criterios de optimalidad derivados de la curva ROC.

Observación 1. Los puntos (0,0) y (1,1) son puntos extremos que pertenecen a la

curva ROC. El punto (0,0) ocurre para un punto de corte c lo suficientemente grande,

de forma que ningún individuo se clasifica como positivo, es decir, no comete errores

de falsos positivos (ĺımc→∞ FPR(c) = 1− FY0(c) = 0) pero tampoco reconoce verderos

positivos (ĺımc→∞ TPR(c) = 1−FY1(c) = 0). Por otro lado, cuando el punto de corte c

es lo suficientemente pequeño, el punto (1,1) aparece en la curva ROC, lo que significa

que todos los individuos se clasifican como positivos: ĺımc→−∞ TPR(c) = 1− FY1(c) =

1 = ĺımc→−∞ FPR(c) = 1− FY0(c) = 1 =⇒ ĺımc→−∞ ROC(c) = (1, 1). Este resultado

representa un clasificador que identifica correctamente todos los verdaderos positivos,

pero a costa de aceptar falsos positivos.

Observación 2. Cuando la tasa de verdaderos positivos (TPR) es igual a la tasa de

falsos positivos (FPR) para todos los posibles valores del punto de corte (TPR(c) =

FPR(c) ∀c), la curva ROC es una ĺınea recta que conecta los puntos (0,0) y (1,1),

formando la diagonal del espacio [0, 1] × [0, 1]. En esta situación, la curva ROC

representa un clasificador aleatorio o sin capacidad discriminativa. Por otro lado, si

la curva ROC pasa por el punto (0,1), se dice que la clasificación es perfecta, ya que

identifica correctamente todos los verdaderos positivos sin cometer errores de falsos

positivos.

En la Figura 1.1 se presentan ejemplos de curvas ROC correspondientes a conjuntos

de datos con diferentes caracteŕısticas en las distribuciones de la población sana y

enferma. La curva ROC describe la capacidad para separar las distribuciones. En

concreto, la Figura 1.1a muestra la curva ROC para un ejemplo de datos, donde

las distribuciones de los individuos sanos (curva azul) y los enfermos (curva roja)

se superponen en ciertas áreas. En tales casos, independientemente del punto de

corte elegido, el clasificador no logrará ser perfecto. Existen diferentes técnicas para

seleccionar el punto de corte óptimo, que se discuten en el caṕıtulo 3. Asumiendo que
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Caṕıtulo 1. Curva ROC

tiene la misma importancia clasificar correctamente tanto a los enfermos como a los

sanos (ĺınea vertical verde), el punto de la curva ROC correspondiente para ese punto

de corte se representa en verde.

Las Figuras 1.1b-1.1c ilustran casos opuestos extremos. En la primera, se observa

una curva ROC que resulta de distribuciones que se superponen totalmente, indicando

la incapacidad del clasificador para discriminar entre las clases. En cambio, en el

segundo caso, las distribuciones son completamente distinguibles, lo que se refleja en

una curva ROC que representa una clasificación perfecta.

(a) Poblaciones parcialmente solapadas

(b) Poblaciones totalmente solapadas (c) Poblaciones no solapadas

Figura 1.1: Ejemplos de curvas ROC

Proposición 1. La curva ROC es una función monótona creciente que toma valores

en [0, 1]× [0, 1].

Demostración. La demostración es directa por definición, dada la relación existente

entre la tasas de falsos y verdaderos positivos. Tanto la tasa de falsos positivos

(FPR(c) = 1 − FY0(c)) como la tasa de verdaderos positivos (TPR(c) = 1 − FY1(c))

disminuyen tendiendo a 0 a medida que el punto de corte c aumenta, y ambas crecen

acercándose a 1 cuando c tiende a −∞.
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Caṕıtulo 1. Curva ROC

Proposición 2. La curva ROC puede ser definida de forma equivalente a (1.1) como:

ROC(t) = 1− FY1(F
−1
Y0

(1− t)), t ∈ [0, 1] (1.2)

= F Y1(F
−1

Y0
(t)), t ∈ [0, 1] (1.3)

donde F−1
Y0

(t) = ı́nf{x ∈ R : FY0(x) ≥ t} es la función de distribución inversa y

F Yk
= 1− FYk

la función de supervivencia de FYk
, k = 0, 1.

Demostración. Utilizando la forma expĺıcita de la curva, considerando t = 1 − FY0(c)

y sustituyendo en (1.1), se tiene (1.2). Aplicando la definición de F−1
Y0

sobre (1.2), se

obtiene (1.3).

Observación 3. La monotońıa creciente de la curva ROC, como se establece en la

Proposición 1, también se evidencia directamente a partir de su definición equivalente

(1.3). Dado que la función de supervivencia es decreciente, su inversa también lo es,

y al componerlas se obtiene una función monótona creciente: sea t1 < t2, entonces

F Y1(t2) ≤ F Y1(t1) y F
−1

Y0
(t2) ≤ F

−1

Y0
(t1) =⇒ F Y1(F

−1

Y0
(t1)) ≤ F Y1(F

−1

Y0
(t2)).

Proposición 3. La curva ROC es invariante a transformaciones monótonas

crecientes.

Demostración. Sea g una función monótona creciente. La demostración es inmediata

ya que la función de distribución de Yk, k = 0, 1, es la misma que la de g(Yk) con el

punto de corte d = g(c): 1− FYk
(c) = P (Yk > c) = P (g(Yk) > g(c)) = P (g(Yk) > d) =

1− Fg(Yk)(d).

De acuerdo con la definición de la curva ROC que aparece en (1.1), es evidente

inferir que para representarla se requiere evaluar la tasa de verdaderos positivos y la

tasa de falsos positivos para todos los valores posibles del punto de corte c ∈ R, o bien

conocer las distribuciones FY0 y FY1 . En consecuencia, se presentan a continuación las

estimaciones de la curva ROC, tanto paramétrica como no paramétrica.

1.3. Estimación paramétrica

La estimación paramétrica de la curva ROC asume que la variable respuesta o de

decisión Yk sigue una distribución perteneciente a una familia de distribuciones, que

puede variar entre las clases k = 0, 1. Este tipo de estimaciones se simplifica en la

tarea de estimar los parámetros correspondientes a las distribuciones que se asume
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Caṕıtulo 1. Curva ROC

que sigue la variable de respuesta. Por lo tanto, resulta esencial conocer o seleccionar

adecuadamente la distribución que sigue dicha variable.

Considerando variables de respuesta continuas, el caso binormal (donde las

distribuciones de los resultados del clasificador para la clase positiva y negativa

siguen distribuciones normales) es un caso de interés y el más usado en la estimación

de la curva ROC [70]. Esto se debe a dos resultados claves. En primer lugar,

aunque las variables no sigan una distribución normal, muchas de ellas se pueden

ajustar a una distribución normal mediante transformaciones monótonas. Zou et al.

[132] proponen transformaciones del tipo Box-Cox [16] para la transformación de

los datos a la binormalidad. En segundo lugar, la curva ROC es invariante ante

tranformaciones monótonas, lo que significa que la estimación de la curva ROC para

una variable respuesta que sigue una distribución normal tras transformación monótona

es equivalente a estimar la curva ROC considerando el caso binormal. La asunción de

normalidad de las variables transformadas, sin especificar la transformación monótona

que lo permite, es un enfoque comúnmente utilizado en lo que se conoce en la literatura

como estimación semiparamétrica de la curva ROC [43, 18].

A continuación, presentamos la estimación (semi-)paramétrica de la curva ROC con

el enfoque binormal. Supongamos que Y0 ∼ N(µ0, σ0) y Y1 ∼ N(µ1, σ1) con µ1 > µ0, o

equivalentemente, Yk−µk

σk
∼ N(0, 1), k = 0, 1. Sea c el punto de corte y FYk

la función de

distribución de Yk, entonces 1−FYk
(c) = 1−Φ

(
c−µk

σk

)
= Φ

(
µk−c
σk

)
, donde Φ representa

la función de distribución de la normal estándar. Considerando la forma expĺıcita de

la curva ROC (1.2) con t = 1 − FY0(c), se obtiene la expresión de la curva ROC para

el caso binormal:

ROC(t) = 1− FY1(F
−1
Y0

(1− t)) (1.4)

= Φ

(
µ1 − F−1

Y0
(1− t)

σ1

)
(1.5)

= Φ

(
µ1 − µ0 + σ0Φ

−1(t)

σ1

)
(1.6)

= Φ
(
a+ bΦ−1(t)

)
, t ∈ [0, 1] (1.7)

donde a = µ1−µ0

σ1
y b = σ0

σ1
.

La expresión de la curva ROC binormal estimada R̂OC(t) de (1.7) se puede

obtener estimando los parámetros de la distribución mediante el método de máxima

verosimilitud: â = µ̂1−µ̂0

σ̂1
y b̂ = σ̂0

σ̂1
.

La naturaleza robusta del estimador binormal de la curva ROC ha sido discutida

en la literatura [110, 40, 119, 36]. Algunos autores han respaldado la robustez del

estimador binormal, como Hanley [40], que respalda las conclusiones de Swets [110],
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Caṕıtulo 1. Curva ROC

argumentando que, incluso con la presencia de algunas observaciones que no siguen

una distribución normal, el modelo ofrece buenos resultados. Sin embargo, Walsh

[119] cuestiona esta afirmación, discutiendo la capacidad del estimador binormal para

producir inferencias válidas en circunstancias en las que los datos no cumplen con la

suposición de normalidad. A partir de un estudio de simulación, concluye que dicho

estimador resulta sensible a la especificación errónea del modelo. En los últimos años,

se ha prestado mucha atención al impacto de los errores en la especificación del modelo

en el campo de la salud y resulta muy importante su estimación. Gonçalves et al. [36]

proporcionan una revisión de la literatura más detallada sobre la robustez del estimador

binormal.

Intervalos de confianza

Una vez se ha realizado la estimación, se pueden generar intervalos de confianza

que permitan establecer, con cierto nivel de confianza, el rango en el cual se espera que

se encuentre la verdadera curva ROC.

Denotando d = Φ−1(t), Rd = â+ b̂d y siendo α el nivel de confianza, para obtener

el intervalo de confianza puntual del 100(1 − α)% de la curva ROC (1.7), se requiere

una estimación de la varianza:

V̂ ar(Rd) = V̂ ar(â) + d2V̂ ar(b̂) + 2dĈov(â, b̂) (1.8)

Zhou et al. [129] y Obuchowski et al. [76] presentan las siguientes fórmulas de las

estimaciones de la varianza y covarianza de â y b̂ para el caso binormal (original o tras

transformación):

V̂ ar(â) =
n1(â

2 + 2) + 2n0b̂
2

2n0n1

(1.9)

V̂ ar(b̂) =
(n1 + n0)b̂

2

2n0n1

(1.10)

Ĉov(â, b̂) =
âb̂

2n0

(1.11)

donde n0 y n1 denotan el número de individuos de la clase negativa (sanos) y positiva

(enfermos), respectivamente.

Eugene Demidenko [26] propone un intervalo confianza puntual para la curva

ROC binormal, utilizando los estimadores de momento insesgados para las varianzas:

V ar(x̄k) =
σ2
k

nk
, V ar(s2k) =

2σ4
k

nk−1
, k = 0, 1. Dado Xd = x̄1−x̄0+s0d

s1
y siendo x̄1 − x̄0, s

2
0 y

s21 independientes, mediante el método delta [77], obtiene la siguiente expresión de la

varianza de Xd:

V̂ ar(Xd) =
1

s21

(
s20
n0

+
s21
n1

)
+

d2s20
2s21(n0 − 1)

+
(x̄1 + x̄0 − s0d)

2

2s21(n1 − 1)
(1.12)
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Caṕıtulo 1. Curva ROC

A partir de esta expresión, el autor presenta el intervalo de confianza puntual para la

curva ROC binormal, con d fijo: Φ(Xd ± z1−α/2

√
V̂ ar(Xd)), donde z denota el cuantil

de la normal estándar.

1.4. Estimación no paramétrica

La estimación no paramétrica surge de manera natural como una alternativa útil

en situaciones donde resulta dif́ıcil conocer la distribución subyacente de la variable

respuesta de cada grupo, lo que suele ser común en la práctica. Esto se debe a que

no requiere hacer suposiciones sobre dicha distribución, lo que la hace más flexible

y robusta que la estimación paramétrica [33], siendo además menos sensible a datos

at́ıpicos.

A continuación se presentan dos enfoques para la estimación no paramétrica de la

curva ROC. En primer lugar, se describe el método emṕırico, el cual utiliza la función

de distribución emṕırica a partir de los datos. En segundo lugar, se introduce como

alternativa el método tipo Kernel, que proporciona una estimación suavizada de la

curva ROC.

1.4.1. Método emṕırico

Sea c ∈ R un punto de corte seleccionado, nk el número de individuos de la clase k

e yki la salida del clasificador para el individuo i = 1, . . . , nk de la clase k, entonces las

funciones de distribución emṕıricas se definen como:

F̂Yk
(c) =

1

nk

nk∑

i=1

I(yki ≤ c), k = 0, 1. (1.13)

donde I denota la función indicadora.

Sustituyendo (1.13) en la definición de la curva ROC (1.1) se obtiene la expresión

de la curva ROC emṕırica:

R̂OC(c) =

{(
1

n0

n0∑

i=1

I(y0i > c),
1

n1

n1∑

i=1

I(y1i > c)

)
, c ∈ R

}
(1.14)

La curva ROC emṕırica se traza en el plano como la unión lineal de cada punto

obtenido para cada valor de c, dando como resultado una curva escalonada, a diferencia

del trazado suave que ofrece la estimación paramétrica.

La función de distribución emṕırica F̂Yk
es un estimador consistente [115, 43] que

converge a la función de distribución verdadera FYk
a medida que el tamaño de la

muestra aumenta. Por tanto, cuando se utilicen tamaños de muestras grandes, la curva

ROC estimada será más suave. Sin embargo, para tamaños de muestra especialmente
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pequeños o, equivalentemente, un pequeño número de puntos de corte considerados, la

curva estará formada por un número reducido de puntos, lo que resultará en un trazado

no suave e irregular.

Intervalos de confianza

Considerando la estimación emṕırica (1.14), la sensibilidad y especificidad se

expresan como una proporción y, por tanto, se pueden aplicar métodos para el calculo

de intervalos de confianza de una proporción binomial. El análisis y estimación de

intervalos de confianza para proporciones binomiales ha sido una ĺınea de estudio en

la literatura, donde diversos autores han propuesto diferentes métodos para el cálculo

de estos intervalos de confianza [120, 22, 1, 17, 130, 118]. A continuación se presentan

algunos de los más conocidos.

El intervalo estándar es el denominado intervalo de Wald o intervalo asintótico, que

se basa en la distribución asintótica del estimador de la proporción muestral p̂ y tiene

la siguiente forma conocida: p̂± z1−α/2

√
p̂(1−p̂)

n
, donde n es el tamaño de la muestra y

z el cuantil de la distribución normal estándar. A pesar de su simplicidad de cálculo,

esta aproximación no funciona bien, especialmente cuando el tamaño de muestra n

es pequeño o la probabilidad de éxito p está cercana a 0 o 1 [17]. Una alternativa al

intervalo de Wald es el intervalo score o de Wilson [120, 1]. Se construye invirtiendo

las aproximaciones del teorema central del ĺımite y resolviendo la ecuación de segundo

grado resultante. Su intervalo de confianza para la sensibilidad Se (el de la especificidad

es similar) tiene la siguiente expresión:
Ŝe+z2

1−α/2
/(2n1)±z1−α/2

√
[Ŝe(1−Ŝe)+z2

1−α/2
/(4n1)]/n1

1+z2
1−α/2

/n1
.

Agresti y Coull [1] propusieron una modificación al intervalo de Wald (intervalo de Wald

ajustado) que solventa sus limitaciones. Considerando ñ = n + z21−α/2 y p̃ =
np̂+

z2
1−α/2

2

ñ

y sustituyendo n por ñ y p̂ por p̃ en la fórmula del intervalo de Wald, se obtiene el

intervalo de confianza propuesto. Clopper y Pearson [22] proponen un intervalo de

confianza, denominado intervalo de confianza exacto de Clopper-Pearson, que se basa

directamente en la distribución binomial. Aunque este intervalo de confianza puede ser

útil en situaciones donde el tamaño de muestra sea demasiado pequeño y no puedan

aplicarse con confianza los métodos anteriores, es conservador y alcanza un nivel de

cobertura igual o superior al nominal, lo que limita su utilidad práctica [1].

Otra alternativa es el enfoque bootstrap [27, 28] para el cálculo de los intervalos de

confianza [86, 65]. Los más populares en la práctica son el método bootstrap percentil

y el corregido de sesgo acelerado (BCa, siglas en inglés) [129, 46].

12
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1.4.2. Método tipo kernel

El enfoque no paramétrico de tipo núcleo o kernel proporciona una estimación

suavizada de la curva ROC. Este enfoque fue propuesto por Zou et al. [131] a través

de la estimación de las distribuciones de la variable de decisión a partir de funciones

de densidad kernel. A partir de estas funciones estimadas, se obtienen las funciones de

distribución y, consecuentemente, la curva ROC estimada.

Definición 5. Sean yk1, . . . , yknk
el conjunto de datos para el grupo k = 0, 1. Entonces,

se definen las funciones de densidad kernel estimadas de cada grupo como:

f̂k(x) =
1

nkhk

nk∑

i=1

Kk

(
x− yki
hk

)
(1.15)

donde hk denota el conocido como ancho de banda y Kk la función núcleo o kernel. El

ancho de banda h determina la cantidad de suavidad de la curva y las funciones kernel

cumplen que
∫
R Kk(x)dx = 1,

∫
R xKk(x)dx = 0 y

∫
R x

2Kk(x)dx > 0.

A partir de las funciones de densidad estimadas de (1.15), las funciones de

distribución pueden estimarse como:

F̂Yk
(x) =

1

nk

nk∑

i=1

∫ x

−∞

1

hk

Kk

(
t− yki
hk

)
dt, k = 0, 1. (1.16)

Por tanto, la elección de la función kernel y, especialmente, el ancho de banda

determinará la estimación kernel de la curva ROC. Zou et al. [131] sugieren utilizar el

kernel biweight que ofrece la ventaja de ser bastante suave en un intervalo finito:

K(x) =
15

16
(1− x2)2, x ∈ (−1, 1) (1.17)

Sin embargo, la elección más popular es el kernel gaussiano [132, 101]. Concretamente,

los estudios presentados en esta tesis consideran dicho kernel. En este caso, las funciones

de distribución estimadas se expresan como:

F̂Yk
(x) =

1

nkhk

nk∑

i=1

Φ

(
x− yki
hk

)
, k = 0, 1. (1.18)

donde Φ es la función de distribución de una normal estándar.

La elección del ancho de banda h adecuado es un aspecto clave del estimador que

ha sido ampliamente estudiado en la literatura [128, 39, 45]. Cuanto menor sea el

valor de h, el número de observaciones involucradas en la estimación será menor y la

función puede estar menos suavizada. En estos casos, el sesgo se reduce pero aumenta

la varianza. Se debe encontrar un equilibrio entre el sesgo y varianza con el objetivo

de seleccionar el parámetro de suavizado óptimo.
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Zou et al. [131] sugieren utilizar el siguiente ancho de banda genérico [90, 79, 104]:

hk = 0,9mı́n (SDk, IQRk/1,34)n
−0,2
k (1.19)

donde SDk y IQRk denotan la desviación estándar y el rango intercuart́ılico,

respectivamente, del grupo k = 0, 1.

En resumen, el método tipo kernel es una alternativa útil para la estimación de

la curva ROC, puesto que permite obtener una curva suave y es menos sensible al

ruido que el método emṕırico. Asimismo, su estimación no depende de supuestos de

distribución, como ocurre con la estimación paramétrica.

En la Figura 1.2 se representan las estimaciones paramétricas, emṕıricas y

suavizadas tipo kernel de la curva ROC para un conjunto de datos normales con

distintos tamaños de muestra (n0 = n1 = 25 y n0 = n1 = 250). Para la estimación de

tipo kernel, se ha utilizado el kernel gaussiano y el ancho de banda genérico (1.19). Se

observa el trazado suave de las estimaciones paramétricas y de tipo kernel, en contraste

con el trazado escalonado de la curva ROC emṕırica, especialmente para tamaños de

muestra más pequeños (Figura 1.2a), donde los escalones son más pronunciados. Para

tamaños de muestra más grandes (Figura 1.2b), el trazado de la curva ROC emṕırica

es más suave y las curvas estimadas muestran una mayor similitud.

(a) n0 + n1 = 50 (b) n0 + n1 = 500

Figura 1.2: Ejemplos de estimaciones de la curva ROC

Intervalos de confianza

Zou et al. [131] presentan intervalos de confianza para la tasa de verdaderos

positivos (TPR) dado un valor de 1-especificidad (o FPR) espećıfico, y una región

de confianza para el punto de la curva ROC (FPR, TPR) dado un valor de punto
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de corte fijo. Los autores proponen construir intervalos de confianza en un espacio

logit y luego transformar los resultados de vuelta al espacio ROC, considerando que las

aproximaciones normales funcionan mejor en un espacio no restringido con menos sesgo.

En concreto, sea u = logit(FPR) = log( FPR
1−FPR

) y v = logit(TPR) pertenecientes al

espacio logit. Entonces, FPR = logit−1(u) = 1
1+exp (−u)

y TPR = logit−1(v).

Nos centramos en la construcción de la región de confianza para (FPR, TPR) en

un umbral fijo. En el espacio logit las estimaciones û y v̂ son asintóticamente normales

e independientes con medias u y v, respectivamente, y con varianzas estimadas:

V̂ ar(û) =
(
n0F̂PR(1− F̂PR)

)−1

=
(
n0Ŝpe(1− Ŝpe)

)−1

(1.20)

V̂ ar(v̂) =
(
n1T̂PR(1− T̂PR)

)−1

=
(
n1Ŝe(1− Ŝe)

)−1

(1.21)

donde Se y Spe denotan la sensibilidad y especificidad, respectivamente. Por tanto, los

intervalos de confianza al 100(1− α)% para u y v vienen dados por û± zα/2

√
V̂ ar(û)

y v̂ ± zα/2

√
V̂ ar(v̂), respectivamente. Estos intervalos definen una región de confianza

(rectángulo) de (u, v) con un nivel de confianza de 100(1 − α)2%, por ser û y v̂

independientes. Finalmente, volviendo al espacio ROC, se obtiene el rectángulo de

confianza para el punto de la curva (FPR, TPR) correspondiente a un punto de corte

dado, que viene definido por los puntos combinación de los valores:

logit−1(û± zα/2

√
V̂ ar(û)) (1.22)

logit−1(v̂ ± zα/2

√
V̂ ar(v̂)) (1.23)

Hall et al. [38] también construyen intervalos de confianza de la curva ROC

utilizando estimaciones kernel. En concreto, sugieren métodos asintóticos y presentan

un enfoque alternativo basado en bootstrap. Otros autores, como Bertail et al. [13],

también proponen enfoques bootstrap para obtener intervalos de confianza para la

curva ROC. En su caso, sugieren un método de remuestreo llamado ‘bootstrap

suavizado’. Más recientemente, Martinez-Camblor et al. [66] estudiaron métodos

no paramétricos para la construcción de bandas de confianza para la curva ROC,

presentando un nuevo método que utiliza una técnica de bootstrap y se basa en un

enfoque de suavizado para la estimación de la curva ROC.

1.5. Comparación de curvas ROC

El objetivo final de un problema de clasificación es seleccionar el modelo que mejor

prediga la clase de pertenencia de la observación basándose en unas caracteŕısticas o

atributos observables. En otras palabras, seleccionar el modelo que menor error cometa
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en la predicción y alcance el mayor rendimiento entre un conjunto de candidatos.

Para ello, es necesario disponer de métodos que permitan comparar el rendimiento o

capacidad predictiva de dos modelos de clasificación con el fin de seleccionar el óptimo.

La curva ROC es una herramienta que permite evaluar la capacidad de

discriminación de los modelos de clasificación que ha sido presentada y formulada

en las secciones anteriores. Dadas las estimaciones de la curva ROC presentadas, esta

sección aborda la comparación de curvas ROC desde principalmente dos enfoques:

comparación de curvas ROC bajo asunción de binormalidad (estimación paramétrica)

y comparación de valores de sensibilidad o especificidad para un punto de corte dado

(evaluación emṕırica). La comparación se aborda a través de tests estad́ısticos con

contraste de hipótesis de igualdad.

Comparación de curvas ROC

Aunque en ocasiones la diferencia entre dos curvas ROC puede ser fácilmente

observada por representación gráfica, realizar una prueba de hipótesis para aceptar

o rechazar la igualdad de las curvas ROC asegura una conclusión más sólida para

todas las situaciones.

Suponiendo el caso binormal, la estimación de la curva ROC (1.7) viene determinada

por los parámetros a y b. Por tanto, el test de comparación de curvas ROC se resume

en:

H0 : a1 = a2 y b1 = b2

H1 : a1 ̸= a2 o b1 ̸= b2

donde aj es el parámetro a que caracteriza la curva ROC del clasificador j = 1, 2. Metz

et al. [71, 72] presentan el estad́ıstico que resuelve el contraste:

χ2 =
â12V ar(b̂12) + b̂212V ar(â12)− 2â12b̂12Cov(â12, b̂12)

V ar(â12)V ar(b̂12)− Cov(â12, b̂12)2
(1.24)

que sigue una distribución chi-cuadrado de dos grados de libertad, donde a12 = a1−a2

y b12 = b1 − b2. Las expresiones de las varianzas y covarianzas difieren dependiendo

de si las muestras son independientes o pareadas. En general, suele interesar comparar

la capacidad predictiva de dos clasificadores bajo el mismo conjunto de pacientes. En

este caso, las varianzas y covarianzas vienen dadas por:

V ar(â12) = V ar(â1 − â2) = σ̂2
a1
+ σ̂2

a2
− 2σ̂a1a2 (1.25)

V ar(b̂12) = V ar(b̂1 − b̂2) = σ̂2
b1
+ σ̂2

b2
− 2σ̂b1b2 (1.26)

Cov(â12, b̂12) = Cov(â1 − â2, b̂1 − b̂2) = σ̂a1b1 + σ̂a2b2 − σ̂a1b2 − σ̂a2b1 (1.27)
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donde σ̂2
aj

es la varianza estimada de âj, σ̂
2
bj

la varianza estimada de b̂j y σ̂ajbj la

covarianza estimada de âj y b̂j.

Venkatraman y Begg [113, 112] proponen métodos alternativos para evaluar la

igualdad de las curvas ROC, sin necesidad de supuesto de binormalidad. Los métodos se

basan en test de permutaciones, que se apoyan en la idea de que si no hay diferencia real,

entonces las permutaciones aleatorias debeŕıan producir distribuciones de estad́ısticas

similares.

Comparación de sensibilidad/especificidad

La optimización de la capacidad predictiva de un modelo depende de las condiciones

y el contexto espećıfico del problema. Por ejemplo, se puede preferir una alta tasa

de verdaderos positivos (sensibilidad) mientras se mantiene un nivel mı́nimo de tasa

de verdaderos negativos (especificidad), o viceversa. Esto es especialmente relevante

en situaciones diagnósticas, donde se busca asegurar la detección precisa de pacientes

enfermos. En estos casos, se establece un umbral mı́nimo de sensibilidad y se comparan

los clasificadores para seleccionar el que logre la máxima especificidad. En ciertos

escenarios, puede existir la situación opuesta donde se prefiere garantizar un mı́nimo

porcentaje de pacientes sanos correctamente clasificados (alta especificidad). El motivo

de esto pueden ser las consecuencias graves que conlleva la intervención en pacientes

sanos o las limitaciones de recursos para el tratamiento o seguimiento. Una situación

reciente que experimentó ambas situaciones fue la pandemia del COVID-19. En las

primeras olas se experimentó escasez de recursos, lo que limitó la capacidad de atención

y tratamiento de los pacientes. Sin embargo, en olas posteriores, se observó una

mayor capacidad de atención, lo que resultó en una mayor probabilidad de ingreso

de pacientes, incluso con caracteŕısticas similares a los de las primeras olas [9].

En estos casos, se puede realizar una comparación de valores de

sensibilidad/especificidad dado un valor espećıfico de especificidad/sensibilidad. Al

tratarse de una comparación de proporciones, se pueden utilizar pruebas estad́ısticas

para la comparación de proporciones, concretamente para datos apareados, debido a

que el objetivo final es seleccionar el clasificador que mejor se ajuste al mismo grupo

de individuos. El método más común para la comparación de proporciones apareadas

es el test de McNemar [68].

Sin pérdida de generalidad, consideremos el test de McNemar para la comparación

de dos valores de sensibilidad dado un valor fijo de especificidad. El procedimiento es

análogo para comparar especificidades dado un valor fijo de sensibilidad. El objetivo

será comparar si los valores de sensibilidad que producen el clasificador 1 (Se1) y el
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clasificador 2 (Se2) son significativamente diferentes:

H0 : Se1 = Se2

H1 : Se1 ̸= Se2

Consideremos la tabla de contingencia 1.1, que representa las clasificaciones (positivo

o negativo) de los clasificadores 1 y 2, para la muestra de observaciones pertenecientes

a la clase 1. Nos interesa comparar si la diferencia entre la proporción p1 = a+b
n1

y la

p2 =
a+c
n1

es cero (hipótesis nula), esto es, p1 − p2 =
b−c
n1

̸= 0.

Clasificador 2
Clasificador 1 Positivo Negativo Total

Positivo a b a+ b
Negativo c d c+ d
Total a+ c b+ d n1 = a+ b+ c+ d

Tabla 1.1: Tabla de contingencia. Test de McNemar

El estad́ıstico de contraste viene dado por:

Z =
p1 − p2

SE(p1 − p2)
=

b− c√
b+ c

∼ N(0, 1) (1.28)

o, alternativamente:

χ2 =
(b− c)2

b+ c
(1.29)

que sigue asintóticamente una distribución de chi-cuadrado con un grado de libertad. Si

las frecuencias son pequeñas, puede producirse sesgo debido a la aproximación de una

distribución discreta por una continua. En estos casos, puede utilizarse la corrección

de Yates [107]: χ2 = (|b−c|−1)2

b+c
.
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Caṕıtulo 2

Métricas derivadas de la curva ROC

La curva ROC proporciona una visión global de la capacidad de un modelo de

clasificación binaria en varios puntos de corte, pero no ofrece una medida espećıfica

para resumir su rendimiento. No obstante, pueden derivarse de ella métricas o medidas

de evaluación, las cuales permiten cuantificar el rendimiento de manera más precisa.

Algunas de estas medidas incluyen la sensibilidad, la especificidad y las tasas de

verdaderos positivos, verdaderos negativos, falsos positivos y falsos negativos. Estas

métricas de evaluación, definidas en la Definición 3, proporcionan un valor espećıfico

que se determina mediante la elección de un punto de corte concreto, que permite

asignar al individuo a su clase de pertenencia. Otras métricas de evaluación, como el

valor predictivo positivo o valor predictivo negativo (Definición 3), también brindan una

medida que evalúa la capacidad discriminatoria del modelo. Estas métricas optimizan

las predicciones correctas de una clase o ambas, y su elección está determinada por el

interés y el contexto del problema.

Además de las métricas presentadas en el caṕıtulo anterior, existen otras métricas

resumen derivadas de la curva ROC que han recibido atención en la literatura. Estas

métricas son la conocida área bajo la curva ROC (AUC, siglas en inglés) o el ı́ndice

de Youden, que son presentadas a continuación, aśı como sus variantes. En concreto,

estas métricas (AUC e ı́ndice de Youden) se han utilizado para optimizar los modelos

estimados en trabajos de la tesis.

2.1. Área bajo la curva ROC

El área bajo la curva ROC (AUC) es una de las medidas resumen más populares y

ampliamente estudiadas en la literatura que derivan de la curva ROC. A diferencia de

otras métricas, el AUC ofrece una medida de la bondad de ajuste global, abarcando

todos los posibles puntos de corte.

Definición 6. Dada la curva ROC (ROC(t)), definida en (1.2), el área bajo la curva
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ROC (AUC) se define como:

AUC =

∫ 1

0

ROC(t)dt (2.1)

Observación 4. El valor del AUC se sitúa en un rango de 0.5 a 1, donde valores más

cercanos a 1 indican una mayor capacidad discriminativa. En los ejemplos presentados

en la Figura 1.1, es evidente que el área bajo la curva ROC resultante para los

casos extremos (Figura 1.1b y Figura 1.1c) seŕıa de 0.5 y 1 (clasificador aleatorio

y clasificador perfecto, respectivamente). Sin embargo, el caso más común es el que se

muestra en la Figura 1.1a, donde el AUC toma valores intermedios en (0.5,1).

Observación 5. Es inmediato deducir que si la curva ROC para un clasificador A no se

encuentra en ningún punto por debajo de la curva ROC del clasificador B (ROCA(t) ≥
ROCB(t)), entonces las AUC correspondientes están ordenadas de la misma manera

(AUCA ≥ AUCB). Sin embargo, el rećıproco no siempre es cierto; por ejemplo, ambas

curvas pueden cruzarse y tener el mismo área bajo la curva.

Bamber [10] demostró que el área bajo la curva ROC se puede interpretar como la

probabilidad de que, dado un individuo sano y otro enfermo, el clasificador asigne un

valor más alto al enfermo que al sano, tal y como se enuncia en la siguiente proposición.

Proposición 4. Sean Y0 e Y1 variables independientes que representan los resultados

del clasificador para la clase 0 (sanos) y la clase 1 (enfermos), respectivamente,

entonces:

AUC = P (Y1 > Y0) (2.2)

Demostración. Asumimos por simplicidad que las funciones de distribución de Y0 e Y1,

FY0 y FY1 respectivamente, son continuas. De la definición de la curva ROC (1.3), se

tiene que:

AUC =

∫ 1

0

ROC(t)dt =

∫ 1

0

F Y1(F
−1

Y0
(t))dt

donde F Yk
denota la función de supervivencia, k = 0, 1. Usando el cambio de variable

de t a y = F
−1

Y0
(t), la expresión queda de la siguiente manera:

AUC =

∫ −∞

∞
F Y1(y)dF Y0(y)

=

∫ ∞

−∞
P (Y1 > y)fY0(y)dy

donde fY0 es la función de densidad de Y0. Finalmente, dada la independencia de las
variables, se demuestra la proposición:

AUC =

∫ ∞

−∞
P (Y1 > y, Y0 = y)dy = P (Y1 > Y0)
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De la misma manera que la curva ROC, el AUC puede ser estimado mediante

enfoques de estimación paramétrica y no paramétrica. A continuación, se exponen

ambas estimaciones.

2.1.1. Estimación paramétrica

Supondremos ahora que los resultados del clasificador se distribuyen como Y0 ∼
N(µ0, σ0) e Y1 ∼ N(µ1, σ1), y considerando la independencia entre ellos, se tiene que

Y1 − Y0 ∼ N(µ1 − µ0,
√

σ2
1 + σ2

0) y, consecuentemente, Z = (Y1−Y0)−(µ1−µ0)√
σ2
1+σ2

0

∼ N(0, 1).

Considerando la definición del AUC (2.2) y tomando en cuenta la suposición

anterior, se obtiene la expresión paramétrica del AUC:

AUC = P (Y1 > Y0) = P (Y1 − Y0 > 0) (2.3)

= P

(
Z > − (µ1 − µ0)√

σ2
1 + σ2

0

)
(2.4)

= Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
(2.5)

= Φ

(
a√

1 + b2

)
(2.6)

donde Φ es la función de distribución de la normal estándar, a = µ1−µ0

σ1
y b = σ0

σ1
.

Por consiguiente, el AUC estimado vendrá dado por la estimación de los parámetros

a y b: â = µ̂1−µ̂0

σ̂1
, b̂ = σ̂0

σ̂1
, ÂUC = Φ

(
â√
1+b̂2

)
. Esta estimación puede realizarse

mediante el método de máxima verosimilitud.

Intervalos de confianza

Para obtener intervalos de confianza para el AUC, es necesario calcular su varianza.

Liu y Schisterman [54] proponen la siguiente expresión que se deriva de aplicar el

método delta [77]:

V ar(ÂUC) =
1

σ2
1 + σ2

0

Φ2

(
µ1 − µ0√
σ2
1 + σ2

0

)[
V ar(µ̂0) + V ar(µ̂1) +

(µ1 − µ0)
2

4(σ2
1 + σ2

0)
4
(V ar(σ̂2

0) + V ar(σ̂2
1))

]

(2.7)

2.1.2. Estimación no paramétrica

Cuando la asunción de normalidad no se cumple, es necesario recurrir a métodos

no paramétricos para estimar el AUC.

Por definición (2.1), el AUC estimado puede obtenerse a partir de la curva

ROC emṕırica (1.14) utilizando la regla del trapecio. Esta regla es un método de
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integración que se basa en aproximar el área bajo la curva como suma de áreas de

trapecios. Los ĺımites de cada trapecio vendrán dados por cada punto de corte y su

valor correspondiente en la curva escalonada. Dada una partición del intervalo (0,1)

constituida por los puntos {t0, t1, .., ti−1, ti, ..., tT}, el AUC estimado vendrá dado por

la siguiente expresión:

ÂUC =
T∑

i=1

1

2
(FPRti − FPRti−1

)(TPRti + TPRti−1
) (2.8)

donde FPRti y TPRti son las tasas de falsos y verdaderos positivos calculadas para el

punto ti.

Por otro lado, Bamber [10] proporciona una expresión para la estimación

emṕırica del AUC, el cual es un estimador insesgado equivalente al estad́ıstico U de

Mann-Whitney [64, 41]:

ÂUC =
1

n0n1

n0∑

i=1

n1∑

j=1

Ψ(y1j, y0i) (2.9)

=
1

n0n1

n0∑

i=1

n1∑

j=1

[
I(y1j > y0i) +

1

2
I(y1j = y0i)

]
(2.10)

donde yki es la salida del clasificador para el individuo i = 1, 2, . . . , nk de la clase

k = 0, 1, I la función indicadora y

Ψ(x, y) =





1 si x > y

1
2

si x = y

0 si x < y

(2.11)

Intervalos de confianza

Diferentes enfoques no paramétricos han sido propuestos para la estimación de la

varianza del AUC y, consecuentemente, para la construcción de intervalos de confianza

del AUC. En concreto, Hanley y McNeil [41], a partir de la igualdad (2.9), formulan la

expresión del error estándar del AUC emṕırico como:

SE(ÂUC) =

√
ÂUC(1− ÂUC) + (n1 − 1)(Q1 − ÂUC

2
) + (n0 − 1)(Q2 − ÂUC

2
)

n0n1

(2.12)

siendo Q1 la probabilidad de que dos individuos enfermos seleccionados aleatoriamente

tengan un valor mayor del clasificador que un individuo sano, y Q2 la probabilidad de

que un individuo enfermo seleccionado al azar tenga un valor mayor del clasificador

que dos individuos sanos seleccionados aleatoriamente.
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Hanley y McNeil señalan que, para áreas del 80% o más, el modelo exponencial

negativo proporciona errores estándar ligeramente más conservadores que los otros

modelos considerados. Bajo este supuesto, los valores de Q1 y Q2 pueden expresarse

en función del AUC:

Q1 =
ÂUC

2− ÂUC
(2.13)

Q2 =
2ÂUC

2

1 + ÂUC
(2.14)

A partir de las estimaciones de las expresiones anteriores se puede construir un intervalo

de confianza para el AUC, aśı como determinar el tamaño de muestra necesario para

conseguir una amplitud determinada [129].

Uno de los intervalos para el AUC más populares es el intervalo no paramétrico de

DeLong [25], que se basa en la estimación de Mann-Whitney (2.9). El enfoque propuesto

por DeLong et al. se fundamenta en el método de Sen [99] para obtener un estimador

de la matriz de covarianza del AUC, que se basa en la teoŕıa de los U-estad́ısticos.

Definen como componentes estructurales las siguientes expresiones:

V r
10(y1j) =

1

n0

n0∑

i=1

Ψ(yr1j, y
r
0i), j = 1, 2, . . . , n1 (2.15)

V r
01(y0i) =

1

n1

n1∑

j=1

Ψ(yr1j, y
r
0i), i = 1, 2, . . . , n0 (2.16)

donde Ψ(x, y) está definida en (2.11) y el sub́ındice r representa el r-ésimo modelo

considerado. Este sub́ındice se utilizará espećıficamente para comparar las áreas bajo

la curva ROC generadas por diferentes modelos (siguiente sección). La matriz de

covarianzas estimada para el vector de parámetros estimados θ̂ = (θ̂1, . . . , θ̂k), siendo

θ̂k = ÂUCk definido en (2.10), queda expresada como sigue:

S =
1

n1

S10 +
1

n0

S01 (2.17)

donde S10 y S01 son las matrices k × k donde el (r, s)-elemento viene dado,

respectivamente, por:

sr,s10 =
1

n1 − 1

n1∑

j=1

[V r
10(y1j)− θ̂r][V s

10(y1j)− θ̂s] (2.18)

sr,s01 =
1

n0 − 1

n0∑

i=1

[V r
01(y0i)− θ̂r][V s

01(y0i)− θ̂s] (2.19)

donde V r
10(y1j) y V r

01(y0i) vienen dados por las expresiones (2.15)-(2.16). A partir de las
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expresiones anteriores se deduce el estimador de la varianza de ÂUC:

V̂ ar(ÂUC) =
s10
n1

+
s01
n0

(2.20)

=
1

n1(n1 − 1)

n1∑

j=1

(V10(y1j)− ÂUC)2 +
1

n0(n0 − 1)

n0∑

i=1

(V01(y0i)− ÂUC)2

(2.21)

Considerando la estimación de la varianza (2.21), se puede construir un intervalo de

confianza de tipo Wald para el AUC: ˆAUC ± z1−α/2

√
V̂ ar( ˆAUC).

Otros autores, como Qin y Hotilovac [87], comparan varios métodos para la

construcción de intervalos de confianza no paramétricos para el AUC, obteniendo

diferentes resultados. Estos incluyen la prueba de Mann-Whitney [64], una

transformación logit, el intervalo no paramétrico de DeLong [25], la verosimilitud

emṕırica [88] e intervalos de confianza bootstrap. En concreto, los intervalos de

confianza bootstrap representan la alternativa más frecuente dentro de los métodos

emṕıricos.

2.1.3. Comparación de áreas bajo la curva ROC

La comparación del rendimiento entre dos modelos también se puede realizar

mediante pruebas estad́ısticas de contraste, lo que nos permite seleccionar con mayor

precisión el modelo con mejor rendimiento en caso de rechazar la hipótesis de igualdad.

En esta sección, se presentan dos enfoques para la comparación de las áreas bajo la

curva ROC, basados en los estudios de Hanley y McNeil [41] y DeLong et al. [25],

En este contexto, el objetivo será comparar las áreas bajo la curva ROC resultantes

del modelo 1 (AUC1) y del modelo 2 (AUC2):

H0 : AUC1 = AUC2

H1 : AUC1 ̸= AUC2

El estad́ıstico de contraste propuesto por Hanley y McNeil [42] viene dado por:

Z =
AUC1 − AUC2

SE(AUC1 − AUC2)
∼ N(0, 1) (2.22)

siendo

SE(ÂUC1 − ÂUC2) =

√
V ar(ÂUC1) + V ar(ÂUC2)− 2rSE(ÂUC1)SE(ÂUC2)

(2.23)

donde r representa la correlación estimada entre ÂUC1 y ÂUC2. Es importante

destacar que el último término es necesario para la comparación de áreas bajo la curva
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ROC en casos apareados, es decir, cuando se analiza la capacidad predictiva de los

clasificadores en el mismo conjunto de datos, que es lo común en la práctica.

El único parámetro desconocido de la expresión (2.23) es r, puesto que las

expresiones de las varianzas del AUC estimado pueden ser sustituidas por las fórmulas

presentadas anteriormente. Por ejemplo, se puede considerar la expresión para la

varianza derivada de Hanley y McNeil, formulada en (2.12).

El parámetro r de correlación entre áreas se puede calcular de manera tradicional

utilizando el coeficiente de correlación de Fisher/Pearson o el tau de Kendall [49] para

datos ordinales. Hanley y McNeil [41] proponen calcular este coeficiente r tomando la

media de los coeficientes calculados para cada subconjunto de datos de cada clase. En

concreto, se define r como:

r =
r0 + r1

2
(2.24)

donde r0 representa el coeficiente de correlación obtenido al considerar los datos de la

clase 0 y r1 los de la clase 1.

Otra alternativa es utilizar las fórmulas derivadas en el estudio de DeLong et al.

[25] y sustituirlas en la expresión (2.23), lo que resulta en el conocido test DeLong para

la comparación de áreas bajo la curva ROC, ampliamente utilizado en problemas de

clasificación. Espećıficamente, se considera la fórmula de la varianza dada en (2.21)

y, de manera similar, se obtiene la expresión de la covarianza utilizando las fórmulas

(2.18)-(2.19) que definen los elementos de la matriz de covarianza estimada (2.17).

2.1.4. Área parcial bajo la curva ROC

Aunque las pruebas de comparación de áreas bajo la curva ROC ayudan a elegir el

mejor modelo según la discriminación medida por el AUC, no garantizan que las curvas

ROC tengan formas similares si no se rechaza la hipótesis nula de igualdad de áreas.

De hecho, es posible encontrar dos pruebas con curvas ROC que presenten formas muy

diferentes, pero cuyas AUC sean prácticamente idénticas. Esto se debe a que el AUC

evalúa la discriminación del modelo desde un enfoque global. Sin embargo, el objetivo

de comparación puede que se focalice en una región concreta del espacio de curvas

ROC. En concreto, si el interés se centra en un rango espećıfico de la tasa de falsos

positivos (FPR), la métrica adecuada seŕıa el área parcial del AUC.

Definición 7. Dado un intervalo (a,b), donde 0 ≤ a < b ≤ 1, se define el área parcial

bajo la curva ROC (pAUC, por sus siglas en inglés) en dicho intervalo, como el área

encerrada entre la curva ROC, el eje horizontal y las ĺıneas verticales en las coordenadas

x=a y x=b:

pAUC(a,b) =

∫ b

a

ROC(t)dt 0 ≤ a < b ≤ 1 (2.25)

25
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La estimación del área parcial bajo la curva ROC puede realizarse, por definición,

utilizando las estimaciones para las curvas ROC (R̂OC(t)) mediante métodos

paramétricos o método Kernel:

p̂AUC(a,b) =

∫ b

a

R̂OC(t)dt 0 ≤ a < b ≤ 1 (2.26)

Para el caso de estimaciones no paramétricas de la curva ROC escalonadas (no

suavizadas), se puede aplicar el método trapezoidal, similar a (2.8).

2.2. Índice de Youden

El ı́ndice de Youden es una métrica formulada por William J. Youden [125] que ha

sido ampliamente utilizada en estudios cĺınicos, aunque no ha recibido tanta atención

en la literatura como el AUC. Ambas medidas son útiles para evaluar modelos de

clasificación pero se enfocan en diferentes aspectos de la evaluación del rendimiento del

modelo. Mientras que el AUC evalúa la capacidad discriminativa general del modelo

considerando todos los puntos de corte, el ı́ndice de Youden proporciona un valor

espećıfico de rendimiento del modelo a partir de la sensibilidad y la especificidad. Esto

implica elegir un punto de corte concreto que maximice el ı́ndice de Youden. La ventaja

de esto en comparación con el AUC es que se proporciona un punto de corte que ofrece

al cĺınico un valor de decisión que permite interpretar y clasificar a los pacientes entre

la clase positiva (enfermos) y la negativa (sanos).

Definición 8. El cálculo del ı́ndice de Youden se basa en la diferencia entre la tasa de

verdaderos positivos y la tasa de falsos positivos tal que:

J(c) = TPR(c)−FPR(c) = Sensibilidad(c)+Especificidad(c)− 1 = FY0(c)−FY1(c)

(2.27)

donde c denota el punto de corte y FYk
la función de distribución de la variable respuesta

Yk, k = 0, 1.

El ı́ndice de Youden óptimo Jmax se alcanza maximizando la diferencia anterior (2.27):

Jmax = maxc{Sensibilidad(c) + Especificidad(c)− 1} (2.28)

= maxc{FY0(c)− FY1(c)} (2.29)

Observación 6. El ı́ndice de Youden vaŕıa entre 0 y 1, donde valores cercanos a

0 indican una capacidad discriminatoria baja y valores cercanos a 1 indican una

capacidad discriminatoria alta. En concreto, un valor de 1 representa una clasificación

perfecta, lo que significa que la pueba no produce falsos positivos ni falsos negativos

(Sensibilidad=Especificidad=1; o equivalentemente: TPR=1, FPR=0).
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Caṕıtulo 2. Métricas derivadas de la curva ROC

El ı́ndice de Youden, al igual que el AUC, es una métrica derivada de la curva ROC

y, por lo tanto, puede estimarse utilizando enfoques paramétricos y no paramétricos

(Fluss [32]). Estos enfoques se describen a continuación.

2.2.1. Estimación paramétrica

El enfoque paramétrico para estimar el ı́ndice de Youden bajo normalidad se basa

en los resultados presentados por Schisterman y Perkins [98].

Asumiendo que los resultados del clasificador se distribuyen como Y0 ∼ N(µ0, σ0) y

Y1 ∼ N(µ1, σ1) con σ2
0 ̸= σ2

1, la función que proporciona el ı́ndice de Youden se expresa

como:

J(c) = TPR(c)− FPR(c) = Φ

(
c− µ0

σ0

)
− Φ

(
c− µ1

σ1

)
(2.30)

donde Φ es la función de distribución de la normal estándar.

Para maximizar la expresión anterior (2.30), se deriva con respecto a c y se

establece la derivada igual a cero. Esto conduce a la ecuación cuadrática resultante

que proporciona el punto de corte óptimo:

c∗ =
(µ1σ

2
0 − µ0σ

2
1)− σ0σ1

√
(µ0 − µ1)2 + (σ2

0 − σ2
1) log(

σ2
0

σ2
1
)

σ2
0 − σ2

1

(2.31)

Sustituyendo (2.31) en la ecuación (2.30), se obtiene el ı́ndice de Youden máximo. Si

se asumiese igualdad de varianzas (σ2
0 = σ2

1), el punto de corte óptimo seŕıa:

c∗ =
(µ0 + µ1)

2
(2.32)

y el ı́ndice de Youden máximo:

J(c∗) = 2Φ

(
µ1 − µ0

2
√

σ2
1

)
− 1 (2.33)

Estas formulaciones son también válidas bajo transformaciones tipo Box-Cox.

Schisterman y Perkins [98] también abordan la estimación de la varianza del ı́ndice

de Youden para la creación de intervalos de confianza utilizando el método delta. Como

alternativa, proponen también la estimación aplicando diversas técnicas de bootstrap.

2.2.2. Estimación no paramétrica

El enfoque no paramétrico más sencillo se basa en considerar las funciones de

distribución emṕıricas, formuladas en (1.13). Sustituyendo en (2.27) se obtiene la

estimación del ı́ndice de Youden:

Ĵ(c∗) = F̂Y0(c
∗)− F̂Y1(c

∗) (2.34)

=
1

n0

n0∑

i=1

I(y0i ≤ c∗)− 1

n1

n1∑

i=1

I(y1i ≤ c∗) (2.35)
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siendo c∗ ∈ {y01, . . . , y0n0 , y11, . . . , y1n1} el punto de corte óptimo que maximiza la

expresión.

Otro enfoque no paramétrico para la estimación del ı́ndice de Youden es el método

tipo Kernel. En este caso, el ı́ndice de Youden estimado máximo tiene la siguiente

expresión (considerando el núcleo gaussiano):

Ĵ(c∗) = F̂Y0(c
∗)− F̂Y1(c

∗) (2.36)

=
1

n0

n0∑

i=1

Φ

(
c∗ − y0i
hY0

)
− 1

n1

n1∑

i=1

Φ

(
c∗ − y1i
hY1

)
(2.37)

donde c∗ representa el punto de corte óptimo, Φ es la función de distribución de una

normal estándar y hYk
el ancho de banda, cuya elección común se determina según la

ecuación (1.19). En un estudio comparativo realizado por Faraggi y Reiser [30] sobre

diferentes métodos de selección de anchos de banda, concluyeron que procedimientos

más complejos no generaban mejoras significativas.

En cuanto a la estimación de los intervalos de confianza para el ı́ndice de

Youden, Zhou y Qin [127] proponen intervalos de confianza no paramétricos, los

cuales recomiendan cuando se carece de información sobre las distribuciones de las

poblaciones enfermas y no enfermas. Los intervalos de confianza propuestos se basan

en la estimación ajustada de Agresti y Coull [1] para una proporción binomial y la

estimación bootstrap de la varianza del ı́ndice de Youden emṕırico. Siguiendo otro

enfoque, Shan [100] propone dos intervalos de confianza utilizando el método de

Wilson-score [120].

2.2.3. Adaptaciones del ı́ndice de Youden

Ciertas modificaciones del ı́ndice de Youden se han propuesto con el fin de adaptarlo

a diferentes contextos y necesidades.

El ı́ndice de Youden, definido en (2.27), ofrece un equilibrio optimizado entre

sensibilidad y especificidad. Sin embargo, en ciertas situaciones cĺınicas, es posible

que se desee otorgar mayor importancia a la sensibilidad en comparación con la

especificidad, o viceversa. También puede haber interés en optimizar la métrica dentro

de un rango espećıfico de sensibilidades y especificidades en el espacio de curvas ROC.

Es aśı como surgen el denominado ı́ndice de Youden ponderado e ı́ndice de Youden

parcial, que son presentados a continuación.

Índice de Youden ponderado

El ı́ndice de Youden ponderado es una métrica adaptada del ı́ndice de Youden que

combina la sensibilidad y la especificidad de una prueba diagnóstica teniendo en cuenta
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a su vez la importancia relativa de cada una de estas medidas. Autores, como Rückera

y Schumache [93] y Li et al. [52], han utilizado y definido esta métrica. A continuación

se presentan las definiciones que proporcionan estos autores.

Rückera y Schumache [93] utilizan la versión ponderada del ı́ndice de Youden que

se expresa de la siguiente manera:

Jw(c) = w · Sensibilidad(c) + (1− w) · Especificidad(c) (2.38)

donde w, 0 < w < 1 es el párametro que actúa en la ponderación (peso) y c el punto

de corte.

Más tarde, Li et al. [52] definen el ı́ndice de Youden ponderado de la siguiente

manera:

Jw(c) = 2(w · Sensibilidad(c) + (1− w) · Especificidad(c))− 1 (2.39)

con 0 ≤ w ≤ 1. Esta expresión es equivalente al ı́ndice de Youden (2.27) cuando

w = 0,5.

Índice de Youden parcial

Recientemente, Li et al. [51] definieron el ı́ndice de Youden parcial, con una

motivación similar a la del AUC parcial (section 2.1.4), cuya definición se introduce a

continuación.

Definición 9. Dado el intervalo (a,b) con 0 ≤ a < b ≤ 1, se define el ı́ndice de Youden

parcial máximo en dicho intervalo como:

Ja,b(c
∗) = maxa≤c≤b{Sensibilidad(c) + Especificidad(c)− 1} (2.40)

= maxa≤c≤b{FY0(c)− FY1(c)} (2.41)

= Sensibilidad(c∗) + Especificidad(c∗)− 1 (2.42)

= FY0(c
∗)− FY1(c

∗) (2.43)

donde c∗ es el punto de corte óptimo y (a, b) el intervalo de puntos de corte determinados

a partir de un rango de valores de sensibilidad y especificidad deseados.

A diferencia del ı́ndice de Youden, optimizado en todo el rango de valores de

sensibilidad y especificidad, el ı́ndice de Youden parcial se focaliza en una región

concreta del espacio ROC.

En resumen, el ı́ndice de Youden y sus variantes tienen una relevancia tanto

estad́ıstica como cĺınica, puesto que ofrecen un valor de la capacidad del clasificador a
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la vez que proporcionan un criterio para seleccionar un punto de corte óptimo, como

aquel que maximiza las expresiones anteriores. El principal interés de la tesis se ha

focalizado en la optimización de modelos de clasificación bajo optimalidad del ı́ndice

de Youden.

La selección del punto de corte óptimo es un aspecto fundamental en los modelos

de clasificación y puede variar según el contexto y objetivo del estudio cĺınico. En el

próximo caṕıtulo se presentan diferentes enfoques para la selección del punto de corte

óptimo.

30



Caṕıtulo 3

Selección del punto de corte óptimo

En los caṕıtulos previos, se han presentado las estimaciones de la curva ROC y las

métricas derivadas que proporcionan una evaluación del rendimiento de los modelos de

clasificación. En la práctica general, esta evaluación cuantitativa del rendimiento del

modelo debe llevar consigo la determinación y aplicación de un punto de corte espećıfico

que permita trasladar esta evaluación a decisiones prácticas y útiles. En el contexto de

la biomedicina, esto implica la necesidad de establecer un umbral que oriente la decisión

de clasificar a un paciente como positivo para la enfermedad o condición, basándose en

la predicción continua del modelo.

La elección de este punto de corte óptimo dependerá del contexto y de los objetivos

espećıficos del estudio cĺınico, lo que implica generalmente decidir qué métrica de

evaluación o combinación se busca optimizar. Puede ser de interés identificar, por

ejemplo, la mayor cantidad posible de casos positivos (enfermos) o, por otro lado, ser

más preciso en las clasificaciones de individuos sanos o enfermos. En consecuencia, la

selección de un punto de corte óptimo se convierte en un aspecto crucial para garantizar

la aplicación efectiva de los modelos de clasificación en entornos cĺınicos o prácticos.

En este caṕıtulo se introducen diferentes métodos y enfoques para la selección del

punto de corte óptimo, ofreciendo una herramienta valiosa para la toma de decisiones

informadas.

3.1. Criterios basados en la sensibilidad o

especificidad

Un posible criterio para la selección del punto de corte óptimo c∗ podŕıa ser

aquel que maximiza la sensibilidad o la especificidad. Sin embargo, por lo general,

no es adecuado optimizar la sensibilidad y la especificidad de forma aislada, ya que

maximizar la sensibilidad podŕıa resultar en una disminución de la especificidad, y

viceversa. Por ejemplo, en circunstancias extremas donde el foco fuese la maximización
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de la sensibilidad, podŕıa resultar en la clasificación de todos los pacientes como

pertenecientes a la clase positiva (enfermos), resultando en una sensibilidad máxima de

1. Sin embargo, los falsos positivos suelen estar vinculados con daños para el paciente

o consecuencias económicas importantes, por lo que generalmente no se considera un

buen criterio. Habitualmente se busca criterios que equilibren ambas métricas.

Un enfoque alternativo seŕıa considerar el punto de corte c∗ donde la sensibilidad

y especificidad son equivalentes Se(c∗) ≈ Sp(c∗) o:

c∗ = arg min
c

{Se(c)− Sp(c)} (3.1)

Este punto se conoce como punto de simetŕıa o equivalencia y representa

matemáticamente el punto de intersección entre la curva ROC y la ĺınea y = 1 − x.

Puede interpretarse como el punto que maximiza simultáneamente ambos tipos de

clasificaciones correctas: verdaderos positivos y verdaderos negativos.

3.1.1. Criterio basado en el ı́ndice de Youden

El ı́ndice de Youden, definido en (2.27), es una métrica que busca maximizar la suma

de la sensibilidad y la especificidad, asignándoles el mismo peso. Este ı́ndice se emplea

ampliamente para seleccionar el punto de corte óptimo cuando se busca equilibrar

estas dos métricas. El punto de corte óptimo c∗ asociado a este ı́ndice corresponde al

punto en la curva ROC donde la distancia a la diagonal TPR = FPR alcanza su valor

máximo. La interpretación intuitiva implica identificar el punto en la curva que está

más distante del azar o, en otras palabras, más alejado de ninguna discriminación.

En ausencia de un criterio claro para asignar valores más altos a la sensibilidad o la

especificidad, el ı́ndice de Youden se presenta como una métrica idónea, proporcionando

un equilibrio óptimo entre ambas métricas y considerando de igual manera tanto

los verdaderos positivos como los verdaderos negativos. Esta caracteŕıstica confiere

al ı́ndice de Youden una mayor robustez frente a desbalances de clases en comparación

con otras medidas como la tasa de verdaderos positivos, permitiendo aśı una evaluación

equitativa del rendimiento del modelo en ambas direcciones.

En conclusión, el ı́ndice de Youden no solo representa una métrica de rendimiento

balanceada, sino que también sirve como criterio para la selección del punto de corte

óptimo en la curva ROC. Es la métrica principal en la que se centra el trabajo de esta

tesis. Una introducción a su definición y estimación ha sido detallada en el caṕıtulo

anterior (sección 2.2).
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3.1.2. Punto de la curva ROC más cercano al (0,1)

Otra opción comúnmente utilizada para la selección del punto de corte óptimo es

elegir aquel que esté más próximo al punto ideal de la curva ROC, esto es, (0, 1). En

otras palabras, define como punto de corte óptimo aquel que se encuentra más cerca

de la discriminación perfecta entre individuos de las clases 0 y 1. Matemáticamente,

este punto de corte c∗ satisface la siguiente ecuación:

c∗ = arg min
c

{
√

(1− TPR(c))2 + FPR(c)2} (3.2)

Tanto el criterio basado en el punto más cercano a (0,1) como el ı́ndice de Youden

son ampliamente utilizados y pueden proporcionar puntos de corte óptimos que pueden

coincidir o diferir, según el análisis realizado por Perkins y Schisterman [84]. Sin

embargo, los autores respaldan la preferencia por el uso del ı́ndice de Youden, resaltando

tanto su interpretación matemático-cĺınica como su respaldo y trabajo en la literatura.

3.1.3. Coeficiente de correlación de Matthews

Una alternativa adicional para seleccionar el punto de corte óptimo es maximizar

el coeficiente de correlación de Matthews [67], una medida estad́ıstica utilizada para

evaluar el rendimiento de un clasificador binario, aunque su uso es menos común en

comparación con los métodos mencionados anteriormente.

Definición 10. El coeficiente de Matthews (MCC, siglas en inglés) para un punto de

corte c se define de la siguiente manera:

MCC(c) =
V P · V N − FP · FN√

(V P + FN)(V N + FP )(V P + FP )(V N + FN)
(3.3)

Observación 7. La correlación de Matthews toma valores en el rango de -1 a 1, donde

1 representa una clasificación perfecta y 0 sugiere que la clasificación es similar a la

de un modelo aleatorio.

3.1.4. Índice DOR

El Índice de Odds de Diagnóstico (DOR, siglas en inglés), introducido por Glas et

al. [35], es una medida que evalúa la utilidad diagnóstica de una prueba.

Definición 11. El ı́ndice DOR para un punto de corte c se define de la siguiente

manera:

DOR(c) =
V P/FN

FP/V N
=

Se(c)/(1− Se(c))

(1− Spe(c))/Spe(c)
(3.4)

donde Se y Spe denotan la sensibilidad y especificidad, respectivamente.
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Observación 8. El ı́ndice de Odds de Diagnóstico (DOR) puede oscilar entre cero

e infinito. Un DOR más alto sugiere una mejor capacidad diagnóstica de la prueba.

Cuando el DOR es igual a 1, indica que la prueba carece de capacidad discriminativa,

y valores más bajos podŕıan interpretarse como una clasificación peor que el azar. Con

este enfoque, el punto de corte óptimo seŕıa aquel que maximiza el ı́ndice DOR.

A pesar de ser un ı́ndice más reciente que el ı́ndice de Youden, su impacto ha sido

más limitado. En concreto, Böhning et al. [14] desaconsejan su uso, ya que demuestran

que este criterio podŕıa llevar a la elección de valores de punto de corte en el ĺımite del

rango de parámetros del valor de salida del modelo. Los autores indican que el ı́ndice

de Youden es preferible.

3.1.5. Probabilidad de concordancia

Liu [57] introduce la probabilidad de concordancia como un enfoque para seleccionar

el punto de corte óptimo en la curva ROC.

Definición 12. Dado un punto de corte c determinado, se define la probabilidad de

concordancia (PC) como el producto de la sensibilidad (Se) y la especificidad (Spe):

PC(c) = Se(c)× Spe(c) = TPR(c)(1− FPR(c)) (3.5)

El punto de corte óptimo según este criterio será aquel que maximice dicha expresión

(3.5). La probabilidad de concordancia, al igual que el ı́ndice de Youden, tiene una

interpretación intuitiva vinculada a la curva ROC. Se puede entender como el área

de un rectángulo de lados Se(c) y Spe(c). Como el área máxima de un rectángulo

corresponde a un cuadrado, es fácil deducir que este criterio favorece la equidad en Se

y Spe.

Autores como Liu [57], Rota y Antolini [91] y Unal [111] presentan estudios que

comparan los métodos presentados anteriormente para la selección del punto de corte

óptimo.

En conclusión, aunque la elección entre los distintos criterios depende del objetivo

espećıfico del problema, en ausencia de consenso o si se busca ponderar de manera

equitativa la sensibilidad y la especificidad, el ı́ndice de Youden es uno de los métodos

más utilizados y recomendados en la literatura. Autores como Perkins y Schisterman

[84], aśı como Böhning et al. [14], lo respaldan como el criterio más apropiado,

prefiriéndolo sobre otros enfoques debido a su significado cĺınico y su amplio uso,

proporcionando además una medida del rendimiento del modelo.
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3.2. Enfoques basados en costes

En determinadas circunstancias, puede resultar más conveniente o necesario

priorizar la clasificación precisa de una clase sobre otra. En estos casos, los enfoques

previamente mencionados, como el ı́ndice de Youden, no ofreceŕıan un criterio adecuado

para la selección del punto de corte óptimo, ya que no tienen en cuenta la prevalencia

de la enfermedad al otorgar igual peso a la sensibilidad y la especificidad. A diferencia

de los métodos anteriores, los criterios basados en la metodoloǵıa coste-beneficio tienen

en cuenta la prevalencia de la enfermedad y los costes relacionados con la clasificación

incorrecta de los pacientes, ya sea diagnosticándolos como sanos cuando están enfermos

o viceversa [133]. Estos enfoques permiten asignar diferentes pesos o importancias a los

errores cometidos, lo cual es especialmente valioso en contextos cĺınicos donde el coste

de diagnosticar incorrectamente a un paciente con una enfermedad puede ser diferente

al coste de no diagnosticar a un paciente que realmente tiene la enfermedad. Por tanto,

estos métodos resultan particularmente útiles cuando los errores de clasificación tienen

consecuencias significativas. A continuación, se presentan enfoques basados en costes

para la selección del punto de corte.

3.2.1. Método coste-beneficio

Se define el coste esperado a través de la siguiente expresión [69]:

C = C0 + P (V P )CV P + P (FP )CFP + P (V N)CV N + P (FN)CFN (3.6)

donde C0 indica el coste base y CV P , CFP , CV N , CFN los costes de las

consecuencias de la decisión asociados a los V P , FP , V N y FN , respectivamente.

P (V P ), P (FP ), P (V N), P (FN) son las probabilidades de obtener un V P , FP , V N y

FN , respectivamente:

P (V P ) = P (positivo)× Se = p× TPR (3.7)

P (FP ) = P (negativo)× (1− Spe) = (1− p)× FPR (3.8)

P (V N) = P (negativo)× Spe = (1− p)× TNR (3.9)

P (FN) = P (positivo)× (1− Se) = p× FNR (3.10)

siendo p la prevalencia de la enfermedad, Se sensibilidad y Sp especificidad.

Lema 1. Sea una curva ROC asociada a un diagnóstico sobre un evento, el punto de

corte óptimo que minimiza el coste asociado a los errores de clasificación (3.6) es aquel

correspondiente al punto de la curva ROC cuya recta tangente tiene por pendiente:

m =
costes falsos positivos× (1− p)

costes falsos negativos× p
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Demostración. Dada la curva ROC, x = FPR y f(x) = TPR, sustituyendo en (3.6),

obtenemos:

C = C0 + (1− p)CV N + pCFN + p(CV P − CFN)f(x) + (1− p)(CFP − CV N)x

Para hallar el mı́nimo de esta función de coste, tomamos la derivada e igualamos a cero.

Despejando f ′(x) y considerando que los costes de los aciertos son nulos, nos queda:

f ′(x) =
(1− p)CFP

pCFN

Por tanto, el valor mı́nimo de la función de costes (3.6) se alcanzará en el punto que

tenga por pendiente f ′(x), quedando demostrado el lema.

En la práctica, para encontrar el punto de corte óptimo según este criterio, se puede

trazar una recta desde el punto ideal (0,1) con pendiente m y desplazarla paralelamente

hacia la curva ROC estimada. El punto de intersección de esta recta con la curva se

asociaŕıa con el punto de corte óptimo.

Por otro lado, asumiendo binormalidad de la curva ROC (Y0 ∼ N(µ0, σ0) y

Y1 ∼ N(µ1, σ1)), Somoza y Mossman [106] proporcionan una expresión que permite

determinar el punto de corte óptimo. Sean los parámetros a = µ1−µ0

σ1
y b = σ0

σ1
, las

coordenadas de la curva ROC (FPR, TPR) que determinan el punto de corte óptimo

para b = 1 vienen dadas por las siguientes expresiones:

FPR = Φ

(
−a

2
− ln(N)

a

)
(3.11)

TPR = Φ

(
−1

2
− ln(N)

a

)
(3.12)

(3.13)

donde Φ es la función de distribución de la normal estándar yN el número de individuos

de la muestra. Para b ̸= 1, se tienen las siguientes expresiones:

FPR = Φ



ab−

√
a2 − 2(1− b2)ln(N

b
)

1− b2


 (3.14)

TPR = Φ



a− b

√
a2 − (1− b2)ln(N

b
)

1− b2


 (3.15)

(3.16)

donde N es el número de individuos de la muestra y Φ la función de distribución de la

normal estándar.

36
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3.2.2. Término de costes por clasificación incorrecta

Otro criterio de selección de punto de corte óptimo basado en los costes de

clasificaciones incorrectas es el del término de costes por clasificación incorrecta (MCT,

siglas en inglés), definido por:

MCT (c) =
CFN

CFP

p(1− Se(c)) + (1− p)(1− Spe(c)) (3.17)

El punto de corte óptimo será aquel que minimice esta expresión (3.17) [12].

3.2.3. Punto de simetŕıa generalizado

López-Ratón et al. [59, 60] se centraron en el punto de simetŕıa para la

determinación óptima del punto de corte. Los autores introducen el punto de simetŕıa

generalizado, que generaliza el punto de simetŕıa (3.1) al incorporar los costes asociados

a las clasificaciones erróneas CFP y CFN . El punto de simetŕıa generalizado cGS es aquel

que satisface la siguiente ecuación:

CFP

CFP

(1− Spe(cGS)) = (1− Se(cGS)) (3.18)

3.2.4. Índice de Youden generalizado

El ı́ndice de Youden generalizado (GYI, siglas en inglés) surge como una extensión

del ı́ndice de Youden, incorporando los costes de las clasificaciones incorrectas del

diagnóstico, formulado de la siguiente forma (Lopez-Ratón [58]):

GY I(c) = Se(c) +
1− p

p

CFN

CFP

Sp(c)− 1 (3.19)

El punto de corte óptimo será aquel que maximize dicho ı́ndice.

Observación 9. Es evidente que el ı́ndice de Youden generalizado es equivalente al

ı́ndice de Youden (definido en (2.27)) cuando 1−p
p

CFN

CFP
= 1. Un ejemplo que cumple con

esta equivalencia es cuando la prevalencia es p = 0,5 y los costes son iguales a 1.

A pesar de que estos enfoques tengan en cuenta los costes asociados a clasificaciones

incorrectas y permita asignar diferente importancia a los errores cometidos, la

determinación precisa de estos costes puede resultar dif́ıcil de cuantificar en la práctica.

Por esta razón, seleccionar el punto de corte óptimo basado en estos criterios no es la

elección más frecuente.
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3.3. Enfoques basados en métodos gráficos

Para determinar el punto de corte óptimo, se puede adoptar otra perspectiva

mediante el uso de representaciones gráficas. Estos métodos se basan en visualizar

las implicaciones de seleccionar un punto de corte espećıfico, considerando tanto

los beneficios como los perjuicios, ya sea en términos de individuos correctamente

clasificados (V N + V P ) o incorrectamente clasificados (FN + FP ). En el ámbito

biomédico, estos enfoques ofrecen a los profesionales cĺınicos una herramienta gráfica

para la toma de decisiones informadas, facilitando la elección del punto de corte según

los objetivos cĺınicos y teniendo en cuenta las consecuencias asociadas.

Los enfoques gráficos basados en funciones de densidad buscan identificar el punto

de corte óptimo que maximice la discriminación entre individuos de las clases 0 y 1.

Este proceso implica la representación visual de las funciones de densidad de ambos

grupos. El objetivo es seleccionar el punto de corte a partir del gráfico que maximice la

distancia entre las funciones de densidad, logrando una separación efectiva entre ambas

clases.

Esta idea ya se hab́ıa introducido en el Caṕıtulo 1, con la Figura 1.1a, que muestra

las funciones de densidad para una población enferma y sana. En ella, se selecciona el

punto de corte que pondera de igual manera a los enfermos y a los sanos. Sin embargo,

se podŕıa seleccionar otro criterio para la elección del punto de corte. La representación

gráfica tiene la ventaja de informar visualmente sobre cómo cambiaŕıa la proporción de

individuos correctamente clasificados (VN + VP) o incorrectamente clasificados (FN

+ FP) en función del punto de corte escogido. De esta manera, se podŕıa ajustar este

punto de corte para obtener un porcentaje más alto o más bajo de falsos negativos o

falsos positivos, por ejemplo. Por tanto, suponiendo un clasificador que proporciona

unos valores numéricos que corresponden a la probabilidad de pertenencia a la clase

1 (enferma), si conocemos las funciones de densidad de la población enferma y sana,

obtendŕıamos un gráfico similar al de la Figura 1.1a donde se podŕıa visualizar el efecto

de seleccionar diferentes puntos de corte (probabilidades predichas por el clasificador) y

comprender su efecto en términos de bien y mal clasificados para cada clase. La elección

del punto de corte está condicionada por el modelo de clasificación y el propósito o

utilidad del contexto.

Esta estrategia no solo simplifica la identificación visual del punto de corte, sino

que también proporciona una comprensión intuitiva de la distribución de los datos

en relación con la decisión de clasificación. De esta manera, conocer las funciones de

densidad de cada clase nos posibilita obtener, a través de este enfoque, una perspectiva

clara sobre la capacidad de discriminación del clasificador y el punto de corte óptimo,
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de acuerdo con los requisitos espećıficos del objetivo en consideración. Aunque en

la práctica las funciones de densidad raramente son conocidas, es posible estimarlas

mediante la aproximación de funciones tipo kernel (1.15). Además, se sabe que, con

un número suficiente de datos, las estimaciones proporcionadas se aproximan a las

funciones de densidad poblacionales [104].

Autores como Borque et al. [15] y Rubio-Briones et al. [92] emplean este enfoque

gráfico para la selección de puntos de corte en el contexto del cáncer de próstata.

El estudio de Borque et al. se centra en la estadificación de este cáncer, una tarea

crucial para determinar si el tumor está confinado dentro de la próstata. Los autores

construyen curvas de densidad de probabilidades para evaluar diversos clasificadores

con este propósito, lo que les permite elegir el punto de corte apropiado para distinguir

entre grupos de alto y bajo riesgo. Por otro lado, en el estudio de Rubio-Briones et

al., validan la utilidad del modelo para predecir el cáncer de próstata en la biopsia

inicial, basando la selección del punto de corte óptimo en el estudio de las funciones de

densidad asociadas al clasificador.

Software

Aunque existen varios programas estad́ısticos para analizar la curva ROC, como

IBM SPSS, R destaca por ser un entorno de software libre y de código abierto. R

ofrece todas las funciones necesarias para el análisis de curvas ROC a través de paquetes

como ROCR [105], pROC [89] y OptimalCutpoints [61]. Estos paquetes proporcionan

opciones para seleccionar el punto de corte óptimo, y en particular, OptimalCutpoints

ofrece una amplia gama de criterios para esta selección que incluyen, además de los

criterios previamente mencionados, otros relacionados como los basados en los valores

predictivos. El software R se ha usado en los principales trabajos de la tesis debido

a sus ventajas y utilidades. Asimismo, se han desarrollado libreŕıas en R que están a

libre disposición para la comunidad cient́ıfica a través de repositorios de acceso público,

cuya información se detalla en los siguientes caṕıtulos. En [73] se puede consultar más

información sobre el software estad́ıstico disponible para el análisis de curvas ROC.
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Caṕıtulo 4

Modelos de clasificación

En este caṕıtulo se presentan los algoritmos y métodos de clasificación que sirven

como base para la construcción de los modelos presentados en los art́ıculos de esta

tesis. En concreto, destacar los modelos lineales optimizados por el AUC o criterios

derivados de la curva ROC, que constituyen el fundamento de los algoritmos propuestos.

Aunque el caṕıtulo relaciona alguno de los conceptos introducidos con los art́ıculos que

constituyen el compendio, una descripción más detallada de estos se presenta de manera

independiente en cada caṕıtulo dedicado a ellos.

4.1. Modelos lineales bajo optimización del AUC

En el ámbito de la biomedicina, es habitual en la práctica cĺınica recopilar

información sobre varios biomarcadores para el diagnóstico de enfermedades. La

combinación de estos biomarcadores en un solo indicador es una práctica común, dado

que suele proporcionar diagnósticos más efectivos que cada biomarcador por separado.

Los métodos de combinación lineal han sido ampliamente desarrollados y aplicados

en este contexto de clasificación binaria, preferidos por su simplicidad y facilidad de

interpretación. En ocasiones, estos métodos ofrecen un equilibrio adecuado entre estas

caracteŕısticas y su rendimiento. La combinación lineal de biomarcadores continuos

genera un valor continuo, y la dicotomización de este valor resulta crucial, ya que

proporciona al cĺınico una regla de clasificación relacionada con la enfermedad, sobre

la cual puede fundamentar sus decisiones cĺınicas. En el caṕıtulo 3 se han presentado

diversos enfoques para la selección del mejor punto de corte.

El objetivo final seŕıa formular el modelo lineal con una mayor capacidad de

discriminación. La evaluación del rendimiento de esta combinación lineal (marcador

diagnóstico) se puede realizar a través de medidas derivadas de la curva ROC, como

pares de sensibilidad y especificidad, el área o el área parcial bajo la curva ROC, y el

ı́ndice de Youden (caṕıtulo 2). Del enfoque derivado de la selección de modelos óptimos
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bajo criterio de parámetros de la curva ROC han surgido algoritmos que estiman los

parámetros del modelo lineal con este tipo de objetivos. En concreto, la optimización

del AUC es el que ha tenido un mayor número de propuestas y desarrollo.

4.1.1. Estimación paramétrica

El análisis discriminante fue formulado por Fisher [31] como técnica estad́ıstica

de clasificación que discrimina de manera efectiva entre los distintos grupos de la

variable a predecir. El objetivo es lograr la máxima separación transformando los

datos a otro espacio compuesto por nuevas variables definidas como combinación de

las variables originales. La determinación de la combinación lineal de variables se basa

en la maximización de la dispersión entre los grupos y la minimización de la dispersión

dentro de cada grupo (maximización de la función discriminante).

Su y Liu [108] formulan, a través del análisis discriminante, la mejor combinación

lineal que maximiza el AUC bajo la suposición de normalidad multivariante, para las

variables predictoras.

Teorema 1. - Sean Xk los valores de p los biomarcadores para los individuos de la

clase k = 0, 1, siguiendo una distribución normal: X0 ∼ N(µ0,Σ0) y X1 ∼ N(µ1,Σ1).

La combinación lineal óptima cumple que:

(β0, β1, . . . , βp) ∝ (Σ0 + Σ1)
−1 (µ1 − µ0) (4.1)

Consecuentemente, se formula el AUC óptimo bajo el modelo propuesto por Su y

Liu, como se enuncia en el siguiente corolario.

Corolario 1. Dadas las condiciones del teorema 1, el AUC máximo viene dado por la

siguiente expresión:

AUC = Φ(
√
µT (Σ1 + Σ0)−1µ) (4.2)

donde µ = µ1 − µ0 y Φ es la función de distribución de la normal estándar.

4.1.2. Estimación no paramétrica

Si bien Su y Liu [108] presentan un modelo lineal que brinda la máxima capacidad

de discriminación entre las dos clases (asociado a un AUC máximo), está condicionado

al supuesto de normalidad multivariante. Esta suposición de normalidad a menudo no

es fácil de cumplir en la práctica cĺınica real, ya que resulta ser demasiado exigente,

en parte debido a la simetŕıa que deben tener los biomarcadores. Sin embargo, para

muchas enfermedades, las variables tienden a adoptar distribuciones asimétricas, donde
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la progresión o etapas más avanzadas de la enfermedad están asociadas con valores

elevados de las pruebas diagnósticas [19].

Esta limitación de cumplir con la suposición de normalidad resalta la necesidad de

adoptar enfoques más flexibles que no estén condicionados por asunciones espećıficas

sobre la distribución. Pepe y Thompson [83] abordaron esta limitación formulando

un enfoque no paramétrico para estimar el modelo lineal que maximiza el AUC

basado en la estad́ıstica U de Mann-Whitney [64]. Esta formulación y sus sugerencias

han dado lugar al desarrollo de enfoques no paramétricos y semiparamétricos en la

construcción de clasificadores bajo criterios de optimalidad derivados de la curva ROC.

Espećıficamente, han sido la base para la formulación de los algoritmos presentados en

esta tesis [4, 8].

En concreto, Pepe y Thompson [83] proponen el siguiente modelo lineal:

Lβ(X) = X1 + β2X2 + · · ·+ βpXp (4.3)

donde p denota el número de biomarcadores, Xi el biomarcador i ∈ [1, . . . , p] y βi el

parámetro a ser estimado. Considerando el vector de parámetros óptimos β̂, se obtiene

el máximo AUC emṕırico estimado con el estad́ıstico U de Mann-Whitney, dado por

la siguiente expresión, equivalente a la expresión (2.10):

ÂUC =

∑n1

i=1

∑n0

j=1 I(Lβ̂(X1i) > Lβ̂(X0j)) +
1
2
I(Lβ̂(X1i) = Lβ̂(X0j))

n0 · n1

(4.4)

donde Xki es el vector de variables para el individuo i del grupo k = 0, 1.

Obsérvese que el modelo lineal propuesto (4.3) no incluye ni el intercepto ni el

coeficiente asociado a la variable X1, como se presenta comúnmente en la expresión

general del modelo lineal (β0+β1X1+β2X2+ · · ·+βpXp). Esto resulta en la reducción

de la estimación de p−1 parámetros. La justificación de esto radica en la propiedad de

invariancia de la curva ROC frente a cualquier transformación monótona, que implica

que el AUC de Lβ(X) (4.3) es equivalente al AUC de la expresión general de p + 1

parámetros, tal como afirma el siguiente teorema.

Teorema 2. Siendo X1, X2 variables predictoras, encontrar la combinación lineal

β0 + β1X1 + β2X2 con β1, β2 ∈ R que maximiza el AUC es equivalente a encontrar

la combinación X1 + βX2 cuyo AUC es máximo.

Demostración. La demostración del teorema es inmediata aplicando la propiedad de

invarianza de la curva ROC (proposición 3). Las curvas ROC para β0 + β1X1 + β2X2

y X1 + βX2 son equivalentes por ser resultado de aplicar transformaciones monótonas

al dividir la primera expresión por β1 y restar la constante β0.
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Nótese que, al ser (4.4) una función no diferenciable, la estimación del modelo

óptimo (4.3) implica explorar todo el espacio del vector de parámetros Rp−1 y las

posibles combinaciones de coeficientes y variables, lo cual resulta computacionalmente

intratable. Pepe y Thompson [83] proponen una optimización discreta de los valores βi

en el intervalo [−1, 1]. Esto se debe a que el AUC de Xi + βXj para β > 1 y β < −1

es el mismo que el de αXi + Xj para α = 1
β
en [−1, 1], cubriendo todos los posibles

valores en R. En concreto, los autores sugieren una búsqueda en cuadŕıcula sobre 201

valores equidistantes en el intervalo [−1, 1].

Aunque restringir la optimización al intervalo [−1, 1] hace que la formulación

inicial pueda ser computacionalmente viable, esta optimización todav́ıa conlleva un

coste computacional elevado para dimensiones p ≥ 3. Espećıficamente, se trata de un

problema NP-duro del orden de pkp−1, donde p es el número de variables predictoras y k

es la cantidad de valores posibles para cada coeficiente βi. Para abordar esta limitación

computacional, Pepe et al. [83, 82] sugirieron el uso de algoritmos con optimización

paso a paso, seleccionando y estimando en cada paso la mejor combinación lineal de

dos biomarcadores, e incorporando un nuevo biomarcador en cada iteración. De esta

manera, el problema se vuelve computacionalmente abordable, ya que en cada paso se

estima un solo coeficiente del modelo.

Esta estrategia de optimización parcial en cada paso fue implementada por Esteban

et al. [29] y posteriormente por Kang et al. [48, 47] para la optimización del AUC.

Aunque ambas propuestas siguen un enfoque de algoritmo paso a paso, siguiendo

las propuestas de Pepe et al. [83, 82], difieren parcialmente en su enfoque. Esteban

et al. proponen un método que busca en cada paso la combinación óptima de dos

variables (par de biomarcadores y el coeficiente β), considerando el tratamiento de

empates. Por otro lado, Kang et al. presentan un enfoque más simple y menos exigente,

donde se establece un orden de inclusión de variables al inicio del algoritmo, basado

en la ordenación de valores de AUC. El enfoque presentado por Kang et al. podŕıa

considerarse como un caso particular más sencillo del algoritmo paso a paso de Esteban

et al., donde los nuevos biomarcadores que se incluyen en cada etapa están fijados desde

el principio y donde no se consideran los empates.

Kang et al. [48, 47] proponen dos tipos de métodos paso a paso (métodos de paso

ascendente y de paso descendente), aunque recomendaron el uso del procedimiento

descendente. Sin pérdida de generalidad, a continuación se detalla el algoritmo paso a

paso descendente:

1. Calcular la estimación emṕırica del AUC basado en la estad́ıstica U de

Mann-Whitney (2.10) para cada uno de los p biomarcadores originales.
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2. Ordenar estos p biomarcadores según los valores de las estimaciones emṕıricas del

AUC de mayor a menor. Supongamos que el orden es el siguiente: X1, X2, . . . , Xp.

3. Combinar los dos primeros biomarcadores (aquellos con los dos AUC más

grandes) utilizando la búsqueda emṕırica de coeficientes propuesta por Pepe et

al. [83], seleccionando el parámetro β̂ óptimo de entre los 201 en el intervalo

[−1, 1] que maximiza el AUC:

ÂUC =

∑n1

i=1

∑n0

j=1 I(X1i,1 + β̂X1i,2 > X0j,1 + β̂X0j,2) +
1
2
I(X1i,1 + β̂X1i,2 = X0j,1 + β̂X0j,2)

n0 · n1

donde Xki,1, Xki,2 corresponde al valor de la primera y segunda variable,

respectivamente, para el individuo i del grupo k = 0, 1.

4. Una vez elegido el parámetro que maximiza el AUC (supongamos la combinación

lineal óptima X1 + β2X2), considerar dicha combinación lineal como una sola

variable y combinarla con la tercera variable siguiendo el procedimiento del paso

anterior. Es decir, encontrar el valor β̂ óptimo de la combinación lineal β̂(X1 +

β2X2) +X3 o (X1 + β2X2) + β̂X3.

5. Repetir el paso 4 para el resto de biomarcadores (p − 3 veces) hasta que todos

ellos estén incluidos en el modelo.

El enfoque propuesto por Esteban et al. [29] difiere del de Kang et al. [48, 47] al

comenzar en el paso 3, seleccionando la combinación lineal de dos variables predictoras

considerando las p iniciales: Xi + β̂Xj, i ̸= j = 1, . . . , p. Este proceso implica la

búsqueda no solo del parámetro β óptimo, sino también del par de biomarcadores

que produzca la combinación lineal parcial óptima (mayor AUC). Es evidente que,

en cada paso, el máximo AUC puede obtenerse para más de una combinación lineal

óptima, lo que da lugar a empates. Estos empates se consideran en cada etapa y se

mantienen hasta que se resuelven en los pasos siguientes (si es posible) o hasta que

finaliza el algoritmo. Este tratamiento de empates y mayor flexibilidad en la inclusión

de las variables en cada paso, a pesar de requerir una búsqueda más extensa y exigente

en términos computacionales, se espera que otorgue al algoritmo una mayor robustez

en términos de su rendimiento. Aunque el tratamiento de empates puede ser más

exigente en términos computacionales, la complejidad computacional del algoritmo

es significativamente menor en comparación con el propuesto inicialmente por Pepe et

al. [83, 82], reduciendo un problema de complejidad computacional exponencial pkp−1

a uno de tipo polinómico k(p− 1)(3
2
p− 1).
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4.1.3. Enfoque Min-Max

Liu et al. [56] también abordan la limitación computacional que exige el modelo

lineal propuesto por Pepe et al. [83, 82]. Los autores proponen un enfoque no

paramétrico denominado min-max, que tiene la ventaja de ser computacionalmente

viable independientemente del número de biomarcadores originales. Este método se

basa en combinar linealmente los valores mı́nimo y máximo de los p biomarcadores,

involucrando la búsqueda de un solo coeficiente que maximice el AUC. En concreto, el

objetivo es estimar el parámetro β de manera que la combinación

Xmáx + βXmı́n (4.5)

maximice el AUC basado en la estad́ıstica de U de Mann-Whitney [64], donde Xmı́n y

Xmáx son los vectores de los valores mı́nimo y máximo de los p biomarcadores originales

para cada individuo, respectivamente. O, espećıficamente, estimar el coeficiente β que

maximice la siguiente expresión:

ÂUC =

∑n0
i=1

∑n1
j=1 I(X1j,max + βX1j,min > X0i,max + βX0i,min) +

1
2
I(X1j,max + βX1j,min = X0i,max + βX0i,min)

n0 · n1
(4.6)

dondeXki,max = máx1≤j≤pXkij yXki,min = mı́n1≤j≤p Xkij para k = 0, 1 y cada individuo

i = 1, . . . , nk.

Los autores proponen este enfoque basado en los siguientes razonamientos. Por

definición, para todo biomarcador j ∈ [1, p], siendo c el punto de corte, la sensibilidad

satisface que

P (X1i,min > c) ≤ P (X1ij > c) ≤ P (X1i,max > c) (4.7)

para todos individuos i = 1, . . . , n1. De manera análoga, la especificidad satisface que

P (X0i,max ≤ c) ≤ P (X0ij ≤ c) ≤ P (X0i,min ≤ c) (4.8)

Estos resultados indican que el biomarcador máximo Xmáx tiene una sensibilidad mayor

y una especificidad menor para cualquier punto de corte c en comparación con cualquier

biomarcador original j; y de forma inversa, lo cumple el biomarcador mı́nimo Xmı́n. Por

tanto, si el objetivo es maximizar la sensibilidad (especificidad) de forma independiente,

el biomarcador máximo (mı́nimo) es plausible. Sin embargo, esto no suele ocurrir en la

práctica cĺınica. Lo que suele tener interés es maximizar un compromiso entre ambas. En

este sentido, los autores se centran en la combinación de estos biomarcadores máximo

y mı́nimo, lo que resulta en el enfoque que proponen. Para utilizar este algoritmo

correctamente, los autores advierten que si los biomarcadores no se miden en las mismas

unidades, es necesario normalizar los valores de cada biomarcador antes de aplicar el

enfoque.
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En conclusión, Liu et al. [56] proponen el enfoque de combinación min-max que es de

naturaleza no paramétrica, siendo más robusto que los modelos paramétricos, como aśı

lo demuestran los autores. Este enfoque no paramétrico reduce el problema a estimar

un solo coeficiente sea cual sea el número de biomarcadores originales, siendo siempre

eficiente computacionalmente. La estimación del paramétro β óptimo puede realizarse

utilizando diferentes métodos. Por ejemplo, se pueden seguir las recomendaciones de

Pepe et al. [83, 82], y buscar el valor óptimo de β entre los 201 valores en el rango de

[−1, 1], de forma que se maximice el AUC estimado (4.6).

4.2. Modelos con criterio de optimalidad derivados

de la curva ROC

Aunque la combinación de múltiples biomarcadores puede mejorar la precisión

diagnóstica, las estrategias vaŕıan según el objetivo, ya sea maximizar el área o el

área parcial bajo la curva ROC (pAUC), el ı́ndice de Youden, o buscar maximizar la

sensibilidad en un rango espećıfico de especificidades, entre otros. Es importante tener

en cuenta que una solución óptima para un objetivo puede no ser adecuada para otro.

En la sección anterior se han presentado algoritmos centrados en optimizar el AUC,

que han sido la base teórica o punto de partida para el desarrollo de algunos algoritmos

posteriores con criterio de optimalidad derivados de la curva ROC. Espećıficamente,

en esta sección se presentan estudios desarrollados para la combinación lineal de

biomarcadores, enfocados en la optimización de otros parámetros adicionales derivados

de la curva ROC.

Liu et al. [55] investigaron la combinación lineal óptima de marcadores diagnósticos

para maximizar la sensibilidad dentro de un rango espećıfico de especificidades. Su

estudio se basó en el trabajo previo de Su y Liu [108], identificando posibles limitaciones

en el enfoque, puesto que estas combinaciones lineales podŕıan mostrar una sensibilidad

inadecuada en ciertos rangos de especificidad deseados. Centrándose en aplicaciones

donde no se opera en todo el rango de la curva, sino solo en regiones espećıficas,

otros autores han comparado los enfoques existentes e investigado y desarrollado otros

métodos. Por ejemplo, autores como Hsu y Hsueh [44] o Yu y Park [126] propusieron

métodos para maximizar el pAUC paramétrico. Sin embargo, estos enfoques están

limitados por la suposición de normalidad. Posteriormente, Yan et al. [121] propusieron

enfoques tanto paramétricos como no paramétricos para la combinación lineal de

múltiples biomarcadores con el fin de maximizar el pAUC. Compararon el rendimiento

de sus propuestas y otros métodos, que incluyeron el enfoque de Liu et al. [55], aśı como

otros métodos presentados como el enfoque de Su y Liu [108], y métodos de paso a paso
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como el de Kang et al. [48] Más recientemente, Ma et al. [63] propusieron un método

no paramétrico que extiende el método min-max [56] para la estimación del pAUC en

biomarcadores continuos. También compararon su rendimiento con los enfoques de Su

y Liu [108], Li et al. [55] y la regresión loǵıstica.

Aunque en el contexto cĺınico de problemas de clasificación binaria, los

investigadores han prestado mayor atención a evaluar la precisión diagnóstica mediante

el AUC, el ı́ndice de Youden también se ha utilizado en diversos estudios cĺınicos. Esto

ocurre especialmente cuando no hay un consenso claro sobre si se debe dar prioridad

a la sensibilidad o a la especificidad. En tales casos, el ı́ndice de Youden ofrece una

métrica adecuada como resumen del diagnóstico, además de servir como criterio para

seleccionar el punto de corte óptimo que dicotomiza el biomarcador [84], lo cual es

fundamental para el diagnóstico de la enfermedad. Yin y Tian [122] abordaron su

investigación con la premisa de considerar el ı́ndice de Youden, además del AUC, debido

a su capacidad de ofrecer una medida directa y significativa de la precisión diagnóstica

en el punto de corte óptimo. Como un primer paso hacia este objetivo, exploraron la

optimización simultánea del AUC y el ı́ndice de Youden, presentando tanto enfoques

paramétricos como no paramétricos para estimar la región de confianza conjunta de

ambas medidas. Además, en un estudio adicional, Yin y Tian [123] adoptaron el ı́ndice

de Youden como criterio para determinar el punto de corte de diagnóstico, proponiendo

enfoques paramétricos y no paramétricos para estimar la región de confianza conjunta

de sensibilidad y especificidad en dicho punto de corte.

Considerando el ı́ndice de Youden como función objetivo para buscar la combinación

lineal óptima, Yin y Tian [124] llevaron a cabo un estudio comparativo de diversos

enfoques existentes. Los autores proponen un enfoque de combinación paso a paso,

basado en el método de paso a paso descendente de Kang et al. [48], presentado en

la sección anterior. Lo compararon con otros métodos como el enfoque min-max [56],

el enfoque paramétrico del ı́ndice de Youden (2.30-2.33) y el enfoque no paramétrico

de suavizado tipo Kernel (2.37). Además, llevaron a cabo una comparación emṕırica

de las tasas de clasificación general óptimas entre la combinación propuesta basada en

el ı́ndice de Youden y la tradicional basada en el AUC. Los autores demostraron una

ganancia significativa en la precisión diagnóstica para la combinación propuesta.

Con el objetivo de abordar las limitaciones de los métodos existentes, llevamos a

cabo los estudios presentados en este compendio [4, 8, 7]. Nos basamos en la eficacia del

ı́ndice de Youden como métrica diagnóstica y criterio de selección del punto de corte

óptimo, aśı como en su menor atención recibida en la literatura en comparación con el

AUC. En estos art́ıculos, presentamos enfoques diseñados para maximizar el ı́ndice de

Youden (enfoque paso a paso, enfoque min-max-median/IQR), utilizando como base
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teórica los estudios previos desarrollados para optimizar el AUC, presentados en la

sección anterior. Los algoritmos propuestos se presentan en detalle en los caṕıtulos

siguientes (caṕıtulos 5-6).

4.3. Otros algoritmos

En esta sección se introducen otros algoritmos adicionales para la clasificación

binaria de enfermedades, cuyos criterios a optimizar son diferentes a las métricas

derivadas de la curva ROC. No obstante, estos algoritmos pueden ser evaluados

posteriormente utilizando el ı́ndice de Youden u otras métricas comunes, lo que permite

realizar estudios comparativos entre todos los enfoques. Esto permite ampliar el abanico

de posibilidades, incluyendo clasificadores lineales y no lineales, con el fin de seleccionar

el algoritmo más adecuado según los datos y el problema en cuestión. A continuación,

se presentan los algoritmos que se han utilizado en el trabajo de la tesis, ya sea en la

comparación con los algoritmos propuestos [4, 8, 7] o para abordar diferentes problemas

de predicción en el ámbito de la salud [97, 5, 34].

4.3.1. Modelos lineales

Los modelos de regresión lineales, que estiman relaciones entre la variable

dependiente y las independientes o sus transformaciones, han sido ampliamente

utilizados en la práctica cĺınica debido a varias razones. En primer lugar, ofrecen una

fácil interpretación de la relación entre las variables, lo que es crucial en entornos

médicos donde se necesita comprender claramente el impacto de cada variable. Además,

estos modelos suelen ser algoritmos simples de implementar y computacionalmente

eficientes, lo que los hace accesibles y adecuados para el análisis de grandes conjuntos

de datos médicos. Aunque no pueden capturar relaciones no lineales o complejas entre

las variables, su robustez ha sido demostrada en diversas situaciones prácticas.

En el contexto de problemas de clasificación, surge la conocida regresión loǵıstica

[117], que modela la probabilidad de un evento (enfermedad o no enfermedad) dado

un conjunto de variables independientes (X1, . . . , Xp) a través de la función loǵıstica.

Por tanto, el problema de clasificación se convierte en la estimación de los parámetros

(β0, β1, . . . , βp) tal que:

P (Y = 1|X = x) =
1

1 + e−β0+β1X1+···+βpXp
=

eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(4.9)

de forma que su dependencia lineal viene dada por la siguiente expresión:

log
P (Y = 1|X = x)

1− P (Y = 1|X = x)
= β0 + β1X1 + · · ·+ βpXp (4.10)
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Caṕıtulo 4. Modelos de clasificación

La estimación de los parámetros (β0, β1, . . . , βp) se realiza generalmente mediante el

método de máxima verosimilitud, el cual busca maximizar la verosimilitud de los datos

observados respecto a los parámetros del modelo. A pesar de que la función objetivo

de la regresión loǵıstica es la función de máxima verosimilitud loǵıstica en lugar del

ı́ndice de Youden, la hemos incluido en nuestros estudios [4, 8, 7] como parte de la

comparación de algoritmos, debido a que es la técnica más comúnmente utilizada para

combinar linealmente múltiples biomarcadores. También se ha utilizado en el trabajo

[34], presentado en la sección 7.3, para construir combinaciones lineales genéticas y

evaluar su asociación con el riesgo de adenomas colorrectales.

Los modelos de regresión lineal, además de asumir una relación lineal presuponen

independencia en los errores de las observaciones. Sin embargo, en la práctica, los

datos pueden mostrar estructuras más complejas, con observaciones agrupadas en

diferentes niveles o unidades, y la variabilidad puede diferir entre estos grupos. Este

escenario es común en estudios longitudinales, donde se realiza un seguimiento continuo

de un grupo de individuos a lo largo del tiempo, recopilando información sobre su

estado de salud, caracteŕısticas u otros aspectos. En tales escenarios, los datos de cada

individuo a lo largo del tiempo suelen estar correlacionados, violando la suposición de

independencia entre las observaciones. Para abordar estas situaciones, se desarrollaron

los modelos lineales mixtos [114], que permiten capturar la estructura de correlación

y heterogeneidad presente en los datos, mediante la inclusión de una combinación de

efectos fijos y aleatorios como variables predictoras. En el diseño de modelos lineales

mixtos es crucial distinguir entre los efectos fijos y los efectos aleatorios. Mientras que

los efectos fijos representan relaciones constantes aplicables a todas las unidades de

observación, los efectos aleatorios vaŕıan y se utilizan para capturar la variabilidad entre

los grupos o niveles. Esta distinción puede resultar dif́ıcil y generar controversias [53],

pero es fundamental para modelar adecuadamente la variabilidad y las correlaciones

presentes en los datos longitudinales. En esencia, los efectos fijos representan relaciones

promedio entre variables, mientras que los efectos aleatorios capturan la variabilidad

no explicada por los efectos fijos y permiten modelar la heterogeneidad entre grupos o

niveles de agrupamiento en los datos. La fórmula general de un modelo lineal mixto,

expresada en forma matricial, se presenta como:

Y = Xβ + Zb+ ϵ

ϵ ∼ N (0,Σ)

b ∼ N (0, D)

(4.11)

donde Y es el vector de respuestas observadas, X la matriz de diseño para los efectos

fijos, β el vector de coeficientes para los efectos fijos, Z la matriz de diseño para los
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efectos aleatorios, b el vector de coeficientes de efectos aleatorios y ϵ el vector de errores.

Un ejemplo ilustrativo de la utilidad de los modelos lineales mixtos se encuentra en

el estudio presentado en el art́ıculo [97], incluido en este compendio de tesis y detallado

en la sección 7.2.

4.3.2. Técnicas de aprendizaje automático

En los últimos años, los algoritmos de aprendizaje automático (Machine Learning,

ML en inglés) y aprendizaje profundo (Deep Learning, DL en inglés) han sido aplicados

en diversos campos [94], incluyendo la práctica cĺınica y la investigación médica, gracias

a su capacidad para ofrecer alto rendimiento y eficiencia, aśı como por su habilidad para

capturar relaciones no lineales [103, 78, 74]. En el ámbito biomédico, estos algoritmos

han sido empleados para predecir eventos, diagnosticar enfermedades y pronosticar

cánceres, entre otros usos [102], lo que ha resultado en herramientas útiles para la toma

de decisiones. Entre los algoritmos más comúnmente utilizados se encuentran los árboles

de clasificación, los modelos ensemble como el RandomForest y el XGBoost (eXtreme

Gradient Boosting), las máquinas de vector suporte (Support Vector Machine, SVM en

inglés) y las redes neuronales como los perceptrones multicapa (MLP, siglas en inglés).

Especialmente el algoritmo XGBoost, desarrollado por Chen y Guestrin [21], destaca

como uno de los algoritmos de aprendizaje automático más populares y efectivos en

los últimos años. Ha demostrado buenos resultados, siendo ĺıder en algunos estudios

de vanguardia [11]. Estos modelos de ML requieren la configuración de parámetros

adicionales conocidos como hiperparámetros, los cuales definen su arquitectura. Estos

hiperparámetros deben ser establecidos antes del entrenamiento del modelo y pueden

ajustarse utilizando técnicas de optimización de búsqueda de hiperparámetros para

maximizar el rendimiento del modelo.

Aunque tanto el Random Forest como el XGBoost son algoritmos que se basan en

la construcción de múltiples árboles de clasificación, difieren en su enfoque. En lugar de

construir varios árboles de forma independiente como el Random Forest (bagging), el

XGBoost construye los árboles secuencialmente (boosting), centrándose en corregir los

errores del modelo en cada paso. Espećıficamente, el XGBoost es una implementación

optimizada del aumento de gradiente, basada en el principio de aprendizaje de conjunto

en orden secuencial, donde los errores se minimizan (función de pérdida) utilizando un

algoritmo de descenso de gradiente. La idea subyacente es entrenar varios modelos

base débiles secuencialmente para crear un clasificador fuerte con mayor precisión.

Considerando un conjunto de modelos de árboles de decisión f , la función de pérdida
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a minimizar en la iteración t se expresa de la siguiente manera:

L(t) =
n∑

i=1

l
(
yi, ŷi

(t−1) + ft(Xi)
)
+ Ω(ft) (4.12)

donde l es el término de pérdida, yi representa la salida real, ŷi
(t−1) es la predicción

del i-ésimo individuo en la (t− 1)-ésima iteración del modelo, y Ω(f) = γT + 1
2
λ||ω||2

es el término de regularización, que penaliza la complejidad del modelo para evitar el

sobreajuste y depende de valores de hiperparámetros.

A pesar de ser uno de los algoritmos de aprendizaje automático más ampliamente

utilizados por su buen rendimiento, el XGBoost no siempre ha superado a los métodos

estad́ısticos convencionales, como la regresión loǵıstica [50, 24, 116], por ejemplo.

Esto evidencia el hecho de que, aunque un algoritmo pueda mostrar resultados

prometedores en el estado del arte, la selección del modelo óptimo depende del

problema y las caracteŕısticas de los datos. Por lo tanto, es recomendable realizar

un estudio comparativo de diversas técnicas para analizar su rendimiento y seleccionar

la más adecuada para el problema espećıfico en cuestión. En los art́ıculos [5, 7] de

este compendio comparamos los resultados de diferentes algoritmos con el fin de

seleccionar el óptimo para el objetivo del estudio. En concreto, en [5] (sección 7.1)

exploramos la capacidad de los algoritmos ensemble (Random Forest y XGBoost) y

MLP para la predicción de severidad en pacientes con COVID-19. En [7] (sección

6.2), evaluamos el rendimiento de nuestros enfoques propuestos en comparación con el

algoritmo XGBoost, ampliando el análisis más allá de las técnicas tradicionales.

Hasta aqúı se ha abordado la teoŕıa que respalda el desarrollo de los estudios

publicados. A continuación, se presentan los siguientes caṕıtulos enfocados en los

propios art́ıculos que conforman esta tesis. Cada caṕıtulo proporciona una descripción

y resultados generales del trabajo, además de incluir el art́ıculo completo publicado.
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Caṕıtulo 5

Algoritmo paso a paso bajo
maximización del ı́ndice de Youden

En este caṕıtulo se presenta el primer art́ıculo del compendio de esta tesis [4], cuya

investigación ha sido también la base de otros desarrollos que han dado lugar a los

art́ıculos presentados en el siguiente caṕıtulo. En concreto, nuestro estudio se centra en

la propuesta de un algoritmo paso a paso no paramétrico para problemas de clasificación

binaria con criterio de optimalidad derivado de la curva ROC. A continuación, se

detallan las contribuciones de este trabajo y las razones que impulsaron el desarrollo

de la propuesta.

Proponemos un enfoque que busca una estimación basada en la maximización del

ı́ndice de Youden. La elección de esta métrica se justifica por diversas razones. En

primer lugar, el ı́ndice de Youden es una métrica adecuada para medir la precisión del

diagnóstico cuando no hay un consenso o razón clara para proporcionar valores más

altos de sensibilidad o especificidad, proporcionando un equilibrio adecuado. Asimismo,

el ı́ndice de Youden ofrece un buen criterio para elegir el mejor punto de corte para

dicotomizar un biomarcador, lo que resulta importante en términos de utilidad cĺınica.

Por otro lado, a diferencia de otras métricas como el AUC, el estudio y exploración

de métodos que optimizan el ı́ndice de Youden, en nuestra opinión, no ha recibido

suficiente atención en la literatura y, por tanto, es necesario analizar y desarrollar

enfoques que optimicen esta métrica aśı como compararlos con otros del estado del

arte.

Nuestro estudio parte de investigaciones previas de la literatura, con el objetivo de

aprovechar sus ventajas y abordar sus limitaciones. En concreto, nos apoyamos en los

estudios de Pepe et al. [83, 82], que proponen un enfoque libre de distribución para

estimar un modelo lineal que maximiza el AUC. Su formulación reduce la estimación

de parámetros en comparación con el modelo lineal comúnmente conocido, gracias a la

propiedad de invarianza de la curva ROC. Para la estimación de los parámetros óptimos
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del modelo, los autores sugieren una optimización discreta que implica una búsqueda

en cuadŕıcula de 201 valores, reduciendo aśı la carga computacional. Sin embargo, este

enfoque conlleva una carga computacional elevada cuando el número de biomarcadores

aumenta. Para afrontar esta limitación, sugieren aplicar métodos de paso a paso.

Nuestro enfoque aborda la limitación computacional considerando esta sugerencia.

El ı́ndice de Youden es una métrica que deriva también de la curva ROC y, por tanto, se

pueden aplicar los resultados de Pepe et al. [83, 82] a nuestra propuesta. En concreto,

proponemos un enfoque no paramétrico paso a paso que adapta el propuesto por

Esteban et al. [29] para la maximización del ı́ndice de Youden, utilizando la formulación

y búsqueda discreta de Pepe et al. La idea general es seleccionar la mejor combinación

lineal de dos variables en cada iteración, incluyendo una nueva variable en cada paso.

Nuestra propuesta no establece el orden de entrada de las variables y considera los

empates que pueden darse en cada paso, puesto que el ı́ndice de Youden máximo

puede alcanzarse para más de una combinación lineal óptima. Esto hace que nuestro

enfoque sea robusto, considerando una optimización más precisa que otros enfoques

paso a paso.

Aunque nuestro enfoque es computacionalmente más abordable al requerir la

estimación de un solo parámetro en cada paso, esta estimación óptima en cada paso no

garantiza la optimización global del ı́ndice de Youden. Por ello, se realizó un análisis

del comportamiento del algoritmo en diferentes escenarios con el fin de conocer su

adecuación. Además, se comparó con otras técnicas de la literatura para determinar la

más adecuada según el escenario.

Nuestro enfoque fue comparado con una amplia gama de técnicas, incluyendo el

enfoque paso a paso de Yin y Tian [124], el método min-max [56], el algoritmo clásico

de regresión loǵıstica, y los enfoques paramétrico y no paramétrico de tipo Kernel del

ı́ndice de Youden, presentados en la sección 2.2. El enfoque de Yin y Tian podŕıa

considerarse como un caso particular más simple de nuestro enfoque propuesto, donde

los nuevos biomarcadores de cada etapa se fijan desde el principio y donde los empates

no se consideran. El método min-max se adaptó para optimizar el ı́ndice de Youden,

y el rendimiento de la regresión loǵıstica fue evaluado con el ı́ndice de Youden tras

su estimación, por tener una función objetivo diferente en su proceso de estimación.

Para la estimación de los parámetros de las combinaciones lineales de los enfoques

paramétrico y no paramétrico de tipo Kernel, se utilizaron métodos de optimización

numérica, por ser la expresión del ı́ndice de Youden una función continua y diferenciable

(2.30)),(2.37).

Nuestro trabajo consideró la comparación de estos métodos en un amplio rango de

escenarios simulados. Se consideraron diferentes distribuciones conjuntas y marginales
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Caṕıtulo 5. Algoritmo paso a paso bajo maximización del ı́ndice de Youden

para los biomarcadores, desde distribuciones normales hasta no normales, con el

objetivo de evaluar y comparar los métodos más allá de la normalidad. Se analizaron

diferentes capacidades de discriminación entre los biomarcadores, aśı como distintas

correlaciones y matriz de covarianzas para el grupo con enfermedad y sanos. Para cada

escenario, consideramos diferentes tamaños muestrales con el fin de evaluar los métodos

en tamaños de muestra pequeños y más grandes. El rendimiento de los métodos se

analizó también en dos conjuntos de datos reales relacionados con casos de diagnóstico

cĺınico (distrofia muscular de Duchenne y cáncer de próstata) a través de sus respectivos

biomarcadores.

Los resultados mostraron que nuestro enfoque propuesto superó a los demás

métodos en escenarios simulados con distribuciones marginales no normales, aśı como

en el conjunto de datos de cáncer de próstata. Este conjunto de datos incluye

variables, como el PSA, que muestran asimetŕıas claras que reflejan la progresión de

la enfermedad. Todos los resultados obtenidos se presentan en el art́ıculo, donde se

discuten en detalle y se sugiere el uso de los diferentes métodos analizados según el

escenario en cuestión.

En términos de tiempo computacional, los enfoques paso a paso y, en particular,

nuestra propuesta, implican un tiempo computacional significativamente mayor al resto

de algoritmos debido al tratamiento de empates, que pueden ser más comunes en

tamaños de muestra pequeños. La carga computacional puede aumentar también a

medida que el número de biomarcadores aumenta, debido al aumento de posibles

combinaciones de variables. Esto puede ser una restricción en el uso de nuestro

algoritmo. Otros algoritmos, como el enfoque min-max, tienen la ventaja de ser más

eficientes. Sin embargo, los resultados del trabajo han demostrado que, generalmente,

el enfoque min-max tiene una peor capacidad de discriminación.

En resumen, esta investigación ha permitido el desarrollo de un enfoque paso a paso

que aborda las limitaciones de otras propuestas aparecidas en la literatura, centrado en

la utilidad cĺınica y considerando las propiedades de la curva ROC bajo la maximización

del ı́ndice de Youden. Hemos analizado su comportamiento en un amplio rango de

escenarios y con diversos métodos de la literatura, lo que proporciona información útil

y ciertas pautas para la selección del método más adecuado.

A continuación se presenta el art́ıculo publicado, donde se detalla el trabajo en

mayor profundidad.
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Abstract: Combining multiple biomarkers to provide predictive models with a greater discriminatory
ability is a discipline that has received attention in recent years. Choosing the probability threshold
that corresponds to the highest combined marker accuracy is key in disease diagnosis. The Youden
index is a statistical metric that provides an appropriate synthetic index for diagnostic accuracy and a
good criterion for choosing a cut-off point to dichotomize a biomarker. In this study, we present a new
stepwise algorithm for linearly combining continuous biomarkers to maximize the Youden index.
To investigate the performance of our algorithm, we analyzed a wide range of simulated scenarios
and compared its performance with that of five other linear combination methods in the literature
(a stepwise approach introduced by Yin and Tian, the min-max approach, logistic regression, a
parametric approach under multivariate normality and a non-parametric kernel smoothing approach).
The obtained results show that our proposed stepwise approach showed similar results to other
algorithms in normal simulated scenarios and outperforms all other algorithms in non-normal
simulated scenarios. In scenarios of biomarkers with the same means and a different covariance
matrix for the diseased and non-diseased population, the min-max approach outperforms the rest.
The methods were also applied on two real datasets (to discriminate Duchenne muscular dystrophy
and prostate cancer), whose results also showed a higher predictive ability in our algorithm in the
prostate cancer database.

Keywords: linear combination; stepwise algorithm; Youden index; biomarkers; diagnosis

MSC: 62H30; 62J12; 62P10

1. Introduction

In clinical practice, it is usual to obtain information on multiple biomarkers to diagnose
diseases. Combining them into a single biomarker is a widespread practice that often
provides better diagnostics than each of the biomarkers alone [1–6]. Although recent
studies have analyzed the diagnostic accuracy of built models in the presence of covariates
and binary biomarkers [7–9], the combination of continuous biomarkers should provide a
better discrimination ability. Linear combination methods have been widely developed
and applied for both binary and multi-class classification problems in medicine [10,11] for
their ease of interpretation and good performance. The accuracy of a diagnostic marker is
usually analyzed using statistics derived from the receiver operating characteristic (ROC)
curve, such as sensitivity and specificity, the area or partial area under the ROC curve or
the Youden index, which allow for its discriminatory capacity to be measured.

Mathematics 2022, 10, 1221. https://doi.org/10.3390/math10081221 https://www.mdpi.com/journal/mathematics
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The formulation of algorithms to estimate binary classification models that maximize
the area under the ROC curve is a widely developed line of research. Su and Liu [12], using
a discriminant function analysis, provided the best linear combination that maximizes area
under ROC curve (AUC) under the multivariate normality assumption. Pepe and Thomp-
son [13] proposed a distribution-free approach to estimate the linear model that maximizes
AUC based on the Mann–Whitney U statistic [14]. This formulation has given rise to the
development of non-parametric and semiparametric approaches in the construction of
classifiers under optimality criteria derived from the ROC curve.

The process that Pepe and Thompson proposed lies in a discrete optimization that is
based on a grid search over the parameter vector for a set of selected values. However, this
process requires a great computational effort when the number of biomarkers is greater
than or equal to three. In order to address the computational burden, various methods were
proposed. Liu et al. [15] developed a non-parametric min-max approach, reducing the prob-
lem to a linear combination of two markers (minimum and maximum of biomarker values).
Pepe et al. [13,16] also suggested the use of stepwise algorithms, where a new variable is
introduced into the model at each stage searching for the partial combination of variables
that maximizes AUC. Esteban et al. [17] implemented this approach, providing strategies
to handle ties that appear in the sequencing of partial optimizations. Kang et al. [10,18]
proposed a less computationally demanding stepwise approach based on a descending
order of the AUC values corresponding to the predictor variables.

Other authors have developed algorithms focused on optimizing other parameters
derived from the ROC curve. Liu et al. [19] analyzed the optimal linear of diagnostic
markers that maximize sensitivity over a range of specificity. Yin and Tian [20] analyzed the
joint inference on sensitivity and specificity at the optimal cut-off point associated with the
Youden index. More recently, Yu and Park [21], Yan et al. [22] and Ma et al. [23] explored
methods for the linear combination of multiple biomarkers that optimizes the pAUC.

The Youden index has also been used in different clinical studies and is both an
appropriate summary for making the diagnosis and a good criterion for choosing the best
cut-off point to dichotomize a biomarker [24]. The Youden index defines the effectiveness
of a biomarker, as it maximize the sum of the sensitivity and specificity when an equal
weight is given for both values [25]. Thus, the cut off point that simultaneously maximizes
the probability of correctly classifying positive and negative subjects or minimizes the
maximum of the misclassification error probability is chosen. It ranges from 0 to 1, where a
0 value indicates that the biomarker is equally distributed on the positive and the negative
populations, whereas a value of 1 indicates completely separate distributions [26].

Based on the stepwise approach of Kang et al. [18], Yin and Tian [27] carried out a
study aimed at optimizing the Youden index. These authors also analyzed the optimization
of the AUC and Youden index simultaneously and presented both a parametric and a
non-parametric approach to estimate the joint confidence region for the AUC and the
Youden index [28]. However, the usual procedure is to estimate models that maximize
either the AUC or the Youden index separately.

Unlike the AUC, the study and exploration of methods that optimize the Youden
index has not received enough attention in the literature. The aim of our study was to
propose a new stepwise distribution-free approach to find the optimal linear combination
of continuous biomarkers based on maximizing the Youden index. In order to analyze its
performance, our method was compared with five other linear methods from the literature
(the Yin and Yan stepwise approach, the min-max method, logistic regression, a parametric
approach under multivariate normality and a non-parametric kernel smoothing approach)
adapted to optimize the Youden index, both in simulated data and in real datasets.

2. Materials and Methods

Firstly, we introduce the non-parametric formulation of Pepe et al. [13,16] and their
suggestions for the estimation of the parameter vector of the linear model, which are the
basis for the formulation and estimation of our proposed algorithm and of the analyzed
algorithms. Then, we introduce our proposed method and five existing models in the
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literature adapted to optimize the Youden index to be compared: stepwise algorithm
proposed by Yin and Tian, min-max approach, logistic regression, parametric method
under multivariate normality and non-parametric kernel smoothing method. Finally, the
simulated scenarios, as well as the real datasets considered, are described. All methods
were programmed and applied using free software R [29]. In particular, a library in R
(SLModels) [30] openly available to the scientific community was created that incorporates
our proposed stepwise algorithm, among other linear algorithms.

Suppose that p continuous biomakers are measured for n1 individuals with disease:
X1 = (X11, . . . , X1n1) and for n2 individuals without it: X2 = (X21, . . . , X2n2). Xki denotes
the vector of p biomarkers for the ith individual of group k = 1,2 (disease and non-disease)
and Xkij the jth biomarker (j = 1, . . . , p) for the ith individual of group k = 1,2.

Given β = (β1, . . . , βp)T as the parameter vector, the linear combination for the disease
and non-disease group is represented as follows:

Yk = βTXk, k = 1, 2 (1)

The Youden index (J) is defined as

J = maxc{Sensitivity(c) + Speci f icity(c)− 1}
= maxc{FY2(c)− FY1(c)}

(2)

where c denotes the cut-off point and FYk(c) = P(Yk ≤ c) the cumulative distribution
function of random variable Yk, k = 1, 2.

Denoting by cβ = {c : maxc
(

FY2(c)− FY1(c)
)
} as the optimal cut-off point and substi-

tuting (1) in (2), the empirical estimate of Youden index ( Ĵβ) is obtained as follows:

Ĵβ = F̂Y2(ĉβ)− F̂Y1(ĉβ)

=
∑n2

i=1 I
(

βTX2i ≤ ĉβ

)

n2
− ∑n1

i=1 I
(

βTX1i ≤ ĉβ

)

n1

(3)

where I denotes the indicator function.

2.1. Background: Non Parametric Approach

By contrast to Su and Liu [12], who provided best linear model under multivariate
normality, Pepe and Thompson [13] proposed a non-parametric approach to estimate the
linear model that maximizes the AUC evaluated by the Mann–Whitney U statistic,

ÂUC =
∑n1

i=1 ∑n2
j=1 I(L(X1i) > L(X2j)) +

1
2 I(L(X1i) = L(X2j))

n1 · n2
(4)

considering the linear model formulation as follows:

L(X) = X1 + β2X2 + · · ·+ βpXp (5)

where p denotes the number of biomarkers, Xi the biomarker i ∈ [1, . . . , p] and βi the
parameter to be estimated. In order to be able to address the computational burden,
Pepe et al. [13,16] suggest, for the estimation of the parameter βi, a discrete optimization
that is based on a grid search over 201 equally spaced values in the interval [−1,1]. The
justification for choosing this range lies in the property of the ROC curve that is invariant
to any monotonic transformation. Consider, for simplicity, the linear combination of
biomarkers Xi + βXj. Then, due to the invariant property of the ROC curve for any
monotonic transformation, dividing by the β value does not change the value of the
sensitivity and specificity pair. That is, estimating Xi + βXj for β > 1 and β < −1 is
equivalent to estimating αXi + Xj for α = 1

β ∈ [−1, 1] and, therefore, all possible values of
β ∈ R are covered.
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However, the search for the best linear combination in (5) is still computationally
costly when p ≥ 3. To solve this problem, Pepe et al. [13,16] suggested using stepwise
algorithms by turning a computationally intractable problem into an approachable problem
of single-parameter estimation (linear combination of two variables) p− 1 times.

2.2. Our Proposed Stepwise Approach

Our proposed stepwise linear modelling (SLM) is an adaptation of the one proposed
by Esteban et al. [17] for Youden index maximization. The general idea of this approach, as
Pepe et al. [13,16] suggest, is to follow a step by step algorithm that includes a new variable
in each step, selecting the best combination (or combinations) of two variables, in terms of
maximizing the Youden index. The following steps explain the algorithm in detail:

1. Firstly, given p biomarkers, the linear combination of the two biomarkers that maxi-
mizes the Youden index is chosen,

Ĵβ2 =
∑n2

i=1 I
(
X2ij + β2X2ik ≤ ĉβ2

)

n2
− ∑n1

i=1 I
(
X1ij + β2X1ik ≤ ĉβ2

)

n1
β2 ∈ [−1, 1], ∀j 6= k = 1, . . . , p (6)

using empirical search proposed by Pepe et al.: for each biomarker pair, for each value
β of the 201 ∈ [−1, 1], the optimal cut-off point (ĉβ) that maximizes Youden index is
selected. The final value chosen (β̂) is the one with the highest Youden ( Ĵβ) obtained;

2. Once the pair of biomarkers and the parameter that maximizes the Youden index
are chosen, this linear combination is considered as a single variable. For simplicity,
suppose the linear combination Xki1 + β2Xki2. Then, in the same way as point 1, the
biomarker Xkij (of the remaining p − 2s) and the β3 parameter whose new linear
combination maximize the Youden index are selected:

Ĵβ3 =
∑

n2
i=1 I((X2i1+β2X2i2)+β3X2ij≤ĉβ3)

n2
− ∑

n1
i=1 I((X1i1+β2X1i2)+β3X1ij≤ĉβ3)

n1
β3 ∈ [−1, 1], ∀j = 3, . . . , p (7)

Ĵβ3 =
∑

n2
i=1 I(β3(X2i1+β2X2i2)+X2ij≤ĉβ3)

n2
− ∑

n1
i=1 I(β3(X1i1+β2X1i2)+X1ij≤ĉβ3)

n1
β3 ∈ [−1, 1], ∀j = 3, . . . , p (8)

Specifically, either the combination (7) or (8) that maximizes the Youden index Ĵβ3
is selected. This new linear combination will be considered as a new variable in the
next step;

3. The process (2) is repeated for the rest of biomarkers (i.e., p− 3 times) until all of them
are included in the model.

At each step, the maximum Youden index can be reached for more than one optimal
linear combination. Our proposed algorithm considers each of these combinations and
generates a branch to be explored by the algorithm. That is, it considers all ties at each
stage and drags them forward until they are broken in the next steps (whenever possible)
or until the end of the algorithm.

2.3. Yin and Tian’s Stepwise Approach

The stepwise non-parametric approach with downward direction (SWD) introduced by
Yin and Tian [27] is an adaptation of the step-down approach proposed by Kang et al. [10,18]
for the Youden index maximization. As the stepwise approach previously described, the
general idea is to introduce a new variable at each stage and find the combination of two
variables that maximizes the Youden index using the empirical search for combination
parameters proposed by Pepe et al. [13,16].

Unlike our proposed stepwise approach, where, in each step, a search is performed
not only for the parameter β but also for the new biomarker that obtains the best linear
combination, the approach proposed by Yin and Tian sets the biomarker that is entered in
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each step, based on the values ordered from largest to smallest of the empirical Youden
index, obtained for each biomarker as follows:

Ĵj =
∑n2

i=1 I
(
X2ij ≤ ĉj

)

n2
− ∑n1

i=1 I
(
X1ij ≤ ĉj

)

n1
∀j = 1, . . . , p (9)

Therefore, the approach is reduced to choosing, in each step, the parameter β whose
linear combination achieves the highest Youden index. Another difference from our pro-
posed stepwise algorithm is that the Yin and Tian approach does not handle ties but chooses
only one combination from among the optimal ones at each step.

Therefore, the approach presented by Yin and Tian could be considered as a simpler
particular case of our proposed stepwise approach, where the new biomarkers of each stage
are fixed from the beginning and where the ties are not considered.

2.4. Min-Max Approach

The non-parametric min-max approach (MM) was proposed by Liu et al. [15]. The
aim was to reduce the order of the linear combination by considering only two markers
(maximum value and the minimum value of all the p biomarkers) and estimate only the
parameter β of the linear combination that maximizes the AUC. Under this idea, the
min-max approach can be adapted to maximize the Youden index with an expression as
follows:

Ĵβ =
∑n2

i=1 I
(
X2i,max + βX2i,min ≤ ĉβ

)

n2
− ∑n1

i=1 I
(
X1i,max + βX1i,min ≤ ĉβ

)

n1
(10)

where Xki,max = max1≤j≤p

(
Xkij

)
and Xki,min = min1≤j≤p

(
Xkij

)
for k = 1, 2 and each

i = 1, . . . , nk, and β ∈ [−1, 1], following Pepe et al’s. [13,16] suggestion of the empirical
search for the optimal value of β.

2.5. Logistic Regression

The logistic regression [31] (LR) (or logit regression) is a statistical model that models
the probability of an event (disease or non-disease) given a set of independent variables
through the logistics function. Assuming that the set of predictive independent variables
for patient i is Xi = (Xi1, . . . , Xip)

T , the classification problem becomes the estimation of
the parameters β = (β0, β1, . . . , βp)T , such that:

P(Yi = 1|Xi) =
1

1 + e−βTXi

=
eβTXi

1 + eβTXi

(11)

and linear dependence:

log
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)
= βTXi = β0 + β1Xi1 + · · ·+ βpXip ∀i = 1, . . . , n1 + n2 (12)

For the application of the logistic regression model, the R function glm() was used.

2.6. Parametric Approach under Multivariate Normality

The parametric approach to estimate the Youden index under multivariate normality
(MVN) is based on the results presented by Schisterman and Perkins [32].

Suppose Xk ∼ MVN(mk, Σk) and the single marker Yk ∼ N(µk, σ2
k ), the result of

linear combination is Yk = βTXk, where:

µk = βTmk, σk =
√

βTΣkβ (13)
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for k = 1, 2 (disease and non-disease groups, respectively).
The formula for the Youden index and the optimal cut-off point differs depending

on whether σ2
1 6= σ2

2 (i.e., Σ1 6= Σ2) or σ2
1 = σ2

2 (i.e., Σ1 = Σ2). Under the first scenario
(Σ1 6= Σ2), for Yk, the Youden index (Jβ) and the optimal cut-off point (cβ) are expressed
as follows:

Jβ = Φ
( cβ − µ2

σ2

)
−Φ

( cβ − µ1

σ1

)
, cβ =

µ1σ2
2 − µ2σ2

1 − σ1σ2

√
(µ2 − µ1)2 + (σ2

2 − σ2
1 ) ln σ2

2
σ2

1

σ2
2 − σ2

1

(14)

where Φ indicates the normal cumulative distribution function. Under the second one
(Σ1 = Σ2), the expressions are the following:

Jβ = 2Φ


µ1 − µ2

2
√

σ2
1


− 1, cβ =

µ1 + µ2

2 (15)

These formulations are also valid under Box–Cox-type transformations [33].
Note that the Youden index (Jβ) is a continuous differentiable function with respect to

the parameter vector β and its estimation ( Ĵβ) can be numerically optimized from quasi-
Newton algorithms. Specifically, the R package optimr() was used to estimate the parameter
vector β from a initial parameter vector.

2.7. Non-Parametric Kernel Smoothing Approach

When no distributional hypothesis can be assumed, empirical distribution functions
are often used, and their estimations can be performed using kernel-type approximations.
In particular, a non-parametric Kernel Smoothing approach (KS) was applied in our study,
whose estimation of the Youden index is as follows:

ĴKS
β = F̂KS

Y2
(ĉKS

β )− F̂KS
Y1

(ĉKS
β )

=
1
n2

n2

∑
i=1

Φ

(
ĉKS

β −Y2i

hY2

)
− 1

n1

n1

∑
i=1

Φ

(
ĉKS

β −Y1i

hY1

)

=
1
n2

n2

∑
i=1

Φ

(
ĉKS

β − βTX2i

hY2

)
− 1

n1

n1

∑
i=1

Φ

(
ĉKS

β − βTX1i

hY1

)
(16)

where the kernel function Φ is the normal cumulative distribution function and the general-
purpose bandwidth hYk [34–37] is:

hYk = 0.9 min
{

SD(Yk), IQR(Yk)

1.34

}
n−0.2

k , for k = 1, 2,

where SD(Yk) and IQR(Yk) denote the standard deviation and the interquartile range of
the combined marker Yk, respectively.

Note that the Youden index ( Ĵβ) is a continuous differentiable function with respect
to the parameter vector β and cβ. As in the previous approach, the R package optimr()

was used to numerically optimize the Youden index JKS
β from an initial vector

(
β̂T , ĉKS

β

)T
.

Thus, the estimated parameter vector β can be obtained.

2.8. Simulations

A wide range of simulated scenarios were explored in order to compare the perfor-
mance of the algorithms. Four (p = 4) biomarkers were considered in each simulation
scenario. Different joint and marginal distributions were considered, ranging from normal
to non-normal distributions, with the aim of broadening the range for the evaluation and
comparison of methods beyond normality.
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A wide range of combinations were considered for the generation of simulated data
following normal distributions: biomarkers with equal or different means (i.e., differ-
ent capacity to discriminate between biomarkers) and independent or non-independent
biomarkers, with negative or positive correlations with low, medium and high intensity, as
well as the same and different covariances matrix for the group with disease and without
disease. For each scenario, 1000 random samples from the underlying distribution were
considered, with different sample sizes for the diseased and non-diseased population:
(n1, n2) = (10, 20), (30, 30), (50, 30), (50, 50), (100, 100), (500, 500). Each method was ap-
plied on each simulated dataset and the maximum Youden index for the optimal linear
combination of biomarkers was obtained.

In terms of the scenarios of normal distributions, the null vector is considered in all
scenarios as the mean vector of the non-diseased population (m2 = (0, 0, 0, 0)T). With
respect to the diseased population (m1), scenarios are explored with the same mean for each
biomarker, as well as with mean vectors with different values. As for the covariance matrix,
scenarios are analyzed with both the same covariance matrices for both populations and
with different covariance matrices. For simplicity, the variance of each biomarker is set to be
1 in all cases and, therefore, the covariances equal to the correlations. The same correlation
value for all pairs of biomarkers is assumed. Both positive and negative correlations
are considered. Concerning negative correlations, the values ρ = −0.3 and ρ = −0.1
are considered. Regarding positive correlations, four types of correlations are assumed
depending on the intensity: independence (ρ = 0.0), low (ρ = 0.3), medium (ρ = 0.5) and
high (ρ = 0.7). Specifically, the following covariance matrices (Σ1, Σ2 for diseased and non-
diseased population, respectively) are considered in the different scenarios: Σ1 = Σ2 = I
(independent biomarkers), Σ1 = Σ2 = 0.7·I + 0.3·J (low correlation), Σ1 = Σ2 = 0.5·I +
0.5·J (medium correlation), Σ1 = Σ2 = 0.3·I + 0.7·J (high correlation) and Σ1 = 0.3·I + 0.7·J,
Σ2 = 0.7·I + 0.3·J (different correlations), where I is the identity matrix and J a matrix of
all of them.

In terms of scenarios that do not follow a normal distribution, the following scenarios
were considered: simulated data with different marginal distributions (multivariate chi-
square/normal/gamma/exponential distributions via normal copula) and simulated data
following the multivariate log-normal skewed distribution. The latter simulated data were
generated from the normal scenario configurations and then exponentiated to obtain these
multivariate log-normal observations.

2.9. Application in Clinical Diagnosis Cases

The analyzed methods were also applied to two real data examples related to clinical
diagnosis cases. In particular, a Duchenne muscular dystrophy dataset and a prostate cancer
dataset were analyzed through their respective biomarkers. Duchenne Muscular Dystrophy
(DMD) is a progressive and recessive muscular disorder that is transmitted from a mother
to her children. Percy et al. [38] analyzed the effectiveness in detecting the following four
biomarkers of blood samples: serum creatine kinase (CK), haemopexin (H), pyruvate kinase
(PK) and lactate dehydrogenase (LDH). The available data contain complete information on
these four biomarkers of 67 women who are carriers of the progressive recessive disorder
DMD and 127 women who are not carriers.

Prostate cancer is the second most common cancer in males worldwide after lung
cancer [39] and it is therefore a matter of social and medical concern. The detection of
clinically significant prostate cancer (Gleason score ≥ 7) through the combination of clinical
characteristics and biomarkers has been an important line of study in recent years [40,41].
The data set used contains complete information on 71 people who were diagnosed with
clinically significant prostate cancer and 398 with non-significant prostate cancer in 2016
at Miguel Servet University Hospital (Zaragoza, Spain) on the following four biomarkers:
prostate-specific antigen (PSA), age, body mass index (BMI) and free PSA.
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2.10. Validation

To analyze the performance of the compared algorithms in prediction scenarios, we
validated built models for simulation and real data. For each scenario of simulated data,
we built 100 models using small (50) and large (500) sample sizes, and then we validated
these models by estimating the mean of the 100 Youden indexes calculated for new data
simulated using the same setting of parameters and sample sizes. For real data, a 10-fold
cross validation procedure was performed.

3. Results

This section first presents the results of the simulations for the training set. Then, the
results of simulated scenarios for the validation data are presented. Finally, for a specific
scenario, the time carried out in each of the methods is also presented in order to illustrate
the computational cost of each one of them.

3.1. Simulations

Tables 1–10 show the results of the performance of each algorithm for each simu-
lated data scenario. In particular, for each simulated dataset (1000 random samples), the
mean and standard deviation (SD) of the empirical estimates of the Youden index of each
biomarker are shown. In addition, for each method, the mean and standard deviation of the
maximum Youden indexes obtained in each of the 1000 samples, as well as the probability
of obtaining the highest Youden index, are presented. These results and conclusions drawn
in terms of performance in the simulated scenarios are presented below.

3.1.1. Normal Distributions. Different Means and Equal Positive Correlations for Diseased
and Non-Diseased Population

Tables 1–4 show the results obtained in the scenarios under multivariate normal
distribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
independent biomarkers, low correlations, medium correlations and high correlations,
respectively.

The results in Table 1 show that our proposed stepwise method outperforms the rest
of the methods in all scenarios and with a remarkable estimated probability of yielding
the largest Youden index of 0.5 or more in most of them. It is followed by Yin and Tian’s
stepwise approach and the non-parametric kernel smoothing approach, which perform
similarly in general. Logistic regression and the parametric approach under multivariate
normality perform comparably in general. The min-max approach is the one with the worst
results in such scenarios. The same conclusions are drawn from the results reported in
Table 2.
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Table 1. Normal distributions: Different means. Independence (Σ1 = Σ2 = I).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2737, 0.3560, 0.5178, 0.4314) 0.7782 0.731 0.6352 0.6926 0.6937 0.7272 0.5962 0.1389 0.0588 0.0532 0.0355 0.1175
σ = (0.1357, 0.1395, 0.1421, 0.1457) (0.1022) (0.1104) (0.119) (0.1346) (0.1253) (0.1179)

(30, 30) x̄ = (0.2063, 0.3024, 0.4663, 0.3673) 0.6737 0.6402 0.5556 0.6057 0.6050 0.6395 0.6480 0.1350 0.0453 0.0221 0.0161 0.1335
σ = (0.0943, 0.0991, 0.0990, 0.1053) (0.0836) (0.0876) (0.0962) (0.0957) (0.0946) (0.0891)

(50, 30) x̄ = (0.1933, 0.2975, 0.4630, 0.3603) 0.6434 0.6278 0.5424 0.5895 0.5896 0.6203 0.5806 0.1756 0.0448 0.0179 0.0176 0.1636
σ = (0.0846, 0.0937, 0.0894, 0.0898) (0.0771) (0.0778) (0.0812) (0.0839) (0.0828) (0.0806)

(50, 50) x̄ = (0.1764, 0.2784, 0.4484, 0.3458) 0.6219 0.6005 0.5193 0.5693 0.5693 0.5998 0.6586 0.1428 0.0272 <0.01 0.0132 0.1495
σ = (0.0736, 0.0789, 0.0774, 0.0796) (0.0667) (0.0702) (0.0736) (0.0732) (0.0732) (0.0701)

(100, 100) x̄ = (0.1487, 0.2498, 0.4254, 0.3214) 0.5734 0.5623 0.4837 0.5412 0.5409 0.5620 0.6174 0.1543 0.0132 0.0171 0.0137 0.1844
σ = (0.0533, 0.0590, 0.0560, 0.0590) (0.0506) (0.051) (0.0526) (0.0538) (0.0537) (0.0528)

(500, 500) x̄ = (0.1062, 0.2185, 0.3991, 0.2925) 0.5213 0.5191 0.4447 0.5120 0.5119 0.5196 0.4545 0.1824 <0.01 0.0332 0.0317 0.2982
σ = (0.0257, 0.0282, 0.0274, 0.0280) (0.0257) (0.0257) (0.027) (0.0262) (0.0263) (0.0258)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3359, 0.5120, 0.6604, 0.5815) 0.9134 0.8783 0.8042 0.8771 0.8594 0.8786 0.4822 0.1128 0.0350 0.1913 0.0565 0.1221
σ = (0.1413, 0.1386, 0.1275, 0.1402) (0.074) (0.0834) (0.1013) (0.0158) (0.0958) (0.0886)

(30, 30) x̄ = (0.2699, 0.4695, 0.6172, 0.5299) 0.8488 0.8190 0.7463 0.8086 0.8044 0.8242 0.5826 0.1304 0.0319 0.0692 0.0420 0.1438
σ = (0.0989, 0.0988, 0.0911, 0.1019) (0.0645) (0.0690) (0.0787) (0.0778) (0.0750) (0.0719)

(50, 30) x̄ = (0.2586, 0.4636, 0.6133, 0.5218) 0.8310 0.8172 0.7400 0.8005 0.7960 0.8162 0.5270 0.1755 0.0372 0.0540 0.0362 0.1700
σ = (0.0905, 0.0926, 0.0810, 0.0854) (0.0598) (0.0621) (0.069) (0.0676) (0.0666) (0.0633)

(50, 50) x̄ = (0.2444, 0.4475, 0.6010, 0.5099) 0.8144 0.7972 0.7235 0.7840 0.7806 0.8007 0.5841 0.1403 0.0199 0.0436 0.0295 0.1826
σ = (0.0791, 0.0796, 0.0695, 0.0772) (0.0545) (0.0569) (0.0624) (0.0598) (0.0584) (0.0573)

(100, 100) x̄ = (0.2178, 0.4243, 0.5821, 0.4906) 0.7827 0.7728 0.6987 0.7620 0.7611 0.7749 0.5701 0.1690 <0.01 0.0262 0.0286 0.2036
σ = (0.0570, 0.0579, 0.0526, 0.0562) (0.04) (0.0412) (0.0456) (0.0423) (0.0423) (0.0412)

(500, 500) x̄ = (0.1809, 0.3997, 0.5604, 0.4673) 0.7483 0.7461 0.6692 0.7424 0.7422 0.7471 0.4667 0.1695 <0.01 0.0431 0.0359 0.2848
σ = (0.0271, 0.0272, 0.0255, 0.0260) (0.02) (0.0199) (0.0223) (0.0201) (0.0201) (0.0199)

Table 2. Normal distributions: Different means. Low correlation (Σ1 = Σ2 = 0.7·I + 0.3·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2666, 0.3621, 0.5180, 0.4226) 0.7348 0.6811 0.5730 0.6380 0.6385 0.6755 0.6163 0.1309 0.0617 0.0404 0.0312 0.1195
σ = (0.1378, 0.1439, 0.1377, 0.1427) (0.1063) (0.1158) (0.1294) (0.1389) (0.1358) (0.1266)

(30, 30) x̄ = (0.2037, 0.3051, 0.4700, 0.3774) 0.6228 0.5873 0.4842 0.5472 0.5483 0.5844 0.6869 0.1276 0.0343 0.0103 0.0125 0.1284
σ = (0.0951, 0.1029, 0.1002 ,0.1004) (0.0848) (0.0896) (0.0948) (0.0994) (0.0982) (0.0939)

(50, 30) x̄ = (0.1963,0.2917,0.4606,0.3620) 0.5905 0.5701 0.4677 0.5278 0.5284 0.5628 0.6378 0.1491 0.0322 0.0151 0.0141 0.1517
σ = (0.0841, 0.0888, 0.0899, 0.0903) (0.0788) (0.0787) (0.0831) (0.0868) (0.0862) (0.0852)

(50, 50) x̄ = (0.1771, 0.2780, 0.4448, 0.3459) 0.5641 0.5380 0.4435 0.5030 0.5038 0.5354 0.7324 0.1176 0.0165 0.0123 0.0113 0.1098
σ = (0.0751, 0.0798, 0.0778, 0.0805) (0.0683) (0.0707) (0.0753) (0.0752) (0.0756) (0.0717)

(100, 100) x̄ = (0.1464, 0.2526, 0.4270, 0.3230) 0.5148 0.5012 0.4078 0.4770 0.4768 0.4984 0.6986 0.1268 <0.01 0.013 <0.01 0.1457
σ = (0.0515, 0.0593, 0.0580, 0.0591) (0.0546) (0.0550) (0.0542) (0.0584) (0.0585) (0.0563)

(500, 500) x̄ = (0.1063, 0.2178, 0.3980, 0.2923) 0.4524 0.449 0.3586 0.4404 0.4402 0.4488 0.5629 0.1693 <0.01 0.0234 0.0222 0.2221
σ = (0.0262, 0.0282, 0.0278, 0.0278) (0.0264) (0.0265) (0.0271) (0.0269) (0.0268) (0.0265)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3272, 0.5176, 0.6594, 0.5757) 0.8558 0.8128 0.7198 0.7941 0.7847 0.809 0.5515 0.1334 0.0565 0.1059 0.0445 0.1081
σ = (0.1436, 0.1440, 0.1291, 0.1388) (0.0907) (0.1001) (0.1174) (0.1256) (0.1137) (0.1056)

(30, 30) x̄ = (0.2685, 0.4690, 0.6182, 0.5362) 0.7751 0.7433 0.6514 0.7196 0.7175 0.7433 0.6647 0.1203 0.0238 0.0329 0.0271 0.1313
σ = (0.1006, 0.1013, 0.0920, 0.0949) (0.0742) (0.0772) (0.0892) (0.0852) (0.0841) (0.082)

(50,30) x̄ = (0.2629, 0.4602, 0.6113, 0.5246) 0.7515 0.7343 0.6393 0.7057 0.7047 0.7291 0.643 0.1586 0.0228 0.0243 0.0204 0.1308
σ = (0.0891, 0.0909, 0.0813, 0.0870) (0.0681) (0.0705) (0.078) (0.0779) (0.0762) (0.0733)

(50, 50) x̄ = (0.2441, 0.4483, 0.5975, 0.5108) 0.7307 0.7107 0.6204 0.6883 0.6870 0.7109 0.6652 0.1333 0.0168 0.0217 0.021 0.142
σ = (0.0793, 0.0795, 0.0729, 0.0761) (0.0609) (0.0646) (0.0702) (0.0675) (0.0673) (0.0648)

(100, 100) x̄ = (0.2160, 0.4258, 0.5829, 0.4909) 0.6934 0.6818 0.5922 0.6642 0.6641 0.6814 0.655 0.1473 <0.01 0.0229 0.0229 0.1485
σ = (0.0537, 0.0578, 0.0529, 0.0567) (0.0488) (0.0488) (0.0496) (0.0525) (0.0516) (0.0492)

(500, 500) x̄ = (0.1803, 0.3987, 0.5594, 0.4663) 0.6453 0.643 0.5543 0.6379 0.6378 0.6436 0.4826 0.1741 <0.01 0.0363 0.0354 0.2717
σ = (0.0277, 0.0274, 0.0252, 0.0266) (0.023) (0.023) (0.0244) (0.0237) (0.0238) (0.0229)

The results reported in Table 3 show that, in general, our proposed stepwise method
dominates over the rest of the algorithms. The non-parametric kernel smoothing approach
slightly outperforms Yin and Tian’s approach in terms of the average Youden index, and
even for large sample sizes (n1 = n2 = 500), its mean Youden index is even slightly higher
than that of our proposed stepwise method. This behaviour is accentuated in the scenarios
of Table 4, where Yian and Tian’s stepwise approach performs significantly worse than
the non-parametric kernel smoothing approach, and even their average values are lower
than those achieved by logistic regression or the parametric approach under multivariate
normality.
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Table 3. Normal distributions: Different means. Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2713, 0.3657, 0.5268, 0.428) 0.7314 0.667 0.5534 0.6404 0.6432 0.674 0.4883 0.1566 0.0399 0.0496 0.0804 0.1851
σ = (0.1353, 0.1477, 0.1423, 0.1427) (0.1093) (0.1181) (0.1271) (0.1387) (0.1356) (0.1306)

(30, 30) x̄ = (0.2030, 0.3020, 0.4665, 0.3668) 0.62 0.5647 0.4598 0.548 0.5433 0.5777 0.5478 0.1417 0.0118 0.0244 0.0572 0.2171
σ = (0.0933, 0.1014, 0.0991, 0.1008) (0.0847) (0.0882) (0.0945) (0.0972) (0.0952) (0.0921)

(50, 30) x̄ = (0.1931, 0.2928, 0.4581, 0.3632) 0.5874 0.5568 0.4415 0.5288 0.5297 0.5631 0.4942 0.1885 <0.01 0.0295 0.0282 0.2543
σ = (0.0847, 0.0908, 0.0883 ,0.0905) (0.0769) (0.0764) (0.0811) (0.0856) (0.0842) (0.0831)

(50, 50) x̄ = (0.1753, 0.2761, 0.4472, 0.3495) 0.5637 0.5274 0.4187 0.5096 0.5094 0.5401 0.5076 0.1588 <0.01 0.0247 0.0502 0.2528
σ = (0.0742, 0.0798, 0.0787, 0.0791) (0.0677) (0.0717) (0.0738) (0.0755) (0.0746) (0.0738)

(100, 100) x̄ = (0.1449, 0.2487, 0.4250, 0.3236) 0.5114 0.4907 0.3806 0.4766 0.4766 0.5005 0.4238 0.3977 <0.01 0.0152 <0.01 0.1548
σ = (0.0520, 0.0578, 0.0591, 0.0595) (0.0539) (0.0551) (0.056) (0.0583) (0.0584) (0.0566)

(500, 500) x̄ = (0.1063, 0.2187, 0.3994, 0.2921) 0.4511 0.443 0.3325 0.4429 0.4429 0.4516 0.3103 0.3948 <0.01 0.0237 0.0204 0.2508
σ = (0.0261, 0.0280, 0.0264, 0.0279) (0.0256) (0.0276) (0.0272) (0.0265) (0.0265) (0.0256)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3339, 0.5172, 0.6658, 0.5790) 0.844 0.7906 0.6879 0.7838 0.7736 0.7996 0.4078 0.1614 0.0258 0.1348 0.0884 0.1817
σ = (0.1406, 0.1442, 0.1287, 0.1370) (0.0934) (0.1050) (0.1184) (0.1288) (0.1167) (0.1107)

(30, 30) x̄ = (0.2685, 0.4669, 0.6160, 0.5254) 0.7609 0.7139 0.6157 0.7084 0.7007 0.7294 0.5169 0.1461 0.0115 0.0512 0.0628 0.2116
σ = (0.0998, 0.1025, 0.0945, 0.0954) (0.0766) (0.0801) (0.0906) (0.0876) (0.087) (0.0804)

(50, 30) x̄ = (0.2580, 0.4621, 0.6105, 0.5264) 0.7348 0.7101 0.6034 0.6945 0.6929 0.7177 0.4785 0.1823 <0.01 0.0643 0.0438 0.2257
σ = (0.0887, 0.0908, 0.0807, 0.0862) (0.0686) (0.0707) (0.0782) (0.0773) (0.0743) (0.0721)

(50, 50) x̄ = (0.2428, 0.4477, 0.5994, 0.5124) 0.7162 0.6874 0.5831 0.6778 0.6762 0.7013 0.4817 0.1485 <0.01 0.0496 0.0575 0.2574
σ = (0.0782, 0.0810, 0.0723, 0.0769) (0.0620) (0.0649) (0.0715) (0.0697) (0.0665) (0.0639)

(100, 100) x̄ = (0.2146, 0.4235, 0.5816, 0.4916) 0.6755 0.6572 0.5535 0.6519 0.6513 0.6684 0.5904 0.083 <0.01 0.04 0.0382 0.2475
σ = (0.0554, 0.0572, 0.0550, 0.0580) (0.0480) (0.0493) (0.0524) (0.0510) (0.0509) (0.0494)

(500, 500) x̄ = (0.1808, 0.3990, 0.5606, 0.4663) 0.6286 0.6239 0.5165 0.6258 0.6255 0.6317 0.379 0.1055 <0.01 0.0561 0.0563 0.403
σ = (0.0270, 0.0277, 0.0244, 0.0260) (0.0236) (0.0242) (0.0251) (0.0232) (0.0232) (0.023)

Table 4. Normal distributions: Different means. High correlation (Σ1 = Σ2 = 0.3·I + 0.7·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2708, 0.3672, 0.5202, 0.4299) 0.754 0.6634 0.5546 0.6702 0.6704 0.6962 0.5549 0.1035 0.0211 0.0879 0.0684 0.1642
σ = (0.1361, 0.1398, 0.1435, 0.1447) (0.1036) (0.119) (0.1268) (0.1418) (0.1383) (0.1317)

(30, 30) x̄ = (0.2005, 0.3040, 0.4663, 0.3703) 0.6514 0.5668 0.4559 0.5844 0.5834 0.6166 0.5812 0.0826 0.0116 0.0521 0.0397 0.2329
σ = (0.0936, 0.1025, 0.1045, 0.1038) (0.0817) (0.0937) (0.0946) (0.0981) (0.0972) (0.0940)

(50, 30) x̄ = (0.1951, 0.2932, 0.4625, 0.3591) 0.6175 0.5628 0.4401 0.5689 0.5690 0.6000 0.5288 0.1146 <0.01 0.0414 0.0324 0.2768
σ = (0.0815, 0.0877, 0.0893, 0.0914) (0.0779) (0.0834) (0.0817) (0.0882) (0.0874) (0.0859)

(50, 50) x̄ = (0.1781, 0.2779, 0.4479, 0.3450) 0.5983 0.5325 0.4166 0.5527 0.5521 0.5805 0.5430 0.0799 <0.01 0.0454 0.0431 0.2858
σ = (0.0735, 0.0787, 0.0800, 0.0806) (0.0671) (0.0754) (0.0747) (0.0782) (0.0774) (0.0741)

(100, 100) x̄ = (0.1461, 0.2526, 0.4243, 0.3207) 0.5472 0.4969 0.3773 0.5203 0.5202 0.5413 0.4680 0.2348 <0.01 0.0173 0.0222 0.2577
σ = (0.0534, 0.0597, 0.0566, 0.0606) (0.0515) (0.0567) (0.0548) (0.0547) (0.0547) (0.0530)

(500, 500) x̄ = (0.1057, 0.2177, 0.3992, 0.2928) 0.4949 0.4587 0.3313 0.4893 0.4892 0.4972 0.3588 0.1517 <0.01 0.0418 0.0358 0.4118
σ = (0.0267, 0.0281, 0.0276, 0.0278) (0.0257) (0.0308) (0.0274) (0.0260) (0.0259) (0.0255)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3322, 0.5204, 0.6594, 0.5826) 0.8612 0.7759 0.6874 0.8091 0.7979 0.8204 0.5229 0.0699 0.0183 0.1656 0.0730 0.1503
σ = (0.1426, 0.1414, 0.1301, 0.1402) (0.0882) (0.1107) (0.1232) (0.1266) (0.1156) (0.1099)

(30, 30) x̄ = (0.2669, 0.4678, 0.6169, 0.5312) 0.7842 0.7095 0.6146 0.7393 0.7369 0.7607 0.5373 0.0759 <0.01 0.0856 0.0629 0.2325
σ = (0.0982, 0.0999, 0.0961, 0.1011) (0.0702) (0.0854) (0.0884) (0.0835) (0.0821) (0.0782)

(50,30) x̄ = (0.2620, 0.4584, 0.6136, 0.5234) 0.7596 0.7128 0.6007 0.7304 0.7283 0.7514 0.4932 0.0898 <0.01 0.0842 0.0564 0.2714
σ = (0.0865, 0.0865, 0.0817, 0.0866) (0.0682) (0.0722) (0.078) (0.0760) (0.0735) (0.0696)

(50, 50) x̄ = (0.2458, 0.4465, 0.6006, 0.5098) 0.7394 0.6899 0.5806 0.7165 0.7149 0.7361 0.4764 0.0643 <0.01 0.0650 0.0637 0.3282
σ = (0.0776, 0.0776, 0.0756, 0.0769) (0.0612) (0.0717) (0.0729) (0.0676) (0.0663) (0.0638)

(100, 100) x̄ = (0.2155, 0.4256, 0.5809, 0.4890) 0.7018 0.6658 0.5523 0.6898 0.6886 0.7036 0.4592 0.0528 <0.01 0.0712 0.0544 0.3625
σ = (0.0562, 0.0606, 0.0520, 0.0570) (0.042) (0.0525) (0.0502) (0.0469) (0.047) (0.0458)

(500, 500) x̄ = (0.1802, 0.3992, 0.5603, 0.4668) 0.6588 0.6451 0.5148 0.6643 0.6643 0.6701 0.1175 0.2240 <0.01 0.0793 0.0653 0.5138
σ = (0.0280, 0.0267, 0.0250, 0.0256) (0.0226) (0.0270) (0.0253) (0.0222) (0.0222) (0.0220)

Given the reported results of these simulations, it could be concluded that, in scenarios
of multivariate normal distributions with different means and equal positive correlations,
our proposed stepwise method dominates generally over the rest of the algorithms, fol-
lowed by the non-parametric kernel smoothing approach and Yin and Tian’s stepwise
approach, with the former being better in scenarios of higher correlations.

3.1.2. Normal Distributions. Different Means and Unequal Positive Correlations for
Diseased and Non-Diseased Population

Table 5 shows the results obtained in the scenarios under multivariate normal dis-
tribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
different correlations for the diseased and non-diseased populations (Σ1 = 0.3·I + 0.7·J,
Σ2 = 0.7·I + 0.3·J). The results indicate that our proposed stepwise approach outperforms
the other algorithms in most scenarios. It is followed by the non-parametric kernel smooth-
ing approach and Yin and Tian’s stepwise approach. The min-max approach is the worst
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performer. Logistic regression and the parametric approach under multivariate normality
performed comparably in general.

Table 5. Normal distributions: Different means. Different correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2706, 0.3608, 0.5172, 0.4272) 0.736 0.6644 0.5952 0.637 0.6408 0.669 0.4899 0.1413 0.0987 0.0536 0.0679 0.1486
σ = (0.1367, 0.1405, 0.1453, 0.1456) (0.0998) (0.116) (0.1258) (0.1328) (0.1338) (0.1292)

(30, 30) x̄ = (0.2023, 0.3027, 0.4703, 0.3748) 0.6268 0.5745 0.5086 0.5512 0.5527 0.5871 0.5236 0.1399 0.0877 0.0244 0.038 0.1864
σ = (0.0948, 0.1002, 0.0979, 0.1003) (0.0825) (0.0869) (0.0905) (0.0973) (0.0928) (0.0896)

(50, 30) x̄ = (0.1957, 0.2895, 0.4586, 0.3606) 0.5986 0.567 0.4958 0.5373 0.5383 0.5717 0.4958 0.1717 0.0993 0.0327 0.0282 0.1723
σ = (0.0832, 0.0925, 0.0862, 0.0918) (0.0794) (0.0775) (0.0827) (0.0907) (0.0868) (0.0856)

(50, 50) x̄ = (0.1785, 0.2736, 0.4439, 0.3447) 0.5727 0.5297 0.4708 0.5096 0.5129 0.5426 0.5447 0.1275 0.0869 0.0149 0.0376 0.1883
σ = (0.0735, 0.0793, 0.077, 0.0831) (0.0669) (0.0719) (0.0745) (0.0772) (0.0763) (0.0741)

(100, 100) x̄ = (0.1465, 0.2526, 0.4273, 0.3225) 0.5198 0.4946 0.4378 0.482 0.4835 0.508 0.4783 0.3068 0.0648 0.0128 0.0113 0.1258
σ = (0.052, 0.0572, 0.0576, 0.0598) (0.052) (0.0539) (0.0557) (0.0557) (0.0556) (0.0529)

(500, 500) x̄ = (0.1063, 0.2181, 0.3994, 0.2929) 0.4576 0.4482 0.3916 0.4446 0.4464 0.4565 0.3803 0.3227 <0.01 0.0122 0.0187 0.2593
σ = (0.0264, 0.0271, 0.0272, 0.0276) (0.0256) (0.0264) (0.0271) (0.0271) (0.0268) (0.026)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3328, 0.5141, 0.6583, 0.5798) 0.8422 0.7851 0.6824 0.7763 0.7697 0.7934 0.4419 0.1638 0.0412 0.1108 0.0785 0.1637
σ = (0.1429, 0.1394, 0.1338, 0.1404) (0.091) (0.1103) (0.1244) (0.1259) (0.1146) (0.1113)

(30, 30) x̄ = (0.2664, 0.4658, 0.6184, 0.5334) 0.7628 0.7199 0.6068 0.7102 0.7055 0.7333 0.5186 0.1604 0.013 0.0512 0.056 0.2007
σ = (0.1005, 0.0991, 0.0921, 0.0971) (0.0752) (0.0803) (0.089) (0.0869) (0.0846) (0.0802)

(50, 30) x̄ = (0.2627, 0.4576, 0.6125, 0.5232) 0.7403 0.7154 0.5945 0.6961 0.6947 0.7219 0.5055 0.2028 0.0115 0.0428 0.0379 0.1996
σ = (0.0894, 0.0924, 0.0783, 0.088) (0.0714) (0.0713) (0.0773) (0.0827) (0.0767) (0.0722)

(50, 50) x̄ = (0.2455, 0.4442, 0.5970, 0.5088) 0.7176 0.687 0.5735 0.6765 0.6759 0.6998 0.5134 0.1669 <0.01 0.048 0.045 0.2182
σ = (0.0782, 0.0794, 0.0700, 0.0784) (0.0617) (0.0668) (0.0713) (0.0706) (0.0676) (0.0649)

(100, 100) x̄ = (0.2150, 0.4275, 0.5840, 0.4909) 0.6804 0.661 0.5473 0.6543 0.6545 0.6724 0.4505 0.3459 <0.01 0.0262 0.021 0.1555
σ = (0.0546, 0.0565, 0.0523, 0.0558) (0.0477) (0.0486) (0.0537) (0.0512) (0.0509) (0.0488)

(500, 500) x̄ = (0.1807, 0.3992, 0.5600, 0.4667) 0.6309 0.6258 0.5091 0.6255 0.6258 0.6326 0.2942 0.3528 <0.01 0.0317 0.0346 0.2868
σ = (0.0278, 0.0270, 0.0251, 0.0258) (0.0233) (0.0237) (0.0256) (0.024) (0.0239) (0.0235)

3.1.3. Normal Distributions. Different Means and Equal Negative Correlations for
Diseased and Non-Diseased Population

Tables 6 and 7 show the results obtained in the scenarios under multivariate normal
distribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
equal negative correlations (ρ = −0.1,−0.3, respectively).

Table 6. Normal distributions: Different means. Negative correlation (−0.1).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2651, 0.3652, 0.5164, 0.4329) 0.8127 0.7625 0.678 0.7395 0.7356 0.7664 0.4308 0.1033 0.0474 0.1301 0.08 0.2084
σ = (0.1298, 0.1462, 0.1450,0.1438) (0.0967) (0.105) (0.1216) (0.1334) (0.1259) (0.1163)

(30, 30) x̄ = (0.2064, 0.3013, 0.4704, 0.3718) 0.7108 0.6747 0.5997 0.6603 0.6599 0.6905 0.4499 0.0831 0.0309 0.0744 0.0694 0.2924
σ = (0.0949, 0.0980, 0.1005, 0.1040) (0.0799) (0.0823) (0.0893) (0.092) (0.0904) (0.0847)

(50, 30) x̄ = (0.1947, 0.2934, 0.4588, 0.3593) 0.6862 0.6681 0.5863 0.6422 0.6413 0.6692 0.4088 0.132 0.0245 0.058 0.0495 0.3272
σ = (0.0836, 0.0880, 0.0879, 0.0926) (0.072) (0.0742) (0.0799) (0.0829) (0.0801) (0.0788)

(50, 50) x̄ = (0.1755, 0.2784, 0.4466, 0.3465) 0.6667 0.6419 0.568 0.6297 0.6288 0.654 0.4187 0.1011 0.0219 0.065 0.0756 0.3177
σ = (0.0717, 0.0792, 0.0787, 0.0800) (0.0622) (0.0672) (0.0721) (0.0716) (0.0704) (0.0676)

(100, 100) x̄ = (0.1445, 0.2522, 0.4264, 0.3212) 0.6252 0.6135 0.5321 0.6054 0.6053 0.6229 0.3913 0.1198 <0.01 0.05 0.0572 0.3759
σ = (0.0531, 0.0578, 0.0579, 0.0585) (0.0502) (0.0507) (0.0534) (0.0515) (0.0516) (0.05)

(500, 500) x̄ = (0.1068, 0.2180, 0.3989, 0.2923) 0.5784 0.5761 0.4947 0.5734 0.5735 0.5804 0.3137 0.1578 <0.01 0.0484 0.0567 0.4234
σ = (0.0263, 0.0277, 0.0275, 0.0273) (0.0237) (0.0239) (0.0251) (0.0243) (0.0244) (0.0238)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3266, 0.5185, 0.6594, 0.5868) 0.9466 0.9098 0.8538 0.9296 0.9078 0.922 0.3156 0.1426 0.056 0.267 0.0912 0.1276
σ = (0.1344, 0.1434, 0.1322, 0.1347) (0.0619) (0.0752) (0.0916) (0.0898) (0.0825) (0.0757)

(30, 30) x̄ = (0.2701, 0.4666, 0.6203, 0.5327) 0.8952 0.8625 0.8046 0.8737 0.8652 0.8835 0.3993 0.1047 0.026 0.168 0.0824 0.2195
σ = (0.0986, 0.0999, 0.0926, 0.1011) (0.056) (0.0622) (0.0697) (0.0655) (0.0625) (0.0581)

(50, 30) x̄ = (0.2602, 0.4611, 0.6101, 0.5226) 0.8806 0.8672 0.7964 0.8604 0.8545 0.8714 0.3853 0.1296 0.0278 0.1445 0.0751 0.2376
σ = (0.0888, 0.0855, 0.0793, 0.0905) (0.0516) (0.0533) (0.0644) (0.0609) (0.0578) (0.055

(50, 50) x̄ = (0.2427, 0.4476, 0.6006, 0.5110) 0.8677 0.8508 0.7835 0.8503 0.8454 0.8616 0.381 0.1215 0.0217 0.1144 0.0651 0.2963
σ = (0.0757, 0.0791, 0.0731, 0.0765) (0.0448) (0.0477) (0.0574) (0.0506) (0.0485) (0.0476)

(100, 100) x̄ = (0.2138, 0.4268, 0.5832, 0.4905) 0.8442 0.8342 0.757 0.8329 0.831 0.8427 0.3815 0.1121 <0.01 0.0856 0.0672 0.351
σ = (0.0573, 0.0578, 0.0533, 0.0558) (0.0367) (0.0379) (0.0422) (0.037) (0.0367) (0.0356)

(500, 500) x̄ = (0.1813, 0.3989, 0.5598, 0.4665) 0.8152 0.8127 0.7294 0.8108 0.8105 0.8145 0.3765 0.1367 <0.01 0.0724 0.0619 0.3525
σ = (0.0273, 0.0270, 0.0255, 0.0255) (0.0180) (0.0182) (0.0208) (0.0176) (0.0175) (0.0173)
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Table 7. Normal distributions: Different means. Negative correlation (−0.3).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2624, 0.3591, 0.5238, 0.4281) 0.976 0.8938 0.845 0.9963 0.9874 0.9902 0.2058 0.0617 0.0166 0.2782 0.2115 0.2261
σ = (0.1354, 0.1447, 0.1413, 0.1425) (0.0468) (0.0964) (0.0935) (0.0189) (0.0289) (0.0258)

(30, 30) x̄ = (0.2057, 0.3046, 0.4707, 0.3672) 0.9589 0.8946 0.7906 0.9875 0.9746 0.9821 0.1978 0.0499 <0.01 0.3625 0.15661 0.2331
σ = (0.0942, 0.1007, 0.1004, 0.1008) (0.0472) (0.0852) (0.0717) (0.0254) (0.027) (0.0243)

(50, 30) x̄ = (0.1967, 0.2948, 0.4565, 0.3621) 0.9405 0.9125 0.7819 0.9835 0.9725 0.9802 0.1498 0.0712 <0.01 0.3874 0.1407 0.2504
σ = (0.0868, 0.0899, 0.0933, 0.0903) (0.0577) (0.0726) (0.0674) (0.0267) (0.0269) (0.0243)

(50, 50) x̄ = (0.1769, 0.2795, 0.4447, 0.3482) 0.9471 0.9052 0.7678 0.9775 0.9668 0.975 0.192 0.0609 <0.01 0.3861 0.1163 0.2447
σ = (0.0754, 0.0805, 0.0780, 0.0789) (0.0447) (0.0718) (0.0583) (0.0255) (0.0243) (0.0218)

(100, 100) x̄ = (0.1435, 0.2540, 0.4258, 0.3240) 0.9421 0.9178 0.7469 0.9652 0.9606 0.9674 0.1053 0.1346 <0.01 0.2778 0.1168 0.3655
σ = (0.0543, 0.0544, 0.0591, 0.0595) (0.0345) (0.0503) (0.0431) (0.0202) (0.019) (0.0177)

(500, 500) x̄ = (0.1067, 0.2173, 0.3981, 0.2919) 0.9365 0.9309 0.7161 0.9509 0.9502 0.9531 0.1671 0.0586 <0.01 0.1500 0.1057 0.5185
σ = (0.0270, 0.0284, 0.0280, 0.0276) (0.0195) (0.0217) (0.0215) (0.0096) (0.0097) (0.0093)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3223, 0.5169, 0.6668, 0.5786) 0.9998 0.9876 0.9734 1.0000 1.0000 1.0000 0.1838 0.1479 0.1131 0.1851 0.1851 0.1851
σ = (0.1401, 0.1425, 0.1279, 0.1364) (0.0034) (0.0311) (0.0413) (0.00000) (0.0000) (0.0000)

(30, 30) x̄ = (0.2701, 0.4693, 0.6214, 0.5251) 0.9997 0.9891 0.9519 1.0000 1.0000 0.9999 0.201 0.1504 0.0378 0.2037 0.2037 0.2032
σ = (0.0990, 0.1018, 0.0922, 0.0968) (0.0031) (0.0249) (0.0384) (0.0000) (0.0000) (0.0015)

(50, 30) x̄ = (0.2631, 0.4635, 0.6084, 0.5255 0.999 0.9958 0.9503 1.0000 1.0000 1.0000 0.1952 0.1699 0.0217 0.2046 0.2043 0.2043
σ = (0.0933, 0.0889, 0.0858, 0.0867) (0.0064) (0.0132) (0.0355) (0.0000) (0.0006) (0.0006)

(50, 50) x̄ = (0.2436, 0.4498, 0.5975, 0.5118) 0.9995 0.9953 0.9431 1.0000 0.9999 1.0000 0.2018 0.1672 <0.01 0.2082 0.2066 0.2082
σ = (0.0795, 0.0802, 0.0713, 0.0768) (0.0033) (0.013) (0.0322) (0.0000) (0.0015) (0.0000)

(100, 100) x̄ = (0.2131, 0.4277, 0.5819, 0.4917) 0.9996 0.9981 0.933 1.0000 0.9999 1.0000 0.1985 0.1723 <0.01 0.2107 0.2077 0.2107
σ = (0.0578, 0.0541, 0.0543, 0.0577) (0.0022) (0.0057) (0.0243) (0.0000) (0.001) (0.0000)

(500, 500) x̄ = (0.1812, 0.3992, 0.5598, 0.4662) 0.9995 0.9992 0.916 0.9999 0.9996 0.9998 0.1821 0.1581 <0.01 0.247 0.1911 0.2217
σ = (0.0278, 0.0277, 0.0255, 0.0262) (0.0011) (0.0016) (0.0121) (0.0005) (0.0009) (0.0006)

The same conclusions as in the previous tables can be deduced from Table 6 for the
mean vector scenario m1 = (0.2, 0.5, 1.0, 0.7)T , globally. The results show that our proposed
stepwise approach, in general, outperforms over the other algorithms. After it, the non-
parametric kernel smoothing approach and Yin and Tian’s stepwise approach are the best
performers, the results of the former being slightly better than those of the latter. Logistic
regression and the parametric approach under multivariate normality conditions obtain
similar results. The min-max approach is the worst performer.

However, the results provided by the simulated data with mean vector
m1 = (0.4, 1.0, 1.5, 1.2)T (Table 6) show that Yin and Tian’s stepwise approach and logistic
regression perform comparably. In these scenarios, the algorithms achieve a superior per-
formance than when considering simulated data with mean vector m1 = (0.2, 0.5, 1.0, 0.7)T ,
as is the case in all tables. Moreover, in this scenario (m1 = (0.4, 1.0, 1.5, 1.2)T ; Table 6), the
algorithms discriminate successfully, with the average Youden index achieved by all algo-
rithms being higher than 0.8, with the exception of min-max, which ranges between 0.72
and 0.85. Table 7 shows that these are also scenarios where the combination of biomarkers
discriminates satisfactorily. This result could be in line with the literature, where Pinsky
and Zhu [42] already unveiled a remarkable increase in performance when considering
the combination of highly negatively correlated variables. The results in Table 7 show
that the stepwise approaches are worse than the other algorithms, although all of them
achieve a perfect or near-perfect performance in some scenarios, with the exception of the
min-max approach.

3.1.4. Normal Distributions. Same Means for Diseased and Non-Diseased Population

Table 8 shows the results obtained from the multivariate normal distribution simula-
tions with mean vector m1 = (1.0, 1.0, 1.0, 1.0, 1.0)T under the low correlation (Σ1 = Σ2 =
0.7·I + 0.3·J) and different correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J) scenarios.
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Table 8. Normal distributions: Same means: m1 = (1.0, 1.0, 1.0, 1.0)T .

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

Same Correlation. Low Correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

(10, 20) x̄ = (0.5178, 0.5176, 0.5180, 0.5150) 0.8023 0.7592 0.704 0.7158 0.7128 0.7505 0.5881 0.1306 0.0969 0.0468 0.0263 0.1113
σ = (0.1439, 0.1440, 0.1377, 0.1427) (0.0993) (0.1061) (0.1177) (0.1335) (0.1256) (0.1165)

(30, 30) x̄ = (0.4661, 0.469, 0.4700, 0.4741) 0.7069 0.6756 0.6379 0.6384 0.6377 0.6682 0.6635 0.1258 0.0902 0.0201 0.0167 0.0836
σ = (0.1023, 0.1013, 0.1002, 0.0993) (0.0822) (0.0843) (0.0891) (0.0965) (0.0947) (0.0895)

(50, 30) x̄ = (0.4642, 0.4602, 0.4606, 0.4605) 0.6793 0.6629 0.6267 0.6224 0.6218 0.6523 0.6006 0.1586 0.1148 0.0118 0.0169 0.0972
σ = (0.0882, 0.0909, 0.0899, 0.0881) (0.0729) (0.0742) (0.0775) (0.0822) (0.0827) (0.078)

(50, 50) x̄ = (0.4491, 0.4483, 0.4448, 0.4479) 0.6564 0.634 0.606 0.6039 0.6044 0.6307 0.6627 0.1242 0.1036 <0.01 0.0138 0.0867
σ = (0.0787, 0.0795, 0.0778, 0.0782) (0.0644) (0.0674) (0.0719) (0.0724) (0.072) (0.0689)

(100, 100) x̄ = (0.4266, 0.4258, 0.4270, 0.4252) 0.6102 0.5989 0.5779 0.5793 0.5788 0.5979 0.5803 0.1536 0.1003 0.014 0.0129 0.1389
σ = (0.0536, 0.0578, 0.0580, 0.0581) (0.0484) (0.0499) (0.0499) (0.0518) (0.0515) (0.0503)

(500, 500) x̄ = (0.3998, 0.3987, 0.3980, 0.3989) 0.5556 0.5536 0.5387 0.5479 0.5478 0.555 0.3932 0.2252 0.0557 0.0337 0.0241 0.2681
σ = (0.0264, 0.0274, 0.0278, 0.0272) (0.0247) (0.0251) (0.025) (0.0253) (0.0255) (0.0247)

Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

(10, 20) x̄ = (0.5149, 0.5141, 0.5172, 0.5203) 0.7563 0.7156 0.7406 0.6664 0.6654 0.7022 0.3382 0.2086 0.2474 0.0590 0.0363 0.1104
σ = (0.1438, 0.1394, 0.1453, 0.1453) (0.1051) (0.1141) (0.1139) (0.1372) (0.1345) (0.1261)

(30, 30) x̄ = (0.4640, 0.4658, 0.4703, 0.4718) 0.6641 0.6353 0.6782 0.5896 0.5905 0.6224 0.3442 0.0746 0.4400 0.0210 0.0160 0.1041
σ = (0.1016, 0.0991, 0.0979, 0.0981) (0.0853) (0.0877) (0.0846) (0.0964) (0.0959) (0.0912)

(50, 30) x̄ = (0.4625, 0.4576, 0.4586, 0.4598) 0.6424 0.6256 0.6669 0.5791 0.5813 0.6119 0.2979 0.0744 0.4954 0.0119 0.0142 0.1062
σ = (0.0902, 0.0924, 0.0862, 0.0906) (0.0735) (0.0752) (0.0762) (0.0839) (0.0818) (0.0785)

(50, 50) x̄ = (0.4481, 0.4442, 0.4439, 0.4457) 0.6145 0.5936 0.6465 0.5552 0.5562 0.5826 0.3163 0.0587 0.5325 <0.01 <0.01 0.0800
σ = (0.0805, 0.0794, 0.0770, 0.0822) (0.0653) (0.0686) (0.0696) (0.0745) (0.075) (0.0728)

(100, 100) x̄ = (0.4253, 0.4275, 0.4273, 0.4254) 0.5658 0.5551 0.6220 0.5297 0.53 0.5491 0.1722 0.0516 0.7520 <0.01 <0.01 0.0187
σ = (0.0564, 0.0565, 0.0576, 0.0578) (0.05) (0.0513) (0.0504) (0.0538) (0.0534) (0.0527)

(500, 500) x̄ = (0.3994, 0.3992, 0.3994, 0.3993) 0.5085 0.5058 0.5870 0.5004 0.5005 0.5069 <0.01 <0.01 0.9930 <0.01 <0.01 <0.01
σ = (0.0275, 0.0270, 0.2720, 0.0267) (0.025) (0.0253) (0.0240) (0.026) (0.0262) (0.0256)

In contrast to the results in Table 2 (different means and low correlation), the results
in Table 8 show that the min-max approach performs better in scenarios with biomarkers
with the same means. This means that these are scenarios in which the biomarkers have a
similar discriminatory capacity, as can be seen in the second column of the table, where the
empirical estimates of the Youden index for each biomarker are presented. The table shows
that, for scenarios with a low correlation, the min-max algorithm performs similar to the
logistic regression and parametric approach under multivariate normality. In this scenario,
our proposed stepwise approach dominates the other algorithms. However, this is not the
case in the scenario of different covariance matrices (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J),
where the min-max approach is the best performer, becoming more and more prominent as
the sample size increases. Specifically, in almost 100% of the 1000 simulations of sample
size n1 = n2 = 500, the min-max approach performs best.

3.1.5. Non-Normal Distributions. Different Marginal Distributions

Table 9 shows the results obtained from simulations of multivariate chi-square, normal,
gamma and exponential distributions via normal copula with a dependence/correlation
parameter between biomarkers of 0.7 and 0.3 for the diseased and non-diseased popu-
lation, respectively. Biomarkers for the non-diseased population were considered to be
marginally distributed as χ2

0.1, N(0.1, 1), Γ(0.1, 1) and Exp(0.1), where the considered
probability density function for the gamma distribution X ∼ Γ(α, β), using the shape-rate
parametrization, is

f (x; α, β) =
xα−1 exp(−βx)βα

Γ(α)
, x ≥ 0, α, β ≥ 0 (17)

and, for the exponential distribution X ∼ Exp(λ), λ denoting the rate parameter, the
following:

f (x; λ) = λ exp(−λx), x > 0, λ ≥ 0 (18)

In the case of the diseased population, two scenarios were considered: χ2
0.1, N(0.3, 1),

Γ(0.4, 1), Exp(0.1) and χ2
0.1, N(0.6, 1), Γ(0.8, 1), Exp(0.1). Since the range of values for each

of the four biomarkers was markedly different, it was necessary to normalize the values for
each biomarker.
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Table 9. Non-normal distributions: Different marginal distributions.

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

N(0.3, 1)/Γ(0.4, 1)

(10, 20) x̄ = (0.2111, 0.2710, 0.6032, 0.2119) 0.7476 0.7004 0.4910 0.6047 0.5436 0.6672 0.5544 0.1723 0.0531 0.0767 0.0187 0.1237
σ = (0.1249, 0.1339, 0.1215, 0.1247) (0.099) (0.1076) (0.1258) (0.16) (0.1809) (0.1283)

(30, 30) x̄ = (0.1494, 0.2072, 0.5553, 0.1453) 0.661 0.6294 0.4306 0.5214 0.4585 0.6101 0.5692 0.1607 0.0112 0.0367 <0.01 0.2129
σ = (0.0875, 0.0942, 0.0940, 0.0854) (0.0803) (0.0876) (0.0916) (0.1278) (0.1488) (0.1144)

(50, 30) x̄ = (0.1364, 0.1939, 0.5476, 0.1328) 0.6413 0.6218 0.4300 0.5136 0.4492 0.6015 0.5183 0.1802 0.0170 0.0312 <0.01 0.2460
σ = (0.0757, 0.0828, 0.0876, 0.0745) (0.0778) (0.0809) (0.0798) (0.1212) (0.1447) (0.1059)

(50, 50) x̄ = (0.1161, 0.1752, 0.5384, 0.1126) 0.6239 0.6031 0.3957 0.4926 0.4455 0.5940 0.5254 0.1658 <0.01 0.0142 0.0104 0.2828
σ = (0.0656, 0.0720, 0.0744, 0.0610) (0.0651) (0.0704) (0.0726) (0.1048) (0.1275) (0.0878)

(100, 100) x̄ = (0.0847, 0.1466, 0.5216, 0.0829) 0.5869 0.5755 0.3728 0.4651 0.4403 0.5834 0.3691 0.1404 <0.01 <0.01 0.0102 0.4759
σ = (0.0459, 0.0551, 0.0537, 0.0460) (0.047) (0.05) (0.0564) (0.0773) (0.1037) (0.0620)

(500, 500) x̄ = (0.0387, 0.1061, 0.4968, 0.0387) 0.5423 0.5369 0.3497 0.4423 0.4404 0.5716 0.0395 0.0155 <0.01 <0.01 0.0115 0.9335
σ = (0.0201, 0.0265, 0.0252, 0.0206) (0.0235) (0.0253) (0.0260) (0.0439) (0.0652) (0.0271)

N(0.6, 1)/Γ(0.8, 1)

(10, 20) x̄ = (0.2111, 0.3666, 0.7690, 0.2119) 0.8899 0.8479 0.5380 0.804 0.7612 0.8296 0.5278 0.1513 <0.01 0.1438 0.0396 0.1282
σ = (0.1249, 0.1412, 0.1005, 0.1247) (0.0756) (0.0868) (0.1301) (0.1413) (0.1563) (0.1097)

(30, 30) x̄ = (0.1494, 0.3073, 0.7331, 0.1453) 0.8406 0.8013 0.5206 0.7626 0.7249 0.8042 0.6367 0.1127 <0.01 0.07 0.0154 0.1622
σ = (0.0875, 0.0997, 0.0797, 0.0854) (0.0685) (0.0723) (0.0909) (0.1083) (0.1202) (0.0807)

(50, 30) x̄ = (0.1364, 0.2940, 0.7280, 0.1328) 0.8283 0.7992 0.5504 0.7622 0.7188 0.7974 0.6465 0.1148 <0.01 0.0707 0.0111 0.1558
σ = (0.0757, 0.0891, 0.0763, 0.0745) (0.0651) (0.0686) (0.0811) (0.1012) (0.1125) (0.0766)

(50, 50) x̄ = (0.1161, 0.2745, 0.7216 ,0.1126) 0.8178 0.786 0.4974 0.7476 0.7158 0.7916 0.6727 0.0982 <0.01 0.0583 0.0152 0.1557
σ = (0.0656, 0.0785, 0.0654, 0.0610) (0.0554) (0.0603) (0.0768) (0.089) (0.0999) (0.0635)

(100, 100) x̄ = (0.0847, 0.2516, 0.7089, 0.0829) 0.7976 0.771 0.4836 0.7354 0.7114 0.7805 0.7245 0.0628 <0.01 0.0304 <0.01 0.1727
σ = (0.0459, 0.0605, 0.0457, 0.0460) (0.0399) (0.0424) (0.0579) (0.0651) (0.0733) (0.0433)

(500, 500) x̄ = (0.0387, 0.2177, 0.6886, 0.0387) 0.7774 0.7547 0.4635 0.7221 0.6929 0.7698 0.8105 0.0217 <0.01 <0.01 <0.01 0.1645
σ = (0.0201, 0.0274, 0.0215, 0.0206) (0.0193) (0.0217) (0.0256) (0.0347) (0.0373) (0.0194)

The results in Table 9 show that our stepwise approach also generally dominates
the other approaches in non-normal scenarios with different marginal distributions. It is
followed by Yin and Tian’s stepwise approach and the non-parametric kernel smoothing
approach. Logistic regression outperforms the parametric approach under multivariate
normality. The min-max approach is the worst performer.

3.1.6. Non-Normal Distributions. Log-Normal Distributions

Table 10 shows the results obtained from simulated data following a log-normal distri-
bution. Specifically, three scenarios were analyzed under this distribution: independent
biomarkers with different means (Σ1 = Σ2 = I and m1 = (0.2, 0.5, 1.0, 0.7)T), biomarkers
correlated with a medium intensity and different means (Σ1 = Σ2 = 0.5·I + 0.5·J and
m1 = (0.2, 0.5, 1.0, 0.7)T) and biomarkers correlated with a medium intensity and same
means (Σ1 = Σ2 = 0.5·I + 0.5·J and m1 = (1.0, 1.0, 1.0, 1.0, 1.0)T).

The results in Table 10 indicate that, in these scenarios of skewed distributions, our
stepwise approach performs significantly better than the other methods. Yin and Tian’s
stepwise approach performs slightly better than the non-parametric kernel smoothing
approach in most scenarios, especially in scenarios where the biomarkers have a similar
mean. Logistic regression globally outperforms the parametric approach under multivari-
ate normality and the min-max approach performs better than the logistic approach in
biomarker scenarios with the same predictive ability.

From the results provided under sample scenarios of non-normal distributions, it can
be deduced that our proposed stepwise approach remains the method that achieves the best
overall performance, followed by Yin and Tian’s stepwise approach and the non-parametric
kernel smoothing approach. The min-max method follows a similar behaviour to that
found in normal distribution scenarios, increasing its performance in biomarker samples
with a similar predictive ability. Unlike most simulated normal sample data scenarios, in
scenarios under non-normal distributions, logistic regression outperforms the parametric
approach under multivariate normality.
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Table 10. Non-normal distributions: Log-normal distributions.

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 ,n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Independence (Σ1 = Σ2 = I)

(10, 20) x̄ = (0.2737, 0.3560, 0.5178, 0.4314) 0.765 0.7189 0.627 0.6548 0.6284 0.7051 0.6045 0.1424 0.0867 0.0424 0.0157 0.1082
σ = (0.1357, 0.1395, 0.1421, 0.1457) (0.1013) (0.1097) (0.1222) (0.1448) (0.1524) (0.1194)

(30, 30) x̄ = (0.2063, 0.3024, 0.4663, 0.3673) 0.6545 0.6235 0.5527 0.5651 0.5422 0.6162 0.6476 0.1413 0.0772 0.0152 <0.01 0.1121
σ = (0.0943, 0.0991, 0.0990, 0.1053) (0.0835) (0.0857) (0.0959) (0.1014) (0.1088) (0.0892)

(50, 30) x̄ = (0.1933, 0.2975, 0.4630, 0.3603) 0.6289 0.6137 0.5397 0.5539 0.5313 0.6023 0.5810 0.1785 0.0862 0.0164 <0.01 0.1317
σ = (0.0846, 0.0937, 0.0894, 0.0898) (0.0742) (0.0758) (0.0816) (0.0888) (0.0942) (0.0798)

(50, 50) x̄ = (0.1764, 0.2784, 0.4484, 0.3458) 0.605 0.5829 0.5163 0.5308 0.5139 0.5735 0.6739 0.1518 0.0638 <0.01 <0.01 0.0996
σ = (0.0736, 0.0789, 0.0774, 0.0796) (0.0663) (0.0682) (0.0737) (0.0796) (0.0832) (0.0715)

(100, 100) x̄ = (0.1487, 0.2498, 0.4254, 0.3214) 0.5507 0.5399 0.4802 0.5027 0.4911 0.5322 0.6514 0.1676 0.0418 0.0105 <0.01 0.1223
σ = (0.0533, 0.0590, 0.0560, 0.0590) (0.0498) (0.0514) (0.0528) (0.0560) (0.0578) (0.0526)

(500, 500) x̄ = (0.1062, 0.2185, 0.3991, 0.2925) 0.4926 0.4904 0.4412 0.4779 0.4745 0.4890 0.5157 0.2015 <0.01 0.0257 0.0198 0.2308
σ = (0.0257, 0.0282, 0.0274, 0.0280) (0.0255) (0.0255) (0.0267) (0.0265) (0.0269) (0.0259)

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Medium Correlation (Σ1 = Σ2 = 0.5·I+0.5·J)

(10, 20) x̄ = (0.2713, 0.3657, 0.5268, 0.4280) 0.7319 0.6647 0.5354 0.6227 0.5784 0.6732 0.5570 0.1647 0.0280 0.0741 0.0245 0.1518
σ = (0.1353, 0.1477, 0.1423, 0.1427) (0.1064) (0.1185) (0.1314) (0.1429) (0.1568) (0.1191)

(30, 30) x̄ = (0.2032, 0.3020, 0.4665, 0.3668) 0.6177 0.5641 0.4490 0.5177 0.4834 0.5712 0.5712 0.1799 0.0124 0.0354 0.0101 0.1911
σ = (0.0933, 0.1014, 0.0991, 0.1008) (0.0836) (0.0885) (0.0981) (0.1016) (0.1153) (0.0899)

(50, 30) x̄ = (0.1931, 0.2928, 0.4581, 0.3632) 0.5848 0.5579 0.4333 0.5066 0.4713 0.5564 0.5245 0.2395 <0.01 0.0220 0.011 0.1972
σ = (0.0847, 0.0908, 0.0883, 0.0905) (0.0767) (0.0786) (0.0838) (0.0896) (0.1036) (0.082)

(50, 50) x̄ = (0.1753, 0.2761, 0.4472, 0.3495) 0.5619 0.5243 0.4121 0.4864 0.4546 0.5268 0.5553 0.1843 <0.01 0.0260 <0.01 0.2243
σ = (0.0742, 0.0798, 0.0787, 0.0791) (0.0676) (0.0712) (0.0767) (0.0792) (0.0899) (0.0745)

(100, 100) x̄ = (0.1449, 0.2487, 0.4250, 0.3236) 0.5089 0.4845 0.378 0.4567 0.4345 0.4859 0.5573 0.2003 <0.01 0.0208 <0.01 0.2118
σ = (0.0520, 0.0578, 0.0591, 0.0595) (0.0539) (0.056) (0.0567) (0.0608) (0.0677) (0.0582)

(500, 500) x̄ = (0.1063, 0.2187, 0.3994, 0.2921) 0.4446 0.4374 0.3329 0.4285 0.4202 0.4394 0.5233 0.1825 <0.01 0.0315 <0.01 0.2538
σ = (0.0261, 0.0280, 0.0264, 0.0279) (0.0261) (0.0257) (0.0273) (0.0265) (0.0282) (0.0265)

Same means: m1 = (1.0, 1.0, 1.0, 1.0)T . Medium Correlation (Σ1 = Σ2 = 0.5·I+0.5·J)

(10, 20) x̄ = (0.5224, 0.5172, 0.5268, 0.5197) 0.7619 0.7249 0.66 0.663 0.6254 0.7041 0.5180 0.2036 0.0794 0.0675 0.0183 0.1132
σ = (0.1405, 0.1442, 0.1423, 0.1404) (0.1032) (0.1127) (0.1267) (0.1402) (0.1508) (0.1187)

(30, 30) x̄ = (0.4685, 0.4669, 0.4665, 0.4640) 0.6624 0.6291 0.5882 0.5676 0.5385 0.6089 0.5416 0.2341 0.0776 0.0251 <0.01 0.1123
σ = (0.1024, 0.1025, 0.0991, 0.0991) (0.0851) (0.0878) (0.0926) (0.101) (0.1092) (0.0939)

(50, 30) x̄ = (0.4586, 0.4621, 0.4581, 0.4627) 0.6337 0.6167 0.5758 0.5566 0.5263 0.5949 0.5167 0.2714 0.0851 0.0171 0.0107 0.0991
σ = (0.0878, 0.0908, 0.0883, 0.0878) (0.0759) (0.0773) (0.082) (0.0871) (0.102) (0.083)

(50, 50) x̄ = (0.4459, 0.4477, 0.4472, 0.4479) 0.6089 0.5887 0.5562 0.5335 0.5061 0.5688 0.5359 0.2648 0.0887 0.0127 <0.01 0.0929
σ = (0.0769, 0.0810, 0.0787, 0.0789) (0.0673) (0.0715) (0.0737) (0.0795) (0.087) (0.0758)

(100, 100) x̄ = (0.4243, 0.4235, 0.4250, 0.4263) 0.5598 0.5457 0.5266 0.5081 0.4879 0.5331 0.5434 0.2628 0.0996 0.0128 <0.01 0.0772
σ = (0.0569, 0.0572, 0.0591, 0.0597) (0.0498) (0.0525) (0.0537) (0.0565) (0.0638) (0.0544)

(500, 500) x̄ = (0.3993, 0.3990, 0.3994, 0.3992) 0.4963 0.4934 0.4883 0.4819 0.4748 0.4908 0.4802 0.2588 0.1300 0.0135 <0.01 0.1105
σ = (0.0268, 0.0277, 0.0264, 0.0270) (0.0254) (0.0255) (0.0256) (0.0265) (0.0277) (0.0259)

3.2. Simulations. Validation

Tables 11–16 show the results of the validation of each algorithm for every simulated
data scenario. In particular, for all simulated setting of parameters, using 100 random sam-
ples, and for each method, the mean and standard deviation (in brackets) of the maximum
Youden indexes obtained in the analysis of the 100 validation samples are presented.

These results and conclusions drawn in terms of validation in the simulated scenarios
are presented below.

3.2.1. Normal Distributions. Different Means and Equal Positive Correlations for Diseased
and Non-Diseased Population

The results in Table 11 show that, for normal simulated data, different means and
equal positive correlation, the logistic regression and the parametric approach under
multivariate normality outperform the rest of the methods in all scenarios for small or large
sample sizes. The non-parametric kernel smoothing approach shows lower but comparable
results to the logistic regression and non-parametric approach, especially in large sample
sizes. Our stepwise approach outperforms Yin and Tian’s stepwise approach, especially
and significantly in the high correlation scenario. Our stepwise approach is closer in
performance to the non-parametric kernel smoothing approach for large sample sizes. The
min-max approach is the one with the worst results in such scenarios.
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Table 11. Normal distributions: Different means and equal positive correlations. Validation.

Size (n1, n2)
Independence (Σ1 = Σ2 = I)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4270 (0.0951) 0.4206 (0.1134) 0.3696 (0.1037) 0.4530 (0.0919) 0.4520 (0.0934) 0.4434 (0.0911)
(500, 500) 0.4823 (0.0304) 0.4804 (0.0291) 0.4103 (0.0308) 0.4882 (0.0282) 0.4895 (0.0297) 0.4863 (0.0301)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.6610 (0.0842) 0.6610 (0.0880) 0.6024 (0.0908) 0.6990 (0.0779) 0.6994 (0.0787) 0.6902 (0.0773)
(500, 500) 0.7163 (0.0224) 0.7159 (0.0228) 0.6418 (0.0253) 0.7238 (0.0205) 0.7249 (0.0200) 0.7223 (0.0207)

Low correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3430 (0.0969) 0.3376 (0.1041) 0.2642 (0.1211) 0.3686 (0.0949) 0.3736 (0.0924) 0.3586 (0.1012)
(500, 500) 0.4074 (0.0285) 0.4056 (0.0303) 0.3189 (0.0322) 0.4149 (0.0309) 0.4155 (0.0314) 0.4131 (0.0292)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5576 (0.0939) 0.5510 (0.1024) 0.5056 (0.0979) 0.5790 (0.0921) 0.5790 (0.0853) 0.5740 (0.0955)
(500, 500) 0.6084 (0.0294) 0.6079 (0.0284) 0.5213 (0.0289) 0.6183 (0.0286) 0.6181 (0.0284) 0.6161 (0.0289)

Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3618 (0.0984) 0.3442 (0.1009) 0.2474 (0.1072) 0.3750 (0.0854) 0.3678 (0.0839) 0.3640 (0.0880)
(500, 500) 0.4088 (0.0351) 0.4039 (0.0327) 0.2924 (0.0323) 0.4178 (0.0334) 0.4189 (0.0340) 0.4154 (0.0336)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5490 (0.0921) 0.5340 (0.1002) 0.4584 (0.0994) 0.5660 (0.0830) 0.5684 (0.0864) 0.5584 (0.0876)
(500, 500) 0.5936 (0.0303) 0.5914 (0.0303) 0.4840 (0.0293) 0.6063 (0.0319) 0.6059 (0.0301) 0.6034 (0.0286)

High correlation (Σ1 = Σ2 = 0.3·I + 0.7·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4150 (0.0946) 0.3430 (0.1203) 0.2522 (0.1081) 0.4296 (0.0952) 0.4310(0.0989) 0.4136 (0.0962)
(500, 500) 0.4588 (0.0307) 0.4234 (0.0386) 0.2899 (0.0317) 0.4662 (0.0260) 0.4666 (0.0258) 0.4632 (0.0280)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5892 (0.09036) 0.5364 (0.1098) 0.4542 (0.0957) 0.6218 (0.0839) 0.6196 (0.0851) 0.6134 (0.0892)
(500, 500) 0.6285 (0.0234) 0.6171 (0.0307) 0.4823 (0.0315) 0.6456 (0.0220) 0.6461 (0.0213) 0.6460 (0.0227)

3.2.2. Normal Distributions. Different Means and Unequal Positive Correlations for
Diseased and Non-Diseased Population

For normal simulated data, different means and unequal positive correlation for
diseased and non-diseased population, the results displayed in Table 12 show logistic
regression and the parametric approach under multivariate normality as the best models,
and as very similar to the non-parametric kernel smoothing approach, with the stepwise
approaches slightly worse and the min-max method with clearly lower values.

Table 12. Normal distributions: Different means and unequal positive correlations. Validation.

Size (n1, n2)
Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3528 (0.1106) 0.3532 (0.1072) 0.3236 (0.1012) 0.3878 (0.1079) 0.3814 (0.1061) 0.3832 (0.1127)
(500, 500) 0.4162 (0.0278) 0.4128 (0.0318) 0.3534 (0.0329) 0.4224 (0.0282) 0.4233 (0.0295) 0.4120 (0.0281)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5500 (0.1030) 0.5218 (0.1041) 0.4328 (0.0880) 0.5792 (0.1014) 0.5730 (0.1012) 0.5700 (0.1025)
(500, 500) 0.5974 (0.0295) 0.5966 (0.0299) 0.4757 (0.0320) 0.6062 (0.0276) 0.6053 (0.0275) 0.6038 (0.0271)
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3.2.3. Normal Distributions. Different Means and Equal Negative Correlations for
Diseased and Non-Diseased Population

The performance of the algorithms for normal simulated data, different means and
equal negative correlation was very similar to previous results. It can be seen in Table 13
that logistic regression and the parametric approach under multivariate normality were
the best models, followed by the non-parametric kernel smoothing approach, our stepwise
approach and Yin and Tian’s stepwise approach, with worse results for the min-max
algorithm.

Table 13. Normal distributions: Different means and equal negative correlations. Validation.

Size (n1, n2)
Negative Correlation (−0.1)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4822 (0.0990) 0.4670 (0.1028) 0.4316 (0.0939) 0.5168 (0.0944) 0.5160 (0.0920) 0.5010 (0.0920)
(500, 500) 0.5457 (0.0263) 0.5452 (0.0268) 0.4631 (0.0296) 0.5545 (0.0255) 0.5558 (0.0264) 0.5504 (0.0275)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.7444 (0.0800) 0.7388 (0.0725) 0.6788 (0.0874) 0.7694 (0.0671) 0.7730 (0.0653) 0.7702 (0.0611)
(500, 500) 0.7960 (0.0209) 0.7953 (0.0213) 0.7085 (0.0265) 0.8015 (0.0204) 0.8015 (0.0216) 0.7990 (0.0194)

Negative correlation (−0.3)
SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.8696 (0.0790) 0.8046 (0.1118) 0.6602 (0.0787) 0.9210 (0.0426) 0.9284 (0.0374) 0.9198 (0.0444)
(500,500) 0.9192 (0.0242) 0.9107 (0.0278) 0.6930 (0.0239) 0.9424 (0.0110) 0.9423 (0.0117) 0.9417 (0.0114)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.9382 (0.0600) 0.9462 (0.0485) 0.8754 (0.0545) 0.9544 (0.0410) 0.9734 (0.0338) 0.9646 (0.0443)
(500,500) 0.9950 (0.0043) 0.9943 (0.0047) 0.9001 (0.0153) 0.9948 (0.0049) 0.9975 (0.0030) 0.9958 (0.0047)

3.2.4. Normal Distributions. Same Means for Diseased and Non-Diseased Population

Regarding scenarios with normal simulated data and same means for the diseased and
non-diseased populations, the results in Table 14 present clear differences with previous
simulations. For scenarios of the same correlation, the min-max algorithm is not the worst
and all algorithms show a very similar mean Youden index in large samples. However,
for scenarios of different correlations, the min-max algorithm clearly outperforms the rest
of the algorithms.

Table 14. Normal distributions: Same means. Validation.

Size (n1, n2)
Same Means (m1 = (1.0, 1.0, 1.0, 1.0)T )

SLM SWD MM LR MVN KS

Same Correlation. Low Correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

(50, 50) 0.4626 (0.1062) 0.4376 (0.1081) 0.4794 (0.0954) 0.4878 (0.0900) 0.4882 (0.0944) 0.4852 (0.0951)
(500 ,500) 0.5129 (0.0305) 0.5174 (0.0318) 0.5073 (0.0278) 0.5254 (0.0285) 0.5254 (0.0284) 0.5219 (0.0283)

Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

(50, 50) 0.4030 (0.1110) 0.4102 (0.1057) 0.5220 (0.0966) 0.4340 (0.1029) 0.4402 (0.1027) 0.4312 (0.1018)
(500, 500) 0.4726 (0.0281) 0.4697 (0.0280) 0.5609 (0.0285) 0.4783 (0.0259) 0.4793 (0.0260) 0.4753 (0.0256)

Thus, in summary, for normal simulated data, our stepwise approach, Yin and Tian’s
stepwise model, logistic regression, parametric under multivariate normality and non-
parametric kernel smoothing algorithms showed a close performance, with the best results
for logistic regression and the parametric approach under multivariate normality, an
intermediate position for the kernel smoothing algorithm and lower values for our proposed
stepwise approach, which is still better than Yin and Tian’s stepwise algorithm in most cases,
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and significantly for high correlations. By contrast, the min-max algorithm has a worse
performance for scenarios with different means, but is clearly superior for simulations
generated with the same mean for disease markers and different correlations for disease
and non-disease populations.

3.2.5. Non-Normal Distributions. Different Marginal Distributions

Table 15 shows results for the non-normal scenario with different marginal distribu-
tions, which is a scenario that is probably closer to the reality of the actual data, where
asymmetries occur when patients have different degrees of a disease. In this cases, the
stepwise approaches clearly outperform the rest of the algorithms, with the better results
for our proposed stepwise algorithm. For large sample sizes, the non-parametric kernel
smoothing shows markedly superior results to the logistic and the parametric approach.
As in some previous cases, the min-max method fails to provide similar results in these
scenarios.

Table 15. Non-normal distributions: Different marginal distributions. Validation.

Size (n1, n2)
Different Marginal Distributions

SLM SWD MM LR MVN KS

N(0.3, 1)/Γ(0.4, 1)

(50, 50) 0.4732 (0.0860) 0.4684 (0.0891) 0.2374 (0.1158) 0.3656 (0.1243) 0.3316 (0.1534) 0.3146 (0.2140)
(500, 500) 0.5095 (0.0277) 0.5018 (0.0297) 0.3180 (0.0442) 0.4137 (0.0459) 0.4285 (0.0671) 0.4787 (0.1191)

N(0.6, 1)/Γ(0.8, 1)

(50, 50) 0.7058 (0.0848) 0.6794 (0.0877) 0.3716 (0.1194) 0.6572 (0.1080) 0.6368 (0.1079) 0.6716 (0.1207)
(500, 500) 0.7568 (0.0231) 0.7351 (0.0229) 0.4350 (0.04530) 0.7065 (0.0363) 0.6807 (0.0360) 0.7469 (0.0304)

3.2.6. Non-Normal Distributions. Log-Normal Distributions

Table 16 shows the results for the simulated log-normal distributions. Similar conclu-
sions can be drawn for the simulated normal data. We can infer that, for distributions that
can be converted into normal distributions by means of monotonic transformations, we
expect to find similar conclusions as for the simulations under the normality hypothesis.

Table 16. Non-normal distributions: Log-normal distributions. Validation.

Size (n1, n2)
Log-Normal Distributions

SLM SWD MM LR MVN KS

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Independence (Σ1 = Σ2 = I)

(50, 50) 0.4022 (0.1019) 0.4078 (0.1041) 0.3658 (0.1060) 0.4112 (0.0936) 0.4034 (0.0903) 0.3914 (0.1142)
(500, 500) 0.4504 (0.0296) 0.4506 (0.0315) 0.4096 (0.0324) 0.4562 (0.0300) 0.4541 (0.0321) 0.4507 (0.0534)

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

(50, 50) 0.3460 (0.0103) 0.3454 (0.1056) 0.2574
(0.1024017) 0.3482 (0.1065) 0.3370 (0.1100) 0.3374 (0.1133)

(500, 500) 0.3990 (0.0345) 0.3954 (0.0358) 0.2924 (0.0336) 0.3990 (0.0372) 0.3960 (0.0367) 0.4014 (0.0348)

Same means: m1 = (1.0, 1.0, 1.0, 1.0)T . Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

(50, 50) 0.3890 (0.1035) 0.3756 (0.1029) 0.4170 (0.1046) 0.4102 (0.0969) 0.3796 (0.1187) 0.3584 (0.1133)
(500, 500) 0.4465 (0.0306) 0.4515 (0.0315) 0.4548 (0.0282) 0.4570 (0.0309) 0.4514 (0.0317) 0.4545 (0.0317)

3.3. Computational Times

In addition to the performance of the algorithms in terms of the Youden index, in
practice, it can be important to also consider the computational time taken by the algorithm
to be used. Although our proposal is an algorithm of an extensive search, when k is the
number of values of βi to be considered and p is the number of markers, the number
of Youden indexes necessary to estimate the parameters of the model is reduced from
the p · kp−1 order using the comprehensive Pepe and Thompson algorithm [13] to the
k · (p− 1)( 3

2 p− 1) order using the stepwise procedure.
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Without a loss of generality, Table 17 shows the average computational time of 1000
simulations of each of the analyzed algorithms for the scenario of normal distributions, a
low positive correlation and vector of means (m1 = (0.2, 0.5, 1.0, 0.7)) (Table 2), both for the
smallest sample size (n1 = 10, n2 = 20) and for the largest sample size (n1 = 500, n2 = 500).

Table 17. Total computational time for each algorithm (estimated by mean of 1000 samples).

Computational Times (min)

SLM SWD MM LR MVN KS

(n1, n2) = (10, 20) 17.1157 0.096 0.014 0.00003 0.00004 0.0003
(n1, n2) = (500, 500) 0.5939 0.096 0.033 0.00004 0.00004 0.0007

Table 17 shows that the stepwise algorithms have a longer computational time than the
other algorithms. Our proposed algorithm entails a noticeably higher computational time
compared to Yin and Tian’s stepwise approach. This difference in the computational time
is due to the biomarker search that optimizes the linear combination at each step and the
handling of ties in our algorithm, which gets worse at small sample sizes where ties are more
common. As a consequence, there is a high disparity between computational times with
small sample sizes. This computational burden increases significantly for a larger number
of biomarkers. However, although this high computational time presents a limitation in our
algorithm, it addresses a correct handling of ties, leading to better discriminatory ability
results. Furthermore, the computational time of a single simulation is, for four biomarkers,
in any case, addressable. It should also be noted that the computational times of derivative-
based numerical search methods (such as the non-parametric kernel smoothing approach)
significantly depend on the initial values.

3.4. Application in Clinical Diagnosis Cases

Figures 1 and 2 show the distribution of each biomarker for the Duchenne muscular
dystrophy and prostate cancer dataset, respectively, where disease refers to clinically
significant prostate cancer.

Figure 1. Marginal distributions of biomarkers. DMD dataset. CK: serum creatine kinase, H:
haemopexin, PK: pyruvate kinase, LD: lactate dehydrogenase.
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Figure 2. Marginal distributions of biomarkers. Prostate cancer dataset. PSA: prostate specific
antigen, Age: age in years, BMI: body mass index, Free PSA: percentage of Free PSA.

Tables 18 and 19 show the empirical estimates of the Youden index of each biomarker
and the optimal cut-off point (threshold), as well as the characteristics of each of them
in terms of mean, standard deviations (SD) and correlations between them for both the
disease and non-disease group, considered as a non-carrier for the Duchenne muscular
dystrophy dataset and non-clinically significant prostate cancer for the prostate cancer
dataset, respectively.

Table 18. DMD dataset information.

Non-Carrier Carrier

Youden Threshold Mean SD Mean SD
CK 0.6124 57 36.6102 18.6006 185.791 226.9330
H 0.4172 87.5 82.3072 12.2403 92.9303 9.8576

PK 0.5079 16.7 12.1447 4.3935 23.9310 17.2122
LD 0.5776 188 164.5748 41.3686 250.9403 72.4368

Correlations
Non-

Carrier rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD

−0.3340 0.1029 0.1987 0.0812 0.1824 0.2188
Carrier rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD−0.1364 0.6953 0.4851 −0.118 −0.1048 0.4813

rCK−H , rCK−PK , rCK−LD , rH−PK , rH−LD , rPK−LD denote the correlations between CK and H biomarkers, CK
and PK biomarkers, CK and LD biomarkers, H and PK biomarkers, H and LD biomarkers and PK and LD
biomarkers, respectively.
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Table 19. Prostate cancer dataset information.

Non-Cancer Cancer

Youden Threshold Mean SD Mean SD
PSA 0.1571 9.45 6.7875 2.3160 7.9887 5.2761
Age 0.2202 68 65.0804 7.2840 68.8732 6.6846
BMI 0.0953 25.83 27.8590 3.8243 27.7559 3.8756

Free PSA 0.4007 13.95 18.3629 7.5917 14.7190 11.4067

Correlations
Non-

Cancer rPSA−Age rPSA−BMI rPSA−FreePSA rAge−BMI rAge−FreePSA rBMI−FreePSA

0.0901 −0.1179 −0.1127 0.0536 0.0894 0.0694
Cancer rPSA−Age rPSA−BMI rPSA−FreePSA rAge−BMI rAge−FreePSA rBMI−FreePSA

−0.1985 0.0896 −0.0756 0.0758 0.2478 −0.0767
rPSA−Age, rPSA−BMI , rPSA−FreePSA, rAge−BMI , rAge−FreePSA, rBMI−FreePSA denote the correlations between PSA and
Age biomarkers, PSA and BMI biomarkers, PSA and FreePSA biomarkers, Age and BMI biomarkers, Age and
FreePSA biomarkers and BMI and FreePSA biomarkers, respectively.

Concerning the performance achieved by each method, Tables 20 and 21 present the
linear combination for the optimal cut-off point that maximizes the Youden index, as well as
the sensitivity and specificity values achieved, for the Duchenne muscular dystrophy and
prostate cancer dataset, respectively. Tables 22 and 23 show these metrics after applying
the 10-fold cross validation procedure.

Table 20. Linear combination that maximizes the Youden index for each method. DMD dataset.

Optimal Linear Combination Youden Sensitivity Specificity

SLM 0.57× CK + H + 0.65× PK + 0.08× LD 0.8255 0.8806 0.9449
SWD 0.36× CK + 0.82× H + PK + 0.1296× LD 0.8184 0.8657 0.9528
MM 0.14×max{CK, H, PK, LD}+ min{CK, H, PK, LD} 0.7335 0.8358 0.8976
LR 0.0482× CK + 0.1039× H + 0.0992× PK + 0.0138× LD 0.8106 0.8657 0.9449

MVN 0.0956× CK + 0.126× H + 0.1847× PK + 0.0316× LD 0.7878 0.8507 0.9370
KS 1.1699× CK + 3.1787× H + 3.819× PK + 0.5899× LD 0.8035 0.8507 0.9528

CK, H, PK, LD: biomarkers normalized after min-max scaling. The results rounded to four decimal places
are displayed.

Table 21. Linear combination that maximizes the Youden index for each method. Prostate can-
cer dataset.

Optimal Linear Combination Youden Sensitivity Specificity

SLM 0.04× PSA + 0.48× Age− 0.01× BMI − FreePSA 0.4857 0.7746 0.7111
SWD PSA + 0.84× Age + 0.07× BMI − FreePSA 0.4319 0.7887 0.6432
MM max{PSA, Age, BMI, FreePSA} −min{PSA, Age, BMI, FreePSA} 0.2986 0.5775 0.7211
LR 0.0881× PSA + 0.0803× Age− 0.0079× BMI − 0.0755× FreePSA 0.4284 0.7324 0.6960

MVN 0.2605× PSA + 0.335× Age− 0.086× BMI − 0.162× FreePSA 0.3660 0.6901 0.6759
KS 1.1737× PSA + 27.7107× Age− 7.7898× BMI − 51.2465× FreePSA 0.4681 0.7746 0.6935

PSA, Age, BMI, FreePSA: biomarkers normalized after min-max scaling. The results rounded to four decimal
places are displayed.

Table 22. Ten-fold cross validation. DMD dataset.

10-Fold Cross Validation. DMD Dataset.

Youden Sensitivity Specificity

SLM 0.7611 0.8576 0.9135
SWD 0.7301 0.8167 0.9135
MM 0.6215 0.7786 0.8429
LR 0.7861 0.8476 0.9345

MVN 0.7391 0.8167 0.9224
KS 0.7635 0.8333 0.9301
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Table 23. Ten-fold cross validation. Prostate dataset.

10-Fold Cross Validation. Prostate Dataset.

Youden Sensitivity Specificity

SLM 0.3844 0.6786 0.7058
SWD 0.3628 0.6946 0.6681
MM 0.2247 0.4661 0.7586
LR 0.3327 0.6768 0.6559

MVN 0.2785 0.6625 0.6160
KS 0.3820 0.6911 0.6910

3.4.1. Duchenne Muscular Dystrophy Dataset

The mean values of each biomarker and the correlations between them are very
different and differ between carriers and non-carriers. Likewise, the variances of the four
biomarkers are very different and, therefore, it is necessary to normalize the values of each
variable before applying the min-max method. In this way, different units of measurement
are avoided so that a correct use of the min-max algorithm is made, where all biomarkers
must be in the same unit. The estimates of the Youden index of each biomarker (CK, H, PK,
LD) in a univariate way were 0.6124, 0.4172, 0.5079 and 0.5776.

The linear methods (combination of biomarkers) achieved a remarkable Youden index
in training data, with values above 0.8 for most of them. Stepwise methods followed
by logistic regression and the non-parametric method based on kernel smoothing are
the ones that obtained the best results. Our proposed stepwise approach achieved the
best performance in training data (Youden index = 0.8255) with the linear combination
0.57× CK + H + 0.65× PK + 0.08× LD, but the logistic regression showed the best result
in a 10-fold cross validation procedure (Youden index = 0.7861) with the linear combination
0.0482 × CK + 0.1039 × H + 0.0992 × PK + 0.0138 × LD. It is followed by the kernel
algorithm and our stepwise approach. These results are in concordance with those of
normal simulated data or variables that can be converted into normal distributions by
means of monotonic transformations.

3.4.2. Prostate Cancer Dataset

Although to a lesser extent than the previous example, there is a notable difference be-
tween the variances of the biomarkers, so the values were also normalized before applying
the min-max approach. The correlations between biomarkers are close to zero (independent
biomarkers). The Youden index estimates for each biomarker (PSA, age, BMI, free PSA) in
a univariate way were lower than the previous data set: 0.1571, 0.2202, 0.0953 and 0.0141.

Our proposed stepwise algorithm and the non-parametric method based on kernel
smoothing dominate all of the other methods. Our algorithm achieved the best performance
in training and validation data (maximum Youden index = 0.4857, 0.3844 for training and
validation data respectively) with the linear combination 0.04× PSA + 0.48× Age− 0.01×
BMI − FreePSA. In these cases, PSA and free PSA are markers that usually present a
marked asymmetry, showing a greater or lower degree of progress of the cancer disease; in
this scenario, simulated data also showed the superiority of the stepwise algorithm.

4. Discussion

Although continuous markers usually provide better adjusted predictions, in classi-
fication problems, the ultimate goal is to assign a class 0/1 for any individual. Choosing
threshold probabilities to dichotomize a predictive or prognostic model is the key to solve
this problem. There are different methods to provide the cut-off point depending on the
purpose of the classification, but there is a consensus that, without a clear reason to provide
higher values for sensitivity or specificity, the Youden index provides an optimized balance
of sensitivity/specificity [43].

Thus, the Youden index has been the most usual method to classify patients according
to predictive or prognostic models in medicine. As previous studies provide methods
to estimate the parameter of linear models in order to optimize ROC parameters, in this
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work, we have proposed a stepwise algorithm that maximizes the Youden index. This
algorithm is based on sequential optimizations, as they happen in dynamic programming,
thus following the Bellman’s optimality principle [44]. Unlike similar algorithms that use
partial optimizations, we explore, at any step, the candidate biomarkers to be added to the
model that provide linear combinations with the highest Youden index, following Pepe
and Thompson’s parameter search approach. In addition, our proposal also considers the
ties that appear in the sequencing of the partial optimizations.

Our proposed approach has been explored in extensive simulation scenarios and
compared with other methods. In particular, five other linear combination methods from
the literature adapted to optimize the Youden index have been considered for comparison.
Two of them are also based on Pepe and Thompson’s empirical search (the Yin and Tian
stepwise approach and the min-max approach) and three methods in numerical search
based on derivatives (the classical logistic regression approach, a parametric approach and
a non-parametric kernel smoothing approach).

The results obtained show that our proposed stepwise approach is superior to all other
compared methods in most of the simulated scenarios considered for training data, but
remains close to the rest for validation data, except in cases that are far from the verification
of the normality hypothesis, in which, it is the best method for both training and validation
data. It is globally followed by the Yin and Tian stepwise approach and the non-parametric
kernel smoothing approach, the latter being slightly better in scenarios of higher correlation
normal distributions for training data. However, in normal distributions scenarios, the non-
parametric kernel smoothing approach outperformed Yian and Tian’s stepwise approach for
the validation data. In normal distribution scenarios, logistic regression and the parametric
approach under multivariate normality showed a comparable performance overall, inferior
to the non-parametric kernel smoothing approach in training data but superior or similar to
the rest in validation data. However, the performance of the parametric approach worsened
compared to logistic regression in non-normal distribution scenarios, as expected.

The min-max approach performed the worst in scenarios with different biomarker
predictive capacities. However, it performed better in scenarios with the same predictive
capacity of biomarkers (both in normal and non-normal distributions) and it outperformed
the other algorithms when the covariance matrices differed between the diseased and
non-diseased population. Among the wide range of simulated scenarios, highly negatively
correlated biomarker scenarios were also included. In these scenarios, most algorithms
achieved a very high performance, a result that is in agreement with the study by Pinsky
and Zhu, who reported an increase in performance when considering highly negatively
correlated biomarkers. In cases where they achieved near-perfect Youden indexes, the
stepwise approaches performed worse than the other algorithms, with the exception of the
min-max approach.

The performance of the linear combination methods was also analyzed on real datasets.
The results obtained derived similar conclusions to those deduced from the simulated data.
Remarkably, the stepwise approach performance is superior to the rest of the algorithms
for the prostate cancer database in training and validation data. This is a data set where
the PSA and free PSA variables for screening populations, or without previous treatment,
present clear asymmetries that reflect the progression of the disease. This situation will
occur for many other diseases where markers do not present results under the hypothesis
of normality and the triggered values are associated with advanced stages of a disease.
In these scenarios, the stepwise algorithm that we have proposed performs better than
parametric algorithms where the non-verification of the hypothesis (normality or logistic
relation) results in a loss of prediction capacity in the models.

The stepwise approaches and the non-parametric kernel smoothing approach achieved
a good performance in general. Logistic regression also achieved one of the best discrimina-
tive capabilities on the DMD dataset (the best in the validation data), whose performance
was relatively high overall.

Therefore, given the results of the spectrum analyzed, we could suggest the reader
to use the min-max algorithm in scenarios with biomarkers with a similar predictive
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power and different covariance matrices between the disease and non-disease group, and
our proposed stepwise approach in other scenarios, especially for those apart from the
normality hypothesis. In addition, we have created a library in R (SLModels) that can be
used to implement these algorithms.

However, in terms of the computational time, stepwise approaches and, in particular,
our proposal entail a significantly higher computational time due to the handling of ties,
which may be more present in small sample sizes. This may be a limitation in the use of our
algorithm, since, in practice, a faster computational speed is desired, especially when the
number of biomarkers increases (p > 5). In these cases, the other algorithms (non-stepwise
or min-max approach) have the advantage of being much more efficient. However, it has
been shown that the min-max approach may not be sufficient in terms of discrimination
in some scenarios. Aznar-Gimeno et al. [45] proposed a new approach that extends the
min-max approach in order to analyze whether it increased predictive capacity while also
being computationally tractable independently of the number of biomarkers.

As a line of future work, it is intended to optimize the proposed stepwise algorithm,
with the aim of reducing its computational burden. It is intended to create tie handling
strategies in such a way that the least pernicious criteria are used to break ties and not
to drag them through many stages. The idea is to balance a certain increase in perfor-
mance against an increase in computational load. Readers are also encouraged to adapt
our algorithm using other target metrics to optimize and validate it in other scenarios,
such as to explore and analyze the algorithm in multi-class classification problems using
ROC surfaces.

5. Conclusions

In this work, we present a stepwise algorithm that complements and extends related
existing ideas to optimize ROC-curve-derived parameters for linear models. We used, as
the optimization parameter, the Youden index, which is the most used threshold point
to dichotomize markers. As a strength, the developed method is a fully non-parametric
distribution-free approach that showed a better performance in some scenarios. In addition,
it captures the full predictive ability of a set of variables, in contrast to methodologies
that try to reduce them. Additionally, the research has led to the creation of the R library
SLModels, which incorporates our proposed algorithm, can be used and is openly available
to the scientific community. We believe that the findings of this research will provide insight
for the development and application of algorithms for classification problems in medicine.
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Caṕıtulo 6

Enfoques Min-Max-Median,
Min-Max-IQR bajo maximización
del ı́ndice de Youden

En este caṕıtulo se presentan los trabajos [8, 7], siguiendo la ĺınea de investigación

de estimación de modelos de clasificación con criterios de optimalidad derivados de la

curva ROC. En concreto, en el trabajo [8] se proponen nuevos enfoques no paramétricos

(enfoque Min-Max-Median, Min-Max-IQR) para la combinación de biomarcadores bajo

la maximización del ı́ndice de Youden. En el trabajo [7] se presenta una comparación

de los enfoques propuestos con otros algoritmos del estado del arte, que incluyen el

algoritmo de Machine Learning (ML) XGBoost. En las siguientes secciones se explica

el propósito de estas investigaciones y las aportaciones de cada trabajo, [8] y [7]

respectivamente.

6.1. Enfoques propuestos: Min-Max-Median/IQR

Siguiendo la ĺınea de estudio del caṕıtulo previo, Liu et al. [56] sugieren un

enfoque no paramétrico, denominado enfoque min-max, que también aborda la

limitación computacional de los estudios de la literatura. Este enfoque tiene una carga

computacional más eficiente que los enfoques paso a paso, puesto que se basa en

combinar linealmente los valores mı́nimo y máximo de los biomarcadores, involucrando

una sola búsqueda de coeficientes (sección 4.1.3). Esto supone una ventaja ya que,

independientemente del número de biomarcadores originales, su carga computacional

es similar. Sin embargo, se ha demostrado en diversos estudios, particularmente en

nuestro trabajo [4] presentado en el caṕıtulo anterior, que existen escenarios en los que

el enfoque min-max alcanza una optimalidad notablemente inferior a otros métodos

como los algoritmos paso a paso. Esto indica que la combinación de los valores mı́nimo y

máximo (estad́ısticos extremos) podŕıa no ser suficiente en términos de discriminación.
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La motivación de este trabajo [8] se basa en estos resultados. Proponemos nuevos

enfoques, denominados enfoque Min-Max-Median (MMM) y enfoque Min-Max-IQR

(MMIQR), que ampĺıan el enfoque propuesto por Liu et al. [56], incorporando

una nueva estad́ıstica de resumen, que incluye el valor central (mediana) o una

medida de dispersión (rango intercuart́ılico). Esto permite considerar una mayor

información de los biomarcadores originales. Nuestro objetivo fue mejorar la capacidad

predictiva, al mismo tiempo que se manteńıa una carga computacional abordable,

independientemente del número de biomarcadores. En concreto, nuestro enfoque

implica la estimación de la combinación lineal óptima de tres variables. Para seleccionar

esta combinación óptima, utilizamos nuestro enfoque paso a paso propuesto en

el trabajo [4], presentado en el caṕıtulo anterior. La elección de este enfoque se

fundamenta en su rendimiento, que ha demostrado tener una de las mejores capacidades

discriminatorias, con ı́ndices de Youden más altos, tanto en los datos reales como en

simulaciones fuera de la normalidad, que suelen ser escenarios comunes en la práctica.

Esto lo convierte en una opción valiosa para nuestro propósito.

Los enfoques propuestos (MMM, MMIQR) fueron analizados y comparados con el

método min-max y la regresión loǵıstica, en diferentes escenarios de datos simulados y

datos reales. El objetivo era comparar su rendimiento con el enfoque que ampliamos

(método min-max) y el método tradicional de regresión loǵıstica, ambos eficientes

computacionalmente. Los datos simulados analizados cubren una amplia variedad

de escenarios en términos de la distribución de biomarcadores, la capacidad para

discriminar de los biomarcadores y la correlación entre ellos, teniendo en cuenta

tamaños de muestra desde pequeños hasta más grandes. En cuanto a los conjuntos

de datos reales, se consideraron datos para el diagnóstico de la distrofia muscular de

Duchenne y la predicción de SGA (Small for Gestational Age, en inglés).

Los resultados muestran que nuestras propuestas superan a la regresión loǵıstica

clásica en escenarios de biomarcadores con la misma capacidad predictiva y diferentes

matrices de covarianza entre grupos. Nuestros enfoques funcionan mejor que el enfoque

min-max cuando los biomarcadores son independientes y en escenarios reales.

En conclusión, en este estudio presentamos nuevos enfoques no paramétricos

para la combinación de biomarcadores que buscan optimizar el ı́ndice de Youden.

Estos enfoques aprovechan las ventajas de los estudios previos en la literatura, al

mismo tiempo que abordan sus limitaciones, con el objetivo de mejorar su capacidad

predictiva.

La investigación realizada, junto con la presentada en el caṕıtulo anterior [4], ha

resultado también en la creación de la libreŕıa SLModels [6], que proporciona acceso a

los algoritmos propuestos (enfoque paso a paso, enfoque MMM, enfoque MMIQR), aśı
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como al enfoque min-max, para su libre utilización por parte de la comunidad cient́ıfica.

La información detallada sobre el uso de la libreŕıa SLModels se encuentra disponible

en el Anexo A.

A continuación, se presenta el art́ıculo que describe el trabajo realizado, donde se

detallan los enfoques propuestos (MMM, MMIQR) y se discute en mayor profundidad

la investigación llevada a cabo.
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Abstract: Linearly combining multiple biomarkers is a common practice that can provide a better
diagnostic performance. When the number of biomarkers is sufficiently high, a computational
burden problem arises. Liu et al. proposed a distribution-free approach (min–max approach) that
linearly combines the minimum and maximum values of the biomarkers, involving only a single
coefficient search. However, the combination of minimum and maximum biomarkers alone may not
be sufficient in terms of discrimination. In this paper, we propose a new approach that extends that
of Liu et al. by incorporating a new summary statistic, specifically, the median or interquartile range
(min–max–median and min–max–IQR approaches) in order to find the optimal combination that
maximises the Youden index. Although this approach is more computationally intensive than the one
proposed by Liu et al, it includes more information and the number of parameters to be estimated
remains reasonable. We compare the performance of the proposed approaches (min–max–median
and min–max–IQR) with the min–max approach and logistic regression. For this purpose, a wide
range of different simulated data scenarios were explored. We also apply the approaches to two real
datasets (Duchenne Muscular Dystrophy and Small for Gestational Age).

Keywords: linear combination; biomarkers; classification; Youden index; summary statistic; min–max
approach; logistic regression; median; interquartile range

1. Introduction

In clinical practice, it is common to have information on multiple biomarkers for
disease diagnosis. Combining them all into a single marker is common practice and usually
offers better diagnostic accuracy than considering each biomarker separately [1,2]. How to
increment the performance of a standard marker by adding new markers has also received
attention in the literature [3].

The combination of continuous biomarkers provides a continuous value and the
dichotomisation of this value is important as it provides the clinician with a classification
rule related to a disease and their clinical decisions are usually based on such categorisation
of patients into groups [4].

Although different algorithms have been considered to provide predictive models,
linear models (linear combination of biomarkers) have been widely proposed for binary
classification problems due to their simplicity of interpretation and good performance [5].

Mathematics 2021, 9, 2497. https://doi.org/10.3390/math9192497 https://www.mdpi.com/journal/mathematics
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The accuracy of the diagnostic marker is usually assessed on the basis of its discriminatory
ability as analysed by the Receiver Operating Characteristic (ROC) curve through derived
statistics such as sensitivity and specificity pairs, the area or partial area under the ROC
curve (AUC/pAUC), or the Youden index [6]. Specifically, the formulation of algorithms
for the estimation of binary classification models that maximise the AUC has been widely
explored and has been the background and basis for many subsequent algorithms recently
published [7–9].

Su and Liu [10] provided the estimation of linear models that maximises AUC under
multivariate normality. However, this normality assumption is a high-demand hypothesis
on real data and is often not easy to meet in clinical reality. This real limitation leads
to the need for more flexible statistical approaches that are not subject to distributional
assumptions [11,12]. Several statistical methods have been presented in the literature that
do not depend on a specific distribution. One example is the statistics of the fractional
moments, whose effectiveness and advantages have been demonstrated in real scenar-
ios [13,14]. Pepe et al. [15,16] proposed a distribution-free approach to estimate the linear
model that maximise AUC based on the Mann–Whitney U statistic [17], in order to address
the Su and Liu limitation. The process that Pepe et al. proposed is a discrete optimisation
which is based on an extensive search over the parameter vector. However, this process
is not computationally accessible (NP-hard problem) for a number of biomarkers p ≥ 3.
In order to make it computationally tractable, Pepe et al. also suggested the use of stepwise
algorithms that are an alternative which have shown to perform well in various scenarios.
The idea of these algorithms is to include a new biomarker at each step by selecting the best
combination of two biomarkers. The approach and suggestions proposed by Pepe et al.
have been the source of development of non-parametric and semiparametric approaches in
the construction of classifiers under optimality criteria derived from the ROC curve.

Esteban et al. [18] implemented the approach of Pepe et al. providing strategies to
handle ties that appear in the sequencing of partial optimisations under AUC optimisation
criteria. Kang et al. [19,20] proposed a less computationally demanding stepwise combi-
nation approach based on a rated of AUC values that correspond to predictors variables.
However, finding the optimal parameters in these stepwise approaches becomes a compu-
tational burden problem that is also difficult to tackle when the number of biomarkers is
high (p > 5).

Liu et al. [21] proposed an approach, called the min–max approach, which linearly
combines the minimum and maximum values of biomarkers, involving a single coeffi-
cient search that maximises the Mann–Whitney U statistic of AUC. The advantage of
this approach is that it is computationally tractable regardless of the number of biomark-
ers. However, it has been shown that there are scenarios where the min–max approach
generally achieves less optimality compared to other methods that use information from
all biomarkers, such as stepwise approaches [19,22]. This may indicate that the combi-
nation of minimum and maximum biomarkers alone may not be sufficient in terms of
discrimination [5].

Algorithms focused on optimising other parameters derived from the ROC curve
have also been developed. Liu et al. [23] analysed the optimal linear combination into
diagnostic marker maximising sensitivity over a range of specificity. Yin and Tian [24]
proposed approaches to estimate the joint confidence region of sensitivity and specificity
at the cut-off point determined by the Youden index. Based on the stepwise combination
approach of Kang et al., Yin and Tian [22] conducted a study with the aim of optimising the
Youden index. Yin and Tian [25] also studied the optimisation of the AUC and the Youden
index simultaneously and presented both parametric and non-parametric approaches that
estimate the joint confidence region of the AUC and the Youden index. Based on the
min–max approach, Ma et al. [26] adapted and extended the min–max method to the
estimation of the pAUC for multiple continuous biomarkers. Yu and Park [27] and Yan
et al. [28] also explored methods for the linear combination of multiple biomarkers that
optimise the pAUC.
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The Youden index is a statistical metric widely and successfully used in several clinical
studies and, at the same time, serves as an appropriate summary for making the diagnosis
and as a criterion for choosing the best cut-off points for dichotomising a biomarker [29],
which is key for the diagnosis of the disease. There are different methods for providing the
best cut-off point depending on the aim of the classification, but there is consensus that,
without a clear reason to provide higher values for sensitivity or specificity, the Youden
index provides an optimised balance of sensitivity/specificity.

In order to address the computational burden regardless of the number of biomarkers
and to increase the predictive capacity, in this work we propose a new approach that extends
that of Liu et al. by incorporating a new summary statistic, in particular, the median or
interquartile range (min–max–median and min–max–IQR approaches). Although this
approach is more computationally intensive than the one proposed by Liu et al., it includes
more information and the number of parameters to estimate remains reasonable. For the
choice of the best linear combination of these three variables, we use a stepwise method
(two steps) following the empirical search approach of Pepe and Thompson. For the search
of the optimal linear combination, we consider the Youden index as an objective function.

We compared the performance of the proposed algorithm (min–max–median and
min–max–IQR approaches) with the min–max approach adapted to optimise the Youden
index and logistic regression, which are computationally tractable linear approaches. For
this purpose, a comprehensive study was carried out considering different simulated data
scenarios. The performances of the approaches on real datasets (e.g., Duchenne muscular
dystrophy and Small for Gestational Age prediction) were also analysed. The comparison
of the performance of the algorithms was carried out by considering the results obtained
on the entire dataset (resubstitution method) and using a validation procedure derived
from K-fold cross-validation, which evaluates the generalisability of the predictive model
and avoids possible overfitting [30].

Thus, the aim of this work is to propose a new approach (min–max–median/min–
max–IQR approach) that has the advantage of being computable regardless of the number
of biomarkers and that does not depend on any distributional assumptions, and analyse
their performance in comparison with the min–max approach and the logistic regression
which is a standard in prediction models with good performance, to find optimal scenarios.

2. Materials and Methods

Firstly, we introduce the formulation of the linear model and estimation suggestions
of Pepe et al. [15,16]. This is the basis for the formulation and estimation of the linear
model of summary statistic-based approaches. Then, the methods based on Youden index
maximisation to be compared are presented: the min–max approach, the min–max–median
and min–max–IQR approaches and logistic regression. Finally, the simulated scenarios
as well as the real datasets considered are described. All methods were programmed and
applied using the free software R [31].

2.1. Background: Pepe et al.’s Approach

Pepe and Thompson [15] proposed a non-parametric approach in order to estimate the
linear model that maximises the AUC based on the Mann–Whitney U statistic [17]. Thus,
this approach allows its use for all types of data without any distribution assumptions. The
formulation of the linear model is as follows:

L(X) = X1 + β2X2 + · · ·+ βpXp (1)

where p denotes the number of biomarkers, Xi the biomarker i ∈ [1, . . . , p] and βi the
parameter to be estimated. If, in addition, we assumed that we have nk individuals of
the group k = 1, 2 (diseased and non-diseased, respectively) and Xki is the vector of
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p biomarkers for the ith individual of group k, then the empirical AUC based on the
Mann–Whitney U statistic is given by the following expression:

ÂUC =
∑n1

i=1 ∑n2
j=1 I(L(X1i) > L(X2j)) +

1
2 I(L(X1i) = L(X2j))

n1 · n2
(2)

For the estimation of the parameter βi, Pepe et al. suggested a discrete optimisation
which is based on a grid search over 201 equally spaced values in the interval [−1, 1].
For simplicity, consider the linear combination of two biomarkers: Xi + βXj. Due to the
invariant property of the ROC curve for any monotonic transformation, dividing by the β
value does not change the value of the sensitivity and specificity pair. Thus, estimating
Xi + βXj for β > 1 and β < −1 is equivalent to estimating 1

β Xi + Xj for β ∈ [−1, 1] and,
therefore, all possible values of β ∈ R are covered.

However, this optimisation requires a large computational effort for dimensions
p ≥ 3. In order to make it computationally accessible, Pepe et al. suggested using
stepwise algorithms in which a new biomarker is included at each stage, selecting the
best combination of two biomarkers. This turns an unaddressable computational burden
problem into an addressable one by applying p− 1 times Pepe et al.’s suggested single-
parameter estimate.

Although Pepe et al. originally introduced this approach to optimise the AUC, both
the formulation of the linear model (1), the suggested empirical search and the suggested
use of stepwise approaches are the basis in the development of the min–max approaches
and our proposals: min–max–median and min–max–IQR approaches under Youden index
maximisation.

Let Xkij be the jth biomarker (j = 1, . . . , p) for the ith individual of group k = 1,2
(disease and non-disease, respectively), Xki the vector of p biomarkers for the ith individual
of group k and Xk =

(
Xk1, . . . , Xknk

)
where nk is the number of individuals in group k.

The Youden Index (J) of the linear combination is defined as:

J = max
c
{Sensitivity(c) + Speci f icity(c)− 1}

= max
c
{FY2(c)− FY1(c)}

(3)

where c denotes the cut-off point and FYk(c) = P(Yk ≤ c) the cumulative distribution
function of random variable Yk = βTXk, k = 1, 2 (linear combination), β = (β1, . . . , βp)T

being the parameter vector to be estimated. It is therefore immediate to deduce the
following formula from the empirical estimation of the Youden index:

Ĵfi = F̂Y2(ĉβ)− F̂Y1(ĉβ)

=
∑n2

i=1 I
(

βTX2i ≤ ĉβ

)

n2
− ∑n1

i=1 I
(

βTX1i ≤ ĉβ

)

n1

(4)

where cβ = {c : maxc
(

FY2(c)− FY1(c)
)
} denotes the optimal cut-off point.

2.2. Min–Max Approach

Liu et al. [21] proposed the distribution-free min–max approach. The idea of this
approach is based on reducing the order of the linear combination by considering only two
markers from the measurements information of the original p biomarkers (maximum value
and the minimum value of all the p biomarkers):

Xmax + βXmin (5)

Therefore, this approach is reduced to estimating a single β parameter of the linear
combination that maximises the AUC, as it is based on the linear model proposed by Pepe
et al. expressed in Equation (1).
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This approach was adapted in our work with in order to maximise the Youden index
with the following expression:

Ĵβ =
∑n2

i=1 I
(
X2i,max + βX2i,min ≤ ĉβ

)

n2
− ∑n1

i=1 I
(
X1i,max + βX1i,min ≤ ĉβ

)

n1
(6)

where Xki,max = max1≤j≤p

(
Xkij

)
and Xki,min = min1≤j≤p

(
Xkij

)
for each i = 1, . . . , nk.

k = 1, 2.
The search for the optimal parameter follows the empirical search suggested by Pepe

et al.: for each value β of the 201 equally spaced ∈ [−1, 1], the optimal cut-off point (ĉβ)

that maximises Youden index is calculated. The final value chosen (β̂) is the one with the
highest Youden ( Ĵβ) obtained.

2.3. Our Proposed Summary Statistics-Based Approaches: Min–Max–Median and Min–Max–IQR

We propose two new approaches based on summary statistics to maximise the Youden
index. The underlying idea of the approaches is based on the same idea as the min–max
approach (Section 2.2) of reducing the dimension of the problem by considering summary
statistic information of the p biomarkers as variables. They could be seen as an extension
of the min–max approach by incorporating a new summary statistic. The aim of this
proposal was to incorporate more information from the original biomarkers while keeping
the approach computationally tractable.

Specifically, we propose two approaches: including the median and IQR at the max-
imum and minimum of the p biomarkers measurements. Therefore, our approach is
reduced to considering the linear combination of three variables (max, min, median–max,
min, IQR).

For the estimation of the optimal linear combination of these three variables, a step-
wise approach is used, as suggested by Pepe et al., in order to ensure an approachable
computational time. Specifically, our proposals implement an adaptation of the stepwise
approach proposed by Esteban et al. [18] for Youden Index maximisation, where at each
step a new variable is introduced and the optimal linear combination of two variables
is selected using the empirical search suggested by Pepe et al. In this way, we turn a
time-consuming problem into a computationally tractable problem by considering two
steps of optimising the linear combination of two variables.

The proposed approach is explained in detail in the following steps. Consider the
min–max–median approach. The min–max–IQR approach is equivalent:

1. Firstly, the problem of estimating the optimal linear combination of p variables is
transformed to the estimation of the optimal linear combination of three variables
(min, max, median). For this purpose, the values of these new variables are calculated
for each i individual from their values of the p original biomarkers:

Xki,max = max
1≤j≤p

(
Xkij

)
, Xki,min = min

1≤j≤p

(
Xkij

)
, Xki,median = median1≤j≤p

(
Xkij

)
for each i = 1, . . . , nk., k = 1, 2. (7)

2. Once the information is transformed, a stepwise approach is used to estimate the
optimal linear combination of the three new variables (min–max–median). For sim-
plicity, denote by Xkij the values of the new transformed variables (min–max–median,
j = 1, 2, 3) for the ith individual of group k = 1, 2. The first step of the stepwise
approach consists of choosing the combination of two variables that maximises the
Youden index, using empirical search proposed by Pepe et al.:

Ĵβ2 =
∑n2

i=1 I
(
X2ij + β2X2il ≤ ĉβ2

)

n2
− ∑n1

i=1 I
(
X1ij + β2X1il ≤ ĉβ2

)

n1
β2 ∈ [−1, 1], ∀j 6= l = 1, 2, 3 (8)

The maximum Youden index can be reached for more than one optimal linear com-
bination. Our approach considers these ties and drags them forward in the next
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step. For simplicity, consider that it is reached for a single linear combination. The
optimal combination chosen (two variables and one parameter β2) that maximises the
Youden index (8) is considered as a single variable in the next step (and final) of the
stepwise approach. For simplicity, suppose the following optimal linear combination:
Xki1 + β2Xki2.

3. Finally, the last variable (Xki3) not chosen in the previous step is included and the
optimal linear combination of the two variables is chosen as in point 2. Specifically,
either combination (9) or (10) that maximises the Youden index Ĵβ3 is selected:

Ĵβ3 =
∑n2

i=1 I
(
(X2i1 + β2X2i2) + β3X2i3 ≤ ĉβ3

)

n2
− ∑n1

i=1 I
(
(X1i1 + β2X1i2) + β3X1i3 ≤ ĉβ3

)

n1
β3 ∈ [−1, 1] (9)

Ĵβ3 =
∑n2

i=1 I
(

β3(X2i1 + β2X2i2) + X2i3 ≤ ĉβ3

)

n2
− ∑n1

i=1 I
(

β3(X1i1 + β2X1i2) + X1i3 ≤ ĉβ3

)

n1
β3 ∈ [−1, 1] (10)

The code of all approaches is available upon request to Ms. Rocío Aznar-Gimeno
(raznar@itainnova.es).

The predictive ability of these approaches based on summary statistics (min–max
approach and min–max–median/IQR approach) is also compared with the classical logistic
regression approach [32], which is a subtype of generalised linear model to predict the
probability of an event (disease or non-disease) given a set of variables through the logistic
function. We used for comparisons the logistic regression method in the multivariate
binormal setting, for the diseased and non-diseased populations, which showed similar
performances in the linear discriminant analysis, which is standard in predictive models,
exhibiting a good performance in all scenarios [15]. The objective was to compare com-
putationally tractable linear combination methods, regardless of the number of original
biomarkers, dealing with biomarkers’ real values.

2.4. Performance Comparison

The comparison was carried out by considering both the resubstitution method and
a method from 5-fold cross-validation. For this purpose, a range of simulated data were
explored. Their application to two real dataset examples was also explored in order to
evaluate their performances in real cases.

2.4.1. Simulations

The simulated data analysed cover a wide range of scenarios in terms of the distri-
bution of biomarkers, the ability to discriminate between biomarkers and the correlation
between them, considering smaller to larger sample sizes.

In order to observe behaviours with smaller and larger numbers of biomarkers, four
biomarkers (p = 4) and ten biomarkers (p = 10) were considered in the simulated scenarios.
The peculiarity of statistics-based approaches (in particular our proposed approaches) is
that they translate biomarker information into only 3 variables, regardless of the number
of initial biomarkers. This has the advantage that they are always computationally feasible.
Furthermore, in scenarios where the number of biomarkers to be considered exceeds the
sample size, these approaches can avoid overfitting to the data, due to their inherent dimen-
sionality reduction characteristics. In order to analyse the performance of the algorithms in
these specific cases, simulated scenarios of p = 100 biomarkers and a smaller sample size
(n1 = n2 = 30 were also explored.

Different joint distributions were considered following multivariate normal (Xk ∼
MVN(mk, Σk)) and also non-normal distributions (in particular, log-normal: eXk ) in both
diseased and non-diseased populations (k = 1, 2). In this way, both normal distribu-
tions, which is one of the common distributions in statistics, and distributions that allow
assessment beyond normality and symmetry, were analysed.

When the multivariate normal distribution for diseased and non-diseased population
are assumed X ∼ N(m1, Σ1), Y ∼ N(m2, Σ2) the coefficients for the optimal linear combi-
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nation (which coincides with the Linear Discrimination Function (LDF)) and its area under
the ROC curve are known and given by βmax ∝ (Σ1 + Σ2)−1m, where m = m1 −m2 and
AUCmax = Φ(

√
mT(Σ1 + Σ2)−1m) (see Su and Liu [10]).

Using this formula, we simulated markers by choosing mean vectors and variance–
covariance matrices, whose AUC shown a good discrimination ability, with an AUC above
0.8 or at least near 0.8. The reason behind this is that these models are those whose
dichotomisation by Youden index is interesting in real practice.

Regarding the vector of means, the null vector was considered for the non-diseased
population (m2 = ~0) in all simulated scenarios. For the diseased population, scenarios
considering both the same and different abilities to discriminate between biomarkers were
explored: (i) same mean for each biomarker: m1 = (1.0, 1.0, . . . , 1.0)T ; (ii) different means:
m1 = (0.2, 0.5, 1.0, 0.7)T , m1 = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0)T .

Regarding the variance–covariance matrix, for simplicity, the variance of each
biomarker was set to 1, so that covariances equalled correlations. Scenarios were analysed
with the same covariance matrix between populations (Σ1 = Σ2) and different (Σ1 6= Σ2).
Specifically, for the cases with the same covariance matrix, the following scenarios were ex-
plored: (i) independence (Σ1 = Σ2 = I), (ii) medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J),
where I is the identity matrix and J a matrix of all ones, and (iii) negative correlation
(ρ = −0.1) for all pairs of biomarkers. As for the scenarios with different covariance matri-
ces between populations, the following scenarios were analysed: (i) Σ1 = 0.3 · I + 0.7 · J
(high correlation) and Σ2 = 0.7 · I + 0.3 · J (low correlation) (ii) Σ1 = 0.5 · I + 0.5 · J (medium
correlation) and Σ2 = I (independents).

For each scenario, 1000 random samples from underlying distribution were considered
with the following different samples sizes: (i) n1 = n2 = 30; (ii) n1 = n2 = 100; (iii) n1 =
n2 = 500. Each method was applied to each of the simulated scenarios and the maximum
Youden index was obtained.

2.4.2. Application to Real Data

The analysed methods were applied to two real data examples with the aim of diag-
nosing and predicting of Duchenne Muscular Dystrophy and Small for Gestational Age.

Duchenne muscular dystrophy (DMD) is a progressive recessive muscular disorder
that is transmitted from mother to child. It is the most common muscular dystrophy
diagnosed during childhood and early diagnosis is essential to limit its negative conse-
quences [33]. Percy et al. [34] analysed the effectiveness of screening for female DMD
carriers from four biomarkers of blood samples: serum creatine kinase (CK), haemopexin
(H), pyruvate kinase (PK), and lactate dehydrogenase (LD). The available data that were
analysed contain complete information on these four biomarkers of 67 women who are
carriers of the progressive recessive disorder DMD and 127 women who are not carriers.

Small-for-gestational-age (SGA) infants—those with a birth weight below the 10th
percentile—have been associated with increased risk of adverse perinatal outcomes [35,36].
Predicting them from the ultrasound percentile at the 35th gestational week as well as
other fetal and parental variables may help to avoid these outcomes. The dataset analysed
contains information of 4474 pregnancies whose births were assisted at the Miguel Servet
University Hospital, between March 2012 and December 2016. The ability of the methods to
predict SGA at birth was analysed from information of 7 biomarkers: ultrasound percentile
at 35th gestational week, maternal age, parity, maternal body mass index (BMI), Free
Beta Human Chorionic Gonatrodopin (FBHCG), Pregnacy-Associated Plasma Protein-A
(PAPP-A) and paternal height.

3. Results
3.1. Simulations

The results of each method for each simulated scenario are presented as the mean of the
maximum Youden indices obtained in the 1000 random samples as well as the standard de-
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viation. For simplicity, we denote logistic regression, min–max approach, min–max–median
approach and min–max–IQR approach by LR, MM, MMM and MMIQR, respectively.

3.1.1. Normal Distributions

Tables 1 and 2 present the results obtained for the simulated scenarios following
multivariate normal distribution with different means and same means between biomarkers
(in particular, p = 4 and p = 10), respectively.

Specifically, Table 1 analyses, for each sample size, biomarker dataset (p = 4 and
p = 10) and for each validation method (with and without CV), the following simulated
scenarios: (i) independence (Σ1 = Σ2 = I), (ii) medium correlation (Σ1 = Σ2 = 0.5 ·
I + 0.5 · J), (iii) different covariance matrices: Σ1 = 0.3 · I + 0.7 · J (high correlation) and
Σ2 = 0.7 · I + 0.3 · J (low correlation) and (iv) negative correlation (ρ = −0.1).

Table 1. Mean and standard deviation maximum Youden indices for 1000 random samples: normal
distributions. Different means between biomarkers.

Size (n1, n2)
Four Biomarkers Ten Biomarkers

LR MM MMM MMIQR LR MM MMM MMIQR

Independence (Σ1 = Σ2 = I)

Resubstitution method

(30, 30) 0.6057 (0.0957) 0.5556 (0.0962) 0.6177 (0.0884) 0.6126 (0.0877) 0.9995 (0.0055) 0.8736 (0.0563) 0.9621 (0.0338) 0.9580 (0.0356)
(100, 100) 0.5412 (0.0538) 0.4837 (0.0526) 0.5300 (0.0523) 0.5244 (0.0529) 0.9855 (0.0192) 0.8390 (0.0363) 0.9370 (0.0241) 0.9318 (0.0264)
(500, 500) 0.5120 (0.0262) 0.4447 (0.0270) 0.4808 (0.0254) 0.4752 (0.0252) 0.9589 (0.0088) 0.8155 (0.0180) 0.9173 (0.0125) 0.9163 (0.0125)

Based on CV

(30, 30) 0.5199 (0.1101) 0.454 (0.1241) 0.4508 (0.1257) 0.4423 (0.1242) 0.8814 (0.0779) 0.7906 (0.097) 0.7791 (0.1168) 0.7574 (0.1315)
(100, 100) 0.5156 (0.0565) 0.4311 (0.0675) 0.4425 (0.0725) 0.4326 (0.0748) 0.9176 (0.0315) 0.7988 (0.0563) 0.8484 (0.0692) 0.8253 (0.0855)
(500, 500) 0.507 (0.0266) 0.4261 (0.0320) 0.4484 (0.0333) 0.4366 (0.0354) 0.9496 (0.0092) 0.8027 (0.0224) 0.8897 (0.0262) 0.8833 (0.0318)

Medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J)

Resubstitution method

(30, 30) 0.5480 (0.0972) 0.4610 (0.0936) 0.5062 (0.0915) 0.5074 (0.0908) 0.9796 (0.0465) 0.7344 (0.081) 0.7642 (0.0741) 0.7689 (0.0759)
(100, 100) 0.4771 (0.0577) 0.3821 (0.0545) 0.4041 (0.0537) 0.4043 (0.0536) 0.9046 (0.0327) 0.6807 (0.0471) 0.6956 (0.0454) 0.7020 (0.0450)
(500, 500) 0.4428 (0.0273) 0.3320 (0.0271) 0.3420 (0.0268) 0.3410 (0.0267) 0.8734 (0.0149) 0.6491 (0.0223) 0.6558 (0.0218) 0.6634 (0.0223)

Based on CV

(30, 30) 0.4526 (0.1134) 0.3544 (0.1242) 0.3347 (0.1284) 0.3331 (0.1263) 0.7620 (0.0982) 0.6642 (0.1007) 0.6184 (0.1230) 0.6102 (0.1215)
(100, 100) 0.4482 (0.0627) 0.3294 (0.0689) 0.3204 (0.0733) 0.3177 (0.0737) 0.8472 (0.0347) 0.6481 (0.0544) 0.6256 (0.0748) 0.6251 (0.0704)
(500, 500) 0.4374 (0.0272) 0.3153 (0.0300) 0.3108 (0.0329) 0.3075 (0.0352) 0.8636 (0.0151) 0.6385 (0.0241) 0.6374 (0.0263) 0.6350 (0.0320)

Different correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

Resubstitution method

(30, 30) 0.5512 (0.0973) 0.5106 (0.0919) 0.5500 (0.0846) 0.5506 (0.0863) 0.9831 (0.0392) 0.6493 (0.0832) 0.6939 (0.0799) 0.6925 (0.0802)
(100, 100) 0.4809 (0.0559) 0.4374 (0.0546) 0.4524 (0.0529) 0.4543 (0.0531) 0.9064 (0.0336) 0.5918 (0.0504) 0.6244 (0.0494) 0.6230 (0.0495)
(500, 500) 0.4441 (0.0270) 0.3912 (0.0267) 0.3969 (0.0264) 0.3981 (0.0267) 0.8768 (0.0154) 0.5574 (0.0240) 0.5802 (0.0242) 0.5796 (0.0241)

Based on CV

(30, 30) 0.4579 (0.1080) 0.4029 (0.1202) 0.3832 (0.1246) 0.3825 (0.1247) 0.7696 (0.0976) 0.5260 (0.1227) 0.4965 (0.1265) 0.4960 (0.1239)
(100, 100) 0.4579 (0.0602) 0.3848 (0.0691) 0.3764 (0.0741) 0.3773 (0.0723) 0.8477 (0.0331) 0.5188 (0.0805) 0.5208 (0.0789) 0.5208 (0.0809)
(500, 500) 0.4391 (0.0270) 0.3738 (0.0329) 0.3737 (0.0320) 0.3703 (0.0318) 0.8669 (0.0163) 0.5233 (0.0395) 0.5375 (0.0400) 0.5359 (0.0408)

Negative Correlation (ρ = −0.1)

Resubstitution method

(30, 30) 0.6563 (0.0914) 0.5997 (0.0893) 0.6749 (0.0835) 0.6683 (0.0830)
(100, 100) 0.6030 (0.0527) 0.5321 (0.0534) 0.5966 (0.0501) 0.5888 (0.0512)
(500, 500) 0.5740 (0.0239) 0.4947 (0.0251) 0.5490 (0.0242) 0.5429 (0.0259)

Based on CV

(30, 30) 0.5799 (0.1040) 0.4950 (0.1203) 0.5025 (0.1206) 0.4986 (0.1219)
(100, 100) 0.5820 (0.0528) 0.4861 (0.0686) 0.5133 (0.0708) 0.4999 (0.0711)
(500, 500) 0.5688 (0.0245) 0.4787 (0.0302) 0.5213 (0.0311) 0.5052 (0.0365)

Table 1 shows that in the normal scenarios of independent biomarkers of different
means, the MMM and MMIQR approaches show comparable performance, slightly out-
performing the former, and outperforming the MM approach especially in larger samples.
This behaviour is more pronounced when the number of biomarkers is larger (p = 10).
However, they fall short of LR, which is the best performer. This behaviour is also observed
in the scenario of negative correlations, although in this case the difference in performance
between the summary statistics-based approaches and LR is somewhat smaller. The results
show that the resubstitution method is indeed more optimistic than the one derived from
cross-validation, although the conclusions on the performance comparison are broadly
similar.
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As for the simulated scenarios considering four biomarkers with different covariance
matrices between populations, the new approaches incorporating a new summary statistic
do not reach the performance of the MM approach and could be considered as approaches
with similar performances. However, they outperform the MM approach, albeit only
slightly when the number of biomarkers is larger (p = 10) and sample sizes are larger. The
results show that in the scenarios of biomarkers with medium positive correlations, the
new approaches do not outperform the MM approach in any of the cases based on the
cross-validation method. In all cases, the LR outperforms all other methods.

Table 2 analyses the following simulated scenarios of biomarkers with the same means:
(i) independence (Σ1 = Σ2 = I), (ii) medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J),
(iii) different covariance matrices: Σ1 = 0.3 · I + 0.7 · J (high correlation) and Σ2 = 0.7 · I +
0.3 · J (low correlation) and (iv) different covariance matrices: Σ1 = 0.5 · I + 0.5 · J (medium
correlation) and Σ2 = I (independents).

Table 2. Mean and standard deviation maximum Youden indices for 1000 random samples: normal
distributions. Same means between biomarkers.

Size (n1, n2)
Four Biomarkers Ten Biomarkers

LR MM MMM MMIQR LR MM MMM MMIQR

Independence (Σ1 = Σ2 = I)

Resubstitution method

(30, 30) 0.7664 (0.082 ) 0.7396 (0.0803) 0.7987 (0.0702) 0.7951 (0.0709) 0.9893 (0.0319) 0.8391 (0.0642) 0.9382 (0.0436) 0.9359 (0.0439)
(100, 100) 0.7182 (0.0456) 0.6889 (0.0464) 0.7377 (0.0435) 0.7342 (0.0443) 0.9257 (0.032 ) 0.8013 (0.0389) 0.9051 (0.0300) 0.9037 (0.0302)
(500, 500) 0.6964 (0.0213) 0.6606 (0.0222) 0.7014 (0.0207) 0.6991 (0.0216) 0.8981 (0.0138) 0.7742 (0.0192) 0.8813 (0.0147) 0.8810 (0.0147)

Based on CV

(30, 30) 0.6907 (0.0908) 0.6550 (0.1082) 0.6402 (0.1125) 0.6403 (0.1127) 0.7932 (0.0973) 0.7337 (0.1152) 0.7473 (0.1187) 0.7593 (0.1223)
(100, 100) 0.6977 (0.0476) 0.6432 (0.0623) 0.6607 (0.0653) 0.6526 (0.0667) 0.8667 (0.0309) 0.7377 (0.0716) 0.8222 (0.0701) 0.8127 (0.0762)
(500, 500) 0.6921 (0.0216) 0.6441 (0.0267) 0.6749 (0.0282) 0.6632 (0.0331) 0.8886 (0.0141) 0.7489 (0.0330) 0.8514 (0.0300) 0.8494 (0.0299)

Medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J)

Resubstitution method

(30, 30) 0.5884 (0.0990) 0.5926 (0.0919) 0.6344 (0.0876) 0.6350 (0.0870) 0.6769 (0.0949) 0.6095 (0.0882) 0.6545 (0.0842) 0.6538 (0.0838)
(100, 100) 0.5236 (0.0539) 0.5309 (0.0526) 0.5526 (0.0511) 0.5514 (0.0510) 0.5693 (0.0534) 0.5476 (0.0507) 0.5751 (0.0506) 0.5735 (0.0505)
(500,500) 0.4901 (0.0264) 0.4884 (0.0258) 0.5012 (0.0253) 0.5001 (0.0252) 0.5213 (0.0255) 0.5069 (0.0250) 0.5255 (0.0247) 0.5243 (0.0246)

Based on CV

(30, 30) 0.4972 (0.1124) 0.4898 (0.1160) 0.4681 (0.1240) 0.4710 (0.1224) 0.4466 (0.1144) 0.4931 (0.1296) 0.4648 (0.1263) 0.4592 (0.1263)
(100, 100) 0.4945 (0.0597) 0.4777 (0.0667) 0.4729 (0.0690) 0.4714 (0.0694) 0.4974 (0.0603) 0.4798 (0.0779) 0.4724 (0.0789) 0.4668 (0.0813)
(500, 500) 0.4853 (0.0261) 0.4706 (0.0320) 0.4693 (0.0316) 0.4673 (0.0314) 0.5063 (0.0262) 0.4771 (0.0386) 0.4801 (0.0388) 0.4775 (0.0394)

Different correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

Resubstitution method

(30, 30) 0.5914 (0.0983) 0.6782 (0.0846) 0.7057 (0.0791) 0.7074 (0.0807) 0.6799 (0.0914) 0.7900 (0.0726) 0.8090 (0.0683) 0.8149 (0.0683)
(100, 100) 0.5304 (0.0546) 0.6211 (0.0497) 0.6325 (0.0482) 0.6348 (0.0485) 0.5769 (0.0535) 0.7425 (0.0434) 0.7502 (0.0425) 0.7559 (0.0427)
(500, 500) 0.4989 (0.0260) 0.5863 (0.0236) 0.5902 (0.0232) 0.5924 (0.0232) 0.5355 (0.0254) 0.7138 (0.0207) 0.7169 (0.0205) 0.7205 (0.0206)

Based on CV

(30, 30) 0.5044 (0.1116) 0.5861 (0.1118) 0.5683 (0.1198) 0.5682 (0.1200) 0.4477 (0.1112) 0.7076 (0.1053) 0.6776 (0.1210) 0.6624 (0.1144)
(100, 100) 0.5028 (0.0570) 0.5771 (0.0630) 0.5722 (0.0673) 0.5711 (0.0650) 0.5060 (0.0613) 0.7007 (0.0585) 0.6982 (0.0637) 0.6770 (0.0664)
(500, 500) 0.4948 (0.0263) 0.5724 (0.0279) 0.5734 (0.0265) 0.5707 (0.0275) 0.5355 (0.0260) 0.7006 (0.0251) 0.7025 (0.0237) 0.6924 (0.0293)

Different correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

Resubstitution method

(30, 30) 0.6681 (0.0867) 0.7046 (0.0796) 0.7427 (0.0755) 0.7421 (0.0753) 0.7978 (0.0891) 0.8035 (0.0703) 0.8426 (0.0647) 0.8442 (0.0649)
(100, 100) 0.6181 (0.0506) 0.6548 (0.0483) 0.6796 (0.0473) 0.6795 (0.0476) 0.7308 (0.0469) 0.7601 (0.0417) 0.7919 (0.0397) 0.7927 (0.0394)
(500, 500) 0.5930 (0.0245) 0.6222 (0.0228) 0.6401 (0.0229) 0.6399 (0.0228) 0.7050 (0.0216) 0.7322 (0.0200) 0.7612 (0.0190) 0.7608 (0.0190)

Based on CV

(30, 30) 0.5851 (0.1049) 0.6054 (0.1136) 0.5939 (0.1178) 0.5990 (0.1185) 0.5714 (0.1025) 0.6864 (0.1192) 0.6797 (0.1288) 0.6841 (0.1263)
(100, 100) 0.5940 (0.0530) 0.6076 (0.0624) 0.6144 (0.0645) 0.6167 (0.0630) 0.6742 (0.0510) 0.6996 (0.0712) 0.7113 (0.0743) 0.7081 (0.0764)
(500, 500) 0.5894 (0.0248) 0.6060 (0.0274) 0.6194 (0.0275) 0.6192 (0.0279) 0.6954 (0.0222) 0.7114 (0.0292) 0.7286 (0.0334) 0.7286 (0.0335)

Table 2 shows, as Table 1, that in simulated normal independent biomarker scenarios
the MMM and MMIQR approaches outperform the MM approach, although the LR is the
best performer based on CV. However, in this case of scenarios of biomarkers with same
means, the difference in performance between the MMM and MMIQR approaches and the
LR is significantly lower.

The results in Table 2 show that in the simulated scenarios of biomarkers with positive
medium correlation, summary statistics-based methods (MM, MMM, MMIQ) could be
considered to perform comparably in larger sample sizes considering the cross-validation
method. Although LR still dominates over the other methods, the difference is considerably
smaller than considering biomarkers with different means (Table 1).
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However, the results show that in the simulated scenarios with different covariance
matrices between groups, the MM approach outperforms the LR approach. Furthermore,
in the scenario where biomarkers within a group are independent, the proposed MMM
and MMIQR approaches slightly exceed the MM approach for larger sample sizes.

3.1.2. Non-Normal Distributions

Table 3 shows the results obtained from the following simulated scenarios following
a log-normal distribution: (i) biomarkers with different means and medium correlation
(Σ1 = Σ2 = 0.5 · I + 0.5 · J), (ii) biomarkers with different means and different covariance
matrices: Σ1 = 0.3 · I + 0.7 · J (high correlation) and Σ2 = 0.7 · I + 0.3 · J (low correlation),
(iii) biomarkers with same means and medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J),
(iv) biomarkers with same means and different covariance matrices: Σ1 = 0.3 · I + 0.7 · J
(high correlation) and Σ2 = 0.7 · I + 0.3 · J (low correlation), and (v) biomarkers with same
means and different covariance matrices: Σ1 = 0.5 · I + 0.5 · J (medium correlation) and
Σ2 = I (independents).

Table 3. Mean and standard deviation maximum Youden indices for 1000 random samples: Non-
normal distributions. Log-normal.

Size (n1, n2)
Four Biomarkers Ten Biomarkers

LR MM MMM MMIQR LR MM MMM MMIQR

Different means. Medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J)

Resubstitution method

(30, 30) 0.5290 (0.1009) 0.4506 (0.0988) 0.5053 (0.0914) 0.5076 (0.0915) 0.9650 (0.0593) 0.6969 (0.0853) 0.7593 (0.0752) 0.7624 (0.0755)
(100, 100) 0.4594 (0.0588) 0.3798 (0.0558) 0.4036 (0.0537) 0.4052 (0.0538) 0.8765 (0.0378) 0.6571 (0.0486) 0.6905 (0.0459) 0.6948 (0.0458)
(500, 500) 0.4278 (0.0283) 0.3323 (0.0270) 0.3425 (0.0269) 0.3428 (0.0269) 0.8428 (0.0168) 0.6319 (0.0231) 0.6513 (0.0219) 0.6552 (0.0221)

Based on CV

(30, 30) 0.4272 (0.1230) 0.3709 (0.1132) 0.3344 (0.1241) 0.3367 (0.1273) 0.7254 (0.1006) 0.6652 (0.1006) 0.5902 (0.1203) 0.5948 (0.1203)
(100, 100) 0.4277 (0.0634) 0.3348 (0.0660) 0.3148 (0.0681) 0.3172 (0.0675) 0.8161 (0.0403) 0.6420 (0.0556) 0.5875 (0.0826) 0.5947 (0.0776)
(500, 500) 0.4220 (0.0282) 0.3113 (0.0316) 0.3054 (0.0342) 0.3051 (0.0340) 0.8320 (0.0176) 0.6289 (0.0235) 0.6029 (0.0452) 0.6074 (0.0419)

Different means. Different correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

Resubstitution method

(30, 30) 0.5139 (0.1018) 0.5047 (0.0915) 0.5423 (0.0853) 0.5400 (0.0860) 0.9614 (0.0577) 0.6431 (0.0845) 0.6901 (0.0803) 0.6892 (0.0798)
(100, 100) 0.4476 (0.0609) 0.4318 (0.0544) 0.4468 (0.0534) 0.4470 (0.0534) 0.8637 (0.0407) 0.5847 (0.0506) 0.6214 (0.0492) 0.6206 (0.0493)
(500, 500) 0.4157 (0.0286) 0.3881 (0.0271) 0.3934 (0.0269) 0.3936 (0.0270) 0.8304 (0.0176) 0.5498 (0.0238) 0.5770 (0.0242) 0.5764 (0.0242)

Based on CV

(30, 30) 0.4118 (0.1166) 0.4063 (0.1183) 0.3872 (0.1236) 0.3925 (0.1243) 0.7080 (0.1006) 0.5195 (0.1189) 0.5258 (0.1184) 0.5329 (0.1180)
(100, 100) 0.4161 (0.0628) 0.3889 (0.0670) 0.3760 (0.0712) 0.3852 (0.0686) 0.8001 (0.0409) 0.5044 (0.0831) 0.5308 (0.0747) 0.5379 (0.0742)
(500, 500) 0.4097 (0.0287) 0.3761 (0.0294) 0.3726 (0.0318) 0.3751 (0.0303) 0.8196 (0.0182) 0.5195 (0.0402) 0.5314 (0.0436) 0.5412 (0.0385)

Same means. Medium correlation (Σ1 = Σ2 = 0.5 · I + 0.5 · J)

Resubstitution method

(30, 30) 0.5729 (0.1016) 0.5911 (0.0924) 0.6325 (0.0887) 0.6331 (0.0881) 0.6800 (0.1042) 0.6058 (0.0900) 0.6527 (0.0851) 0.6523 (0.0843)
(100, 100) 0.5103 (0.0549) 0.5292 (0.0522) 0.5520 (0.0514) 0.5514 (0.0514) 0.5538 (0.0549) 0.5448 (0.0510) 0.5736 (0.0505) 0.5733 (0.0505)
(500, 500) 0.4811 (0.0265) 0.4873 (0.0258) 0.5002 (0.0253) 0.4995 (0.0253) 0.5120 (0.0260) 0.5056 (0.0252) 0.5251 (0.0248) 0.5242 (0.0247)

Based on CV

(30, 30) 0.4867 (0.1111) 0.4975 (0.1120) 0.4767 (0.1181) 0.4803 (0.1180) 0.4316 (0.1182) 0.4926 (0.1162) 0.4866 (0.1182) 0.4910 (0.1208)
(100, 100) 0.4858 (0.0600) 0.4693 (0.0667) 0.4687 (0.0674) 0.4717 (0.0684) 0.4866 (0.0613) 0.4669 (0.0766) 0.4798 (0.0701) 0.4827 (0.0714)
(500, 500) 0.4779 (0.0266) 0.4585 (0.0353) 0.4626 (0.0334) 0.4652 (0.0333) 0.4997 (0.0263) 0.4631 (0.0453) 0.4800 (0.0421) 0.4824 (0.0399)

Same means. Different correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

Resubstitution method

(30, 30) 0.5445 (0.1042) 0.6730 (0.0849) 0.6990 (0.0802) 0.6979 (0.0813) 0.6437 (0.0957) 0.7783 (0.0739) 0.7988 (0.0708) 0.7993 (0.0712)
(100, 100) 0.4714 (0.0559) 0.6172 (0.0499) 0.6286 (0.0486) 0.6291 (0.0486) 0.5129 (0.0548) 0.7292 (0.0446) 0.7382 (0.0440) 0.7393 (0.0442)
(500, 500) 0.4365 (0.0265) 0.5840 (0.0237) 0.5880 (0.0235) 0.5885 (0.0235) 0.4590 (0.0259) 0.7010 (0.0206) 0.7050 (0.0205) 0.7057 (0.0205)

Based on CV

(30, 30) 0.4525 (0.1149) 0.5914 (0.1127) 0.5753 (0.1167) 0.5866 (0.1154) 0.4020 (0.1141) 0.7084 (0.1008) 0.6903 (0.1066) 0.7007 (0.1006)
(100, 100) 0.4472 (0.0576) 0.5854 (0.0589) 0.5744 (0.0630) 0.5819 (0.0596) 0.4386 (0.0621) 0.6977 (0.0558) 0.6904 (0.0592) 0.6949 (0.0567)
(500, 500) 0.4324 (0.0271) 0.5744 (0.0257) 0.5723 (0.0264) 0.5743 (0.0254) 0.4435 (0.0264) 0.6917 (0.0229) 0.6905 (0.0234) 0.6916 (0.0234)

Same means. Different correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

Resubstitution method

(30, 30) 0.5932 (0.0974) 0.6942 (0.0825) 0.7296 (0.0787) 0.7287 (0.0789) 0.7222 (0.0960) 0.7924 (0.0738) 0.8340 (0.0669) 0.8334 (0.0669)
(100, 100) 0.5248 (0.0543) 0.6477 (0.0503) 0.6712 (0.0484) 0.6708 (0.0486) 0.6206 (0.0524) 0.7506 (0.0423) 0.7850 (0.0408) 0.7844 (0.0406)
(500, 500) 0.4966 (0.0268) 0.6188 (0.0238) 0.6350 (0.0231) 0.6347 (0.0231) 0.5770 (0.0250) 0.7276 (0.0206) 0.7560 (0.0195) 0.7556 (0.0195)

Based on CV

(30, 30) 0.5074 (0.1089) 0.6123 (0.1107) 0.6031 (0.1127) 0.6187 (0.1085) 0.4840 (0.1158) 0.7215 (0.1004) 0.7031 (0.1135) 0.7261 (0.1033)
(100, 100) 0.5006 (0.0566) 0.6182 (0.0557) 0.6138 (0.0625) 0.6256 (0.0577) 0.5474 (0.0565) 0.7286 (0.0508) 0.7178 (0.0687) 0.7365 (0.0565)
(500, 500) 0.4918 (0.0270) 0.6100 (0.0249) 0.6141 (0.0293) 0.6198 (0.0255) 0.5619 (0.0258) 0.7221 (0.0217) 0.7310 (0.0304) 0.7399 (0.0237)

The results in Table 3 show that, under cross-validation, in the simulated scenarios
of biomarkers with different means and medium correlation, the MMM and MMIQR
approaches do not outperform the MM approach and the LR significantly dominates over
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the rest. In scenarios with different covariance matrices between groups with a higher
number of biomarkers (p = 10), although LR remains the best performer, the MMM and
MMIQR approaches outperform the MM approach, with the MMIQR approach being
slightly superior.

However, in the biomarker scenarios with the same means, considering medium
correlation between biomarkers, the results show that for larger sample sizes the MMM
and MMIQR approaches outperform the MM approach in this case, with the MMIQR
approach being very slightly superior.

For the simulated scenarios of biomarkers with the same means and different co-
variance matrices between groups, the summary statistics-based approaches outperform
logistic regression. For the scenario with independent biomarkers in one group, the MMIQR
approach outperforms the others by applying the cross-validation method.

3.1.3. High-Dimensional Scenarios: Normal Distributions

Table 4 analyses the following simulated scenarios of p = 100 normal biomarkers with
the same means for a smaller sample size (n1 = n2 = 30): (i) independence (Σ1 = Σ2 = I)
and (ii) different covariance matrices: Σ1 = 0.5 · I + 0.5 · J (medium correlation) and Σ2 = I
(independents).

Table 4. Mean and standard deviation maximum Youden indices for 1000 random samples. High-
dimensional scenarios (p = 100): Normal distributions. Same means between biomarkers.

Independence (Σ1 = Σ2 = I)

Size (n1, n2) LR MM MMM MMIQR

Resubstitution method

(30, 30) 1 (0) 0.4364 (0.094) 0.7358 (0.077) 0.7307 (0.0785)

Based on CV

(30, 30) 0.1684 (0.0952) 0.2602 (0.1084) 0.4577 (0.1372) 0.4527 (0.1391)

Different correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

Size (n1, n2) LR MM MMM MMIQR

Resubstitution method

(30, 30) 1 (0) 0.9121 (0.0518) 0.9277 (0.047) 0.9308 (0.0459)

Based on CV

(30, 30) 0.1568 (0.0912) 0.8433 (0.0718) 0.807 (0.1226) 0.7067 (0.1477)

Table 4 shows that in these scenarios where the size of the variables is larger than the
sample size, the LR model is significantly overfitted. The results obtained based on CV show
that statistics-based algorithms are superior to LR. This difference is most noticeable in the
scenario with different covariance matrices. In this scenario, our approaches (MMM and
MMIQR) fail to outperform the MM approach. However, in the scenario of independent
biomarkers, our approaches outperform it. These results are in line with the conclusions
drawn from the results in Section 3.1.1.

3.2. Computational Times

Our proposed approach uses the information provided by a set of predictive markers
in three new markers derived from them. This is an automated calculus that it is not
time-consuming. From them, we estimated the coefficients of the model by an extensive
search using a step by step approach. We want to remark that computational times for this
approach are reasonably independent of the sample size. In our simulations, the compu-
tational times of our proposed approaches ranged from 8 to 154 seconds using a sample
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size ranging from 60 to 20,000 individuals showing that our algorithm is computationally
tractable in high dimensionality.

3.3. Real Datasets
3.3.1. Duchenne Muscular Dystrophy Dataset

Figure 1 represents the information of each biomarker for each group (carrier and
non-carrier groups).

Figure 1. Information from DMD dataset.

As the variances of the four biomarkers differ from each other, it was necessary to
normalise the values of each biomarker before applying the methods based on summary
statistics. This normalisation is important to avoid different units of measurement and to
ensure the consistent use of these approaches.

The analysed methods were applied to this dataset with the aim of finding the optimal
combination of the four biomarkers that achieves the maximum Youden index. The
estimates of the Youden index of each biomarker (CK, H, PK, LD) in a univariate way were
0.6124, 0.4172, 0.5079, and 0.5776.

Table 5 shows the maximum Youden index achieved as well as their respective sensi-
tivity and specificity values, using both the resubstitution and the cross-validation-based
methods. The MMM approach outperforms the MM approach, although it does not reach
the performance of the LR, which is the best performer, achieving a Youden index of 0.7948
after cross-validation.

Table 5. Maximum Youden index for each method. DMD dataset.

Methods
Resubstitution Method Based on CV

Youden Sensitivity Specificity Youden Sensitivity Specificity

LR 0.8106 0.8657 0.9449 0.7948 0.8657 0.9291
MM 0.7335 0.8358 0.8976 0.5602 0.8358 0.7244

MMM 0.8019 0.8806 0.9213 0.6472 0.6866 0.9606
MMIQR 0.7948 0.8657 0.9291 0.5535 0.6716 0.8819

The results rounded to four decimal places are displayed.

3.3.2. Small for Gestational Age Dataset

Figure 2 represents the information of each biomarker for each group (SGA and
non-SGA group). Before applying the summary statistics-based methods, a normalisation
was applied.
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Figure 2. Information from SGA dataset.

Table 6 shows the maximum Youden index achieved for all methods studied as well
as their respective sensitivity and specificity values, using both the resubstitution and
the cross-validation-based methods. The MMM and MMIQR approaches outperform the
MM approach, although they do not match the performance of the LR, which is the best
performer, achieving a Youden index of 0.5901 after cross-validation. In this example,
the MMM and MMIQR approaches outperform the MM approach more markedly than
the previous example, which includes a smaller number of biomarkers (p = 4). These
results therefore show that for a larger number of biomarkers, the benefit of using the
approaches, incorporating a new summary statistic (MMM, MMIQR vs. MM approach),
was greater. These conclusions were also drawn from the simulated data. Specifically, this
is a scenario with a predictor, the estimated percentile weight at the 35th week, with a
greater discrimination ability than the rest of predictor variables. It seems that in this case,
the MM approach cannot capture the added discrimination ability of the set of biomarkers;
in this case, the improvement of MMM and MMIQ approaches is more clear.

Table 6. Maximum Youden index for each method. SGA dataset.

Methods
Resubstitution method Based on CV

Youden Sensitivity Specificity Youden Sensitivity Specificity

LR 0.5971 0.7639 0.8332 0.5901 0.7687 0.8214
MM 0.1631 0.9108 0.2523 0.1422 0.6554 0.4868

MMM 0.3692 0.6988 0.6704 0.3400 0.7373 0.6026
MMIQR 0.3644 0.7373 0.6270 0.2322 0.6410 0.5913

Although for none of the real examples analysed did the summary statistics-based
approaches outperform LR, it is clear from this analysis that the proposed approaches
outperform the MM approach, which has been shown in the simulation to have superior
discrimination ability than the LR for specific scenarios of different covariance matrices
between groups and the same univariate predictive ability of biomarkers.
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4. Discussion and Conclusions

In this study, we propose new summary statistics-based approaches and compare their
performances with the min–max approach and logistic regression under Youden index
optimisation, which are computationally tractable approaches regardless of the problem
dimension. The methods were applied to both simulated data and two real datasets.

The results of the comparison using cross-validation (Tables 1–3) suggest that a logistic
regression should be used over the other summary statistics-based approaches when the
number of biomarkers is smaller than the sample size, except in scenarios of biomarkers
with the same predictive ability and different covariance matrices between groups (Table 2),
where summary statistics-based approaches are recommended, which outperformed logis-
tic regression. In fact, generally, differences in performance were smaller when considering
scenarios with biomarkers with the same means (Table 2). The study by Kang et al. [20],
but under AUC optimisation, led to a similar conclusion regarding optimal scenarios for
the min–max approach.

The results showed that the proposed new approaches outperform the min–max
approach in general when independent biomarkers are included. This difference increases
when the number of biomarkers is larger. These results may be expected as independent
information as well as a larger number of biomarkers may contribute to the fact that it is
insufficient to consider only the minimum and maximum values of biomarkers. Although
no significant differences were found between the MMM and MMIQR approaches, the
MMIQR approach slightly outperformed the MMM approach in non-normal distributions
and the MMM approach overall slightly outperformed the others in all other scenarios.
This could indicate that in asymmetric distributions, the incorporation of a dispersion
measure could be a good option.

In scenarios where the number of biomarkers is higher than the sample size (Table 4), the re-
sults showed that the logistic regression overfitted the data. Our approaches outperformed
the min–max approach when biomarkers were independent. These results are in line with
previous results and demonstrate the advantage of our approaches which, in addition to
always being computationally feasible, do not overfit the data due to their inherent feature
of dimensionality reduction involving all biomarkers across the summary information.

The performance of the analysed methods achieved on the real datasets showed
similar conclusions to those deduced from the simulation. Although in none of the real
examples analysed did the summary statistics-based approaches outperform the logistic
approach, in both cases the proposed methods outperformed the MM approach.

The application of dimensionality reduction techniques before applying a method
could be an alternative to avoid overfitting. The selection of biomarkers with high predic-
tive power might seem to be a solution for dimensionality reduction. However, it has been
shown that the predictive power alone of each biomarker may not be the best approach for
selection. Pinsky and Zhou [37] demonstrated that in fact statistical correlation patterns
had a greater implication on the combination of higher performing biomarkers. Therefore,
a high number of biomarkers with low predictive ability could be available, yet their
combination achieves higher performance. Therefore, methods that use information from a
large number of biomarkers, while being computationally tractable, are necessary.

Our proposed distribution-free approach incorporates information from all the original
biomarkers through their summary statistics, while the problem remains computationally
tractable (p = 3). Pepe and Thomson [15] proposed non-parametric approaches to opti-
mise linear models under AUC optimisation but with reduced dimensionality. Ma and
Huang [38] and Wang et al. [39] introduced semiparametric approaches that approximated
the empirical AUC by a sigmoid function. Komori et al. [40] proposed a method based
on a boosting algorithm for maximisation of the AUC. They used cross-validation tech-
niques to select the best model. None of those methods is fully non-parametric, and their
performance relies on a good selection of some parameters.

Liu et al. [21] proposed a non-parametric approach that linearly combines the minimum
and maximum values of the biomarkers, involving only a single coefficient search. Therefore,
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the problem is computable as it is reduced to estimating a single parameter regardless of the
number of biomarkers. In addition to being able to take advantage of the information from
multiple biomarkers that are measured with the same unit, another advantage of this min–max
procedure is that repeated measurements of a single biomarker can be combined as two new
markers and can therefore also be an option for longitudinal studies. However, using the
information from the minimum and maximum biomarker values may not be sufficient in terms
of discrimination, especially when the number of biomarkers is high. The proposed algorithm
incorporates more information from the original variables than the min–max approach (three
variables). A stepwise algorithm is performed to estimate the linear combination. All this
implies that our proposal always remains computationally tractable (p = 3) and has inherent
dimensionality reduction properties.

With regard to the strengths of our study, we can list the following. These algorithms
are fully non-parametric approaches and do not require distribution assumption for their
application. They use information from all biomarkers, incorporate more information than
the min–max approach and are also computationally tractable regardless of the number
of biomarkers. In addition, we verified their superiority in some simulated scenarios,
highlighting that they are good alternatives in predictive models.

However, our study has some limitations. In the comparison analysis we used a
unique standard method, the logistic regression. We did not perform a comparison with
other methodologies as kernel approaches or machine learning algorithms; therefore, we
cannot propose our algorithm as the best method in any scenario.

For future work, a more extensive study comparing more methods could be carried
out. Applying dimensionality reduction techniques (such as principal component analysis)
before applying the methods could also be explored. Extending the comparison study for a
more extensive simulation, e.g., taking into account scenarios with larger sample sizes, is also
proposed as a line of future work. It is also proposed to analyse the new methods proposed in
other real datasets. An example could be the one analysed by Liu et al. (autism disease), where
conditions were optimal for the MM approach, and it could thus be explored as to whether in
this case the proposed approaches outperform the MM approach. Readers are also encouraged
to adapt our proposed approaches using a different linear combination estimation (a different
stepwise algorithm) as well as to explore their performances considering other target metrics.

In summary, in this article, we present to the scientific community a new approach com-
bining summary statistics of biomarkers (min–max–median, min–max–IQR approaches)
that has the advantage of being always computable and not being subject to any distribu-
tional assumptions. This approach aims to discriminate between two groups (disease and
non-disease) and can therefore be a key to and helpful in clinical decision making. The
Youden index, which is a widely used metric in the absence of consensus, was considered
as an objective function. Comparisons in various scenarios allowed us to discover the
scenarios in which the approaches are most optimal. Specifically:

• Our proposed approaches outperform classical logistic regression using original
biomarkers when the number of biomarkers is larger than the sample size.

• Additionally, they performed well in scenarios of biomarkers with the same predictive
ability and different covariance matrices between groups.

• Our approaches performed better than the min–max approach when biomarkers are
independent and in the real scenarios.
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The following abbreviations are used in this manuscript:

AUC Area Under the ROC curve
BMI Body Mass Index
CK Serum Creatine Kinase
CV Cross-Validation
FBHCG Free Beta Human Chorionic Gonatrodopin
H Haemopexin
IQR Interquartile Range
LD Lactate Dehydrogenase
LR Logistic Regression
MM Min–Max approach
MMIQR Min–Max–IQR approach
MMM Min–Max–Median approach
PAPP-A Pregnacy-Associated Plasma Protein-A
pAUC Partial Area Under the ROC curve
PK Pyruvate Kinase
ROC Receiver Operating Characteristic
SGA Small-for-Gestational-Age

References
1. Amini, M.; Kazemnejad, A.; Zayeri, F.; Amirian, A.; Kariman, N. Application of adjusted-receiver operating characteristic curve

analysis in combination of biomarkers for early detection of gestational diabetes mellitus. Koomesh 2019, 21, 751–758.
2. Yu, S. A Covariate-Adjusted Classification Model for Multiple Biomarkers in Disease Screening and Diagnosis. Ph.D. Thesis,

Kansas State University, Manhattan, AR, USA, 2019.
3. Bansal, A.; Pepe, M.S. When does combining markers improve classification performance and what are implications for practice?

Stat. Med. 2013, 32, 1877–1892. [CrossRef] [PubMed]
4. Mi, G.; Li, W.; Nguyen, T.S. Characterize and Dichotomize a Continuous Biomarker. In Statistical Methods in Biomarker and Early

Clinical Development; Fang, L., Su, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 23–38. [CrossRef]
5. Esteban, L.M.; Sanz, G.; Borque, A. Linear combination of biomarkers to improve diagnostic accuracy in prostate cancer.

Monografías Matemáticas García de Galdeano 2013, 38, 35–84.
6. Youden, W.J. Index for rating diagnostic tests. Cancer J. 1950, 3, 32–35. [CrossRef]
7. Lyu, T.; Ying, Z.; Zhang, H. A new semiparametric transformation approach to disease diagnosis with multiple biomarkers. Stat.

Med. 2019, 38, 1386–1398. [CrossRef] [PubMed]
8. Ma, H.; Yang, J.; Xu, S.; Liu, C.; Zhang, Q. Combination of multiple functional markers to improve diagnostic accuracy. J. Appl.

Stat. 2020, 1–20. [CrossRef]
9. Ahmadian, R.; Ercan, I.; Sigirli, D.; Yildiz, A. Combining binary and continuous biomarkers by maximizing the area under the

receiver operating characteristic curve. Commun. Stat. Simul. Comput. 2020, 1–14. [CrossRef]
10. Su, J.Q.; Liu, J.S. Linear combinations of multiple diagnostic markers. J. Am. Stat. Assoc. 1993, 88, 1350–1355. [CrossRef]
11. Yan, L.; Tian, L.; Liu, S. Combining large number of weak biomarkers based on AUC. Stat. Med. 2015, 34, 3811–3830. [CrossRef]
12. Xu, T.; Fang, Y.; Rong, A.; Wang, J. Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy. BMC

Med. Res. Methodol. 2015, 15, 1–7. [CrossRef]
13. Nigmatullin, R.R. The statistics of the fractional moments: Is there any chance to “read quantitatively” any randomness? Signal

Process. 2006, 86, 2529–2547. [CrossRef]



Mathematics 2021, 9, 2497 17 of 17

14. Nigmatullin, R.R.; Lino, P.; Maione, G. New Digital Signal Processing Methods; Springer Publishing: New York, NY, USA, 2020.
15. Pepe, M.S.; Thompson, M.L. Combining diagnostic test results to increase accuracy. Biostatistics 2000, 1, 123–140. [CrossRef]

[PubMed]
16. Pepe, M.S.; Cai, T.; Longton, G. Combining predictors for classification using the area under the receiver operating characteristic

curve. Biometrics 2006, 62, 221–229. [CrossRef] [PubMed]
17. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982,

143, 29–36. [CrossRef]
18. Esteban, L.M.; Sanz, G.; Borque, A. A step-by-step algorithm for combining diagnostic tests. J. Appl. Stat. 2011, 38, 899–911.

[CrossRef]
19. Kang, L.; Xiong, C.; Crane, P.; Tian, L. Linear combinations of biomarkers to improve diagnostic accuracy with three ordinal

diagnostic categories. Stat. Med. 2013, 32, 631–643. [CrossRef]
20. Kang, L.; Liu, A.; Tian, L. Linear combination methods to improve diagnostic/prognostic accuracy on future observations. Stat.

Methods Med. Res. 2016, 25, 1359–1380. [CrossRef]
21. Liu, C.; Liu, A.; Halabi, S. A min–max combination of biomarkers to improve diagnostic accuracy. Stat. Med. 2011, 30, 2005–2014.

[CrossRef]
22. Yin, J.; Tian, L. Optimal linear combinations of multiple diagnostic biomarkers based on Youden index. Stat. Med. 2014, 33,

1426–1440. [CrossRef]
23. Liu, A.; Schisterman, E.F.; Zhu, Y. On linear combinations of biomarkers to improve diagnostic accuracy. Stat. Med. 2005, 24,

37–47. [CrossRef]
24. Yin, J.; Tian, L. Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index. Comput.

Stat. Data Anal. 2014, 77, 1–13. [CrossRef]
25. Yin, J.; Tian, L. Joint confidence region estimation for area under ROC curve and Youden index. Stat. Med. 2014, 33, 985–1000.

[CrossRef]
26. Ma, H.; Halabi, S.; Liu, A. On the use of min-max combination of biomarkers to maximize the partial area under the ROC curve.

J. Probab. Stat. 2019, 8953530. [CrossRef]
27. Yu, W.; Park, T. Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC

curve. Comput. Stat. Data Anal. 2015, 88, 15–27. [CrossRef]
28. Yan, Q.; Bantis, L.E.; Stanford, J.L.; Feng, Z. Combining multiple biomarkers linearly to maximize the partial area under the ROC

curve. Stat. Med. 2018, 37, 627–642. [CrossRef]
29. Perkins, N.J.; Schisterman, E.F. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver

operating characteristic curve. Am. J. Epidemiol. 2006, 163, 670–675. [CrossRef]
30. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,

USA, 2009; pp. 219–259.
31. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020. Available online: http://www.r-project.org/index.html (accessed on 20 September 2021).
32. Walker, S.H.; Duncan, D.B. Estimation of the probability of an event as a function of several independent variables. Biometrika

1967, 54, 167–179. [CrossRef]
33. Mohamed, K.; Appleton, R.; Nicolaides, P. Delayed diagnosis of Duchenne muscular dystrophy. Eur. J. Paediatr. Neurol. 2000, 4,

219–223. [CrossRef]
34. Percy, M.E.; Andrews, D.F.; Thompson, M.W. Duchenne muscular dystrophy carrier detection using logistic discrimination:

Serum creatine kinase, hemopexin, pyruvate kinase, and lactate dehydrogenase in combination. Am. J. Med. Genet. A 1982, 13,
27–38. [CrossRef]

35. Savirón-Cornudella, R.; Esteban, L.M.; Aznar-Gimeno, R.; Dieste-Pérez, P.; Pérez-López, F.R.; Campillos, J.M.; Castán-Larraz, B.;
Sanz, G.; Tajada-Duaso, M. Prediction of Late-Onset Small for Gestational Age and Fetal Growth Restriction by Fetal Biometry at
35 Weeks and Impact of Ultrasound–Delivery Interval: Comparison of Six Fetal Growth Standards. J. Clin. Med. 2021, 10, 2984.
[CrossRef]

36. Savirón-Cornudella, R.; Esteban, L.M.; Tajada-Duaso, M.; Castán-Mateo, S.; Dieste-Pérez, P.; Cotaina-Gracia, L.; Lerma-Puertas,
D.; Sanz, G.; Pérez-López, F.R. Detection of Adverse Perinatal Outcomes at Term Delivery Using Ultrasound Estimated Percentile
Weight at 35 Weeks of Gestation: Comparison of Five Fetal Growth Standards. Fetal Diagn. Ther. 2020, 47, 104–114. [CrossRef]
[PubMed]

37. Pinsky, P.F.; Zhu, C.S. Building multi-marker algorithms for disease prediction—The role of correlations among markers. Biomark.
Insights 2011, 6, BMI-S7513. [CrossRef] [PubMed]

38. Ma, S.; Huang, J. Combining multiple markers for classification using ROC. Biometrics 2007, 63, 751–757. [CrossRef] [PubMed]
39. Wang, Z.; Chang, Y.; Ying, Z.; Zhu, L.; Yang, Y. A parsimonious threshold-independent protein feature selection method through

the area under receiver operating characteristic curve. Bioinformatics 2007, 23, 2788–2794. [CrossRef]
40. Komori, O.; Eguchi, S. A boosting method for maximizing the partial area under the ROC curve. BMC Bioinform. 2010, 11, 314.

[CrossRef]



Caṕıtulo 6. Enfoques Min-Max-Median, Min-Max-IQR bajo maximización del ı́ndice de

Youden

6.2. Comparación del enfoque MMM con modelos

de ML (XGBoost)

En esta sección se presenta el art́ıculo [7], cuyo desarrollo complementa el estudio

presentado en la sección anterior.

En el estudio anterior [8], a pesar de llevar a cabo una comparación exhaustiva en

diversos escenarios simulados y obtener resultados que podŕıan ofrecer ciertas pautas

sobre cuándo seŕıa apropiado el uso del algoritmo, la cantidad de enfoques comparados

podŕıa ser insuficiente. Aunque la regresión loǵıstica es un método de comparación

estándar, para poder verificar mejor la adecuación de nuestros enfoques, era importante

compararlos con otros algoritmos del estado del arte que han sido desarrollados más

recientemente.

Los algoritmos de aprendizaje automático (Machine Learning, ML), además de

la regresión loǵıstica, son también métodos eficaces para abordar problemas de

clasificación binaria. En los últimos años, su aplicación en investigación cĺınica ha

aumentado, gracias a sus resultados prometedores y a su facilidad de implementación

con una carga computacional asequible. En concreto, el algoritmo XGBoost (presentado

en la sección 4.3.2) es uno de los algoritmos que más se han utilizado, superando

en rendimientos a otros enfoques de ML y convencionales en diversas aplicaciones.

A diferencia de las limitaciones de los modelos de combinación lineal, el algoritmo

XGBoost es capaz de capturar relaciones no lineales en los datos. Sin embargo, no es

inherentemente interpretable como lo son los modelos lineales. A pesar de esto, en los

últimos años se ha trabajado en el concepto de inteligencia artificial explicable (XAI,

siglas en inglés), que busca ofrecer interpretabilidad y transparencia a través de técnicas

aplicadas a modelos que no son inherentemente explicables.

Estos resultados impulsaron nuestra investigación. En concreto, nuestro objetivo

fue extender la comparación del rendimiento de los enfoques propuestos (MMM/IQR),

incluyendo también el algoritmo de ML XGBoost. Consideramos una diversidad de

escenarios simulados que incluyeron distribuciones simétricas y asimétricas, diferente

tamaño, aśı como diferentes capacidades discriminatorias y correlaciones de los

biomarcadores. Para cada escenario, se entrenó cada método utilizando muestras

aleatorias de la distribución subyacente. Los parámetros estimados y el punto de corte

óptimo seleccionado bajo el criterio del ı́ndice de Youden se aplicaron a la muestra de

validación. Los ı́ndices de Youden obtenidos en la muestra de validación se utilizaron

para evaluar el rendimiento de los enfoques. Además, se evaluaron los métodos en

dos conjuntos de datos reales (riesgo de mortalidad materna y distrofia muscular de

Duchenne), utilizando un procedimiento de validación cruzada.
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Youden

Los resultados muestran que los enfoques de ML superan en rendimiento a nuestros

enfoques en escenarios con biomarcadores con diferentes capacidades predictivas. Sin

embargo, nuestros enfoques siguen obteniendo mejor rendimiento en escenarios de

biomarcadores con la misma capacidad predictiva y diferentes matrices de covarianza

entre grupos. Esto refuerza las conclusiones extráıdas del trabajo previo, evidenciando

que para estos escenarios, nuestros enfoques siguen siendo más óptimos que otros

algoritmos del estado del arte, como el XGBoost.

A continuación se presenta el art́ıculo, resultado de este trabajo.
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Abstract: Although linearly combining multiple variables can provide adequate diagnostic perfor-
mance, certain algorithms have the limitation of being computationally demanding when the number
of variables is sufficiently high. Liu et al. proposed the min–max approach that linearly combines
the minimum and maximum values of biomarkers, which is computationally tractable and has been
shown to be optimal in certain scenarios. We developed the Min–Max–Median/IQR algorithm under
Youden index optimisation which, although more computationally intensive, is still approachable and
includes more information. The aim of this work is to compare the performance of these algorithms
with well-known Machine Learning algorithms, namely logistic regression and XGBoost, which have
proven to be efficient in various fields of applications, particularly in the health sector. This com-
parison is performed on a wide range of different scenarios of simulated symmetric or asymmetric
data, as well as on real clinical diagnosis data sets. The results provide useful information for binary
classification problems of better algorithms in terms of performance depending on the scenario.

Keywords: classification; linear combination; Youden index; min–max approach; min–max–median
approach; min–max-IQR approach; logistic regression; XGBoost

1. Introduction

The linear combination of multiple biomarkers is often used in clinical practice [1] for
disease diagnosis due to its ease of interpretation and performance [2], which is usually
superior to considering each biomarker separately [3–8]. These new biomarkers are key
for disease screening or understanding the evolution of a disease after diagnosis. As an
example, Prostate-specific antigen (PSA) is the most used biomarker to diagnose prostate
cancer, although it lacks the necessary sensitivity and specificity. The prostate health index
(PHI) and 4Kscore are new biomarkers with greater predictive ability derived from linear
models that include PSA [9].

To assess diagnostic accuracy, statistics derived from the receiver operating charac-
teristic (ROC) curve, such as the area under the ROC curve (AUC) [10] or the Youden
index [11], are often used. In this context, the development of binary classification model
approaches that maximise the AUC has been extensively studied in the literature. Many of
these studies have been the basis for the formulation of subsequently published improved
approaches under ROC-curve-derived optimality criteria.

Su and Liu [12] formulated the optimal linear model that maximises the AUC under
the assumption of multivariate normality. This normality assumption is often not easy to
observe in real clinical practice, being too demanding in part due to the symmetry that
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biomarkers must meet. For many diseases, the progression or advanced stages of them
are associated with high values of the diagnostic tests, so these types of variables tend to
follow asymmetric distributions. Results from a prostate cancer screening cohort show
a clear asymmetry of PSA in the Canadian population [13]. This limitation was solved
by Pepe et al. [14,15], who proposed a distribution-free approach for the estimation of
the linear model that maximises AUC based on the Mann–Whitney U-statistic [16]. This
approach is based on discrete optimisation under extensive search on the parameter vector
of biomarkers coefficients. Although the statistical foundation underpinning the approach
proposed by Pepe et al. has been the basis for subsequent approaches, it has the drawback
of being computationally infeasible when the number of biomarkers is greater than or
equal to three. To address this computational limitation, Pepe et al. [14,15] suggested the
use of stepwise algorithms based on selecting and estimating, at each step, the best linear
combination of two biomarkers, including at each step a new biomarker. This proposal
for partial optimisations at each step was later implemented by Esteban et al. [17] and
Kang et al. [18]. Esteban et al. included tie-handling strategies, and Kang et al. proposed
a simpler and less demanding approach by setting the order of biomarker inclusion at
the beginning of the algorithm. Liu et al. [19] proposed an approach, called the min–max
approach, which is computationally tractable regardless of the number of biomarkers.
This is because it is based on the linear combination of the minimum and maximum
values of biomarkers under the optimisation of the Mann–Whitney U-statistic of the AUC,
involving the search for a single optimal coefficient. Despite its computational advantage,
it has been shown to generally achieve lower accuracy than other approaches that use
information from all biomarkers, such as stepwise approaches, but shows superiority in
some scenarios [3,4,18].

In diagnostic or binary classification problems where combinations of continuous
biomarkers are estimated, dichotomisation of the resulting continuous value, i.e., estab-
lishing a cut-off point, is often key, as it provides a classification rule that allows this
classification of patients into groups [20]. In this sense, the Youden index is a good criterion
for choosing the best cut-off point to dichotomise a biomarker [21] and is an appropriate
summary of the performance of the diagnostic model [22]. For example, the Youden index
takes a cut-off value of 45.9 for PHI in nonfused biopsies [23]. The Youden index maximises
the sum of sensitivity and specificity, giving equal weight to both metrics, so that it can be
considered as the symmetrical point that maximises both metrics simultaneously.

Therefore, although there are different metrics that provide the optimal cut-off point,
in the absence of consensus, with no clear reason to optimise either sensitivity or specificity,
the Youden index provides that optimal balance, being the most used parameter to choose
a threshold.

Although the area under the ROC curve is the most studied diagnostic assessment
statistic in the literature, other statistics such as the Youden index are also used in different
clinical studies and provide accurate categorisation. The algorithms under AUC optimality
cited above were used as a basis for the formulation of subsequent approaches under
Youden index maximisation. Based on the stepwise approach of Kang et al. [18], Yin and
Tian [24] conducted a study under Youden index optimisation. Aznar-Gimeno et al. [25]
developed the stepwise algorithm suggested by Pepe et al. [14,15] under Youden index
maximisation and compared its performance with other approaches in the literature, modi-
fied under Youden index maximisation, such as Yin and Tian’s stepwise approach [24], the
min–max approach [19], logistic regression [26], a parametric method with multivariate
normality and a non-parametric kernel smoothing method. Although Aznar-Gimeno et al.
demonstrated that their proposed approach achieved acceptable performance, superior in
some scenarios, it has the computational limitation of being difficult to approach when the
number of biomarkers increases. The min–max approach, which solves this computational
problem through the linear combination of the minimum and maximum values, did not
prove to be sufficient in terms of discrimination, except in a few specific scenarios.
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Maintaining the advantage of not being subject to any distributional assumptions,
being computationally tractable regardless of the number of original biomarkers while
incorporating more information through a new summary statistic (the median or the
interquartile range), Aznar-Gimeno et al. [27] proposed the so-called min–max–median
and min–max-IQR approaches. These approaches are based on estimating the linear
combination of these three variables using the proposed stepwise algorithm [25]. Aznar-
Gimeno et al. compared the proposed algorithms with the min–max algorithm and logistic
regression. The aim was to compare computationally tractable methods, regardless of the
number of biomarkers. In this sense, cancer shows a substantial clinical heterogeneity,
and the max–min derived approach tries to capture the potential variation underlying the
biological heterogeneity.

Machine learning algorithms have been increasingly used in various fields of ap-
plication [28] and, in particular, in clinical practice and medical research [29–34], due to
their performance potential and efficiency. There are different machine learning and deep
learning techniques that have been applied in the area of health from different sources of
information covering different formats ranging from numerical data to text or images [35].
Numerous studies have applied and evaluated these techniques in recent years with dif-
ferent objectives in the healthcare domain [36], such as predicting events, diagnosing or
prognosing diseases or cancers [37–40]. Analysing their association with patient biomark-
ers such as demographic data, clinical data, pharmacology, genetics, medical imaging or
wearable sensors, [41] (among others), is a challenge that needs to be addressed in a way
that prevents or detects the disease early.

Deep learning has been used to assist in the identification of genes and associated pro-
teomics and metabolomics profiles to detect cancers at early stages [42–44]. Concerning the
early detection of breast cancer, Mahesh et al. [45] evaluated the Naive Bayes classifier, the
Decision Tree classifier, Random Forest and their ensembles. Botlagunta et al. [46] assessed
nine machine learning methods for breast cancer metastasis classification, including logistic
regression, k-nearest neighbours, decision trees, random forest, gradient boosting, and
eXtreme Gradient Boosting (XGBoost) [47]. Rustam et al. [48] compared the performance of
Support Vector Machine (SVM) and Naive Bayes for prostate cancer patient classification.
Huo et al. [49] also evaluated the effectiveness of machine learning models for prostate
cancer prediction, including SVM, decision tree, random forest, XGBoost, and adaptive
boosting (Adaboost). Sabbagh et al. [50] applied logistic regression and XGBoost techniques
to the prediction of lymph node metastasis in prostate cancer patients using clinicopatho-
logic features. Khan et al. [51] propose a self-normalised multiview convolutional neural
network model with adaptive boosting (AdaBoost-SNMV-CNN) for lung cancer nodule
detection in computed tomography scans. Regarding diabetes, Saheb-Honar et al. [52]
examined the classification ability of logistic regression, decision tree, and random forest in
identifying the relationship between type 2 diabetes and its risk factors. Budholiya et al. [53]
present a diagnostic system that employs an optimised XGBoost classifier with the aim of
predicting the occurrence of heart disease. Ensemble models, combining machine learning
and deep learning approaches, provide personalized patient treatment strategies based on
medical histories and diagnostics [54]. The versatility of deep learning models is clear, with
applications for omics data types, as well as histopathology-based genomic inference, pro-
viding perspectives on the integration of different data types to develop decision support
tools [55], but few of them have yet demonstrated real-world medical utility [56].

The primary drawback of one of these algorithms compared to techniques based
on linear models is the lack of explainability and interpretability of the models. One
of the key reasons why these tools may not be effectively implemented and integrated
into routine clinical practice is due to the lack of transparency and explainability of the
models. Explainable artificial intelligence (XAI) is attracting much interest in medicine [57]
and, fortunately, in recent years, work has been carried out on the concept of XAI, which
provides techniques that also offer explainability and transparency of these models.
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XGBoost [47] is one of the most widely used machine learning algorithms of recent
times. This is due to its ease of implementation and good results, proving to be a leader in
many competitions and state-of-the-art studies [58]. The XGBoost algorithm assumes no
normality and combines several weak prediction models, which are usually decision trees,
improving its predictivity and accuracy. This type of model shows versatility as it depends
on some parameters relating to the building trees that can be optimized.

In terms of machine learning algorithms, our work focuses on analysing the predictive
capacity of logistic regression and XGBoost. Numerous studies have compared the per-
formance of logistic regression and XGBoost in the health domain in recent years [59–66].
Unlike logistic regression or other statistical approaches based on linear models, XGBoost
allows capturing non-linear relationships, one of the main reasons for its popularity. How-
ever, although XGBoost is an effective tool in healthcare and has been in demand in recent
years, demonstrating good performance, it does not always outperform conventional statis-
tical methods such as logistic regression [62,66,67]. The choice of the optimal model will
depend on the problem and the type of data. Therefore, it is always necessary to conduct a
comprehensive comparative study to analyse the performance of algorithms in different
scenarios in order to obtain useful information and establish certain guidelines.

Due to the enormous number of data available nowadays by the advances in technol-
ogy, it has been shown that it is essential to develop non-parametric biomarker combination
models that are computationally tractable, regardless of the number of initial biomarkers.
In this sense, our proposed approaches (min–max–median/IQR approach) reduce the
dimensional problem by capturing the heterogeneity of the information through summary
statistics. Although studies comparing the performance of different machine learning tech-
niques have increased in the literature in recent years, so far, there are no studies comparing
the performance of our proposed approaches with machine learning models such as XG-
Boost, which has been in high demand in recent years and which can capture more complex
relationships than the statistical linear methods compared in other studies [25,27]. The
aim of our work was to compare the performance of our proposed min–max–median/IQR
approaches with the min–max approach and the machine learning algorithms known as
logistic regression and XGBoost, maximising the Youden index. For this purpose, they
were compared on a wide range of simulated symmetric or asymmetric data scenarios, as
well as on real clinical diagnostic datasets.

We provide a novel approach based on three main basic characteristics of the set of
predictor variables, the maximum, minimum and median or IQR to capture the larger
discrimination ability to summarize in these three parameters. On the other hand, from
a different perspective, we train and validate additive tree models trying to capture the
sum of the predictive ability of all predictor variables. The results of this work provide
the reader with useful information that can serve as a guide for the choice of the most
suitable algorithm for binary classification problems depending on the characteristics and
behaviour of the data.

2. Materials and Methods

This section introduces some notations and the non-parametric approach of Pepe
et al. [14,15], which forms the basis for our min–max–median/IQR approaches. In the fol-
lowing, we explain our proposed approaches (min–max–median/IQR) and the algorithms
with which we compare performance: min–max approach, logistic regression and XGBoost.
These algorithms were adapted by optimising the Youden index. Finally, the simulated
scenarios and real datasets are detailed, as well as the validation procedure. The entire
study was conducted using the free software R (The R Foundation for statistical computing,
Vienna, Austria) [68]. The code of the whole study can be found in Supplementary Material.

2.1. Background

Consider the following binary classification problem where p is the number of biomark-
ers, n1 is the number of case individuals (with disease) and n2 is the number of control
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individuals (healthy individuals). If Xkij denotes the value of the jth variable or biomarker
(j = 1, . . . , p) for the ith individual of group k=1,2 (disease and non-disease), then Xki is
the vector of biomarkers for the ith individual of group k = 1,2 and X1 = (X11, . . . , X1n1)
and X2 = (X21, . . . , X2n2). Therefore, the linear combination of each group is expressed as
Yk = βTXk, k = 1, 2, where β = (β1, . . . , βp)T denotes the parameter vector.

Defined in the above notation, by definition, the Youden index (J) of the linear combi-
nation is expressed as:

J = maxc{Sensitivity(c) + Speci f icity(c)− 1}
= maxc{FY2(c)− FY1(c)}

(1)

where c denotes the cut-off point and FYk(c) = P(Yk ≤ c) the cumulative distribution
function of random variable Yk. Denoting by cβ = {c : maxc

(
FY2(c)− FY1(c)

)
} the optimal

cut-off point, the expression of the empirical estimate of the Youden index is:

Ĵβ = F̂Y2(ĉβ)− F̂Y1(ĉβ)

=
∑n2

i=1 I
(

βTX2i ≤ ĉβ

)

n2
− ∑n1

i=1 I
(

βTX1i ≤ ĉβ

)

n1

(2)

where I denotes the indicator function.

Pepe et al.’s Approach

Pepe and Thompson [14] proposed a distribution-free approach (without any distri-
bution assumptions) to estimate the linear model that maximizes the AUC based on the
Mann–Whitney U-statistic [16]. The basis on which their proposed approach lies is mainly
in the property of invariance of the ROC curve to any monotonic transformation.

Specifically, Pepe and Thompson propose the following linear model:

Lβ(X) = X1 + β2X2 + · · ·+ βpXp (3)

where p denotes the number of biomarkers, Xi the biomarker i ∈ [1, . . . , p] and βi the
parameter to be estimated. Observe that they did not include an intercept in the linear
model (3), and the coefficient associated with the first variable X1 is 1. This is because the
ROC curves for Lβ(X) (3) and Lα(X) = α0 + α1Lβ(X), α1 > 0 are the same, so it is enough
to consider (3). Thus, considering the optimal parameter vector, the maximum empirical
AUC based on the Mann–Whitney U statistic would be given by the following expression:

ÂUC =
∑n1

i=1 ∑n2
j=1 I(Lβ(X1i) > Lβ(X2j)) +

1
2 I(Lβ(X1i) = Lβ(X2j))

n1 · n2

Note that searching the entire possible parameter vector space Rp−1 and possible
coefficient-variable combinations is computationally intractable. To overcome this limita-
tion, Pepe et al. suggested estimating the parameter vector through a discrete optimisation
over 201 equally spaced values between -1 and 1. This is because selecting β in [−1, 1]
is equivalent to covering the range (−∞, ∞) since the AUC of Xi + βXj for β > 1 and
β < −1 is the same as αXi + Xj for α = 1

β ∈ [−1, 1]. Even so, this optimisation is com-
putationally costly for dimensions p ≥ 3. To address this, Pepe et al. [14,15] suggested
the use of stepwise algorithms, in which a new variable is included in each step, selecting
the best combination of two variables. In this way, the problem is transformed into a
computationally tractable problem by estimating a single parameter p− 1 times using a
linear combination of two variables.

Both the model formulation and the empirical search are the basis for the formulation
of the min–max approach and our proposed algorithms (min–max–median/IQR) that
extend the min–max approach, which are explained below.



Symmetry 2023, 15, 756 6 of 26

2.2. Min–Max Approach

Liu et al. [19] proposed the so-called min–max approach (MM), which is a distribution-
free approach, as proposed by Pepe et al. [14,15], but with the advantage of being com-
putationally tractable, regardless of the number of original biomarkers. The idea of this
approach is to calculate the minimum and maximum values of the p biomarkers and to
consider the optimal linear combination of these two markers, involving the search for a
single optimal coefficient. Specifically, the original aim is to estimate the β parameter such
as the combination

Xmin + βXmax (4)

which maximizes AUC based on the Mann–Whitney U statistic, where Xmin and Xmax
are the minimum and maximum values of the original p biomarkers for each individual,
respectively.

Considering the Youden index as our target metric to maximise, the min–max approach
can be adapted by selecting the optimal parameter β and cut-off point cβ that maximises
the following expression

Ĵβ =
∑n2

i=1 I
(
X2i,max + βX2i,min ≤ ĉβ

)

n2
− ∑n1

i=1 I
(
X1i,max + βX1i,min ≤ ĉβ

)

n1
(5)

where Xki,max = max1≤j≤p

(
Xkij

)
and Xki,min = min1≤j≤p

(
Xkij

)
for k = 1, 2 and each

i = 1, . . . , nk, and β ∈ [−1, 1], following Pepe et al’s. suggestion of the empirical search of β.
The procedure can be summarised as follows:

1. For each i individual, the biomarkers with minimum and maximum values (Xmin and
Xmax) are considered as the new 2 markers (for simplicity, X1 and X2).

2. For each of the 201 possible values of β, the value of the linear combination (X1 + βX2)
is calculated for each i individual and the optimal cut-off point is chosen, i.e., the one
that maximises the Youden index.

3. The linear combination that achieves the highest Youden index is the optimal combination.

2.3. Min–Max–Median/IQR Approach

Aznar-Gimeno et al. proposed new non-parametric approaches, so-called min–max–
median (MMM) and min–max-IQR (MMIQR) [27], which extend the idea of the min–max
approach by applying our proposed stepwise algorithm [25], following the suggestion of
Pepe et al. [14,15]. The aim was to include more information in the model while remaining
computationally affordable, although more intensive.

Specifically, the idea behind the approaches is to reduce the dimension of the problem
by reducing the number of original p biomarkers to three, considering the summary
statistic information of the original variables, i.e., the minimum, maximum, median, or
interquartile range (IQR). Our approach extends the min–max approach as it incorporates
a new summary statistic, turning the problem into a three-variable linear combination
optimisation problem. As suggested by Pepe et al., a stepwise algorithm that we developed
is used in this case, where the best linear combination of two variables is selected, including
a new variable in each step.

Below, we provide a detailed description of the procedure for the min–max–median
approach (note that the min–max-IQR approach follows the same steps).

1. Firstly, for each i individual, the minimum, maximum, and median values of p
biomarkers are calculated:

Xki,max = max
1≤j≤p

(
Xkij

)
, Xki,min = min

1≤j≤p

(
Xkij

)
, Xki,median = median1≤j≤p

(
Xkij

)
(6)

where k = 1, 2 and i = 1, . . . , nk. These values are considered as the three new variables
(X1, X2 and X3, for simplicity). Specifically, from now on, the problem is to estimate
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the optimal linear combination of these three variables using the proposed stepwise
algorithm.

2. The first step of the stepwise approach is to choose the combination(s) of the two
variables that maximises the Youden index such that

Ĵβ2 =
∑n2

i=1 I
(
X2ij + β2X2ik ≤ ĉβ2

)

n2
− ∑n1

i=1 I
(
X1ij + β2X1ik ≤ ĉβ2

)

n1
β2 ∈ [−1, 1], ∀j 6= k = 1, . . . , p (7)

using empirical search proposed by Pepe et al. In other words, for each variable
pair, for each value of the 201 (β values), the linear combination is calculated and
the optimal cut-off point that maximises the Youden index is selected. That linear
combination for which the optimal cut-off point has obtained the maximum Youden
index is chosen in this step. Suppose, for simplicity, the optimal linear combination
Xki1 + β2Xki2.

3. The last step is to include the remaining variable (X3) and select the optimal linear
combination(s). Specifically, the previously chosen linear combination (Xki1 + β2Xki2)
is considered as a new variable and the idea of the previous point (2) is re-applied.
Therefore, either combination (8) or (9) that maximizes the Youden index is chosen as
the final optimal combination of the linear model.

Ĵβ3 =
∑n2

i=1 I
(
(X2i1 + β2X2i2) + β3X2i3 ≤ ĉβ3

)

n2
− ∑n1

i=1 I
(
(X1i1 + β2X1i2) + β3X1i3 ≤ ĉβ3

)

n1
β3 ∈ [−1, 1] (8)

Ĵβ3 =
∑n2

i=1 I
(

β3(X2i1 + β2X2i2) + X2i3 ≤ ĉβ3

)

n2
− ∑n1

i=1 I
(

β3(X1i1 + β2X1i2) + X1i3 ≤ ĉβ3

)

n1
β3 ∈ [−1, 1] (9)

For ease, a single optimal linear combination is considered in steps 2 and 3. How-
ever, the maximum Youden index can be reached for different linear combinations. Our
algorithm considers all ties, which can be broken in the last stage (step 3) or not.

Our proposed approaches are openly available to the scientific community through
the R library SLModels [69]. The library also incorporates the min–max algorithm adapted
for the optimisation of the Youden index (previous section).

2.4. Logistic Regression

The logistic regression (LR) (or logit regression) [26] is a statistical model that provides
the probability of an observation/individual i belonging to an output category, given its
set of independent variables Xi, through the logistics function:

P(Yi = 1|Xi) =
1

1 + e−βTXi
=

eβTXi

1 + eβTXi

log
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)
= βTXi

(10)

where β is the vector of parameters to estimate by means of the maximum likelihood
method.

2.5. Extreme Gradient Boosting (XGBoost)

XGBoost (eXtreme Gradient Boosting, XGB) is a scalable tree boosting system that was
developed by Chen and Guestrin [47]. It is a specific optimised implementation of gradient
boosting and is therefore based on the principle of sequential order ensemble learning,
where errors are minimized (loss function) using a gradient descent algorithm. Specifically,
XGBoost is a decision tree ensemble based on the idea of training several weak learners
(base learners) sequentially in order to create a strong learner with higher accuracy. During
training, the parameters of each weak model are adjusted by minimising the objective
function, and each new model is trained to correct the errors of the previous ones. Correctly
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and incorrectly predicted results receive different scores that are finally weighted to obtain
a final result.

The XGBoost algorithm, unlike those presented above, has both parameters and
hyperparameters. Hyperparameters are values of model settings that must be set during
the training process to control the behaviour and performance of the model.

Considering the XGBoost algorithm as an ensemble base learners of decision trees, the
loss function at iteration t to minimise has the following expression:

L(t) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + ft(Xi)

)
+ Ω( ft) (11)

where l is the loss term and Ω( f ) = γT + 1
2 λ||ω||2 is the regularisation term, which

penalizes the complexity of the model, avoiding over-fitting. yi indicates the real output,
ŷi

(t−1) the prediction of the ith individual at the (t − 1)th iterations, f denotes the base
learners, T the number of leaves of the tree and ω the weights of the leaves. γ represents
the minimum loss reductions needed to split a leaf node of the tree. The larger γ is, the
more conservative the algorithm will be.

The complexity of the model can also be limited through the maximum-depth hyper-
parameter, which specifies the maximum number of levels of the tree, where each level
represents a division of the data based on a variable. Another possible regularisation
hyperparameter is shrinkage, which reduces the step size to make the boosting process
more conservative. In other words, it decreases the influence of each individual tree and
allows future trees to improve the model. Random subsampling is another regularisation
technique that can be used. In the case of a column subsample, the hyperparameter specifies
the subsample fraction of columns to be used to construct each tree. The same idea is for
rows, where, if the value is less than 1, a random subset of rows (observations/individuals)
is selected for each tree.

The XGBoost model was applied using the free software R library xgboost. Specifically,
in this study, the following hyperparameters were adjusted over a set of possibilities:

• nrounds: Number of decision trees in the final model.
• gamma (γ): Minimum loss reduction required to split a node.
• eta (shrinkage, learning rate): Step size shrinkage.
• max_depth: Maximum depth of the tree.
• colsample_bytree: Subsample ratio of columns.
• subsample: Subsample ratio of the training instances.

Table 1 shows the hyperparameter possibilities space explored in the study. The ex-
plored values of maximum tree depth for datasets with fewer variables were lower than
those with higher dimensions. For the selection of the best combination of hyperparam-
eters, the grid search technique was used, and 5-fold cross-validation was performed on
the training set. Finally, the model was trained on the entire training dataset with the
selected optimal hyperparameters. The early stopping technique was used as an additional
technique to avoid over-fitting by stopping the training if there was no improvement in
10 iterations in a row.

Table 1. Search space of the hyperparameters explored.

nrounds gamma eta max_depth colsample_bytree subsample

50,100,200 0,0.5 0.1,0.3 [2,20] 0.5,1 0.5,1

2.6. Simulations

A wide range of simulated data were explored in order to analyse and compare the
performance of the algorithms previously discussed. Specifically, scenarios simulating
different biomarker distributions, discrimination capabilities, and correlation between
them were analysed, considering p = 4 and p = 10 biomarkers, and smaller (n1 = n2= 50)
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and larger (n1 = n2= 500) sample sizes. As for the biomarker distributions, both symmet-
ric distributions (normal distributions) and asymmetric distributions (different marginal
distributions and multivariate log-normal skewed distribution) were simulated.

The scenarios with different marginal distributions were simulated with 4 biomarkers
following chi-square, normal, gamma and exponential distributions via normal copula
with a dependence parameter between biomarkers of 0.7 for the case population (patients;
diseased population) and 0.3 for the control population (healthy; non-diseased popula-
tion). More specifically, the biomarkers for the control population were considered to be
marginally distributed as χ2

0.1, N(0.1), Γ(0.1), Exp(0.1) and χ2
0.1, N(0.6), Γ(0.8), Exp(0.1)

for case population. Scenarios under log-normal distribution were generated from the con-
figurations of the simulated scenarios under a normal distribution and then exponentiated.

Concerning the scenarios of normal distributions, the null vector m2 =~0 was consid-
ered as the mean vector of the non-diseased population. With respect to the mean vector of
the diseased population (m1), scenarios with the same meansm1 = (1.0, 1.0, . . . )T , i.e., the
same predictive ability, and different means m1 = (0.2, 0.5, 1.0, 0.7)T , m1 = (0.2, 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6, 1.8, 2.0)T , were explored. For simplicity, the variance of each biomarker was
set to 1, so that covariances are equivalent to correlations. The same correlation value was
considered for all pairs of biomarkers. Let Σ1 and Σ2 be the variance–covariances matrices
for diseased and non-diseased populations, respectively. The following scenarios with
different biomarker means were analysed:

– Independents (Σ1 = Σ2 = I).
– High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J).
– Different correlation between groups (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
– Negative correlation (ρ = −0.1).

where I denotes the identity matrix and J the all-one matrix. Regarding scenarios with the
same biomarker means, the following were explored:

– Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J).
– Different correlation between groups (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
– Different correlation between groups with biomarkers independents in the non-

diseased population (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).

2.7. Application in Real Datasets

The methods being examined were also applied in two real clinical datasets: for the
diagnosis of Duchenne muscular dystrophy and for maternal mortality risk.

Duchenne muscular dystrophy (DMD) is a genetic disorder passed down from a
mother to her children, causing progressive muscle weakness and wasting. Percy et al. [70]
analysed the effectiveness of detecting this disorder using four biomarkers extracted from
blood samples: serum creatine kinase (CK), haemopexin (H), pyruvate kinase (PK) and
lactate dehydrogenase (LD). The dataset was obtained at https://hbiostat.org/data/,
accessed on 30 January 2023. After removing observations with missing data, the dataset
used contains information on the four biomarkers of 67 women who are carriers of the
progressive recessive disorder DMD and 127 women who are not carriers.

Maternal mortality refers to the death of a woman due to a pregnancy-related cause.
It is one of the main concerns of the Sustainable Development Goals (SDG) of the United
Nations. The dataset used for analysing maternal mortality was obtained at [71] (Maternal
Health Risk), which contains information on the following six risk factors for maternal mor-
tality: age in years during pregnant, upper value of blood pressure in mmHg (SystolicBP),
lower value of blood pressure in mmHg (DiastolicBP), blood glucose levels in mmol/L (BS),
body temperature in ºF (BodyTemp) and a normal resting heart rate in beats per minute
(HeartRate). An IoT-based risk monitoring system was used to gather this information
from various hospitals, community clinics, and maternal healthcare centres in the rural
areas of Bangladesh. The level of risk intensity was also provided by differentiating three
categories: low (406 women), medium (336 women) and high (272 women). To adapt data
to our study, the following binary problems were considered: (i) predicting high or medium
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risk versus low risk and (ii) predicting high risk versus medium or low risk. The original
dataset contains repeated data, outliers and anomalous data that may be due to errors in
data retrieval. In our study, data from women aged 13–50 years were considered, duplicate
rows were removed, and two observations were removed with heart rate values of 7 beats
per minute, which is an erroneous value. Finally, the dataset used in the study contained
196 low-risk, 86 medium-risk and 95 high-risk observations.

2.8. Validation

A total of 59 simulated data scenarios were explored, considering different sample
sizes, number of biomarkers, distributions, discriminatory ability, and correlations. For
each simulated scenario, each method was trained considering random samples from
the underlying distribution (100) and validated using new data simulated with the same
configuration (100). For real data, a 10-fold cross-validation procedure was performed.

During training, the model parameters were estimated, and the optimal cut-off point
that maximises the Youden index was obtained. The estimated model and the cut-off point
selected were applied to the validation set. The Youden indices obtained in the validation
set are shown in the tables in the following sections.

3. Results

This section presents the results of the performance achieved by each of the methods
studied, both for the simulated scenarios and for the real data datasets. We denote the
logistic regression, XGBoost, min–max approach, min–max–median approach, and min–
max-IQR approach by LR, XG, MM, MMM, and MMIQR, respectively.

3.1. Simulations

The results obtained from the 100 random samples for each scenario are presented
as the mean of the maximum Youden indices as well as the standard deviation. The
following sections present the results for the symmetric (normal) and non-symmetric
distribution scenarios.

3.1.1. Symmetric Distributions

Tables 2 and 3 display the results obtained from the simulated scenarios for p = 4
biomarkers following a multivariate normal distribution with different means and the same
means, respectively. The code can be found at Supplementary Material: Chapter 1, Sections
A.1.–A.5.

The results in Table 2 show, in general, a superiority of logistic regression over the other
algorithms, except in the scenario of different correlations and larger sample sizes, where
XGBoost significantly outperforms it. Our proposed algorithms (MMM/MMIQR) show
similar performance to the min–max approach or superior, particularly when biomarkers
are independent or negatively correlated.

Table 3 presents the results for biomarkers with the same predictive ability. The con-
clusions derived are different from those in the Table 2 above (different mean). Logistic
regression achieves the highest average performance value in the same and low correlation
scenarios, although the rest of the algorithms obtained very close values. The summary-
statistics-based methods (MM, MMM, MMIQR) and especially our proposed algorithms
(MMM/MMIQR) outperformed the other algorithms in scenarios with different correla-
tions. XGBoost outperforms logistic regression in scenarios with different correlations and
large sample sizes.
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Table 2. Normal distributions. Different means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.453 (0.0919) 0.3878 (0.1016) 0.3696 (0.1037) 0.3884 (0.1075) 0.3938 (0.1107)
(500,500) 0.4882 (0.0282) 0.4698 (0.0322) 0.4103 (0.0308) 0.4397 (0.0317) 0.432 (0.0343)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.4392 (0.0904) 0.3598 (0.1004) 0.2652 (0.106) 0.249 (0.0925) 0.2646 (0.0892)
(500,500) 0.4653 (0.0286) 0.4457 (0.0315) 0.2966 (0.0367) 0.2954 (0.0378) 0.2963 (0.0362)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.392 (0.0933) 0.3758 (0.0946) 0.3212 (0.0978) 0.3288 (0.0892) 0.3194 (0.1007)
(500,500) 0.4262 (0.031) 0.4814 (0.0314) 0.3564 (0.0323) 0.3593 (0.0306) 0.3598 (0.0307)

Negative Correlation (ρ = −0.1)

(50,50) 0.5074 (0.0808) 0.4578 (0.0857) 0.4358 (0.0826) 0.4708 (0.0802) 0.461 (0.0841)
(500,500) 0.5562 (0.0239) 0.5306 (0.0245) 0.4658 (0.027) 0.5147 (0.0279) 0.5053 (0.0323)

Table 3. Normal distributions. Same means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4878 (0.09) 0.429 (0.0942) 0.4794 (0.0954) 0.482 (0.097) 0.4818 (0.0971)
(500,500) 0.5254 (0.0285) 0.5125 (0.0284) 0.5073 (0.0278) 0.5183 (0.032) 0.5182 (0.0295)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4598 (0.0958) 0.4628 (0.1004) 0.5366 (0.0904) 0.5438 (0.0813) 0.5398 (0.0869)
(500,500) 0.4783 (0.0259) 0.5279 (0.0284) 0.5609 (0.0285) 0.5627 (0.0271) 0.5632 (0.0271)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.5452 (0.0779) 0.5186 (0.0831) 0.5758 (0.0776) 0.587 (0.0825) 0.59 (0.0771)
(500,500) 0.5748 (0.028) 0.5875 (0.0289) 0.5975 (0.0279) 0.6097 (0.0247) 0.6088 (0.0246)

Tables 4 and 5 present the results obtained considering the above scenarios for p = 10
biomarkers. The code can be found at Supplementary Material: Chapter 1, Sections A.6.–
A.10. Table 4 shows the Youden indices achieved for biomarkers with different means. The
conclusions derived are similar to those in Table 2, with our more hardened approaches
being significantly superior to the min–max approach, especially when biomarkers are
independent or negatively correlated, where they achieve the best performance. Logistic
regression generally outperforms all other algorithms in all other scenarios.

The results reported in Table 5 show similar behaviour to Table 3. In general, the
summary statistics-based methods and, in particular, our approaches outperform the
others. The XGBoost algorithm outperforms logistic regression, generally, in the different
correlation scenarios.

3.1.2. Asymmetric Distributions

This section presents results derived from simulated scenarios of non-normal distribu-
tions. Tables 6–8 show the results obtained from simulated data for p = 4 biomarkers. The
code can be found in Supplementary Material: Chapter 1, Sections B.1.–B.6. Specifically, Tables
6 and 7 consider scenarios under log-normal distribution and Table 8 considering different
marginal distributions (χ2, normal, gamma and exponential). Tables 9 and 10 display the re-
sults obtained from simulated data for p = 10 biomarkers following a log-normal distribution.
The code can be found in Supplementary Material: Chapter 1, Sections B.7.–B.11.
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Table 4. Normal distributions. Different means. Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.8698 (0.055) 0.86 (0.061) 0.7704 (0.0642) 0.8716 (0.0547) 0.8616 (0.0647)
(500,500) 0.9448 (0.0093) 0.9288 (0.0142) 0.7962 (0.0187) 0.8996 (0.0146) 0.8993 (0.0175)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.8324 (0.0696) 0.7992 (0.0726) 0.6672 (0.0854) 0.6644 (0.0868) 0.662 (0.0861)
(500,500) 0.9191 (0.0149) 0.8935 (0.0168) 0.6893 (0.0245) 0.6899 (0.0253) 0.6888 (0.0271)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.789 (0.071) 0.7658 (0.0706) 0.4924 (0.0932) 0.4948 (0.0961) 0.4982 (0.0977)
(500,500) 0.8585 (0.0174) 0.8626 (0.0179) 0.5287 (0.0274) 0.5471 (0.0255) 0.5464 (0.0248)

Negative Correlation (ρ = −0.1)

(50,50) 0.9232 (0.0552) 0.8884 (0.075) 0.865 (0.0599) 0.9468 (0.0482) 0.9576 (0.0418)
(500,500) 0.9936 (0.0042) 0.9764 (0.0145) 0.8953 (0.0166) 0.996 (0.0035) 0.9962 (0.0034)

Table 5. Normal distributions. Same means. Ten biomarkers..

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.5216 (0.09) 0.508 (0.0833) 0.5202 (0.0812) 0.5328 (0.0885) 0.531 (0.0841)
(500,500) 0.5803 (0.0264) 0.5595 (0.0255) 0.5501 (0.0281) 0.5742 (0.0302) 0.5751 (0.0285)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4206 (0.1047) 0.4662 (0.106) 0.6784 (0.0758) 0.6774 (0.0821) 0.6766 (0.08)
(500,500) 0.5044 (0.0283) 0.6324 (0.0279) 0.692 (0.0226) 0.6929 (0.0233) 0.6946 (0.0242)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.621 (0.0816) 0.6146 (0.0819) 0.6966 (0.0751) 0.7172 (0.0706) 0.718 (0.0715)
(500,500) 0.6849 (0.0237) 0.714 (0.0257) 0.712 (0.0203) 0.7373 (0.025) 0.7378 (0.0253)

Table 6 reports results for the scenario of biomarkers with different means. It shows
tnat logistic regression outperforms the others in high-correlation scenarios. The XGBoost
algorithm dominates the others in all other scenarios for larger sample sizes and in all
scenarios of different correlations. Our min–max-IQR approach outperforms the others in
small sample sizes of negative correlations and particularly the min–max approach in the
independent biomarker scenarios.

The results reported in Table 7 show a similar behaviour to Table 3 (normal distribu-
tions) but with a worse logistic regression performance, such that our approaches generally
perform the best in all scenarios.
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Table 6. Log-normal distributions. Different means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.4112 (0.0936) 0.385 (0.1016) 0.3658 (0.106) 0.393 (0.1031) 0.3852 (0.1077)
(500,500) 0.4562 (0.03) 0.4686 (0.0313) 0.4096 (0.0324) 0.4376 (0.0315) 0.435 (0.0328)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.4108 (0.1009) 0.354 (0.0998) 0.2596 (0.1025) 0.2468 (0.1004) 0.246 (0.102)
(500,500) 0.4502 (0.0282) 0.446 (0.0318) 0.2954 (0.0365) 0.2935 (0.037) 0.2935 (0.0337)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.3492 (0.0955) 0.3814 (0.0879) 0.3158 (0.0942) 0.3198 (0.0955) 0.3166 (0.102)
(500,500) 0.394 (0.0337) 0.4815 (0.0328) 0.3558 (0.0325) 0.3571 (0.0317) 0.3567 (0.0334)

Negative Correlation (ρ = −0.1)

(50,50) 0.4538 (0.0963) 0.4466 (0.0861) 0.4268 (0.0834) 0.4794 (0.0795) 0.4802 (0.0853)
(500,500) 0.4916 (0.0264) 0.5304 (0.0252) 0.4627 (0.0248) 0.5051 (0.0274) 0.5044 (0.0278)

Table 7. Log-normal distributions. Same means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4592 (0.0955) 0.4312 (0.0943) 0.4704 (0.0933) 0.483 (0.0879) 0.4816 (0.095)
(500,500) 0.5049 (0.0301) 0.5121 (0.029) 0.5051 (0.027) 0.5161 (0.0282) 0.5151 (0.0282)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4066 (0.0926) 0.4524 (0.1019) 0.5444 (0.0911) 0.5358 (0.0905) 0.54 (0.0884)
(500,500) 0.4166 (0.0279) 0.5292 (0.0278) 0.5606 (0.0266) 0.5607 (0.0276) 0.56 (0.0279)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.4556 (0.0853) 0.522 (0.0755) 0.5784 (0.0813) 0.5832 (0.0865) 0.5798 (0.0897)
(500,500) 0.4755 (0.0282) 0.5881 (0.0288) 0.5982 (0.0276) 0.6074 (0.025) 0.6079 (0.0258)

The results in Table 8 indicate that, in scenarios of different marginal distributions,
the XGBoost algorithm dominates the rest significantly. In these scenarios, the summary
statistics-based methods are the worst performers.

Table 8. Different marginal distributions.Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

(50,50) 0.6572 (0.108) 0.6838 (0.0947) 0.3716 (0.1194) 0.3442 (0.1234) 0.3616 (0.1251)
(500,500) 0.7065 (0.0363) 0.7692 (0.0220) 0.435 (0.0453) 0.4357 (0.0442) 0.4358 (0.0429)

Table 9 shows that logistic regression outperforms the rest in high-correlation scenarios
but is closely followed by the XGBoost algorithm. The XGBoost algorithm dominates over
the others in independent scenarios of larger sample sizes and scenarios with different
correlations between groups. Our approaches achieve the best performance in independent
biomarker scenarios and smaller sample sizes and in scenarios with negative correlations.
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Table 9. Log-normal distributions. Different means. Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.8344 (0.0556) 0.8594 (0.065) 0.7728 (0.0632) 0.8772 (0.0545) 0.8646 (0.0591)
(500,500) 0.901 (0.0137) 0.9293 (0.0128) 0.7966 (0.018) 0.895 (0.0154) 0.8929 (0.0178)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.817 (0.0706) 0.8034 (0.0745) 0.6584 (0.0762) 0.6572 (0.0828) 0.657 (0.0805)
(500,500) 0.8948 (0.0164) 0.8916 (0.0173) 0.6825 (0.0224) 0.6812 (0.0244) 0.6814 (0.0248)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.7436 (0.0795) 0.7692 (0.077) 0.4994 (0.0932) 0.505 (0.0961) 0.5026 (0.097)
(500,500) 0.808 (0.0217) 0.8626 (0.018) 0.5218 (0.0279) 0.5452 (0.0257) 0.5445 (0.025)

Negative Correlation (ρ = −0.1)

(50,50) 0.8946 (0.0586) 0.886 (0.0755) 0.8704 (0.05) 0.952 (0.0449) 0.953 (0.0457)
(500,500) 0.9703 (0.01) 0.9756 (0.0143) 0.8938 (0.0149) 0.9947 (0.0044) 0.9964 (0.0036)

The results reported in Table 10 show a general dominance of our approaches over the oth-
ers, with logistic regression performing significantly worse in scenarios of different correlation
than in other scenarios.

Table 10. Log-normal distributions. Same means.Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.5072 (0.0917) 0.5066 (0.0859) 0.5144 (0.0869) 0.5306 (0.0931) 0.5344 (0.0886)
(500,500) 0.5656 (0.0253) 0.5592 (0.0292) 0.5459 (0.0277) 0.5739 (0.0296) 0.5748 (0.0288)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.35 (0.1058) 0.4666 (0.1037) 0.6732 (0.0852) 0.661 (0.091) 0.664 (0.0905)
(500,500) 0.4253 (0.0277) 0.6321 (0.0275) 0.6796 (0.0239) 0.6802 (0.0254) 0.6811 (0.0251)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.4944 (0.0835) 0.613 (0.0756) 0.69 (0.0789) 0.7166 (0.0762) 0.7186 (0.0782)
(500,500) 0.5506 (0.0265) 0.715 (0.0239) 0.7122 (0.0225) 0.738 (0.0231) 0.7376 (0.0222)

3.1.3. Summary

To provide a better understanding of our proposed approaches’ performance com-
pared to other algorithms, this section provides a summary of the previously displayed
results in Figures 1 and 2. Figure 1 shows the results from simulated scenarios of normal
distributions, while Figure 2 displays the results from non-normal distributions. The value
on the y-axis represents the value after subtracting the average Youden index achieved by
our proposed best approach (MMM or MMMIQR) among the other algorithms: logistic
regression, XGBoost and min–max approach. The blue value corresponds to the difference
with logistic regression (denoted by MMM-LR), red with XGBoost algorithm (MMM-XG),
and black with min–max approach (MMM-MM). Thus, negative values on the graph repre-
sent scenarios where algorithms outperform our approaches and positive values in other
scenarios. The further away from zero, the more significant the difference.

Regarding scenarios with normal distributions (Figure 1), machine learning algorithms
(logistic regression and XGBoost algorithm) outperform our approaches, particularly in
scenarios with biomarkers with different predictive capacity, mainly in scenarios with
high correlations and different correlations (scenarios 2 and 3). However, our approaches
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outperform the others in scenarios with biomarkers with similar predictive ability (scenarios
5–7) and in scenarios of biomarkers with negative correlations, mainly for scenarios with a
higher number of biomarkers. Note that these differences are more pronounced in scenarios
with a higher number of biomarkers.

Figure 1. Normal distributions. Difference in the average Youden index achieved by our approach
(MMM/MMIQR) and the other algorithms (MMM-LR, MMM-XG, MMM-MM). 1: Independents.
2: High correlations. 3: Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J). 4: Negative
correlations. 5: Low correlation. 6: Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
7: Different correlations (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).
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Figure 2. Non-normal distributions. Difference in the average Youden index achieved by our
approach (MMM/MMIQR) and the other algorithms (MMM-LR, MMM-XG, MMM-MM). 1: Log-
normal. Independents. 2: Log-normal. High correlations. 3: Log-normal. Different correlations
(Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J). 4: Log-normal. Negative correlations. 5: Log-normal.
Low correlation. 6: Log-normal. Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
7: Log-normal. Different correlations (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).
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As for the scenarios of non-normal distributions (Figure 2), the behaviour in scenarios
of log-normal distributions is similar to those with normal distributions (Figure 1 above),
but with larger differences overall in favour of our algorithm with respect to logistic
regression in scenarios with biomarkers of the same means. In scenarios where biomarkers
follow different marginal distributions, the XGBoost algorithm significantly achieves the
best performance. XGBoost also outperforms the others in scenarios of biomarkers with
different means and different variance-covariance matrices between groups.

3.2. Real Datasets
3.2.1. Duchenne Muscular Dystrophy

Figure 3 shows the distribution of each biomarker, and Table 11 displays the correlation
matrix between them in each group (67 carriers and 127 non-carriers) for the Duchenne
muscular dystrophy dataset, where rCK−H denotes the correlation between the pair of
biomarkers CK and H. The code can be found in Supplementary Material: Chapter 2,
Section A.1.

Figure 3. Marginal distributions of biomarkers. DMD dataset.

Table 11. Correlation between biomarkers. DMD dataset.

rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD

Non-Carrier −0.33 0.1 0.2 0.08 0.18 0.22
Carrier −0.14 0.7 0.49 −0.12 −0.1 0.48

Because the range of biomarker values differs from the others, the values of each
biomarker were normalised before applying summary statistics-based methods, thus ensur-
ing the correct use of these methods. The biomarkers CK and H show a negative correlation,
which is stronger in the non-carrier group. Conversely, the other biomarker pairs generally
show positive correlations, with a stronger correlation observed in the carrier group.

The estimates of the Youden index of each biomarker (CK, H, PK, LD) produced in a
univariate way on the whole dataset were 0.612, 0.417, 0.508, and 0.578. Table 12 presents
the average value of the maximum Youden indices achieved in each fold for each of the
analysed methods, as well as their respective values of sensitivity and specificity. The code
can be found in Supplementary Material: Chapter 2, Section A.2.

Logistic regression achieved the best performance, although our approaches are not
far behind, outperforming the XGBoost algorithm and notably the min–max approach.

3.2.2. Maternal Health Risk

This section presents the performance results of the approaches to the problem of
predicting high or medium versus low risk of maternal mortality (High–Medium vs. Low
Risk) and the problem of predicting high risk versus low or medium risk of maternal
mortality (High vs. Medium–Low Risk) for the Maternal Health Risk dataset.
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Table 12. Ten-fold cross-validation. DMD dataset.

Algorithm Youden Sensitivity Specificity

LR 0.8008 0.8476 0.9532
XG 0.7047 0.8142 0.8905

MM 0.6258 0.7952 0.8306
MMM 0.7793 0.8595 0.9198

MMIQR 0.7772 0.8761 0.9011

3.2.3. High–Medium vs. Low Risk

Figure 4 displays the distribution of each variable, and Table 13 shows the correlation
matrix between them in each group (196 low risk and 181 medium-high risk). The variables
Age, SystolicBP, DiastolicBP, BS, BodyTemp and HeartRate are denoted by V1, V2, V3, V4,
V5, and V6, respectively. The code can be found in Supplementary Material: Chapter 2,
Section B.1.

Figure 4. Marginal distributions of biomarkers. Maternal Health dataset. High–Medium vs. Low Risk.

Table 13. Correlation between biomarkers. Maternal Health dataset. High–Medium vs. Low Risk.

rV1−V2 rV1−V3 rV1−V4 rV1−V5 rV1−V6 rV2−V3 rV2−V4 rV2−V5 rV2−V6 rV3−V4 rV3−V5 rV3−V6 rV4−V5 rV4−V5 rV5−V6

Low Risk 0.39 0.4 0.17 −0.13 −0.17 0.8 0.07 −0.08 −0.15 0.11 −0.1 −0.09 0.03 −0.02 0.11
High–Medium Risk 0.46 0.39 0.53 −0.38 0.08 0.75 0.27 −0.41 −0.07 0.27 −0.36 −0.14 −0.17 0.19 0.12

Positive and negative correlations are shown between the variables, generally with
greater strength in the higher-risk group (High–Medium Risk). The estimates of the Youden
index of each biomarker (Age, SystolicBP, DiastolicBP, BS, BodyTemp and HeartRate)
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produced in a univariate way on the whole dataset were 0.305, 0.304, 0.153, 0.377, 0.249,
0.217, respectively. The predictive capacity of the biomarkers in this dataset was lower
than the previously presented DMD dataset, as can also be seen in Figure 4.

Table 14 presents the performance achieved by each of the analysed methods after
the application of 10-fold cross-validation. The values of each biomarker were normalised
before applying the summary statistics-based methods. The code can be found in Supple-
mentary Material: chapter 2, section B.2.

Table 14. Ten-fold cross-validation. Maternal Health dataset. High–Medium vs.Low Risk.

Algorithm Youden Sensitivity Specificity

LR 0.5366 0.6611 0.8755
XG 0.586 0.74 0.846

MM 0.4563 0.7055 0.7508
MMM 0.4739 0.718 0.7559

MMIQR 0.4739 0.718 0.7559

The XGBoost algorithm and logistic regression achieved better performance than the
summary-statistics-based methods, especially XGBoost which performs the best.

3.2.4. High vs. Medium–Low Risk

Figure 5 shows the distribution of each variable and Table 15 the correlation matrix
between them in each group (282 low–medium risk and 95 high risk). Age, SystolicBP,
DiastolicBP, BS, BodyTemp and HeartRate are denoted by V1, V2, V3, V4, V5 and V6,
respectively. The code can be found in Supplementary Material: Chapter 2, Section C.1.

Figure 5. Marginal distributions of biomarkers. Maternal Health dataset. High vs. Medium–Low Risk.
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Table 15. Correlation between biomarkers. Maternal Health dataset. High vs. Medium–Low Risk.

rV1−V2 rV1−V3 rV1−V4 rV1−V5 rV1−V6 rV2−V3 rV2−V4 rV2−V5 rV2−V6 rV3−V4 rV3−V5 rV3−V6 rV4−V5 rV4−V5 rV5−V6

Medium–Low Risk 0.44 0.41 0.33 −0.14 −0.13 0.74 0.18 −0.08 −0.16 0.17 −0.1 −0.16 0.05 0.03 0.22
High Risk 0.44 0.4 0.55 −0.57 0.06 0.84 0.23 −0.57 −0.04 0.18 −0.54 −0.09 −0.4 0.14 −0.01

As in the previous example, positive and negative correlations between pairs of
variables are shown. The Youden index estimates for each biomarker (Age, SystolicBP,
DiastolicBP, BS, BodyTemp and HeartRate) univariate over the whole dataset were 0.347,
0.386, 0.268, 0.564, 0.22 and 0.272, respectively, which are higher than in the previous
example.

Table 16 displays the performance achieved for each of the analysed methods. The
values of each biomarker were normalised before applying the summary statistics-based
methods. The code can be found in Supplementary Material: Chapter 2, Section C.2.

Table 16. Ten-fold cross-validation. Maternal Health dataset. High vs. Medium–Low Risk.

Algorithm Youden Sensitivity Specificity

LR 0.6225 0.8036 0.849
XG 0.7159 0.8238 0.8921

MM 0.6149 0.8932 0.7217
MMM 0.5831 0.8851 0.6981

MMIQR 0.5831 0.8851 0.6981

The XGBoost algorithm significantly outperformed the other algorithms. It was followed
by logistic regression, but the summary-statistics-based algorithm was not far behind.

4. Discussion and Conclusions

In binary classification problems in healthcare, the choice of thresholds to dichotomise
the model output into groups of patients is crucial and can aid decision-making in clinical
practice. In the absence of consensus on the benefits of optimising the classification of one
group or another, the Youden index is a standard criterion that provides good performance
for the model.

Models combining biomarkers for binary classification have received sufficient atten-
tion in the literature. The parametric approach has the limitation of meeting the assumption
of normality; by contrast, other authors propose non-parametric approaches without as-
sumptions of biomarker distributions but with the limitation of being computationally
intractable when the number of biomarkers increases.

Liu et al. [19] proposed the min–max approach, which is a non-parametric and com-
putationally tractable approach regardless of the number of biomarkers, based on the
linear combination of minimum and maximum values of biomarkers. The idea behind this
proposal is that the maximum and minimum values chosen among the biomarkers can
allow the best discrimination between sick and healthy patients. However, this approach
may not be sufficient in terms of discrimination when the number of biomarkers grows,
because it is not enough to capture all the discrimination abilities of the set of predictor
variables. To improve the min–max algorithm, we proposed the min–max–median/IQR
approach under a Youden index maximisation that incorporates a new summary statistic
with reasonably good performance. This approach uses a stepwise algorithm that we
proposed in [25], which is based on the work of Pepe et al. [14,15].

The use of machine learning algorithms, such as XGBoost, has become increasingly
popular in recent years due to their ease of implementation and good results. However, the
choice of the optimal approach depends on the problem and the data to be processed. It is
therefore essential to make a thorough comparison before providing some guidelines for
the selection of the optimal algorithm.
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The aim of this paper is to present a comprehensive comparison of our min–max–
median/IQR approaches with the min–max approach and machine learning algorithms
such as logistic regression and XGBoost, in order to optimise the Youden index. For this
purpose, the algorithms were compared on 59 different simulated data scenarios with
symmetric and non-symmetric distributions, as well as on two real-world datasets.

The results of the simulated scenarios showed that the machine learning approaches
outperformed our approaches, in particular in scenarios with biomarkers with differ-
ent predictive abilities and in biomarker scenarios with different marginal distributions.
However, our approaches outperformed them in scenarios with biomarkers with normal
and log-normal distributions with the same predictive ability and different correlations
between groups.

Regarding the real datasets, XGBoost outperformed the other algorithms in predicting
maternal health risk, while logistic regression achieved the best performance in predicting
Duchenne dystrophy, with our proposed approaches closely following. The data show that
the problem of predicting Duchenne dystrophy is simpler than that of predicting maternal
death risk. In the former, linear combination approaches outperform XGBoost. However,
XGBoost outperforms the others on the more complex problem. This may be due to its
ability to capture non-linear relationships.

In summary, regardless of the symmetry assumption, non-parametric approaches are
always a good alternative for modelling data, but their performance is not guaranteed.
Therefore, the modelling process requires a combination of techniques and the optimization
of hyperparameters , as we have demonstrated with extensive simulations and application
on real data. This work provides the scientific community with a comparison of the per-
formance of our approaches (min–max–median/IQR) and machine learning algorithms,
that can be applied and explored in different binary classification problems, such as cancer
diagnosis. We proposed a non-parametric approach, addressing the limitations of previous
linear biomarker combinations that assume multivariate normality. It also addresses the
limitation of the computational burden of certain approaches in the literature, being always
approachable regardless of the number of initial biomarkers. This is achieved thanks to
the formulation of our algorithm that linearly combines the minimum, maximum, and
median or interquartile range biomarkers, thereby converting the n-biomarker combina-
tion problem into a three-biomarker combination problem. Although there are several
techniques that reduce the dimensionality of the problem for subsequent classification
algorithm application, our proposed approach provides a different perspective in this
regard. The way our approach is formulated allows the three biomarkers considered (min-
imum, maximum and median or interquartile range) to correspond to different original
biomarkers for each patient. This offers the possibility of capturing biomarker hetero-
geneity in the data. Subsequently, our approach applies a stepwise algorithm, which we
published in [25] , and which demonstrated acceptable performance in the comparison
study. Therefore, our approach proposes a novel formulation in the state of the art that
addresses certain limitations in the literature. Furthermore, a comparison of our approach
with other approaches, such as the XGBoost algorithm, provides performance results with
other approaches that also help to capture biomarker heterogeneity, albeit from a different
perspective. XGBoost is a decision tree ensemble algorithm that builds multiple trees and
combines their predictions to produce the final output. For the construction of each tree, a
random subset of biomarkers/variables is selected and used to partition the data. In this
way, each tree is constructed with information from different biomarkers, thus helping to
avoid overfitting.

Our approaches have been shown to be superior to other algorithms, including ma-
chine learning algorithms, in scenarios with biomarkers having the same predictive capacity
and different correlations between groups. These results are not surprising, as there is
a variety of health problems in which the combination of the minimum and maximum
of biomarkers provides the best classification. In prostate cancer, the worst diagnosis
corresponds to a higher value in PSA and a lower value in prostate volume. PSA density
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is defined by the division of PSA and prostate volume, and it shows a better predictive
ability than PSA. Thus, we can choose as a biomarker for prostate cancer the PSA density
or the combination provided by PSA and prostate volume. Moreover, as with PSA, there is
a variety of competing biomarkers such as PCA3, SelectMdx, and 4Kscore, in which high
values correspond to a greater probability of cancer. The min–max derived approaches
gives the opportunity to choose from them the one which takes the highest value. Similar
to prostate volume, the free PSA takes lower values with a worse diagnosis of prostate
cancer; therefore, choosing the minimum and maximum marker for a group of candidates
with similar performance can contribute to the best discrimination ability. In addition, the
third parameter, median or interquartile range, informs about the performance of the set of
biomarkers. The cost-effectiveness of a set of biomarkers to diagnose a unique disease can
be controversial, but molecular or metabolomic markers are associated with a variety of
cancers, and their analysis has been increasing in recent years. The stratification of cancer
or its prognosis will be derived from biomarkers built from information derived from
different perspectives.

Although our work includes an exhaustive comparison study in various real and
simulated data scenarios, yielding interesting results, the conclusions must be considered
within the framework of our study. All conclusions derived from our study are limited to
the scenarios and algorithms explored. One of the limitations of the study is the variety
of machine learning algorithms considered. While the XGBoost algorithm and logistic
regression have been widely used in recent years and have proven efficient, a comparative
study that includes additional machine-learning techniques would provide more consistent
conclusions. In future work, we propose exploring other machine learning algorithms,
deep learning and ensemble models, to compare their performance with our approaches,
particularly in scenarios where they are optimal.

Another limitation of the study is the variety of real datasets used, where in no case
did our approach achieve the best performance. As future work, we propose evaluating
the performance of our approach on real datasets that meet the conditions of the optimal
simulation scenarios. One example could be the dataset used in [19], where the authors
demonstrated that the min–max combination of three growth hormones (IGFBP3, IGF1,
and GHBP) was superior to the other linear combinations for identifying autism. The aim
of this evaluation would be to determine whether our approaches outperform min–max
and the other algorithms studied.

In addition to scenarios combining multiple biomarkers with the same predictive ca-
pability, our approach could also be applied in scenarios where repeated measurements of
a single biomarker are recorded, converting the temporal information into three summary
measurements. Readers are encouraged to evaluate our approaches in such problems,
for example, the detection of events or neurodegenerative diseases from gait informa-
tion retrieved from wearable sensor measurements. Another line of future work could
involve adapting the models and the study to other objective metrics, such as the weighted
Youden index.

In conclusion, our study presents a comprehensive comparison of various approaches,
presenting our proposed approach (min–max–Median/IQR) as an alternative to machine
learning models such as logistic regression and XGBoost, in certain scenarios where it
has demonstrated superior performance. We believe that the results of this research will
provide valuable insights for the development and application of classification algorithms
in the field of medicine, such as cancer diagnosis.
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Caṕıtulo 7

Estimación en problemas de
clasificación en entornos cĺınicos
reales

Los enfoques lineales y los métodos de Machine Learning son herramientas valiosas

para abordar problemas cĺınicos reales, como el diagnóstico de enfermedades, la

predicción de eventos y la identificación de factores de riesgo. Estos métodos permiten

estimar modelos clasificatorios que pueden detectar los patrones complejos de los datos,

lo que puede ayudar a los profesionales de la salud a tomar decisiones más informadas

aśı como contribuir a la mejora del sistema de salud. Seleccionar el modelo adecuado

es esencial y depende del contexto y los datos que se estén analizando. Para tomar

esta decisión, se debe tener en cuenta una métrica de evaluación espećıfica a optimizar.

Además de la capacidad discriminatoria del modelo, la aplicabilidad práctica de estos

modelos radica también en su utilidad cĺınica. En este contexto, el análisis del punto

de corte óptimo adquiere una relevancia significativa al trasladar al cĺınico el resultado

del modelo en información interpretable con una dicotomización en clases.

En los caṕıtulos anteriores, se han presentado trabajos donde se han comparado

métodos de clasificación utilizando tanto simulaciones como aplicaciones con datos

reales en medicina. Continuando en esta dirección, en las siguientes secciones

presentamos el resto de trabajos incluidos en este compendio de tesis [5, 34, 97, 3], los

cuales se centran en la estimación y aplicación de modelos en problemas de clasificación

en entornos cĺınicos reales. Estos resultados tienen un impacto positivo en la práctica

cĺınica al proporcionar herramientas para la toma de decisiones médicas.



Caṕıtulo 7. Estimación en problemas de clasificación en entornos cĺınicos reales

7.1. Predicción del riesgo en pacientes con

COVID-19

El trabajo [5] presentado en esta sección se enmarca en el contexto de la pandemia

de COVID-19, donde la evaluación del riesgo en pacientes positivos no era evidente en

la práctica cĺınica. Nuestro objetivo fue construir un modelo de predicción del riesgo de

ingreso en la UCI o muerte en pacientes hospitalizados con COVID-19, para integrarlo

en una aplicación web fácil de usar para ayudar al cĺınico en la toma de decisiones

rápidas, de especial valor en tiempos de pandemia.

Nuestro estudio abordó ciertas limitaciones de trabajos relacionados del estado del

arte. Exploramos técnicas de aprendizaje automático como los algoritmos ensemble

(Random Forest y XGBoost) y algoritmos de redes neuronales. La evaluación de los

modelos se realizó tanto interna como externamente y su calibración fue también

evaluada. Para la selección del mejor modelo se llevó a cabo una optimización de los

hiperparámetros del modelo con el fin de seleccionar la arquitectura óptima. Asimismo,

se abordaron aspectos relacionados con la utilidad cĺınica.

Con el fin de facilitar su aplicación cĺınica, se seleccionaron las 20 variables con

mayor capacidad predictiva de entre las 150 originales, basadas en la información del

paciente en el momento del ingreso hospitalario. Esta elección fue robusta puesto que

no resultó en una pérdida de capacidad predictiva, como demostramos con test de

comparación de curvas ROC. El mejor modelo, en términos de AUC, se logró con

el algoritmo XGBoost (AUC=0.82). Debido a la falta de interpretabilidad intŕınseca

de los modelos de XGBoost, se aplicaron técnicas de explicabilidad para ofrecer una

interpretación de las decisiones del modelo.

Además de una correcta validación del modelo, se llevó a cabo un análisis de los

puntos de corte óptimos según diferentes criterios, incluyendo el accuracy, sensibilidad,

especificidad, valor predictivo positivo, valor predictivo negativo y el ı́ndice de Youden.

La selección de un punto de corte óptimo favorece la implementación de los modelos

clasificatorios en la práctica cĺınica, ya que permite al profesional elegir el umbral más

adecuado.

El resultado final fue una aplicación web sencilla que integraba los modelos

estimados. A partir de la información del paciente (20 variables explicativas), la

herramienta devuelve la probabilidad de que el paciente termine en una condición grave

(UCI o muerte) y ofrece una representación gráfica que permite una interpretación de

los resultados.

A continuación se presenta el art́ıculo, donde se explica el proceso seguido en mayor

profundidad aśı como los resultados obtenidos.
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Abstract: The purpose of the study was to build a predictive model for estimating the risk of ICU
admission or mortality among patients hospitalized with COVID-19 and provide a user-friendly
tool to assist clinicians in the decision-making process. The study cohort comprised 3623 patients
with confirmed COVID-19 who were hospitalized in the SALUD hospital network of Aragon (Spain),
which includes 23 hospitals, between February 2020 and January 2021, a period that includes several
pandemic waves. Up to 165 variables were analysed, including demographics, comorbidity, chronic
drugs, vital signs, and laboratory data. To build the predictive models, different techniques and
machine learning (ML) algorithms were explored: multilayer perceptron, random forest, and extreme
gradient boosting (XGBoost). A reduction dimensionality procedure was used to minimize the features
to 20, ensuring feasible use of the tool in practice. Our model was validated both internally and
externally. We also assessed its calibration and provide an analysis of the optimal cut-off points
depending on the metric to be optimized. The best performing algorithm was XGBoost. The final
model achieved good discrimination for the external validation set (AUC = 0.821, 95% CI 0.787–0.854)
and accurate calibration (slope = 1, intercept = −0.12). A cut-off of 0.4 provides a sensitivity and
specificity of 0.71 and 0.78, respectively. In conclusion, we built a risk prediction model from a large
amount of data from several pandemic waves, which had good calibration and discrimination ability.
We also created a user-friendly web application that can aid rapid decision-making in clinical practice.

Keywords: COVID-19; ICU; mortality; machine learning; predictive model; clinical decision web tool

1. Introduction
1.1. Context

Recent advances in the field of artificial intelligence have demonstrated their success
in different fields of interest such as the environment [1], climate change [2], agriculture [3],
industry [4] and health [5–7], among others. In particular, the application of modelling and
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the development of machine learning algorithms have been emerging in recent times and
have been responsible for these multiple applications of interest for data-driven decision
support and profit maximisation.

Deep Learning is a subset of machine learning algorithms that has shown great
promise especially in the application of data with some temporality [8,9], image or textual
data in areas such as image recognition [10–13], natural language processing [14] or speech
recognition [15].

These algorithms generally outperform machine learning techniques when the data
size is large. This explains the success in these areas where large amounts of information
are generated, such as time series data retrieved by sensors in real time or images or textual
knowledge generated through the Internet. In addition to this, the success is also partly
due to the fact that deep learning algorithms allow automatic feature extraction based on
the data, unlike shallow machine learning algorithms whose features must be previously
identified by a subject matter expert.

Deep learning algorithms and in particular deep neural networks allow through
their layered architecture to extract from more general to more specific features, without
the need for domain expertise. Therefore, when we have a large amount of information
and/or unstructured data and/or domain knowledge is lacking, deep learning algorithms
outperform others as there is no need to worry about feature engineering.

In addition to these advantages, deep learning techniques have the ability to adapt
to different domains more easily [4], for example through transfer learning by using
pre-trained deep neural networks.

However, as they are more complex techniques, training deep learning algorithms
involve a higher computational cost and therefore requires more powerful infrastructure.
Although it has been shown that Deep Learning sometimes outperforms classical machine
learning techniques, when the data size is not too large, the latter are preferable [16].

In addition to having a lower computational cost and being recommended for smaller
datasets, another advantage of shallow machine learning algorithms is that they are easier
to interpret and understand compared to Deep Learning where deep networks are trained
as a “black box”. This interpretability may be the main argument why many sectors use
machine learning techniques as opposed to Deep Learning. This may be the case in the
field of health and medicine, when the aim is to provide tools to clinicians helping them
make critical decisions about a patient based on information about the patient at a specific
time, which is the scope of the work we present here.

The application of artificial intelligence techniques in the field of health and medicine
has been particularly accentuated in recent months to create problem-solving strategies
due to the COVID-19 (Coronavirus disease 2019) pandemic [17].

The COVID-19 pandemic has already affected more than 174 million people, causing
nearly 3 million deaths and overloading healthcare systems worldwide [18]. The clinical
severity of the disease is highly variable. Most cases are asymptomatic or mild, but 14% of
patients have severe disease, and 5% are critical [19]. The case fatality rate in China has
been reported to be 2.3%, and in Europe it reaches 4–4.5% [20].

Multiple predictive and prognostic factors associated with increased severity of infec-
tion have been described, and models have been built to assist healthcare systems prioritize
medical attention [21–23]. Nevertheless, most of these models have significant biases [23].
In addition, the sample sizes have been limited and most models lack external validation
or calibration. There have also been several pandemic waves, in which both mortality rate
and severity have differed [24], so it would be necessary for models to prove useful in
different scenarios over time.

Machine learning has become an advanced tool for diagnosing health problems
and predicting the severity and mortality of different diseases. During the COVID-19
pandemic, machine learning tools have been used for a variety of investigations, ranging
from image analysis for diagnosis of SARS-CoV-2 pneumonia to predicting future pandemic
waves [17]. These algorithms have the advantage of being able to combine a large amount



Int. J. Environ. Res. Public Health 2021, 18, 8677 3 of 20

of information, extracting the most predictive characteristics of the diagnosis associated
with coronavirus disease [17,21–23,25–31].

Therefore, during the COVID-19 pandemic, Machine Learning has been crucial in
developing tools for a variety of investigations, ranging from image analysis for diagnosing
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) pneumonia, predicting
future pandemic waves, detecting multiple predictive and prognostic factors associated
with increased severity of infection, to building severity models that help health systems
prioritise care [8,21–30].

In the present study, we focus on assessing the prediction of intensive care unit (ICU)
admission or mortality risk (severity risk) among patients admitted to the hospital with
COVID-19 using machine learning algorithms.

1.2. Related Work and Limitations

Any predictive model must contemplate certain good practices for model building and
validation that provide generalizability and easy interpretation. The first thing that must be
clearly defined is the target population, as well as the prediction horizon (outcome), so that
the model can be validated with good reliability. A lack of or incorrect definition can lead
to inappropriate use of the model and biased interpretation of the results. Limited sample
sizes are also a known problem when building prediction models, which also implies a
high risk of bias and overfitting of the model [32].

Several studies have built predictive models and analysed mortality risk in patients
with suspected or confirmed COVID-19, but with an unclear definition of the target popu-
lation, without specifying the outcome (mortality) period, and at high risk of biases [33–36].
This bias can lead to miscalibrations and overestimation of the discrimination performance,
especially when they are not externally validated.

Yan et al. [34] (mortality risk in validated or suspected COVID-19 inpatients) and
Shi et al. [36] (death or severe COVID-19 in inpatients with confirmed COVID-19 at ad-
mission) validated their models with samples of patients with a different severity than
the training set, which can lead to bad calibration. In particular, Yan et al. used temporal
validation, selecting only severe cases and Shi et al. validated using less severe cases.

Yue et al. [37] validated their prognostic models (hospital stay of more than 10 days
per COVID admission) using 5-fold cross-validation. Although this type of validation is
adequate (cross-validation) in order to avoid the overfitting, external validation ensures
better generalization of the model, though it is a more difficult type of validity to achieve.
Gong et al. [38] (severe COVID-19 infection within minimum 15 days in inpatients with
confirmed COVID-19 at admission) and Xie et al. [39] (mortality in hospital in inpatients
with confirmed COVID-19 at admission) performed external validation and achieved good
performance, though their validation was performed for different centres, possibly due
to being early prognostic model studies of the pandemic (with a population from China);
the populations studied were patients admitted between January and March 2020 (first
pandemic wave). However, subsequent studies [24] have shown that there were differences
between the pandemic waves in terms of patient characteristics and severity. In addition to
model discrimination, calibration should also be assessed, though this is not always done
or not done correctly. Xie et al. [39] (in-hospital mortality of inpatients with confirmed
COVID-19 at admission) performed validation and assessed the calibration correctly.

Many recent studies have explored machine learning techniques for the generation of
a COVID-19 prognostic model to predict disease severity, demonstrating their great poten-
tial [17,25–27] and the ability of these techniques to select the most significant/influential
variables [28–30]. Variable selection can be crucial for the generation of a prognostic model
in such a medical and emergency setting. It is well known good practice to select the
simplest possible model that still achieves an acceptable level of performance [40]. This is
even more important in the medical domain, where a limited number of observations [23]
but a large number of variables may be available, which may lead to overfitting. Finally,
COVID-19 prognostic models of disease severity ultimately aim to provide a user-friendly
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tool for clinical practice that can aid rapid decision-making [22,26,28]. This implies that,
for its use to be feasible in practice, the model should not include a large number of
variables to be introduced.

Yao et al. [27] built a model for detecting COVID-19 disease severity using the support
vector machine (SVM) algorithm by finally selecting 28 features (clinical information and
blood/urine test data). They used a dataset of 137 patients hospitalized between January
and February 2020. Marcos et al. [28] explored several machine learning algorithms (regu-
larized logistic regression, random forest, XGBoost) to identify early patients who will die
or require mechanical ventilation during hospitalization. For training and internal valida-
tion, they used a cohort of 918 confirmed COVID-19 patients admitted to the Salamanca
hospital between March and April 2020 and a cohort of 252 COVID patients from another
hospital (admitted to the Barcelona clinical hospital between February and April 2020).
To develop a user-friendly and practical calculator, the number of features used by the
machine learning model was reduced from 140 to fewer than 10 (demographic variables,
comorbidities, chronic medical treatment, clinical characteristics, physical examination
parameters, and biochemical parameters). With a similar aim, Patel et al. [30] developed
models for predicting the need for intensive care and mechanical ventilation using a cohort
of 212 patients. To this end, they considered various machine learning techniques (random
forest, MLP, support vector machines, gradient boosting, extra tree classifier, adaboost).
Knight et al. [22] developed and validated a pragmatic risk score (4C mortality score)
based on eight variables (age, sex, number of comorbidities, respiratory rate, peripheral
oxygen saturation, level of consciousness, urea level, and C-reactive protein) with the aim
of predicting mortality in patients admitted to the hospital with COVID-19. For this pur-
pose, they used a large patient dataset including patients from 260 hospitals. In particular,
model training was performed on a cohort of patients recruited between 6 February and 20
May 2020, and validation was performed on a second cohort of patients recruited between
21 May and 29 June 2020.

1.3. Contributions of Our Work

The aim of our study was to build a model for predicting the risk of ICU or death in
hospitalised patients with COVID-19 and integrate it into an easy-to-use web application
to aid rapid decision-making in clinical practice, which is very important in these times of
pandemic. To this end, machine learning techniques were applied following a good model
building and validation exercise.

As described in the previous section, some related studies have some limitations or
shortcomings related to different aspects related to the definition of the study population,
the sample size, the validation and generalisation of the model, the assessment of the cali-
bration of the model or its practical application with the development of a web application
for decision making. Our work addresses all these limitations.

Our model was built with a larger sample size than most of the studies reviewed,
covering more temporal information, including several pandemic waves. The model
was validated both internally and externally and its calibration was properly assessed.
In addition to a correct validation of the model and good model performance values,
we developed a user-friendly tool for quick decision making, which is ultimately the real
goal in practice. In order to make it feasible to use in practice, the most important input
variables were selected.

Specifically, starting from a set of more than 150 clinical variables based on the patient′s
history and analysis carried out at hospital admission, we built a predictive model using ma-
chine learning algorithms with a reasonable dimensionality, including the 20 most predictive
variables, which makes it easy to apply from a clinical perspective, that were also validated
in a subsequent wave. In addition, we provide a user-friendly tool for practical use.

The following sections present the data retrieval and pre-processing process of the
patient information, the statistical techniques and the process of generation and validation
of the model carried out. Subsequently, the results are shown and finally the results
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obtained are discussed and compared with the state of the art and the main conclusions of
our work are drawn.

2. Materials and Methods
2.1. Patient Information Recruitment

This study involved data from patients with SARS-CoV-2 infections confirmed by
RT-PCR (Reverse Transcription Polymerase Chain Reaction) who were hospitalized in
the SALUD hospital network of Aragon (Spain), which comprises 23 hospitals, between
February 2020 and January 2021. The selection criterion was hospitalization within the first
20 days after, and no more than 10 days before, the first positive SARS-CoV-2 PCR test.

Patient information was retrieved through the BIGAN Gestión Clínica platform of
the Department of Health of Aragon. This platform accesses the Aragon Health Records
Database, which is the primary data source of SALUD, containing demographic and clinical
information on patients. The original database included 7498 patients and 165 variables.
The outcome studied was ICU admission or mortality within 30 days of hospital admission,
which we will refer to as an unfavourable outcome or severity. Each patient′s demographics,
comorbidities, and medication prescribed in the 6 months prior to hospitalization were
considered. Vital signs were recorded upon arrival at the emergency room. Laboratory
variables were measured in the first 24 h. This laboratory information was only available
for the largest two hospitals of the SALUD network, which accounted for more than 60%
of all patients admitted with COVID-19 in the Aragon region during the study period.

To avoid bias due to missing patient information, which could erroneously and unreal-
istically influence the performance of the model, patients with <65% of the variables filled in
were removed from the original database (listwise deleiton). Furthermore, outliers caused
by possible human error in filling in the data were analysed and removed. After removing
patients with more than 35% of the variables not filled in and outliers and erroneous data,
the univariate mean imputation was carried out for the missing data (missing data were
imputed as the mean value of the variable). We used imputation techniques with the
purpose of a minimum loss in sample size, although we discarded multiple imputation
regression methods due to the complexity of the data with a large number of variables.

Our analysis included 3623 patients.

2.2. Statistical Analysis

For model building, the pre-processed dataset with information from February 2020
to November 2020 was considered and split into three separate datasets as is usual in
machine learning algorithms: 75% for the training model (fitting the model), 12.5% for
model validation (selecting the best model configuration [hyperparameter set] from a set of
candidates), and 12.5% for model testing (providing unbiased evaluation metrics that give
a generalized value of the performance of the fitted model). In addition, a dataset including
information from November 2020 to January 2021 was used for external validation of the
final model in a different temporal scenario. We recruited the 626 cases distributed during
the period shown in Figure 1 (green color) that verify the study inclusion criteria, these data
are completely different to the generation model data and thus provide a validation on a
different dataset not used for the building models.

Figure 1 shows the number of hospitalizations reported in the time period considered.
Note that the model included information from two different waves of the pandemic,
and the external validation included information from yet a different new wave.

For both datasets, we analysed descriptive variables by severity groups (unfavourable/
favourable outcome). Medians and interquartile ranges were used for quantitative variables,
and absolute and relative frequencies for categorical variables. Variables were compared
between severity groups using Mann-Whitney and chi-squared tests as appropriate.

Figure 2 shows a flowchart of the data retrieval and preparation process that sum-
marises the above.
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2.3. Training and Validation

The final aim of the study was to implement a severity diagnostic model in a web
tool/platform accessible by clinicians. Thus, by entering the necessary patient information,
the probability of severity is provided. In practice, a user-friendly predictive tool such
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as this is limited by the amount of patient information (variables) entered; too much
information is not feasible in real-world use. Therefore, it was necessary to apply techniques
to reduce candidate variables.

Model building was performed in several steps. First, different machine learning
algorithms were explored, including artificial neural networks (multilayer perceptron
[MLP]), random forest, and gradient boosting trees. The gradient boosting tree algorithms,
particularly extreme gradient boosting (XGBoost) [41], achieved the best performance
in predicting unfavourable outcomes (ICU admission or death) and were chosen for
model development. In addition, ensembles of decision tree methods have the advantage
of providing estimates of the importance of variables from a trained predictive model.
To report the model, the final importance of each variable is calculated as the average of the
importance in each tree, which is calculated by the amount that each attribute split point
improves the performance measure weighted by the number of observations for which
the node is responsible [42]. This value provides a ranking of feature importance that was
used for the selection and reduction of variables.

Second, a stepwise procedure was followed to reduce the number of variables (simpler
models) so that the loss in performance was not significant. Models were initially trained
using all 165 variables. After the best model with all variables was selected, i.e., the model
with the highest discriminatory ability over the validation set, the importance of the
variables was calculated and the 50 most important variables selected by means of the
XGBoost algorithm. The process was repeated for the dataset using the 50 variables,
selecting the 20 most significant variables. The final model was generated by using the
dataset with 20 variables.

The discriminative ability of the models was assessed by the area under the receiver
operating characteristics (ROC) curve (AUC). The 95% confidence intervals (CIs) were
obtained using 2000 stratified bootstrap replicates. The tests for comparing the AUCs pro-
posed by DeLong et al. [43] and Pepe et al. [44] were applied to assess the discriminatory
difference between models. In the comparison between models, we considered as the best
model the one that corresponds to the largest AUC value. The AUC values can be inter-
preted as 0.5 = this suggests no discrimination, so we might as well flip a coin. 0.5–0.7 = we
consider this poor discrimination, not much better than a coin toss. 0.7–0.8 = acceptable
discrimination. 0.8–0.9 = excellent discrimination. >0.9 = Outstanding discrimination [45].

Regarding the model build, the model hyperparameters were optimized over a set
of possibilities, choosing the best possible combination (best model) with the selected
validation set in order to avoid overfitting. We implemented our model in the Optuna
framework to achieve this goal. Optuna [46] is a define-by-run API that allows users
to construct the parameter search space dynamically and implements both searching
and pruning strategies. In our case, we used the Tree-structured Parzen Estimator (TPE)
algorithm [47].

Figure 3 shows a flowchart summarises the above information representing the
methodology carried out for the final model generation.

2.4. External Validation

An external dataset with information from November 2020 to January 2021 (external
validation set) was used to validate the final model. The calibration (agreement between
the probabilities predicted by the model and the real incidence) and discriminatory capacity
of the model were analysed, as well as the performance of the model for each cut-off point
through the following statistical metrics: accuracy (1), specificity (2), sensitivity (3), Youden
(4), positive predictive value (PPV) (5), and negative predictive value (NPV) (6):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Specificity =
TN

TN + FP
(2)
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Sensitivity =
TP

TP + FN
(3)

Youden index = Sensitivity + Specificity− 1 (4)

PPV =
TP

TP + FP
(5)

NPV =
TN

TN + FN
(6)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives
and false negatives, respectively.

This clinical utility analysis provides the clinician with decision-making capability,
offering a set of different possibilities for the optimal threshold depending on the criterion
to be optimized, which may change over time and with circumstances.

The level of significance in the study was established at p < 0.05. Analyses were
performed using R language programming v 4.0.3 [48] and Python language programming
v 3.7.7. [49].
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3. Results

The descriptive characteristics of the model generation and external validation datasets
are provided in Tables 1 and 2, respectively. Significant differences between groups based
on the severity were observed for predictive variables in the model generation cohort,
and for most of them in the validation cohort.

Table 1. Demographic and clinical information of patients with and without severe disease in the model generation cohort
(February–November 2020).

Non Severity
(n = 1548)

Severity
(n = 699) p-Value

Age (years) 66 (51–81) 83 (71–89) <0.001
Oxygen saturation (%) 96 (94–97) 94 (91–96) <0.001

Intermittent claudication (yes) 41 (2.65%) 42 (6.01%) <0.001
Cerebrovascular disease (yes) 104 (6.72%) 104 (14.88%) <0.001

Dementia (yes) 124 (8.01%) 141 (20.17%) <0.001
Obesity (yes) 218 (14.08%) 123 (17.6%) 0.03701

Chloride (mmol/L) 101.5 (98.4–104) 102.3 (99–106) <0.001
Creatinine (mg/dL) 0.86 (0.68–1.1) 1.1 (0.81–1.58) <0.001

Eosinophils (%) 0.17 (0–0.7) 0 (0–0.2) <0.001
Eosinophils (mil/mm3) 0.0102 (0–0.04385) 0 (0–0.01702) <0.001

Glucose (mg/dL) 110 (96–133) 128 (104–170) <0.001
International normalized ratio-prothrombin time (INR-PT) 1.1 (1.02–1.17) 1.16 (1.06–1.305) <0.001

Lactate dehydrogenase (U/L) 275 (219–350) 336.5 (246.8–470) <0.001
Lymphocytes (%) 17.9 (11.65–25.98) 10.74 (6.275–18) <0.001

Lymphocytes (mil/mm3) 1.0875 (0.7561–1.4941) 0.8055 (0.5605–1.1458) <0.001
Monocytes (%) 8.07 (6–10.438) 6.2 (4–8.9) <0.001

Neutrophils (%) 72 (63.28–80.41) 81.4 (72.75–88.5) <0.001
Red blood cells (mil/mm3) 4.6 (4.19–4.95) 4.32 (3.87–4.72) <0.001

Urea (g/l) 0.3595 (0.27–0.5258) 0.609 (0.42–0.91) <0.001
Mean corpuscular volume (fl) 89.7 (86.1–93) 91.5 (87.7–95) <0.001

Data are presented as n (%) or median (interquartile range).

Table 2. Demographic and clinical information of patients with and without severe disease in the external validation cohort
(November 2020–January 2021).

Non Severity
(n = 425)

Severity
(n = 201) p-Value

Age (years) 71 (58–83) 84 (74–89) <0.001
Oxygen saturation (%) 95 (94–97) 95 (92–97) 0.03714

Intermittent claudication (yes) 24 (5.65%) 17 (8.46%) 0.2484
Cerebrovascular disease (yes) 44 (10.35%) 37 (18.41%) 0.007451

Dementia (yes) 43 (10.12%) 32 (15.92%) 0.05051
Obesity (yes) 75 (17.65%) 27 (13.43%) 0.2236

Chloride (mmol/L) 101.7 (98.9–104.1) 102.1 (98.3–105.7) 0.1273
Creatinine (mg/dL) 0.85 (0.68–1.06) 1.14 (0.8–1.64) <0.001

Eosinophils (%) 0.1 (0–0.4) 0.01 (0–0.24) <0.001
Eosinophils (mil/mm3) 0.00715 (0–0.02808) 0.00026 (0–0.0162) <0.001

Glucose (mg/dL) 116 (100–145) 130 (106–174) <0.001
International normalized ratio-prothrombin time (INR-PT) 1.08 (1.02–1.17) 1.15 (1.06–1.32) <0.001

Lactate dehydrogenase (U/L) 266 (213–336) 322 (245–414) <0.001
Lymphocytes (%) 16 (10.5–24.4) 9.2 (5.5–14.8) <0.001

Lymphocytes (mil/mm3) 0.9432 (0.6696–1.362) 0.6987 (0.4611–1.0577) <0.001
Monocytes (%) 7.9 (5.6–10.59) 5.7 (3.6–8.29) <0.001

Neutrophils (%) 74.7 (64.66–82.4) 84.5 (75.1–88.7) <0.001
Red blood cells (mil/mm3) 4.46 (4.01–4.81) 4.17 (3.66–4.62) <0.001

Urea (g/L) 0.396 (0.306–0.553) 0.672 (0.446–1.1) <0.001
Mean corpuscular volume (fl) 90.1 (87.1–93) 90.7 (87–94.9) 0.07457

Regarding the modelling procedure, Table 3 contains the set of hyperparameters
explored in training the different algorithms (MLP, random forest, and XGBoost), as well
as their best combination of hyperparameters and the AUC achieved. In the case of
MLP, the Early Stopping technique was applied to avoid overfitting. To enhance training,
both classes were weighted to balance the training sample.
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Table 3. Search space of the hyperparameters explored for each algorithm.

Model Parameters Search Space Best Model AUC

Number of hidden
layers [2, 10] 7

Number of neurons [16, 512] [96, 176, 240, 240, 352, 352, 384]

MLP Activation layer [selu, linear, tanh, softmax] [softmax, selu, softmax, selu,
selu, selu, selu] 0.8015

Learning rate {0.001,0.01,0.1} 0.001
Optimizer {sgd, adam, rmsprop} rmsprop
Batch size [1, 64] 54

Number of estimators [30, 1300] 820
Max. depth [3, 20] 15

Random Forest Min. samples split [2, 30] 10 0.8297
Criterion {gini, entropy} gini

Min. impurity decrease
{5 × 10−5, 1 × 10−4, 2 × 10−4,
5 × 10−4, 1 × 10−3, 1.5 × 10−3,

2 × 10−3, 5 × 10−3, 0.01}
2 × 10−4

Number of estimators [30, 1300] 330
Scale pos. weight [1, 10] 1

Column subsample
size per tree [0.3, 1] 0.85

Subsample size per tree [0.3, 1] 0.64
XGBoost Max. depth [3, 20] 15 0.8307

Learning rate {10−4, 10−3, 10−2,0.1, 0.15, 0.2,
0.3, 0.4}

0.01

Reg. alpha {10−4, 10−3, 10−2,0.1, 0.15, 0.2,
0.3, 0.4}

0.4

Gamma [0.05, 1] 0.6

Sgd: stochastic gradient descendent; Max. depth: The maximum tree depth for the base learners; Min. samples split: Minimum number
of samples remaining in a node to consider splitting it; Min. impurity decrease: A node will be split if this split induces a decrease in
the impurity greater than or equal to this value; Scale pos. weight: The balance between positive and negative classes; Reg. alpha: The
L1 regularization on the weights; Gamma: The minimum loss reduction required to further partition a leaf node of the tree. Column
subsample size per tree and Subsample size per tree describe the ratio of columns and rows, respectively, used in each boosting round,
and Learning rate is the boosting learning rate.

The ROC curves of the best models for each ML algorithm on the test dataset are shown
in Figure 4. The AUCs obtained by the algorithms that combine decision trees (i.e., random
forest and XGBoost) were superior to those obtained by the MLP, with XGBoost achieving
the best performance (AUC = 0.8307). The curve comparison test showed a significant
predictive improvement (p = 0.043) by considering the XGBoost model vs. MLP.

For the best algorithm (XGBoost), Table 4 shows the set of hyperparameters for which
the best models were attained considering all variables, the 50 best variables, or the 20 best
variables as candidate variables. Figure 5 is an importance diagram of the 20 variables that
were finally selected.

Table 4. Hyperparameter configuration of the best XGBoost models.

Parameter All-Variable Model 50-Variable Model 20-Variable Model

Number of estimators 330 690 340
Scale pos. weight 1 5 1

Column subsample size per tree 0.85 0.41 0.84
Subsample size per tree 0.64 0.94 0.68

Max. depth 15 14 13
Learning rate 0.01 0.2 0.01

Reg. alpha 0.4 0.3 0.15
Gamma 0.6 0.1 0.45
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Finally, the ROC curves for the final models analysing all variables, 50 variables,
and 20 variables on the test dataset are shown in Figure 6. The AUC comparison revealed
non-significant predictive improvement or loss (p > 0.1) when considering the best model
with the 165 source variables (AUC = 0.8307; 95% CI 0.7856–0.8718), the best model with
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the 50 most important variables (AUC = 0.8138; 95% CI 0.7654–0.8571), and the best model
with the 20 most important variables (AUC = 0.8153; 95% CI 0.7655–0.8615). Therefore,
the most robust and parsimonious choice was to consider the 20-variable model as the final
model due to its simplicity without loss of predictive capacity.
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3.1. External Validation Analysis

Regarding the model validation, Figure 7 shows the boxplots for each real class (non-
severity; severity, respectively) on the external validation dataset. The distribution of the
probabilities predicted by the model for non-severity patients (green box) was clearly under
the distribution of probabilities for severity patients in the red box. Thus, we observed
good discrimination ability for the predictive model and a possible threshold of 0.4 that
can separate the two groups.

Figure 8 shows good agreement between the predicted probabilities and real outcome
in our external validation, with an intercept of −0.123 and a slope of 1.006. Moreover,
the ROC curve (Figure 9, AUC = 0.821; 95% CI 0.787–0.854) demonstrates no loss in
predictive ability in the external validation. The Youden index (4) was obtained with a
specificity (2) and sensitivity (3) pair of 0.609 and 0.886, respectively.
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The clinical utility analysis of the model is given in Table 5. For each probability
threshold, the following metrics are presented: sensitivity (3), specificity (2), PPV (5),
NPV (6), and accuracy (1). The cut-offs of 0.24 and 0.4 equally optimize the Youden
index (4). However, if minimization of both classification errors is desired, a 0.4 threshold
gives us more balanced (0.71 and 0.78) sensitivity (3) and specificity (2) values.

Table 5. Cut-off analysis of the external validation cohort (November 2020–January 2021).

Thr tp tn fp fn Sens Spec PPV NPV Accuracy Youden

0.05 199 44 381 2 0.99 0.1 0.34 0.96 0.39 0.09
0.1 199 137 288 2 0.99 0.32 0.41 0.99 0.54 0.31
0.15 192 187 238 9 0.96 0.44 0.45 0.95 0.61 0.4
0.2 184 237 188 17 0.92 0.56 0.49 0.93 0.67 0.47
0.22 179 250 175 22 0.89 0.59 0.51 0.92 0.69 0.48
0.24 178 257 168 23 0.89 0.6 0.51 0.92 0.69 0.49
0.26 171 267 158 30 0.85 0.63 0.52 0.9 0.7 0.48
0.28 164 277 148 37 0.82 0.65 0.53 0.88 0.7 0.47
0.3 159 288 137 42 0.79 0.68 0.54 0.87 0.71 0.47
0.32 154 300 125 47 0.77 0.71 0.55 0.86 0.73 0.47
0.34 152 307 118 49 0.76 0.72 0.56 0.86 0.73 0.48
0.36 148 318 107 53 0.74 0.75 0.58 0.86 0.74 0.48
0.38 146 326 99 55 0.73 0.77 0.6 0.86 0.75 0.49
0.4 143 330 95 58 0.71 0.78 0.6 0.85 0.76 0.49
0.42 134 339 86 67 0.67 0.8 0.61 0.83 0.76 0.46
0.44 131 343 82 70 0.65 0.81 0.62 0.83 0.76 0.46
0.46 125 345 80 76 0.62 0.81 0.61 0.82 0.75 0.43
0.48 117 353 72 84 0.58 0.83 0.62 0.81 0.75 0.41
0.5 113 359 66 88 0.56 0.84 0.63 0.8 0.75 0.41

Thr: Probability threshold, tp: True positive, tn: True negative, fp: False positive, fn: False negative, Sens: Sensitivity = tp/(tp + fn), Spec:
Specificity = tn/(tn + fp), PPV: Positive predictive value = tp/(tp + fp), NPV: Negative predictive value = tn/(tn + fn), Accuracy = (tp +
tn)/(tp + fp + tn + fn), Youden = Sens + Spec − 1 = tp/(tp + fn) + tn/(tn + fp) − 1.
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3.2. Clinically Useful Tool

The generated model could be used in clinical practice via a user-friendly web appli-
cation. The necessary code to assemble the tool and apply the generated model is available
at https://github.com/ITAINNOVA/covid_IIS (accessed on 6 July 2021).

The designed tool has the main functionality of predicting severity (death or ICU
admission) through the best performing model given the information for the 20 explanatory
variables, which are the fields to be entered into the tool. Given the patient information,
the tool returns the probability of the patient ending up in a serious condition (i.e., ICU or
death). Although the number of variables to be entered into the tool is not high and is
consistent with practical use, the information for some of the variables may not be available
for some patients. In these cases, we would encounter a problem of incompleteness,
which we solve by assigning the mean value.

In addition to providing the risk given the patient′s characteristics, the interpretability
and explainability of the model were explored to provide more information to the clinician.
In particular, using the Shapley technique [50], the tool provides a graphical representation
of the Shapley values using Python′s SHAP library [51], which allows interpretation of the
direction and intensity of each variable. An example of such a representation provided by
the tool for a given patient is shown in Figure 10; the patient′s age (lower than average)
contributes the most (has the longest bar) to decreasing the probability of risk, but the
amount of urea in the patient contributes to the contrary.
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4. Discussion

A large number of studies have analysed predictive risk factors for COVID-19 [52–54],
though less common are studies that have explored predictive models. Our study focused
on the generation of a risk prediction model using machine learning techniques and
variables that are easily obtained in the emergency room of most hospitals.

We trained neural networks, random forest and XGBoost algorithms using a hyper-
parameter tuning optimization. Our best model was reached using XGBoost algorithm,
that taking into account the amount of candidate predictors can be a good alternative.
This kind of models provides robust models as their predictions are based on an additive
combination of trees that are built using different sets of data and variables. In our case,
the best model was reached using 330 trees, those trees are built using the 85% of predictor
variables and 64% of the training data sample, this guarantees that each tree explored the
predictive ability of predictor variables in different data sample and over a different set of
variables. In addition, the trees had a maximum depth of 15, preventing the overfitting
that it is present in trees with too many branches.

The model we developed was built from a cohort of patients in Aragon who were
hospitalized with a positive SARS-CoV-2 PCR test, and the outcome studied was ICU
admission or mortality within 30 days of hospital admission. The analyses were performed
for a cohort of 3623 patients, which is larger than the predictive models reviewed by
Wynants et al. [23]. Several studies have analysed predictive models of mortality, but with
an unclear definition of the target population, without specifying the outcome (mortal-
ity) period, and at high risk of biases [33–36]. This bias can lead to miscalibrations and
overestimation of the discrimination performance, especially when they are not externally
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validated. Our model was validated both internally and externally to avoid overfitting of
the generated model and to provide a true measure of model performance and generaliz-
ability. The internal validation was based on 12.5% of the training data and provides a good
performance AUC = 0.8307 of our model. The set used for external validation maintained
a proportion of patients (n = 626) with outcomes (death or ICU) similar to the training
set (31–32%). The AUC value of 0.821 shown a minimum loss in the predictive ability of
the model.

Regarding calibration, Xie et al. [39], despite achieving excellent discrimination
(C index = 0.98), obtained a calibration that had a slope > 1 (probabilities too high for
low-risk patients and too low for high-risk patients). Our model achieved good discrim-
ination with the external validation set (AUC = 0.821, 95% CI 0.787–0.854) and accurate
calibration (slope = 1, intercept = −0.12) [55], which means that the predicted probabilities
are close to the expected probability distribution.

Most predictive models usually show their accuracy by the AUC as a measure of
the discrimination ability. The Marcos et al. [28] model achieved an AUC of 0.83 (95% CI
0.81–0.85). With a similar aim, models trained by Patel et al. [30] with only the top five
features achieved similar performance as those using all features; in particular, the model
for ICU admission achieved an AUC of 0.79 (95% CI 0.72–0.85) and the one for mechanical
ventilation achieved an AUC of 0.83 (95% CI 0.77–0.9). Knight et al. [23] evaluated the
discrimination of the model, which obtained an AUC of 0.77 (95% CI 0.76–0.77), and its
calibration, which was excellent (calibration-in-the-large = 0, slope = 1.0). Therefore,
our model achieves a performance close to or even superior to that of the literature studies.

The study we present explored machine learning techniques for the development
and validation of models with the aim of predicting an unfavourable outcome for a
patient admitted with COVID-19, where an unfavourable outcome is understood to be
ICU admission or mortality. In particular, MLP, random forest and XGBoost were analysed
using dynamic optimization of the model′s hyperparameters. The ultimate goal of our
study was to build a model that can be used in clinical practice via a user-friendly web-
based tool/platform accessible by the clinician. To this end, the 20 most important variables
readily available in the emergency and patient records were selected for generation of the
model. The final model was built using the XGBoost algorithm and achieved an AUC of
0.821 (95% CI 0.787–0.854) in the external validation set.

In contrast to the reviewed papers, our study included a large cohort with a great
amount of data. In addition, as discussed above, our study was validated both internally
and externally, showing good calibration, on a set of patients that includes two different
pandemic waves in the training set and a third one in the validation set, but maintaining a
similar percentage of severity (unfavourable outcomes).

An analysis of the optimal cut-off points was also carried out depending on the metric
to be optimized, which provides a series of thresholds for decision-making, allowing one
cut-off or another to be chosen depending on the needs of the system. The probability
threshold of 40% provided the best performance in a sensitivity/specificity equilibrium
analysis, but we provided a clinical utility analysis on different cut-offs to choose another
pair of sensitivity (3) and specificity (2) values depending on the evolution of the pandemic.

Although the generated model was externally validated with good calibration and
discrimination ability, the study has some limitations. Our study was carried out with
data from a single region of Spain (Aragon), but the hospitals belong to the National
Health System, which has universal health coverage and, therefore, contains information
from patients of different ethnicities and social characteristics. For this reason, diversity is
guaranteed. Although the model considers patient variables that have been shown to be
risk factors, we propose also considering the inclusion of other variables of interest in future
studies, such as the type of vaccine administered or the time of vaccination. Regarding
model limitations, boosting techniques are more likely to overfit than bagging although we
have used hyperparameter tuning to prevent this overfitting. We also encourage validation
of our model with a different cohort.
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5. Conclusions

In this study, we incorporated information from a population that includes several
pandemic waves to generate and validate a model capable of predicting death or admission
to the ICU for patients admitted with COVID-19 based on 20 emergency and clinical
history characteristics. The results of the internal and external validation showed a good
discriminative capacity and calibration of the model, which implies that the use of the
model is adequate. The final objective of the study was to design and provide an ergonomic
web application (https://github.com/ITAINNOVA/covid_IIS) (accessed on 6 July 2021)
that integrates the model in a way that provides the clinician with the probability that the
patient admitted for COVID ends up serious, which can aid in developing an action plan.
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COVID-19 Coronavirus disease 2019
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ML Machine Learning
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NPV Negative Predicted Value
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7.2. Desarrollo de estándares de crecimiento fetal

en embarazos gemelares

En el ámbito de la obstetricia, es común utilizar tablas de percentiles basadas en

estándares de crecimiento fetal para clasificar a los fetos según su peso estimado y

los puntos de corte que definen los percentiles. Esto permite identificar fetos que son

pequeños para su edad gestacional (SGA, siglas en inglés) y aquellos que son grandes

para su edad gestacional (LGA, siglas en inglés), que se definen como aquellos cuyo peso

se encuentra por debajo del percentil 10 o por encima del percentil 90, respectivamente.

La correcta identificación de estos fetos es de especial interés, debido a que han sido

asociados con un mayor riesgo de resultados perinatales adversos [95, 96].

Aunque se han desarrollado múltiples estándares para gestaciones de un solo feto, su

uso incorrecto en gestaciones gemelares puede resultar en intervenciones no necesarias

y partos prematuros, ya que se consideraŕıa como SGA a más del 10%. Por ello,

es esencial desarrollar y aplicar estándares espećıficos para gestaciones gemelares que

permitan identificar de manera más precisa posibles problemas perinatales, como la

muerte fetal intrauterina. Además, es fundamental considerar diferentes modelos según

la corionicidad placentaria, puesto que los resultados y el peso al nacer pueden variar

también entre gestaciones dicoriónicas-diamnióticas y monocoriónicas-diamnióticas. El

trabajo [97] que se presenta en esta sección tuvo como objetivo desarrollar estándares

de crecimiento fetal para gestacionales gemelares por corionicidad placentaria en una

población española. Los estándares desarrollados fueron comparados con los estándares

gemelares europeos y americanos, utilizando nuestra cohorte para calcular el porcentaje

de fetos clasificados como SGA y LGA según dichos estándares.

Nuestra base de datos inclúıa mediciones repetidas del peso estimado gestacional

para cada feto y madre. Esta jerarqúıa viola la suposición estad́ıstica de independencia

entre las observaciones. Dada esta tipoloǵıa de datos, los modelos lineales mixtos

ofrecen un método adecuado para modelar la relación entre la edad gestacional y el peso

estimado de estas observaciones, como se ha explicado en la sección 4.3.1. En nuestro

estudio, utilizamos modelos lineales mixtos para analizar la relación entre la edad

gestacional y el peso estimado de estas observaciones correlacionadas, considerándolas

como efectos aleatorios. En concreto, la edad gestacional se consideró un efecto

fijo, mientras que se incluyeron efectos aleatorios para capturar la variabilidad entre

embarazos y fetos. Espećıficamente, se utilizaron splines cúbicos para modelar la edad

gestacional debido a su comportamiento no lineal, con una tasa de crecimiento mayor

en el segundo trimestre y más baja en el tercero. Como efectos aleatorios se incluyó

un intercepto aleatorio para cada feto y una pendiente aleatoria entre el embarazo y
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la estructura polinómica cúbica de la edad gestacional. Para calcular los percentiles

de peso estimados, se estimó la varianza del modelo lineal en cada semana gestacional

considerando los efectos aleatorios.

Nuestros modelos de crecimiento fetal mostraron un ajuste razonable a los datos,

estimando aproximadamente el 10% de los fetos de la cohorte como SGA para ambas

corionicidades, lo que coincide con su definición. En comparación, los otros estándares

de crecimiento fetal tendieron en su mayoŕıa a subestimar o sobreestimar los casos de

SGA y LGA. Adicionalmente, se realizó un análisis de concordancia entre los SGA y

LGA proporcionados por los estándares. Finalmente, considerando como clase positiva

los SGA clasificados por nuestro modelo, se calculó el valor de la sensibilidad y valor

predictivo positivo como medida de capacidad de predicción del SGA, población más

vulnerable. Los resultados mostraron, en general, unos valores superiores al 60% en las

métricas en el caso de los embarazos gemelares dicoriónicos. Asimismo, este trabajo de

investigación ha dado lugar a la creación de la libreŕıa PTwins [2] en R, donde se ofrece

el uso del modelo desarrollado. El manual en el que se detalla su uso se encuentra en

el Anexo B.

En resumen, este estudio se centró en el desarrollo de modelos de crecimiento fetal

para embarazos gemelares utilizando modelos lineales mixtos. En este contexto, estimar

las curvas de los percentiles de peso es un problema de clasificación que involucra la

estimación del percentil para cada momento temporal, calculando la varianza para

cada punto gestacional. La estructura de efectos aleatorios nos permitió estimar la

varianza y calcular los percentiles de peso en cada edad gestacional. Los resultados

de este trabajo proporcionan una herramienta cĺınica validada que ofrece valores

de diferentes puntos de corte (percentiles de peso). Este análisis permite al cĺınico

identificar el comportamiento del crecimiento fetal, aśı como detectar fetos SGA o

LGA considerando estos puntos de corte estimados, lo que puede ayudar a prevenir

posibles efectos adversos.

A continuación se presenta el art́ıculo publicado, derivado de este trabajo.
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A B S T R A C T

Objective: To develop fetal growth standards for twin gestations by placental chorionicity in a Spanish
population and compare them with European and American standards to estimate the suitability of their
use in clinical practice.
Study design: This was a retrospective cohort study of 518 twinpregnancies, 435 dichorionic-diamniotic and
83 monochorionic-diamniotic, performed between January 2012 and December 2017. A total of 4,783 and
1,455 estimated fetal weights were considered from the 17th to the 37thweek of gestation, using multilevel
models, to build dichorionic-diamniotic and monochorionic-diamniotic standards, respectively. The
percentages of small and large for gestational age were calculated as a model adjustment measure and
adjustment to the studied data and the values provided by our model were compared against those of six
European and American twin standards and three singleton standards. Correlation analyses between
percentile predictions were performed using Cohen kappa coefficient. The predictive ability to detect small
for gestational age was also provided by the sensitivity and positive predictive value.
Results: We found slight differences between standards by chorionicity, being dichorionic-diamniotic
percentiles slightly higher than monochorionic-diamniotic ones from the 17th to 37th weeks’ gestation. For
dichorionic-diamniotic cases, both our standard (9.8-8.2) and that of Grantz (8.2-10.5) showed good
adjustments for the 10th and 90th percentiles while the other compared standards underestimated or
overestimated them. For monochorionic-diamniotic cases, both our standard (10.2-8.5) and that of
Shivkumar (11.4-6.8) had themost suitable adjustment. The correlation analysis between small and large for
gestational age cases provided by standards, showed clear differences among them. Kappa’s coefficient
showed a substantial agreement between both Ananth (0.7) and Stirrup (0.69) dichorionic-diamniotic cases
and our standard. There was also a substantial agreement between the Shivkumar (0.77) standard and our
results for monochorionic-diamniotic cases. The correlation was moderate for all other comparisons.
Conclusions: Our model showed a good adjustment to the studied population. There are clear differences
among small and large for gestational age cases provided by twin standards in our studied population. The
twin growth standards depend on the population characteristics and model structure. We found the use of
singleton standards for twin pregnancies inadequate.

© 2020 Elsevier B.V. All rights reserved.

* Corresponding author at: Escuela Universitaria Politécnica de La Almunia, Calle Mayor 5, 50100, La Almunia de Doña Godina, Zaragoza, Spain
E-mail addresses: rsaviron@gmail.com (R. Savirón-Cornudella), lmeste@unizar.es (L.M. Esteban), raznar@itainnova.es (R. Aznar-Gimeno), faustino.perez@unizar.es

(F.R. Pérez-López), martacholiz@gmail.com (M.C. Ezquerro), pdpe88@gmail.com (P.D. Pérez), jmcampillos@salud.aragon.es (J.M. C. Maza), gerardo.sanz@unizar.es (G. Sanz),
bcastan@riojasalud.es (B.C. Larraz), mtajadad@gmail.com (M. Tajada-Duaso).

https://doi.org/10.1016/j.ejogrb.2020.08.044
0301-2115/© 2020 Elsevier B.V. All rights reserved.

European Journal of Obstetrics & Gynecology and Reproductive Biology 253 (2020) 238–248

Contents lists available at ScienceDirect

European Journal of Obstetrics & Gynecology and
Reproductive Biology

journal homepage: www.else vie r .com/ locat e/e jogrb



INTRODUCTION

The European Perinatal Report has shown that the median rate
for multiple pregnancies was 16.7 per 1000 women in 2015 [1]. The
rise in assisted reproductive technology is the main explanation for
the growing rates of multiple pregnancies over the past decades.
Multiple pregnancies carry higher risks of adverse perinatal
outcomes (APOs), including substantially higher rates of gesta-
tional hypertensive disorders, preterm birth, and cesarean
deliveries as compared to singleton gestations [2].

Different fetal growth standards calculated with the Hadlock
formula [3] have been reported to determine the estimate percentile
weight (EPW) in twins based on the birthweight and the estimated
fetal weight (EFW) [4–10]. Twin standards differ from singleton ones
from at least week 28 to 32 of gestation as reported for both
birthweight and EFW standards [5,6,10,11]. When singleton stand-
ards are used, up to 30-40% of twin gestations are considered as
small-for-gestational-age (SGA) [4,10,11]. Therefore, twin standards
should be used in twin gestations, situation that would most likely
reduce in these cases many unnecessary interventions [5,12] and
preterm births [2]. These would also be more effective at identifying
twin pregnancies at risk of intrauterine fetal death [11] and neonatal
morbidity and mortality [13].

Differentiation by chorionicity has been proposed in twin
standards since birthweight differs in dichorionic-diamniotic (DC)
and monochorionic-diamniotic (MCDA) twin pregnancies, being
lower in most studies for MCDA [4,6,7,10,14]. Perinatal morbidity
and mortality also differ in the two groups, being higher in MCDA
due to an increased risk of preterm birth and growth discordance
[15] and, also associated with their specific pathologies (twin-to-
twin transfusion syndrome and twin anemia polycythemia
syndrome).

The aim of this study was to develop a fetal growth standard for
twin gestations by placental chorionicity in a Spanish population
and to compare the performance of European and American twin
standards through estimates of SGA and LGA cases in our cohort.

METHODS

This was a retrospective study that analyzed data of twins
delivered between January 2012 and December 2017. The original
database included 578 mothers and 1156 infants. The inclusion
criteria were as follows: (i) live pregnancies that received prenatal
care since the first trimester of gestation at the Miguel Servet
University Hospital (MSUH), in the Northeast part of Spain, (ii) fetal
ultrasound assessment between 17 and 37 weeks of gestational
age; and (iii) deliveries of live fetuses above the 24th gestational
week. Cohort members were excluded if they showed karyotype
abnormalities, twin-twin transfusion syndrome (TTTS), major
congenital malformation or incomplete data. Because of their
rarity, 5 monochorionic-monoamniotic cases were excluded from
our analysis. Moreover, pregnancies with less than 4 ultrasound
measurements by fetus were not considered as they can provide
non robust estimations of the parameters of the model. All data
were checked and a total of 316 errors in measurement or
biologically implausible values were also excluded. Analyses were
finally performed for 518 mothers and 1036 infants (Fig. 1).

Ultrasound screening in the gestations were performed at the
Ultrasound and Prenatal Diagnosis Unit of the mentioned hospital,
using Voluson 730 Expert, E6 or E8 model ultrasound machines
(General Electric, Healthcare, Zipf, Austria). Gestational age in days
was estimated by adjusting the last menstrual period (LMP) based
on measurement of the crown–rump length (CRL) by the first
trimester ultrasound [16], at which time the determination of
chorionicity was also performed to split the database into DC and
MCDA cases.

EFW was calculated with the Hadlock’s formula (biparietal
diameter, head circumference, abdominal circumference and
femur length) [3] to build our twin growth standards. The rest
of the standards with which we made the comparison also use
Hadlock's formula to estimate fetal weights, with the exception of
INTERGROWTH-21st that uses the Stirnemann formula [17].
Hadlock’s formula was also used to estimate weight percentiles
of the Stirrup et al. [11] standard, given estimated biometric
measurements.

Statistical analysis
Data were extracted and the maternal-fetal characteristics and

the weight discordance intra-fetuses were descriptively analysed.
Continuous variables were reported as medians with interquartile
ranges whereas qualitative variables were expressed as frequencies
and percentages. Differences between chorionic groups were
calculated using the Mann-Whitney test or the chi-squared test,
as appropriate. Our data set consisted of repeated measures of EFW
for each and both fetuses of the same mother. This intrinsic hierarchy
of data violates the statistical assumption of independence. The use
of multilevel models allowed us to solve this non-independence of
the data in order to model the relationship between gestational age
and the estimated weight of these correlated observations,
considering them as random effects [18,19].

The distribution of fetal weight is known to be nonlinear across
gestational age, with a higher growth rate in the second trimester
and a lower one in the third trimester [20]. To account for this
nonlinearity, we modeled the gestational age as a fixed effect using
restricted cubic splines with 5 knots [21]. EFW measurements
were log transformed to ensure the normality distribution
assumption by week. The Akaike criterion was used for the
variable selection process and the models were compared with
analysis of variance test. The R squared statistic [22] was used to
analyze the goodness of fit of the model.

To provide EPW, the variance was estimated for every gestational
week from the random effects of the multilevel models, allowing
calculation of percentiles 5,10, 50, 90 and 95. Besides, to estimate the
performanceof twingrowth standards,wecalculatedthepercentage
of SGA, defined as EPWunder 10%, and LGA, defined as EPWover 90%,
from the DC and MCDA standards in our cohort. Comparisons were
performed with the non-customized twin standards of Ananth et al.
[4], Araujo et al. [6], Gabbay-Benziv et al. [9], Grantz et al. [8],

Fig. 1. Study participants selection sample.
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Shivkumar et al. [7] and Stirrup et al [10] complemented by Savirón-
Cornudella et al. [23], INTERGROWTH-21st [19] and WHO singleton
[24] standards. Moreover, to analyze a period closer to delivery, the
study was also carried out considering only the last weeks of
pregnancy fromweek 32. In addition, a correlation analyses between
the SGA, AGA and LGA cases provided by twin and singleton
standards and our standard was performed using the Cohen kappa
coefficient. Finally, taking as a positive class the SGA classified by our
model during the gestational period, sensitivity and positive
predictive value (PPV) was also provided as a measure of the ability
to predict SGA, which is the most vulnerable population to have
problems. Specifically, the tp (true positives) are the fetuses
classified as SGA by both our model and the model with which
we compare and the fp (false positives) are the fetuses classified as
SGA by the model with which we compare but they were not
classified as SGA by our model.

Analyses were performed using the R v.3.5.2 programming
language and the lme4 package (The R Foundation for statistical
computing, Vienna, Austria) [25]. For the use of the model we
developed the R package PTwins freely available in CRAN
repository https://CRAN.R-project.org/package=PTwins and we
provide an app for clinical use https://ptwins.shinyapps.io/
PTwins/.

Ethical approval

The study was approved on November 21, 2018, by the Clinical
Research Ethics Committee of Aragon (CEICA, PI 2018/333).

RESULTS

Of the 518 pregnancies included in the study, 435 were DC cases
with a median of 6 (interquartile range 5-6) weight measures by
fetus and 83 were MCDA cases with a more detailed follow-up
shown by a median of 9 (interquartile range 7-11) weight
measurements. Table 1 displays maternal and fetal characteristics.
For MCDA deliveries, 41 (49.4%) were preterm (32 th-37th week)
and 4 (4.8%) were very preterm (28 th-32th week). In the DC case,
176 (40.5%) deliveries were preterm and 2 (0.5%) were very
preterm. The percentage of nulliparous women was significantly
different for DC and MCDA groups, being 78% and 67%, respectively.
The fetuses of nulliparous women were associated with signifi-
cantly lower birthweights than those of non-nulliparous women,

both in DC and in MCDA pregnancies (P < 0.001 and P = 0.015,
respectively), with a more noticeable difference observed in the DC
cases. The most remarkable difference between twin pregnancies
corresponded to the proportion of in vitro fertilizations, which was
above 65% for DC and below 25% for MCDA pregnancies,
respectively. However, the difference in birthweight between
pregnancies with and without in vitro fertilization was not
significant either in DC or MCDA cases (P = 0.74 and P = 0.49,
respectively). Median maternal weight and age were similar,
rounding 63 kg, and 34 years, respectively. There was a significant
increase of 4 days in the gestational age at birth for the DC group,
corresponding to a non-significant difference of 100 g in birth-
weight. There were no differences neither in sex ratios or weight
discordance ratios of fetuses between DC and MCDA groups.

Tables 2 and 3 display comparisons of maternal-fetal character-
istics (parity, body mass index, maternal age, birth weight,
gestational age at delivery and weight percentile) of twin
standards included in this study. In addition, we report the weight
formula and the models used in each growth standard.

To build the standards, 4783 observations were finally
considered for the DC cases and 1455 for the MCDA cases. The
final growth model included two random effects, the first one, a
random slope between pregnancy and a cubic polynomial
structure of gestational age, and the second one, a random
intercept for each fetus. The fixed and random effects coefficients
are shown in Tables 4 and 5. The marginal R squared and
conditional R squared [22] were 0.9740616 and 0.9942701
respectively for DC standard and 0.9807571 and 0.9962406
respectively for MCDA standard. Fig. 2 shows the 3rd, 10th, 50th,
90th and 97th percentile curves for the DC and MCDA pregnancies,
where a reasonable adjustment of our twin standards to the data is
observed. Although we found slight differences between the 50th
percentile twin growth standards by chorionicity, with respect to
the 10th and 90th percentiles (P10, P90, respectively) the
differences are more significant, being the P10-P90 interval wider
for DC cases.

Tables 6a and 6b shows the number of ultrasound measures (N)
at every gestational age, from the 17th to the 37th week, as well as
the mean and standard deviation (SD) of the ultrasound estimated
weights of our population. The 3rd, 5th, 10th, 50th, 90th, 95th and 97th

percentiles estimated for DC and MCDA growth standards are also
shown at every gestational age in Tables 6a and 6b. In DC twins,
there was an increase in ultrasounds performed in the last weeks of

Table 1
Maternal and fetal characteristics of dichorionic and monochorionic-diamniotic pregnancies in studied Spanish cohort.

Pregnancy characteristics Dichorionic pregnancies (ndc = 435)† Monochorionic diamniotic pregnancies (nmc = 83)z p-value

Maternal age (years) 34.1 (30.4-36.6) 34.2 (30.2-36.4) .968
Parity (nulliparous) 340 (78.3%) 55 (67.1%) .028
In vitro fertilization (yes) 289 (66.4%) 19 (22.9%) < .001
Smoking habit (yes) 50 (11.5%) 16 (19.3%) .077
Maternal weight at first trimester (kg) 62 (57-71) 64 (58-72) .266
Maternal height (cm) (ndc = 295, nmc = 58) 165 (160-168) 163 (160-167) .327
Paternal height (cm) (ndc = 289, nmc = 59) 178 (172-183) 175 (170-179) .003
Gestational age at birth (days) 261 (252-266) 257 (245-260) < .001
Birthweight (grams) 2470 (2170-2740) 2360 (2010-2570) .266
Weight discordance x:
�5% 1622 (65.75%) 435 (60.42%) 0.009691
�10% 826 (33.48%) 256 (35.56%) 0.3226
�15% 407 (16.5%) 139 (19.3%) 0.08856
�20% 186 (7.53%) 65 (9.03%) 0.2203
�25% 87 (3.53%) 30 (4.17%) 0.4896
�30% 33 (1.34%) 9 (1.25%) 1
Sex (female) 456 (52.4%) 94 (56.6%) .362

† ndc: number of dichorionic pregnancies,
z nmc: number of monochorionic pregnancies.
x Formula weight discordance:100 � (weight of larger twin � weight of smaller twin)/weight of larger twin. Calculated for each ultrasound measurement
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pregnancy. By contrast, in MCDA cases, the distribution of
ultrasounds was more homogeneous over time, indicating a more
detailed follow-up. There was evidence of greater values in EPW
for the DC twins until the 37th week of gestation.

We compared our reference with those previously reported by
Ananth et al [4], Araujo et al [6], Gabbay-Benziv et al [9], Grantz
et al [8], Shivkumar et al [10] and Stirrup et al [10]. Figs. 3 and 4
compare the growth curves for twin standards and show differ-
ences along with the gestational age, presenting varied growth
rates. Figs. 5 and 6 display the standard growth curves for
singletons.

Adjustment analysis along the gestational period (from 17th and
37th week) is shown in Fig. 7. For DC cases, Grantz et al [8] standard
and our standard showed a good adjustment, with estimated

percentages of SGA and LGA of 8.2-10.5 and 9.8-8.2, respectively.
Araujo et al [6] and Gabbay-Benziv et al [9] standards under-
estimated 10th and 90th percentiles and the Ananth et al [4] and
Stirrup et al [10] standards underestimated 10th percentile and
overestimated the 90th percentile. The Shivkumar et al [7], and the
singleton standards, overestimated the 10th and 90th percentiles.
For the MCDA cases, our standard had a reasonable adjustment,
with estimated percentages of SGA and LGA of 10.2 and 8.5,
respectively. The Shivkumar et al [7] standard had the most
suitable adjustment, considering around 11% of our population
below its 10th percentile. The Ananth et al [4], Araujo et al [6],
Gabbay-Benziv et al [9] and Stirrup et al [10] standards under-
estimated the 10th and 90th percentiles and the singleton standards
overestimated 10th and 90th percentiles. The Ananth et al [4] and

Table 2
Dichorionic twin standards characteristics.

Our cohort* Ananth et al† Araujo et al† Gabbay-Benziv
et al*,x

Grantz et al† Shivkumar
et al†

Stirrup et al**

Number of twin gestations 435 1030 176 1427 171 540 1802
Nulliparous (%) 78.3 45z unknown unknown 56.1 51.40 unknown
Body mass index (kg/m2) 23 [21,26] unknown unknown 29.8 (15.7-72.9) 28.6 � 7.0 24.2 � 4.8 unknown
Maternal age (years) 34.1

[30.4,36.6]
unknown 28.75 � 6.86 33 (17-50) 31.6 � 6.1 33 � 5.1 unknown

Birthweight (grams) 2470
[2170,2740]

2356 � 652 unknown unknown 2376 [1960,
2879] {

2669 unknown

Gestational age at delivery
(weeks)

37.3 [36, 38] 35.3 � 3.4 unknown unknown 35 37 � 1 unknown

Weight percentile at 36 th

week (g) (Percentiles 50th

[10 th -90 th])

2408 [2034,
2852]

2456 [1985, 2928] 2457
[1969,2946]

2308 [1753,
2863]

2622
[2106,3138]

2691 [2271,
3190]

2596[2082, 3202]

Weight’s formula Hadlock 1985 Birthweight Hadlock 1985 Hadlock 1985 Hadlock 1985 Hadlock 1985 Hadlock 1985
Model Linear Mixed

model
Restricted spline
smoothing

Polynomial
regression

Linear Mixed
model

Linear Mixed
model

Linear Mixed
model

Linear Mixed models

Population (City, Country) Zaragoza,
Spain

Brighton, UK São Paulo, Brazil Baltimore, US 8 US sites Montreal,
Canada

Southwest Thames
region, UK

Data range 2012-2017 1990-1996 unknown 2006-2016 2012-2013 1996-2006 2001-2010

Only first author given for each study.
* Median [Interquartile range].
† Mean � SD. zCharacteristic for all twins.
x Characteristics for all twins except N, birthweight and weight percentile at 36th week.
{ Median [Interquartile range] at 35th week.
** Twin standard for biometric variables. We used Hadlock 1985 formula to calculate the weight percentiles for each gestational age.

Table 3
Monochorionic-diamniotic twin standards characteristics in our cohort, and studies performed in other populations.

Our cohort* Ananth et al† Araujo et al† Gabbay-Benziv
et al*,x

Shivkumar
et al†,x

Stirrup et al{

Number of twin gestations 83 272 157 688 102 300
Nulliparous (%) 67.1 45.0z unknown unknown 51.4 unkown
Body mass index (kg/m2) 23.5 [21.3, 26.0] unknown unknown 29.8 (15.7-72.9) 24.2 � 4.8 unkown
Maternal age (years) 34.2 [30.2, 36.4] unknown 29.3 � 6.8 33 (17-50) 33 � 5.1 unkown
Birthweight (g) 2360 [2010,

2570]
2139 � 672 unknown unknown 2471 X

Gestational age at delivery (weeks) 36.7 [35, 37.1] 34.3 � 3.9 unknown unknown 37 � 1 unkown
Weight percentile at 36 th

week (g) (Percentiles 50th [10 th

-90 th])

2391 [2040,
2804]

2362 [1887, 2837] 2394 [1833, 2956] 2189 [1666, 2713] 2561 [2123,
3089]

2530[1975, 3189]

Weight’s formula Hadlock 1985 Birthweigt Hadlock 1985 Hadlock 1985 Hadlock 1985 Hadlock 1985
Model Linear Mixed

model
Restricted spline
smoothing

Polynomial
regression

Linear Mixed
model

Linear Mixed
model

Linear Mixed models

Population (City, Country) Zaragoza, Spain Brighton, UK São Paulo, Brazil Baltimore, US Montreal,
Canada

Southwest Thames
region, UK

Data range 2012-2017 1990-1996 unknown 2006-2016 1996-2006 2001-2010

Only first author given for each study.
* Median [Interquartile range].
† Mean � SD.
z Characteristic for all twins.
x Characteristics for all twins except N, birthweight and weight percentile at 36th week.
{ Twin standard for biometric variables. We used Hadlock 1985 formula to calculate the weight percentiles for each gestational age.
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Stirrup et al [10] standards had a good adjustment to estimate the
90th percentiles, with percentages of LGA of 10 and 10.3,
respectively.

Table 7 show the adjustment analysis from 32th week of
gestation. For DC cases, while our standard showed a good
adjustment, for this period, Ananth et al [4] and Stirrup et al [10]
standards are the best adjustment showed for the estimation of
10th percentiles. For MCDA cases, our standard and Shivkumar et al
[7] kept had the most suitable adjustment.

The correlation analysis between SGA and LGA cases provided
by standards is shown in Table 8. Both the sensitivity and positive
predictive values (PPV) were over 60% in the Ananth et al [4],
Araujo et al [6], Grantz et al [8], Shivkumar et al [7] and Stirrup et al
[10] standards for DC cases and over 80% only in the Shivkumar
et al [7] standard for MCDA cases. In particular, 92.6% of the fetuses
that were classified as SGA by our model were also classified as SGA
by the Shivkumar et al [7] standard (sensitivity), and 80.6% of the
fetuses that were classified as SGA by the standard were also
classified as SGA by our model (PPV). Kappa’s coefficient showed
substantial correlation with Grantz et al [8], Stirrup et al [10]] and

Ananth et al [4] standards and our standard in DC cases and
between Shivkumar et al [7] and our standard for MCDA cases. The
remaining comparisons presented a moderate agreement. Regard-
ing the singleton standards, the Cohen-Kappa coefficients showed
a moderate correlation in all cases. Therefore, it can be concluded
that the correlation between SGA and LGA cases provided by
standards varied in our study.

DISCUSSION

Although a variety of twin standards by chorionicity have been
reported in European and American populations, there is no other
work with such an extensive comparative analysis. Our study
includes the generation and validation of non-customized stand-
ards that allow us to construct growth curves and reference tables
of EFW for the twin population according to their placenta. The
present study also offers the comparison and validation of various
state of the art standards with regard to our population. We have
used multilevel models to build fetal weight standard by
chorionicity that consider both, the relation between the average

Table 4
Fixed and random effects coefficients for dichorionic twins.

Dichorionic twins Parameter Coefficient p-value

Fixed-effects
Intercept 7.424321 < .0001
First gestational age spline basis term 1.109570 < .0001
Second gestational age spline basis term �0.899378 < .0001
Third gestational age spline basis term 1.392611 < .0001
Fourth gestational age spline basis term �0.998825 < .0001
Random-effects

Fetus level < .0001
Variance, intercept .0055716999

Pregnancy level < .0001
Variance, intercept .0051698540
Variance, first degree gestational age polynomial term .0024051903
Variance, second degree gestational age polynomial term .0004668487
Variance, third degree gestational age polynomial term .0003763530
Covariance, first degree gestational age polynomial term, Intercept .0010606255
Covariance, second degree gestational age polynomial term, Intercept �0.0006350283
Covariance, third degree gestational age polynomial term, Intercept �0.0002599014
Covariance, second degree gestational age polynomial term, first degree gestational age polynomial term .0001133536
Covariance, third degree gestational age polynomial term, first degree gestational age polynomial term �0.0006754863
Covariance, third degree gestational age polynomial term, second degree gestational age polynomial term .0001165476
Residual variance .0033025276

Table 5
Fixed and random effects coefficients for monochorionic diamniotic twins.

Monochorionic twins Parameter Coefficient p-value

Fixed-effects
Intercept 7.21712 < .0001
First gestational age spline basis term 1.32495 < .0001
Second gestational age spline basis term �0.87209 < .0001
Third gestational age spline basis term 1.34849 < .0001
Fourth gestational age spline basis term �0.97392 .0003
Random-effects

Fetus level <.0001
Variance, intercept .005955849

Pregnancy level < .0001
Variance, intercept .005535426
Variance, first degree gestational age polynomial term .002235781
Variance, second degree gestational age polynomial term .0004520071
Variance, third degree gestational age polynomial term .0002315112
Covariance, first degree gestational age polynomial term, Intercept �0.0009080299
Covariance, second degree gestational age polynomial term, Intercept �0.0007691504
Covariance, third degree gestational age polynomial term, Intercept .0001993174
Covariance, second degree gestational age polynomial term, first degree gestational age polynomial term .0001268664
Covariance, third degree gestational age polynomial term, first degree gestational age polynomial term �0.0004766251
Covariance, third degree gestational age polynomial term, second degree gestational age polynomial term .0000267061
Residual variance .002948896
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attained fetal weight and GA, and how variability (standard
deviation) changes with gestational age, therefore EFW is more
adjusted to gestational age. We decided to omit from our analysis
some studies that analyzed fetal sex and other maternal character-
istics such as predictive factors of birthweight in twin standards
[26,27], since recent publications show that customization does
not provide a greater capacity to detect APOs using SGA as a
predictive factor in singleton standards [28,29], and makes a more
difficult comparison for the variety of variables included.

Focusing on MCDA pregnancies, Shivkumar et al [7] shown a
reasonable adjustment for our population, especially to predict
SGAs with only a small overestimation of LGA. In DC cases,

percentile predictions showing a large proportion of SGA and a
small proportion of LGA cases. The Shivkumar et al [7] cohort had
less nulliparous pregnancies than the rest of standards, which
could be relevant for DC twins. In addition, the multilevel structure
includes random slopes for each pregnancy and fetus level. By
contrast, in the MCDA standard the mixed model only includes a
random slope at the fetus level, and there is good agreement with
our standard with a similar structure.

The Grantz et al [8] standard only developed for DC cases,
showed a reasonable adjustment although with a low correlation
in SGA and LGA cases with our standard. However, there were clear
differences in BMI and the percentage of nulliparous women

Fig. 2. Miguel Servet University Hospital (MSUH) standard charts for dichorionic (DC) and monochorionic-diamniotic (MCDA) twin pregnancies for percentile 50 (P50) and
percentile 10-90 (P10-P90).

Table 6a
Percentiles distribution in dichorionic pregnancies

Gestational age Dichorionic-diamniotic pregnancies

(weeks) †nmc Mean SD 3rd 5th 10th 50th 90th 95th 97th

17 89 192.8 13.1 150 155 162 192 228 240 247
18 8 267.8 36.4 183 189 197 230 268 281 289
19 79 317.2 34.9 222 228 237 275 318 331 341
20 701 340.7 33 266 273 285 328 379 394 405
21 49 397.3 46.6 318 327 340 392 452 470 483
22 25 461.8 78.6 379 389 405 467 539 561 576
23 65 624.9 63.8 448 460 479 553 639 666 683
24 708 677.2 71.2 525 539 562 650 752 783 805
25 39 739.1 81.2 610 626 653 756 875 912 937
26 53 852.5 131.3 701 720 751 870 1009 1052 1081
27 61 1110.1 120.1 799 821 856 993 1153 1202 1236
28 680 1171.8 124 904 929 969 1126 1308 1365 1403
29 74 1290.5 130.9 1016 1045 1091 1270 1477 1542 1586
30 53 1375 226.6 1137 1169 1221 1424 1660 1734 1784
31 87 1675.7 284.2 1263 1300 1358 1587 1855 1938 1995
32 662 1809.5 188.1 1392 1433 1499 1755 2055 2149 2213
33 124 1861.8 292.7 1520 1565 1638 1922 2256 2361 2432
34 131 2028 291.9 1641 1691 1770 2083 2450 2565 2643
35 223 2242.4 344 1750 1804 1890 2228 2627 2753 2838
36 582 2483.4 275 1843 1901 1993 2357 2787 2923 3014
37 290 2583.3 360.3 1923 1985 2084 2474 2938 3084 3183

† nmc: number of dichorionic pregnancies
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cohort. We found substantial correlation with our standard and the
Grantz standard built using mixed model structure that only
includes random slope for the twin pair.

By contrast, the Gabbay-Benziv et al [9] and Araujo et al [6]
standards clearly underestimate SGA and overestimate LGA cases
in DC and MCDA models. The lack of information in the generation
of the cohorts limits the comparison, but maternal age is clearly
lower in the Araujo et al [6] study and BMI is greater in the Gabbay-
Benziv et al [9] cohort.

Ananth et al [4] and Stirrup et al [10] underestimates both SGA
and LGA cases in DC models, being in the Ananth study the
percentage of nulliparous pregnancies and birthweight was lower
than our cohort and unknown in Stirrup study. For both models,
the 10th percentile shows a similar growth curve to ours with only
slight differences, but there is a clear overestimation of the 90th

percentile. For the Ananth study, we suspect that this gap is
explained by the use of birthweights instead of EFW in this study.
For the MCDA models, the underestimation of SGA cases is more

Table 6b
Percentiles distribution in monochorionic-diamniotic pregnancies.

Gestational age Monochorionic-diamniotic pregnancies

(weeks) † nmc Mean SD 3rd 5th 10th 50th 90th 95th 97th

17 119 173.3 27.4 139 144 151 177 209 219 225
18 93 233.1 25.5 171 176 184 217 255 267 275
19 30 289.6 54.4 208 215 225 264 311 326 335
20 117 345.8 36.3 253 261 273 321 377 395 407
21 20 377.7 53 305 314 329 387 455 476 490
22 84 487.3 56.3 365 376 393 462 543 568 585
23 44 559.4 85 432 445 466 547 642 672 692
24 98 680.2 479.3 507 522 546 640 751 785 809
25 47 758.1 84 590 608 636 744 870 910 937
26 70 912.9 106.1 682 702 733 857 1001 1046 1077
27 43 1000.1 111.5 782 805 841 981 1144 1195 1230
28 101 1181.9 151.3 892 917 958 1116 1300 1357 1396
29 51 1312.4 177.4 1009 1038 1084 1261 1467 1531 1575
30 61 1461.9 168.4 1134 1166 1216 1414 1644 1716 1764
31 48 1567.2 146.3 1262 1297 1354 1573 1827 1906 1960
32 91 1788 185.9 1390 1429 1491 1732 2011 2099 2157
33 40 1865.7 238.2 1515 1557 1624 1887 2192 2287 2351
34 87 2090.2 255.5 1633 1679 1752 2037 2369 2472 2542
35 60 2265 288.9 1745 1794 1874 2183 2544 2656 2732
36 87 2454.4 315.4 1850 1904 1991 2329 2723 2847 2930
37 64 2510.2 329.6 1950 2009 2104 2477 2916 3053 3146

† nmc: number of monochorionic pregnancies.

Fig. 3. Comparison between twin standards for dichorionic cases: Miguel Servet University Hospital (MSUH) percentile 50 (P50) and percentiles 10-90 (P10-P90) for all the
standards.
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pronounced in both models, but with a very good adjustment for
LGA cases.

Focusing in the growth curves showed in Figs. 3 and 4, it is
remarkable that all the growth standards show significant

differences in the last few weeks of gestational age in the DC
cases; the slope of the curve increased for Araujo et al [6] and for
Stirrup et al [10] and decreased for Gabbay-Benziv et al [9]. Also, in
the adjustment study for the period 32th-37th week of gestional,

Fig. 4. Comparison between twin standards for monochorionic-diamniotic cases: Miguel Servet University Hospital (MSUH) percentile 50 (P50) and percentiles 10-90 (P10-
P90) for all the standards.

Fig. 5. Comparison between twin and singleton standards for the dichorionic cases: Miguel Servet University Hospital (MSUH) percentile 50 (P50) and percentiles 10-90
(P10-P90) for all the standards.
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age, there is an increased lack of adjustment for all models with the
exception of our model, it means models failed when we approach
to the delivery.

Regarding singleton gestations, differentiation with twins
begins at 33-34 weeks of gestational age in DC pregnancies and
at 33 weeks of gestational age in DC. In our comparison with
singleton standards, WHO and INTERGROWTH-21st growth stand-
ards showed a similar performance, with a large proportion of SGA
cases, but especially over the 32ndweek of gestational age. The 90th

percentile showed dissimilarity over the 30th week. This behavior
was even more pronounced in the Saviron-Cornudella et al [23]
singleton standard.

We found significant differences among small and large for
gestational age cases provided by twin standards in our studied
Spanish population. Twin standards showed differences depend-
ing on the population characteristics and by the model structure.
Twins have to be stratified by chorionicity since dichorionic twins
are heavier than monochorionic and the use of singleton
standards for twin pregnancies results in an overestimation of
SGA. On the other hand, while Hadlock's formula is the method
that produces the smallest random errors [30], it is known that
ultrasound fetal weights estimation has a measure of error
commonly overestimating real weight, being less accurate in
singleton than in twin pregnancies [31]. This limitation should be

Fig. 6. Comparison between twin and singleton standards for the monochorionic-diamniotic cases: Miguel Servet University Hospital (MSUH) percentile 50 (P50) and
percentiles 10-90 (P10-P90) for all the standards.

Fig. 7. Adjustment of twin and singleton standards for the Miguel Servet Univesity Hospital (MSUH) studied population. AGA: adequate for gestational age. DCDA:
dichorionic-diamniotic. LGA: large for gestational age. MCDA: monochorionic-diamniotic. SGA: small for gestational age. WHO: World Health Organization.
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kept in mind for the clinical use of the weight percentiles
estimated by ultrasound.

Future research should consider the assessment of maternal
nutrition and body weight gain during twin pregnancies since it
may influence fetal growth. Women with twins have increased
metabolic demands, different degree of physical activity and
APOs. For instance, in singleton pregnancies increased BMI is
associated with preterm birth while in healthy twin gestations
preterm birth is associated with maternal undernutrition [32].
In addition, BMI is not an appropriate indicator of weight and of
feto-maternal nutrition during pregnancy. On the other hand, in
twin pregnancies, excessive gestational weight gain is associ-
ated with higher rates of preeclampsia and gestational diabetes
and associated complications [33]. Despite this, even the strict

application of the recommendations of the Institute of
Medicine does no avoid possible pregnancy complications
[34]. In our cohort, the BMIs were similar in the two subgroups
of pregnant women. Future work should identify the appropri-
ate weight gain that may influence fetal growth in twin
pregnancies.

As a limitation, the MCDA study was based on 83 mothers,
although the 1455 weights used in the building model were large
enough, our study has a smaller sample size than previous studies.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or non-for-profit sectors.

Table 7
Distribution of SGA-LGA in twin standards from 32th week of gestational age.

Dichorionic Monochorionic-Diamniotic

Twin Standards SGA LGA SGA LGA
Our standard 11,4 8,2 9,6 9,3
Ananth et al 9,31 4,1 5,2 5,2
Araujo et al 8,1 6,8 2,1 3,9
Gabbay-Benziv et al 2,1 8,9 1,1 5,6
Grantz et al 12,4 3,1 — —

Shivkumar et al 21,7 0,68 10,7 1,9
Stirrup et al 10,88 1,64 6,2 2,6

Table 8
Correlation analyses between our cohort results with other twin standards, dichorionic and monochorionic-diamniotic, and with singleton standards.

Dichorionic twin pregnancies Monochorionic-diamniotic pregnancies

Our cohort Our cohort

Twin Standards SGA AGA LGA Correlation SGA AGA LGA Correlation
Ananth et al* SGA 256 5 0 K 0.70 (0.67-0.73) 31 0 0 K 0.54 (0.47-0.60)

AGA 150 3177 154 Sens 63.1 68 769 29 Sens 36.5
LGA 0 2 170 PPV 98.1 0 38 67 PPV 100

Araujo et al† SGA 310 38 0 K 0.50 (0.48-0.53) 23 0 0 K 0.43 (0.37-0.49)
AGA 162 3292 85 Sens 65.7 117 1037 30 Sens 16.2
LGA 0 599 307 PPV 89.1 0 75 86 PPV 91.3

Gabbay-Benziv et alz SGA 67 0 0 K 0.54 (0.51-0.58) 6 0 0 K 0.44 (0.37-0.51)
AGA 333 2953 4 Sens 16.8 86 715 15 Sens 6.5
LGA 0 176 316 PPV 100 0 58 78 PPV 100

Grantz et al† SGA 349 43 0 K 0.67 (0.64-0.69)
AGA 123 3661 115 Sens 65.7
LGA 0 225 277 PPV 84.2

Shivkumar et alx SGA 406 253 0 K 0.59 (0.56-0.62) 100 24 0 K 0.77 (0.72-0.82)
AGA 8 2946 254 Sens 98.1 8 843 37 Sens 92.6
LGA 0 0 72 PPV 61.6 0 11 63 PPV 80.6

Stirrup et al† SGA 296 27 0 K 0.69 (0.66-0.72) 170 0 0 K 0.54 (0.51-0.57)
AGA 108 3825 215 Sens 73.3 234 3713 182 Sens 42.1
LGA 0 68 254 PPV 91.6 0 207 287 PPV 100

Dichorionic Monochorionic-Diamniotic

Our cohort Our cohort

Singleton Standards SGA AGA LGA Correlation SGA AGA LGA Correlation
INTERGROWTH-21 st † SGA 308 112 0 K 0.59 (0.56-0.62) 86 56 0 K 0.56 (0.48-0.62)

AGA 106 2820 86 Sens 74.4 22 751 31 Sens 79.6
LGA 0 267 240 PPV 73.3 0 71 69 PPV 60.6

Savirón-Cornudella et al † SGA 465 576 0 K 0.56 (0.54-0.59) 140 232 0 K 0.49 (0.44-0.54)
AGA 7 3271 144 Sens 98.5 2 849 42 Sens 100
LGA 0 82 248 PPV 44.7 0 31 74 PPV 37.6

WHO† SGA 424 396 0 K 0.59 (0.56-0.61) 118 145 0 K 0.50 (0.45-0.55)
AGA 48 3384 135 Sens 89.8 22 905 40 Sens 84.3
LGA 0 149 257 PPV 51.7 0 62 76 PPV 44.9

* From 23th to 38th week of gestational age.
† From 17th to 38th week of gestational age.
z From 24th to 38th week of gestational age.
x From 22nd week to 38th week of Gestational age. K: Cohen’s kappa coefficient. PPV: positive predictive value of each standard to predict small for gestational age cases

provided by our standard. Sens: sensitivity of each standard to predict small for gestational age cases provided by our standard.
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Caṕıtulo 7. Estimación en problemas de clasificación en entornos cĺınicos reales

7.3. Valor predictivo del score de riesgo genético en

el desarrollo de adenomas colorrectales

El estudio [34] que se presenta en esta sección se centra en la evaluación de factores

de riesgo en el desarrollo de adenomas colorrectales. En concreto, la investigación se

enfoca en evaluar la capacidad predictiva del score de riesgo genético, un aspecto que

no ha sido suficientemente explorado en este contexto.

Diversas variantes genéticas, como los polimorfismos de un solo nucleótido (SNP,

siglas en inglés), han sido identificadas en numerosos estudios con el riesgo de cáncer

colorrectal. Sin embargo, por śı solas, no ofrecen un riesgo cĺınicamente relevante. La

combinación de estos marcadores genéticos, conocido como score de riesgo genético

(GRS, siglas en inglés), es una práctica común que puede proporcionar una capacidad

predictiva superior [20]. Aunque existen diversos modelos genéticos, el modelo aditivo,

que suma los alelos de riesgo de cada SNP, es el más común en la construcción del

GRS.

En nuestro estudio consideramos tanto enfoques ponderados (weighted GRS) como

no ponderados (unweighted GRS). El GRS no ponderado asume que todos los SNPs

tienen el mismo efecto y se obtiene como la suma de todos los alelos de riesgo de los

SNPs: unweighted GRS =
∑n

i=1 ri, donde ri representa el número de alelos de riesgo

que tiene el paciente en el i-ésimo SNP. Por otro lado, el GRS ponderado asume un

efecto diferente para cada SNP y se obtiene como la suma de todos los alelos de riesgo

multiplicados por un peso wi: weighted GRS =
∑n

i=1wiri. Para la contrucción de estos

scores genéticos, se utilizó la regresión loǵıstica considerando la información genética

del paciente. El coeficiente estimado para cada SNP es el que se consideró como peso

wi.

Se aplicaron test de comparación de curvas ROC para evaluar la diferencia

discriminatoria entre los modelos. Nuestros hallazgos mostraron que, además del sexo

y la edad, el GRS es un factor de riesgo importante para el desarrollo de adenomas

colorrectales. En resumen, el uso de modelos lineales permitió evaluar el factor de

riesgo genético en el desarrollo de adenomas colorrectales, proporcionando un puntaje

(GRS) que es facilmente interpretable por el cĺınico. Estos resultados pueden influir en

la práctica cĺınica, donde los GRS pueden ser utilizados para estratificar el riesgo de

cáncer colorrectal o en programas de detección, mejorando su precisión.

A continuación se presenta el art́ıculo, donde se proporciona información más

detallada de este estudio.
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Abstract
Introduction  Unlike colorectal cancer (CRC), few studies have explored the predictive value of genetic risk scores (GRS) in 
the development of colorectal adenomas (CRA), either alone or in combination with other demographic and clinical factors.
Methods  In this study, genomic DNA from 613 Spanish Caucasian patients with CRA and 829 polyp-free individuals was 
genotyped for 88 single-nucleotide polymorphisms (SNPs) associated with CRC risk using the MassArray™ (Sequenom) 
platform. After applying a multivariate logistic regression model, five SNPs were selected to calculate the GRS. Regression 
models adjusted by sex, age, family history of CRC, chronic use of NSAIDs, low-dose ASA, and consumption of tobacco 
were built in order to study the association between GRS and CRA risk. We evaluated the discriminatory capacity using the 
area under the receiver operating characteristic curve (AUC). The interactions between demographic information and GRS 
were also analyzed.
Results  Significant associations between high GRS values and risk of CRA for analyzed models were observed. In particular, 
patients with higher GRS values had 2.3–2.6-fold increase in risk of CRA compared to patients with middle values. Combin-
ing sex and age with the GRS significantly increased the discriminatory accuracy of the univariate model with GRS alone. 
The best model achieved an AUC value of 0.665 (95% CI: 0.63–0.69). The GRS showed a different behavior depending on 
sex and age.
Conclusion  Our findings showed that, besides sex and age, GRS is an important risk factor for development of CRA and 
may be useful for CRC risk stratification and adaptation of screening programs.

Keywords  Genetic risk scores · Colorectal adenomas · Colorectal screening · Predictive value · Single-nucleotide 
polymorphism
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Introduction

Colorectal cancer (CRC) is the third most frequent cancer 
worldwide with 1,849,518 (10.2%) new cases diagnosed in 
2018. Moreover, CRC represents the second most common 
cause of cancer death with 880,792 deaths occurred in that 
year [1]. Most CRCs develop from premalignant lesions 
(mainly adenomas) that take years to transform into a 
cancer. This lapse of time can allow for early detection 
of lesions through CRC screening programs developed to 
reduce both, incidence and mortality rates.

It is now well accepted that CRC results from complex 
interactions between environmental and genetic factors. In 
the last two decades, numerous genome-wide association 
studies (GWAS) on CRC risk have identified more than 80 
common single-nucleotide polymorphisms (SNPs) in low 
penetrance genes [2–4]. These genetic variants do not pro-
vide clinically relevant risk by themselves, but combina-
tion of risk alleles in a polygenic model has been reported 
to increase the risk of CRC in an additive or exponential 
way. In fact, the elaboration of genetic risk scores (GRS), 
combining multiple SNPs associated with CRC, is becom-
ing a very attractive issue showing very promising results 
for a more accurate CRC risk stratification. Recent stud-
ies have suggested that adding genetic and environmental 
information into a CRC risk prediction model may signifi-
cantly increase the discriminatory accuracy over current 
screening models based mainly on age and family history 
of CRC [4–9].

Unlike CRC, very few studies [6] have explored the pre-
dictive value of GRS in the development of premalignant 
colorectal lesions, namely colorectal adenomas. Indeed, 
performance of risk prediction models for early events of 
the adenoma-carcinoma sequence may offer the greatest 
potential benefit for CRC prevention. Trying to address 
this specific issue, the aim of our study was to evaluate 
the predictive capacity of GRS on the risk of colorectal 
adenomas, either alone or in combination with other clini-
cal and demographic characteristics.

Material and Methods

Study Population

This study included 1,500 patients who were scheduled 
for colonoscopy, either by symptoms or through the CRC 
screening programs (in the average-risk population and in 
first-degree relatives of patients with nonsyndromic CRC), 
at two general Spanish hospitals from May 2010 to May 
2014. The study design has been previously described in 

detail [10]. Criteria for exclusion included hereditary CRC 
syndromes, a personal history of CRC or inflammatory 
bowel disease, previous polypectomy, age < 18 years old 
and ethnicity other than Caucasian.

All subjects underwent at least one colonoscopy. The 
quality of the bowel preparation for colonoscopy, evaluated 
by the Boston Bowel Preparation Scale, was good or very 
good in most cases (87.3%). Similarly, the rate of complete 
colonoscopies was high (97.7%). Information concerning 
demographic and clinical characteristics such as family his-
tory of CRC (any reported CRC in FDR or two or more 
CRC cases in second-degree relatives), smoking habit, 
and chronic use of nonsteroidal anti-inflammatory drugs 
(NSAIDs) or acetylsalicylic acid (ASA) were considered 
as previously described [10]. Because all clinical variables 
showed very low missing rates (< 7%), the missing values 
were replaced by the most frequent value observed within 
each one.

After completion of the interview, 10 ml of peripheral 
blood was obtained from each individual and collected into 
EDTA (ethylenediaminetetraacetic acid) tubes for subse-
quent DNA extraction and genotyping. Once processed, 
whole blood samples were aliquoted and stored at − 80 °C 
until analyzed.

All subjects gave written informed consent to the study 
which was approved by the institutional ethic committee 
of each participating hospital (University Hospital Lozano 
Blesa of Zaragoza, and University Hospital of the Canary 
Islands in Tenerife). The study has been performed in 
accordance with the ethical standards laid down in the 1964 
Declaration of Helsinki and its later amendments.

Genotyping

Genomic DNA was extracted from EDTA-preserved whole 
blood using the automated DNA isolation system AutoGen-
Flex 3000. As formerly described in our study by Gargallo 
et al. [10], a total of 1,500 patients were genotyped for a 
panel of 88 SNPs previously known to confer genetic sus-
ceptibility to CRC. Genotyping was performed at the Span-
ish National Genotyping Centre (CEGEN-Santiago de 
Compostela) by using the Sequenom MassARRAY iPLEX 
platform. Eleven out of the 88 SNPs analyzed in the study 
showed statistically significant associations with the risk of 
colorectal adenomas (False Discovery Rate < 0.05). There-
fore, we selected these 11 SNPs (rs10505477, rs10795668, 
rs11255841, rs13181, rs16260, rs1728785, rs4779584, 
rs647161, rs6983267, rs8180040, and rs9929218) for sub-
sequent analyses to develop a risk prediction model of colo-
rectal adenomas. The general characteristics of these SNPs 
are shown in Table 1.
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From the initial 1,500 recruited subjects, 1,442 patients 
(613 patients with colorectal adenomas and 829 polyp-free 
individuals) were successfully genotyped for the 11 men-
tioned SNPs and included in the study for final analysis.

Statistical Analyses

An initial descriptive exploratory analysis of all clinical vari-
ables was carried out. Continuous variables were expressed 
as mean with standard deviation (SD) and as median with 
interquartile range (IQR), whereas qualitative variables were 
expressed as frequencies and percentages. Differences between 
populations with and without colorectal adenomas were evalu-
ated with Chi-square (χ2) test for qualitative variables and with 
Mann–Whitney test for continuous variables. Normality was 
tested using the Shapiro–Wilk test. A step-by-step multivari-
ate logistic regression model was implemented among the 11 
SNPs previously mentioned. Finally, five SNPs (rs10505477, 
rs11255841, rs13181, rs4779584, and rs8180040) were 
selected in order to calculate the genetic risk score (GRS). 
The number of risk alleles was coded as 0, 1 or 2 for each 
SNP assuming a log-additive genetic effect. The methods to 
compute GRS were based in both, weighted and unweighted 
ways. The risk alleles were determined by the estimated coeffi-
cients of the logistic regression. The unweighted GRS assumes 
that all SNPs have the same effect and was obtained as the 
sum of all risk alleles of the five selected SNPs. However, the 
weighted GRS assumes a different effect for each SNP and it 
was obtained as the sum of all risk alleles multiplied by their 

respective coefficients of the logistic regression models. As 
weighted and unweighted GRS yielded very similar results, 
only results for the unweighted GRS are presented in the main 
text. (Analyses for weighted GRS are summarized in the Sup-
plementary Material.)

The distribution of the GRS in patients with and without 
adenomas was also analyzed. In order to study the association 
between the GRS and risk of adenomas, logistic regression 
models were constructed and odds ratios (ORs) and 95% con-
fidence intervals (CIs) were calculated. Multivariate models 
were adjusted by all variables retrieved in the study (sex, age, 
family history, chronic use of NSAIDs or low-dose ASA, and 
consumption of tobacco) and for only those ones statistically 
significant. The interactions between covariates and GRS were 
also analyzed.

The discriminatory accuracy of models was evaluated using 
the area under the receiver operating characteristics (ROC) 
curve (AUC). To avoid an overestimation of the value, the 
reported AUC value was internally calculated using a fivefold 
cross-validation and the 95% CI were obtained using 2,000 
stratified bootstrap replicates. The test of comparison of ROC 
curves proposed by Pepe et al. [11] was applied to assess the 
discriminatory difference between models.

The level of significance in the study was established at 
0.05. Analyses were performed using the R v.3.5.3 program-
ming language (The R Foundation for statistical computing, 
Vienna, Austria) [12]. In particular, the Predict ABEL R pack-
age was used to compute the GRS [13].

Table 1   General characteristics 
of the SNPs analyzed in the 
study

Chr, chromosome number. ND, not described
a SNP identification according to the NCBI data base.
b Chromosome position according to the Genome Reference Consortium Human Build 38.p2 (GRCh38.p2).
c Location in the gen.
d Major/Minor alleles.
e MAF: Minor allele frequency for European population by free access database [dbSNP (National Center 
for Biotechnology Information, NCBI; http://​www.​ncbi.​nlm.​nih.​gov/​snp/)]

Db SNP IDa Mapped Gen Chr Positionb SNP typec A/ad MAFe

rs8180040 ND 3 47,347,457 ND T/A 0.25
rs647161 C5orf66 5 135,163,402 Intronic A/C 0.46
rs10505477 CASC8 8 127,395,198 Intronic A/G 0.42
rs6983267 CASC8 8 127,401,060 Intronic G/T 0.39
rs10795668 LINC0079 10 8,659,256 Intronic G/A 0.23
rs11255841 LINC0079 10 8,697,617 Intronic T/A 0.25
rs4779584 GREM1-SCG5 15 32,702,555 Intergenic C/T 0.49
rs1728785 ZFP90 16 68,557,327 Intronic C/A 0.18
rs16260 CDH1 16 68,737,131 upstream variant C/A 0.28
rs9929218 CDH1 16 68,787,043 Intronic G/A 0.25
rs13181 ERCC2 19 45,351,661 K751Q T/G 0.24
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Results

Clinical and demographic characteristics of the study popu-
lation are shown in Table 2. Some statistically significant 
differences between patients with and without adenomas 
were observed. In this context, patients with adenomas were 
significantly older (mean 55.94 vs. mean 53.5) and showed 
predominance for male gender (59.05% vs. 39.93%) than 
patients without adenomas. However, no significant differ-
ences were observed regarding consumption of tobacco and 
chronic use of NSAIDs or low-dose ASA. The proportion 
50–50 of family history was remained in both groups, in 
accordance with the study design described in Gargallo et al. 
[10].

The degree of association between each of the five 
SNPs (rs10505477, rs11255841, rs13181, rs4779584, and 
rs8180040) selected to build the GRS and risk of colorectal 
adenoma is represented by means of ORs and their 95% 
CIs in Fig. 1. The observed associations for all SNPs in our 
study were in the same direction as reported previously in 
their respective discovery studies. With the exception of 
the rs4779584 SNP, major alleles (most frequent alleles) 
behaved as risk alleles for colorectal adenomas.

The mean number of risk alleles was significantly dif-
ferent between subjects with (5.659 ± 1.494) and without 
(5.292 ± 1.473) adenomas (difference: 0.367 alleles, 95% CI 
0.212–0.522, p < 0.001). This trend is shown through the 
distribution of the GRS values for patients with and with-
out adenomas in Fig. 2. Both populations follow a normal 
distribution with a maximum value of five risk alleles for 
the population without adenomas and six in the popula-
tion with them, value from which a change occurs toward 
a higher increasing percentage of high GRS values in the 
population with adenomas with respect to the population 
without them. The GRS was categorized into six levels of 
genetic risk: ≤ 3, 4, 5, 6, 7, ≥ 8 risk alleles, due to the low 

representativeness in the extremes values. Five risk alleles 
were considered as reference in the analysis since it was the 
median value observed. A similar trend was observed when 
weighted GRS considering quartiles was performed (Sup-
plementary Fig. 1).

The association between unweighted GRS and risk of 
colorectal adenomas is shown in Table 3. Four different 
models were constructed: (1) univariate GRS model; (2) 
multivariate model adjusted by the statistically significant 
variables sex and age; (3) multivariate model adjusted by 
the pairwise interaction between sex and age; and (4) mul-
tivariate model adjusted by all variables retrieved in the 
study (sex, age, consumption of tobacco and chronic use 
of NSAIDs and low-dose ASA). Significant associations 
between high GRS values and risk of colorectal adenomas 
were found for all analyzed models. In particular, individuals 
with ≥ 8 risk alleles showed a significant increase in ade-
noma risk compared with subjects with GRS of 5. Values 
ranged from 2.3-folds (95% CI 1.63–3.32) in the univariate 
model to nearly 2.6-folds (95% CI 1.8–3.75) in the multivar-
iate model adjusted by the interaction between sex and age.

The analysis using weighted GRS reported similar asso-
ciations (Supplementary Table 1). The ORs per quartiles 
of the weighted GRS are presented in the table in which 
significant associations between high GRS values and risk 
of colorectal adenomas were also found.

The ROC curves of the models analyzed are displayed 
in Fig. 3. We found that combining sex and age to the uni-
variate GRS prediction model significantly increased dis-
criminatory accuracy from 0.571 (95% CI: 0.54–0.60) to 
0.655 (95% CI: 0.62–0.68). In fact, the highest prediction 
values were observed in the combined GRS-interaction sex 
and age model (AUC: 0.665; 95% CI: 0.63–0.69). However, 
no significant improvement was observed when consider-
ing in the model the other variables retrieved in the study 
(AUC: 0.649; 95% CI: 0.62–0.68). The test also showed a 

Table 2   Clinical and demographic characteristics of the study population

Bold indicates p value < 0.05
N number of individuals. SD standard deviation. IQR interquartile range. NSAIDs nonsteroidal anti-inflammatory drugs. ASA acetylsalicylic acid

Characteristics Total N = 1442 Without adenomas 
N = 829

With adenomas N = 613 p value

Age (years) Mean (SD) 54.55 (9.46) 53.52 (10.09) 55.94 (8.34)  < 0.001
Median (IQR) 55 (49–61) 54 (48–61) 57 (50–62)

Sex Female 749 (51.94%) 498 (60.07%) 251 (40.95%)  < 0.001
Smoking Yes 373 (25.87%) 207 (24.97%) 166 (27.08%) 0.061

No 795 (55.13%) 478 (57.66%) 317 (51.71%)
Former smoker 274 (19.00%) 144 (17.37%) 130 (21.20%)

Chronic NSAIDs Yes 93 (6.45%) 61 (7.36%) 32 (5.22%) 0.127
Chronic low-dose ASA Yes 80 (5.55%) 43 (5.29%) 37 (6.06%) 0.562
Family history Yes 721 (50.00%) 414 (49.94%) 307 (50.08%) 1.000
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significant predictive improvement by including the GRS in 
the model adjusted for sex and age.

Interactions between the GRS and the variables sex 
and age are shown in Fig. 4. Differences in the effect of 
the GRS according to sex and age are shown, pointing out 
to an association between higher GRS values in men and 
individuals ≥ 50 years. Association between adenomas 
risk and combination of GRS and age and GRS and sex 
is shown in Table 4. Due to the results obtained and being 
the cutoff point established in the general population for 
CRC screening, 50 years was the cutoff point chosen for 
the age categorization. The patients with the lower pre-
disposition of adenomas (women with the lowest GRS 
and people < 51 years with the lowest GRS) were taken 
as references. The highest ORs were reached in men (OR: 
4.58; 95% CI: 2.43–8.8; p < 0.001) and individuals older 

than 50 years (OR: 6.74; 95% CI: 3.25–14.72; p < 0.001) 
with GRS values ≥ 8.

Discussion

CRC is a very common cancer worldwide but it is also 
one of the most preventable and curable cancer if early 
detected. Current clinical guidelines recommend CRC 
screening based mainly on age and family history of CRC 
[14, 15]. Risk prediction models are very useful tools to 
more accurately define low- and high-risk individuals, 
which is essential in precision medicine.

Most of CRCs develop from adenomas through the 
adenoma–carcinoma sequence. Previous evidence indi-
cates that many of the SNPs reported in the literature to 

Fig. 1   Association between the 
five selected SNPs and colo-
rectal adenoma risk. RAF: risk 
allele frequency. The coding of 
each SNP of the multivariate 
model represented was as fol-
lows: the value 1 was assigned 
to the most frequent allele and 
value 0 to the less frequent 
allele
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be associated with CRC are also related to higher risk of 
adenomas due to their involvement in early carcinogenesis 
[10, 16]. The main objective of this work was to explore 
the predictive value of GRS in the development of colo-
rectal adenomas, either alone or in combination with other 
clinical and demographic characteristics. After evaluating 
88 SNPs previously associated with CRC or colorectal 

adenomas [10], we included in our study a GRS based on 
five SNPs. Selected SNPs were the following: rs10505477, 
located in the long non coding CASC8 gene (cancer sus-
ceptibility candidate 8), rs11255841 in LINC00709 (long 
intergenic non protein coding RNA 709), rs13181in 
the ERCC2 (excision repair 2) gene, rs4779584 located 
between the GREM1 (gremlin 1) and SCG5 (secreto granin 
V) genes and rs8180040 in the PTPN23 (protein tyrosine 
phosphatase non-receptor type 23) gene. In agreement 
with their respective discovery studies, major alleles 
(most frequent alleles) behaved as risk alleles for colo-
rectal adenomas in our study with the exception of the 
rs4779584 SNP.

In addition to genetic variants, most published risk pre-
diction models of CRC include environmental/lifestyle fac-
tors and/or family history of CRC. The number of SNPs 
used to construct the GRS in the different studies ranges 
from 10 to 90, reporting an increased number of SNPs in 
the most recent studies. Dunlop et al. [17] designed a CRC 
predictive model based on 10 SNPs, age, gender, and fam-
ily history of CRC, obtaining an AUC value of 0.59. Yar-
nall et al. [18] reported a slightly better AUC value (0.61) 
combining a GRS based on 14 SNPs and alcohol intake. 
Ibáñez-Sanz et al. [9] reported a discriminatory accuracy 
value of 0.63 for their combining modifiable risk factors, 
family history, and a GRS (21 SNPs). More recently, Weigl 
et al. [6] built a GRS based on 48 SNPs. They observed that 
participants in the upper tertile of the GRS almost tripled 
the risk of advanced neoplasms compared to patients in the 

Fig. 2   Distribution of unweighted GRS values in patients with and 
without adenomas

Table 3   Association between 
unweighted GRS and risk of 
adenomas

Bold indicates p value < 0.05
a Univariate model.
b Multivariate model adjusted by sex and age.
c Multivariate model adjusted by the interaction between sex and age.
d Multivariate model adjusted by sex, age, family history of CRC, NSAIDs chronic consumption, aspirin 
chronic consumption and tobacco use.
CI confidence interval; GRS genetic risk score; OR odds ratio; Ref reference

GRS values Model 1a Model 2b Model 3c Model 4d

OR (95% CI)
p value

OR (95% CI)
p value

OR (95% CI)
p value

OR (95% CI)
p value

 ≤ 3 0.908 (0.645–1.273)
0.642

0.854 (0.601–1.209)
0.459

0.861 (0.603–1.222)
0.484

0.876 (0.615–1.241)
0.534

4 0.977 (0.731–1.303)
0.895

0.968 (0.718–1.303)
0.858

0.975 (0.722–1.315)
0.889

0.976 (0.723–1.314)
0.891

5 Ref Ref Ref Ref
6 1.386 (1.082–1.777)

0.031
1.431 (1.108–1.849)
0.021

1.460 (1.129–1.890)
0.016

1.443 (1.117–1.866)
0.019

7 1.558 (1.177–2.065)
0.010

1.622 (1.213–2.169)
0.006

1.650 (1.233–2.210)
0.005

1.642 (1.228–2.199)
0.019

 >  = 8 2.320 (1.628–3.320)
 < 0.001

2.500 (1.737–3.617)
 < 0.001

2.592 (1.799–3.752)
 < 0.001

2.521 (1.749–3.650)
 < 0.001

Continuous
Value

1.201 (1.127–1.281)
 < 0.001

1.230 (1.151–1.314)
 < 0.001

1.237 (1.158–1.323)
 < 0.001

1.229 (1.150–1.313)
 < 0.001
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lower tertile. An increasing number of SNPs (63) were eval-
uated by Jeon et al. [5] along with family history data and 19 
lifestyle and environmental factors. Their model combining 
all risk factors estimated CRC risk with a discriminatory 
accuracy value of 0.63 for men and 0.62 for women. Simi-
lar prediction values for advanced colorectal neoplasm were 
obtained by Balavarca et al. [19] with combined environ-
mental-genetic score model (AUC = 0.63).

Unlike CRC, very few studies have explored the pre-
dictive value of GRS in the development of premalignant 
colorectal lesions (namely, colorectal adenomas) [6, 16, 
20]. In our study, the best predictive accuracy for the four 
models evaluated has an AUC value of 0.66 and belongs 
to the model that considers the GRS along with the vari-
ables sex and age. Current evidence shows that age and 
sex are the most important risk factors for developing CRC 
and/or adenomas along with family history. In fact, some 
studies suggest that CRC screening programs should be 
started at an earlier age in men than in women [21–23]. 
In accordance with these recommendations, our analysis 
shows that high values in GRS carry more risk of adeno-
mas in men and individuals older than 50 years. This is in 
line with the results reported by Weigl et al. [6] showing a 
joint relationship between age and GRS. According to the 
authors, the risk of the 60-year-old medium GRS group 
was reached in the low GRS group at age of 73 years, and 

at age of 56 in the high GRS group. In our study, being a 
man also increases considerably the adenoma risk carry by 
high values of GRS. Only women with ≥ 8 risk alleles have 
higher risk of adenomas than men with ≤ 4 risk alleles. 
Currently, most countries recommend starting CRC 
screening programs at age of 50 in average-risk population 
[14, 15]. However, our findings support the hypothesis that 
CRC screening in men should start at younger ages than 
in women and that age should not be the sole criteria for 
indicating CRC screening. Given that prevention of CRC 
through the removal of adenomas is very important on 
CRC screening, the association of our GRS model with the 
presence of adenomas may have important implications for 
risk stratification.

Finally, our study has several strengths and limitations. 
To our knowledge, very few studies have evaluated the dis-
criminatory power of GRS in the development of colorectal 
adenomas. Although only five SNPs were selected in our 
GRS, the best predictive model, which includes sex and age, 
shows an AUC value (0.66) similar to that reported by sev-
eral previous studies evaluating more SNPs [5–9, 18, 19]. 
The remaining lifestyle information considered in our study 
(tobacco and NSAIDS/ASA consumption) did not show a 
significant improvement in discriminatory accuracy of the 
model. Age and sex are objective data but smoking and drug 
consumption are more difficult to ascertain and may be prone 
to bias. In addition, it is important to point out that in our 
study, individuals with and without adenomas were matched 
by family history of CRC [10], and therefore, the relevance 
of family history of CRC as a variable in the prediction mod-
els could not be assessed. In this case, GRS could be applied 
to individuals with an average CRC risk and first-degree 
relatives of patients with non-hereditary CRC. Further stud-
ies with larger sample sizes in both types of populations and 
in different geographic areas and ethnic groups are needed 
in order to validate the relevance of our predictive model on 
the risk of colorectal adenomas. Nevertheless, we believe 
that combined risk scores (genetic and environmental) might 
be very useful tools to define when begin (starting age) and 
what procedure to use (fecal immunochemical test or colo-
noscopy) in CRC screening programs.

In summary, we propose a GRS associated with colorec-
tal adenomas based on five SNPs (rs10505477, rs11255841, 
rs13181, rs4779584, and rs8180040). Combining sex and 
age to the GRS prediction model significantly increases 
discriminatory accuracy. Moreover, the GRS shows a dif-
ferent behavior depending on sex and age. Our results point 
out to an association between higher GRS values in men 
and individuals older than 50 years. The inclusion of other 
lifestyle factors such as alcohol consumption, body mass 
index, or dietary factors might improve the predictive capac-
ity of the models. Moreover, advances and decreasing cost 
for genetic test might facilitate the use of combined risk 

Fig. 3   ROC curves of the models analyzed. Model 1: Univariate 
model (unweighted GRS). Model 2: Multivariate model adjusted by 
sex and age. Model 3: Multivariate model adjusted by the interaction 
between sex and age. Model 4: Multivariate model adjusted by sex, 
age, family history of CRC, NSAIDs chronic consumption, aspirin 
chronic consumption, and tobacco use
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Fig. 4   Visual representation 
of the interaction between the 
effects of unweighted GRS and 
age and sex. In the variable 
SEX value 0 represents male 
and value 1 represents female
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prediction models for risk stratification approaches of large 
populations in a near future.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10620-​021-​07218-5.
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Caṕıtulo 7. Estimación en problemas de clasificación en entornos cĺınicos reales

7.4. Estimación del punto de corte óptimo en

programas de cribado de cáncer colorrectal

La pandemia de COVID-19 ha supuesto un gran desaf́ıo para el sistema de salud

pública, ya que obligó a ralentizar o paralizar muchos procedimientos, como los

programas de detección de cáncer colorrectal. Esto ha creado una situación posterior en

la que hay pacientes que no han sido evaluados a tiempo, además de nuevos pacientes

que se suman a la población diana del programa de cribado. Sin embargo, puede existir

una oferta insuficiente de unidades endoscópicas para satisfacer las necesidades de la

población que necesita ser evaluada. El propósito del estudio [3] que se presenta en

esta sección es abordar esta necesidad surgida debido a la pandemia, espećıficamente,

mejorar la estrategia del programa de cribado de cáncer colorrectal en Aragón.

El programa de cribado de cáncer colorrectal consiste en invitar a personas

asintomáticas de riesgo medio a realizar una prueba de hemoglobina fecal (FIT). El

umbral establecido para esta prueba es de 20 µg de hemoglobina/g de heces, estándar

utilizado en España y otros páıses europeos. En caso de superar ese umbral, se considera

la prueba como positiva y se invita al paciente a someterse a una colonoscopia para

detectar posibles lesiones. Por tanto, los factores que determinan el nivel de actividad

del programa de cribado colorrectal son el número de colonoscopias disponibles, el

número de personas invitadas y los resultados del FIT. En concreto, el punto de corte

del FIT es el factor clave, puesto que determina quién se somete a colonoscopia y

está vinculado con los otros factores. Aumentar el umbral del FIT (20 µg) disminuiŕıa

el número de colonoscopias a realizar pero podŕıa implicar un riesgo de pérdida de

detección de lesiones de alto riesgo o cánceres. Por otro lado, mantener los valores

de corte actuales, con una disponibilidad insuficiente de colonoscopias, retrasaŕıa la

detección de lesiones, aumentando el riesgo de detectarlas en etapas más avanzadas.

En nuestro estudio se plantearon estos dos escenarios: modificar o mantener el

punto de corte del FIT, y se analizaron sus consecuencias con el objetivo de optimizar la

estrategia de cribado de cáncer colorrectal, considerando la situación actual y buscando

la opción menos perjudicial. En este sentido, el análisis de diferentes puntos de corte de

FIT fue esencial. Como criterio de selección del punto de corte se seleccionó el número

de lesiones perdidas (riesgo bajo, medio, alto y cáncer), con el objetivo de minimizar

el número esperado de lesiones perdidas y diagnósticos retrasados. Los resultados de

nuestro estudio demostraron que, asumiendo un desajuste entre la disponibilidad anual

de colonoscopias y la demanda real en la población objetivo, la opción menos perniciosa

seŕıa aumentar el punto de corte. Asimismo, nuestros resultados sugirieron considerar

en el proceso de selección factores de riesgo adicionales, como el sexo y la edad.
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En conclusión, este trabajo plantea un desaf́ıo real con consecuencias significativas

en el sistema de salud, en el cual proponemos una metodoloǵıa basada en análisis de

puntos de corte. El análisis de puntos de corte según diferentes criterios resulta crucial

para la posterior práctica cĺınica. A continuación, se presenta el art́ıculo publicado

derivado de este estudio.

178



ORIGINAL RESEARCH
published: 27 July 2021

doi: 10.3389/fmed.2021.712040

Frontiers in Medicine | www.frontiersin.org 1 July 2021 | Volume 8 | Article 712040

Edited by:

Cristiano Spada,

Fondazione Poliambulanza Istituto

Ospedaliero, Italy

Reviewed by:

Grainne Holleran,

Trinity College Dublin, Ireland

Carlo Senore,

Piedmont Reference Center for

Epidemiology and Cancer

Prevention, Italy

*Correspondence:

Patricia Carrera-Lasfuentes

pcarreralasfuentes@gmail.com

†These authors share

senior authorship

Specialty section:

This article was submitted to

Gastroenterology,

a section of the journal

Frontiers in Medicine

Received: 19 May 2021

Accepted: 29 June 2021

Published: 27 July 2021

Citation:

Aznar-Gimeno R,

Carrera-Lasfuentes P,

del-Hoyo-Alonso R, Doblaré M and

Lanas Á (2021) Evidence-Based

Selection on the Appropriate FIT

Cut-Off Point in CRC Screening

Programs in the COVID Pandemic.

Front. Med. 8:712040.

doi: 10.3389/fmed.2021.712040

Evidence-Based Selection on the
Appropriate FIT Cut-Off Point in CRC
Screening Programs in the COVID
Pandemic
Rocío Aznar-Gimeno 1, Patricia Carrera-Lasfuentes 2,3*, Rafael del-Hoyo-Alonso 1,
Manuel Doblaré 3,4,5,6† and Ángel Lanas 2,3,7,8†

1Department of Big Data and Cognitive Systems, Instituto Tecnológico de Aragón, ITAINNOVA, Zaragoza, Spain,
2 Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain, 3 Aragón Health

Research Institute (IIS Aragón), Zaragoza, Spain, 4 Aragón Institute of Engineering Research (I3A), Zaragoza, Spain,
5Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain, 6 Biomedical Research Networking Center

in Bioengineering, Biomaterials and Nanomedicine (CIBERbbn), Madrid, Spain, 7Department of Medicine, Psychiatry and

Dermatology, University of Zaragoza, Zaragoza, Spain, 8 Service of Digestive Diseases, University Clinic Hospital, Zaragoza,

Spain

Background: The COVID pandemic has forced the closure of many colorectal

cancer (CRC) screening programs. Resuming these programs is a priority, but

fewer colonoscopies may be available. We developed an evidence-based tool

for decision-making in CRC screening programs, based on a fecal hemoglobin

immunological test (FIT), to optimize the strategy for screening a population for CRC.

Methods: We retrospectively analyzed data collected at a regional CRC screening

program between February/2014 and November/2018. We investigated two different

scenarios: not modifying vs. modifying the FIT cut-off value. We estimated program

outcomes in the two scenarios by evaluating the numbers of cancers and adenomas

missed or not diagnosed in due time (delayed).

Results: The current FIT cut-off (20-µg hemoglobin/g feces) led to 6,606 colonoscopies

per 100,000 people invited annually. Without modifying this FIT cut-off value, when the

optimal number of individuals invited for colonoscopies was reduced by 10–40%, a

high number of CRCs and high-risk adenomas (34–135 and 73–288/100.000-people

invited, respectively) will be undetected every year. When the FIT cut-off value was

increased to where the colonoscopy demand matched the colonoscopy availability, the

number of missed lesions per year was remarkably reduced (9–36 and 29–145/100.000

people, respectively). Moreover, the unmodified FIT scenario outcome was improved by

prioritizing the selection process based on sex (males) and age, rather than randomly

reducing the number invited.

Conclusions: Assuming a mismatch between the availability and demand for annual

colonoscopies, increasing the FIT cut-off point was more effective than randomly

reducing the number of people invited. Using specific risk factors to prioritize access

to colonoscopies should be also considered.

Keywords: colorectal cancer, screening fecal-immunological test, decision-making, colonoscopy, adenomas
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INTRODUCTION

The COVID pandemic has forced the closure of many
colorectal cancer (CRC) screening programs around the
world. Most endoscopy units have limited their activity
to urgent procedures or to patients with a high suspicion
of gastrointestinal cancer (1). Furthermore, resuming
normal endoscopic activity has been slow and the number
of procedures per room/day has been reduced. This
situation poses a challenge for CRC screening programs,
because in most cases, endoscopic units will not be able
to resume the same activity levels practiced before the
pandemic (2, 3).

The key factors that determine the level of activity in
CRC screening programs are the number of endoscopic
procedures available in the endoscopic units, the number
of people invited, and the type of test used. When a fecal
occult blood test is used, the cut-off point determines which
patients will undergo colonoscopy. Thus, the cut-off point
is the most important factor for selecting which people
are invited, and it is directly related to the other factors. It
is difficult to determine the cut-off point, because raising
this value increases the risk of missing a number of high-
risk lesions or cancers (4). On the other hand, maintaining
the current cut-off values with insufficient colonoscopy
availability will delay the inclusion of patients in screening
programs, due to the current restrictions, which will cause an
undetermined delay in the diagnosis of high-risk lesions and
cancer (5).

In this study, we analyzed, from a temporal perspective,
the CRC screening program outcomes for the Aragón region
(Spain). We aimed to design a general methodology and
provide data that might facilitate evidence-based decisions
by managers and health authorities on how to reinitiate
CRC screening. Our approach was to optimize the strategy
for screening a population for CRC, with the objective
of minimizing the expected number of missed lesions and
delayed diagnoses.

MATERIALS AND METHODS

Study Population
We evaluated data on individuals that participated in the
CRC screening program in the Aragon region (Spain) between
February 2014 (the start of the population-level program)
and November 2018. Individuals invited to the program
were at medium risk, aged 60–70 years, had no family
history of CRC, had no previous colonoscopy in the previous
5 years, and had no known colonic diseases, colectomy,
or irreversible terminal diseases. The screening program
was originally planned (before the pandemic) to extend to
patients aged 50–59 years, within the universal health system.
However, those individuals were excluded from the first round
of invitations to maximize the benefits of the program,
because endoscopic units were already busy coping with
symptomatic patients.

Fecal Immunochemical Test, Colonoscopy,
and Lesions
Invited individuals that agreed to participate in the program
had to be asymptomatic. They underwent selection, based on
a fecal immunochemical test (FIT) (FOB Gold R©; SENTiFIT;
Sysmex-Sentinel CH. SpA, Barcelona,Spain). The cut-off value
used during the program was 20 µg hemoglobin/g feces,
which is the standard used in Spain and most European
countries (6).

Patients with a negative FIT result were temporarily
excluded from the program for 2 years. Otherwise, the
patient was invited to undergo a colonoscopy. When the
colonoscopy did not show any lesion, the patient was temporarily
excluded from the program for 10 years. However, when
either adenomas or cancers were detected, the patient was
permanently excluded from the program and transferred to
either the gastrointestinal outpatients or ward for follow-up
or treatment.

Colonoscopy, Histologic Examination, and
Definitions
Colonoscopies were performed by experienced
gastroenterologists from different units of Digestive Diseases
Services in the community. The quality standards were
established by the European Society of Gastrointestinal
Endoscopy (7, 8). Any polypoid lesion detected in the procedure
was removed and classified by an experienced pathologist. The
classes were established by the Spanish Network of Cancer
Screening Programs (http://www.cribadocancer.es/), based on
the European guidelines for quality assurance in CRC screening
and diagnosis (9).

The study end points were the lesions, which were classified
according to the following grades:

1. “Low-risk adenomas,” defined as 1–2 tubular adenomas
<1 cm with low grade dysplasia.

2. “Intermediate-risk adenomas,” defined as ≥3 adenomas,
or adenomas ≥1 cm, with a villous histology or high-
grade dysplasia.

3. “High-risk adenomas,” defined as ≥10 adenomas or
adenomas ≥2 cm (mutually exclusive with intermediate-risk
adenoma > 1 cm)

4. “Colorectal cancer,” defined as any invasive cancer of the
colorectal mucosa that reached the submucosa, regardless of
the subsequent stage in the TNM classification1.

Data Curation
We collected data on program participants from data recorded
in the program database by different staff members and data
uploaded from external databases. Endoscopists of the different
centers recorded the data on endoscopic findings. The medical
staff in the CRC program recorded data related to the patients,
the histological analysis of specimens obtained from endoscopy
or surgery, and the treatment given after cancer detection.
Therefore, our first step was to perform an extensive evaluation of

1Available online at: https://www.cancer.org/cancer/colon-rectal-cancer/
detection-diagnosis-staging/staged.html (accessed: Januray 29, 2021).
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FIGURE 1 | Description of the two scenarios analyzed in the current study. Scenario 1 maintains the current FIT cut-off point (20 µg hemoglobin/g feces), regardless

of the annual demand for colonoscopies. Scenario 2 increases the current FIT cut-off point to match the number of colonoscopies to the expected number of positive

cases for a given number of invitations.

the quality of the information stored and to carry out a curation
process to procure a clean source of information. Detailed
information on this process can be found elsewhere (10). Once
the data curation was performed, the resulting database could be
used for analyses of any particular subpopulation, defined by sex,
age, medical district, province, etc.

The methodology used to aid decision-making was based on
the relationship between the number of people invited to the
program, the number of annual colonoscopies available, and
the established FIT cut-off point. Each of these values could
be estimated, based on the other two values. Additionally, we
analyzed data on the population screened between 2014 and
2018 to estimate the expected number of lesions missed or
diagnoses delayed, based on the projected parameters of the three
main variables (number of people invited, number of annual
colonoscopies performed, and the established cut-off point).

Hypotheses and Analysis
In this study, we assumed that the behavior of the entire target
population was homogeneous over time, which included the
following corollaries:

1. The number of tests performed (with respect to the number of
patients invited, i.e., rate of participation) remained constant
over time.

2. The distribution of the stool blood concentration in the
population or subpopulation did not change with time;
accordingly, the rate of positive tests with respect to the
population invited also remained constant over time.

3. The percentage of lesions and of the relative distribution of
the risk characteristics (i.e., low risk, medium risk, high risk,
and cancer) in the participating population did not change
over time.

Scenarios
We analyzed two potential scenarios (Figure 1):

1. The current cut-off point was 20 µg hemoglobin/g feces,
regardless of the annual demand for colonoscopies.

2. The current cut-off point was increased to match the number
of individuals invited for colonoscopies; here, the demand was
derived from the expected number of positive tests for a given
number of invitations.

Scenario 1 was optimal, providing that sufficient colonoscopies
were available to meet the yearly demand. When the demand
could not be met, a certain percentage of individuals with
potential neoplastic lesions will not be diagnosed, because
they would not be invited to undergo a colonoscopy in the
corresponding year. The estimated number of patients in need
and the types of lesions that were not diagnosed was derived
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TABLE 1 | Screening results for the study population and subpopulations.

Total Male Female Age [60–65]

y

Age [65–70]

y

Invited (n) 146,811 71,363 75,448 71,621 75,190

FIT Performeda 76,452

(52.1%)

36,971

(51.8%)

39,481

(52.3%)

35,476

(49.5%)

40,976

(54.5%)

Positive FITb 9,699

(6.6%)

5,748

(8.1%)

3,951

(5.2%)

4,335

(6.1%)

5,364

(7.1%)

Colonoscopiesc 9,139

(6.2%)

5,433

(7.6%)

3,706

(4.9%)

4,051

(5.7%)

5,088

(6.8%)

Neoplastic lesionsd 4,823

(52.8%)

3,315

(61 %)

1,508

(40.7%)

2,126

(52.5%)

2,697

(53%)

Low risk lesionse 1,399

(29%)

825

(24.9%)

574

(38.1%)

656

(30.9%)

743

(27.5%)

Medium risk lesionse 1,959

(40.6%)

1,382

(41.7%)

577

(38.3%)

869

(40.9%)

1,090

(40.4%)

High risk lesionse 1,003

(20.8%)

767

(23.1%)

236

(15.6%)

413

(19.4%)

590

(21.9%)

Cancer lesionse 462

(9.6%)

341

(10.3%)

121

(8%)

188

(8.8%)

274

(10.2%)

a,b,cNumber and percentage calculated based on the total number of invitations.
bFIT cut-off point >20-µg hemoglobin/g feces.
dNumber of people with lesions and percentage calculated based on the total number of people with lesions.
eNumber of people with lesions and percentage calculated based on the total number of colonoscopies.

from the data obtained from the cohort of individuals screened
between 2014 and 2018.

In Scenario 1, those individuals that were not eventually
invited due to an insufficient colonoscopy offer (excess target
group) were added to the new cohort invited the next year. Then,
and in this scenario, we evaluated different strategies for selecting
individuals for screening in the subsequent year. In the first
“random strategy,” all patients (new invitations and the excess
target group of previous year) are randomly selected according
to the same criteria (Figure 1), that is, all patients assigned to
a particular year have the same probability of undergoing a
colonoscopy, independent of the year of their first invitation to
the screening program. In a second “prioritization strategy,” the
excess target group from the previous year would be attended
first, and then individuals in the new yearly cohort would be
attended. An extension to the prioritization strategy was to
prioritize access to colonoscopy by considering risk factors other
than the FIT, such as age or sex.

In this study, we analyzed the possibility of prioritizing
invitations based on sex, because men were demonstrated to
have a significantly higher risk of lesions than women. This
approach aimed to show the importance of establishing a risk
index that included both the stool blood concentration and other
risk factors tominimize the number of high-grade lesionsmissed.

In Scenario 2, the cut-off point (cop) was set, based on the
number of colonoscopies to be offered. Then, we estimated the
rate and number of lesions that would be missed in that year.
Patients with a FIT result below the new “cop” but a FIT result >
20 µg hemoglobin/g feces, will not be identified in this scenario.

The estimations for each of these two scenarios are presented
considering 100,000 people invited. However, it would be easy

to scale the results to any other number of invitations. After
the pandemic, the number of colonoscopies actually performed
has been drastically reduced. We considered different potential
reductions in the offer of colonoscopies. Specifically, we analyzed
60–90% of the total number of colonoscopies that would have
met the demand.

Statistical Analysis
To demonstrate the potential effects of potential risk factors to be
considered, we analyzed several subpopulations, defined by sex
or age. Particularly, we compared the rate of positive tests in the
invited population, the rate of lesion detection in colonoscopies,
and the distribution of different risk levels among the lesions
detected between different subpopulations. For this comparative
analysis, we performed the compare proportions test. The level
of significance in the study was set to 0.05. Analyses were
performed with the R programming language (The R Foundation
for statistical computing, Vienna, Austria) (11).

RESULTS

Outcomes
The screening results are shown in Table 1 (2014–2018); 6.6%
of the invited individuals had a positive test (FIT ≥ 20 µg
hemoglobin/g feces). Among the individuals that underwent a
colonoscopy, 52.8% had detectable lesions, and of these, 30.4%
were classified as high-risk or had cancer. The different sex and
age groups had different rates of lesion detection. The rates
of positive FIT were significantly higher (p < 0.001) for men
than women and higher for the older, compared to the younger
age group. Also, the rates of detected neoplastic lesions were
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FIGURE 2 | The numbers of colonoscopies required with different FIT cut-off

values. Data are shown for the whole population and for sex groups. X axis:

FIT (µg hemoglobin/g feces); Y axis: number of patients with a positive test,

per 100,000 invitations.

significantly different (p < 0.001) between men and women (0.61
vs. 0.40). The distribution of lesion types was also significantly
different (p < 0.001) among the different combinations of sex
and age (Table 1) The stool blood concentrations showed small
differences over the different years (2014–2018), and we expected
the curves to converge to a steady state level. Therefore, we
assumed that those differences will not impact the qualitative
trends, or the conclusions drawn from the analysis reported here.
The number of colonoscopies performed was essentially linearly
correlated with the population invited, assuming no important
variations in the percentage of people that accepted the invitation,
underwent the FIT, and had a positive result.

Figure 2 shows the curves used to determine a cut-off
point for matching a given availability of colonoscopies per
100,000 invitations. Figure 3 shows the number of people
in each lesion risk class with undiagnosed lesions for each
cut-off point considered Sex, as expected, was remarkably
discriminating. With the same cut-off point, the number of men
with undiagnosed high-risk lesions or cancer was very close to
the number of women with medium- or higher-risk lesions. Age
was also discriminating, but to a lesser extent (not shown).

Scenario 1
With a constant cut-off point of 20 µg of hemoglobin/g feces,
6,606 colonoscopies would be required for each 100,000 people

FIGURE 3 | The number of individuals with undiagnosed lesions, based on the

indicated FIT cut-off points. Dark lines: the whole population (Overall); Different

colors: different lesion risk classes; dashed and dotted lines: different sex

groups for each lesion risk class; X axis: FIT: (µg hemoglobin/g feces). Y axis:

the number of people with undiagnosed lesions per 100,000 invitations.

invited annually. However, if that number of colonoscopies
was not available, and the cut-off point remained at 20 µg
hemoglobin/g feces, the number of undiagnosed patients with
positive tests would accumulate over the subsequent years, and
individuals would not be invited in due time. We evaluated
the following proportions of colonoscopy availability: 90–60%
where 100% was 6,606 colonoscopies/100,000 people invited and
required for the analyzed population.

Table 2 shows a comparison of the undiagnosed or delayed
risk lesions for different colonoscopy availabilities in each
scenario, and for each call criterion for the population of 1 year.
We have explored an offer of colonoscopies of 90, 80, 70, and
60% of the 6,606 colonoscopies required for each 100,000 people
invited annually when assuming the cut-off point of equilibrium
(20 µg hemoglobin/g feces).

Considering a period of 5 years, and assuming 100,000
invitations each year and the same colonoscopy availability in the
whole 5 years period, Figure 4 shows the estimated number of
patients with different types of colorectal lesions, whose diagnosis
would be delayed by at least 1, 2, 3, 4, or 5 years, given the
different scenarios of colonoscopy reduction. The graphs show
that the lower the colonoscopy capacity the higher the number of
lesions whose diagnosis will be delay for at least 1–5 years. For
example, with 90% of equilibrium colonoscopy availability, no
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TABLE 2 | Undiagnosed lesions per year considering scenarios 1 and 2 and the two call criteria in scenario 1.

Lesion risk class

N (%)a

% Of available colonoscopies Scenarios Low-risk Medium-risk High-risk Cancer Total lesions

90% Scenario 1

Random call criterion

101 (10%) 141 (10%) 73 (10%) 34 (10%) 349 (10%)

Scenario 1

Prioritized call criterion

102 (10.13%) 103 (7.29%) 42 (5.82%) 22 (6.47%) 269 (7.71%)

Scenario 2 97 (9.59%) 98 (6.93%) 29 (3.99%) 9 (2.67%) 233 (6.68%)

80% Scenario 1

Random call criterion

202 (20%) 283 (20%) 145 (20%) 67 (20%) 697 (20%)

Scenario 1

Prioritized call criterion

205 (20.25%) 206 (14.57%) 85 (11.63%) 44 (12.94%) 540 (15.48%)

Scenario 2 203 (20.08%) 198 (14%) 62 (8.53%) 21 (6.23%) 484 (13.87%)

70% Scenario 1

Random call criterion

303 (30%) 424 (30%) 218 (30%) 101 (30%) 1,046 (30%)

Scenario 1

Prioritized call criterion

307 (30.39%) 309 (21.87%) 127 (17.45%) 65 (19.41%) 808 (23.16%)

Scenario 2 298 (29.48%) 300 (21.22%) 108 (14.86%) 29 (8.6%) 735 (21.07%)

60% Scenario 1

Random call criterion

404 (40%) 568 (40%) 288 (40%) 135 (40%) 1,395 (40%)

Scenario 1

Prioritized call criterion

410 (40.51%) 412 (29.15%) 169 (23.26%) 87 (25.87%) 1,078 (30.9%)

Scenario 2 398 (39.37%) 410 (29%) 145 (19.94%) 36 (10.68%) 989 (28.35%)

aPercentage of non-diagnosed lesions per year with respect to the total number of estimated lesions of the same type in 100,000 invitations/year for the 2 scenarios and 2 call
criteria considered.

lesions will be delayed for more than 3 years (Figure 4). However,
the risk of the lesions may progress with time, so the proportions
of lesions with higher risk might increase with time, although this
issue has not been addressed in this study.

We found different results, depending on the selection
strategy for re-inviting patients that could not undergo the
timely colonoscopy (the excess target group). We compared two
strategies; one employed the random call criterion, where the
patients were invited at random (Figure 4). The second strategy
employed the prioritized call criterion, which prioritized men
for the invitations (Figure 5). We conducted this exercise to
understand the effect of a potential risk factor, and we selected sex
as a risk factor without regard to any possible policy decisions.

Scenario 2
We found that the current cut-off point of 20 µg hemoglobin/g
feces would be acceptable for 6,606 colonoscopies per 100,000
people invited annually, when there was no restriction on
availability. However, this cut-off point would not meet the
demand, when the colonoscopy availability was reduced to 90, 80,
70, or 60% of the demand. In those cases, to meet the demand, the
FIT cut-off points would have to be raised to 25, 32, 40, and 51µg
hemoglobin/g feces, respectively (Figure 2). However, raising the
cut-off point could result in missed diagnoses.

The estimated number of people with neoplastic lesions that
would not be diagnosed when considering these cut-off points
were extracted from Figure 3 and are shown in Table 2. For
example, when 25 µg hemoglobin/g feces was the FIT cut-off

point, 38 high-risk lesions or cancers and 9 cancers would not be
diagnosed annually. These numbers represented, respectively, 3.6
and 2.7% of the lesions identified with the 20 µg hemoglobin/g
feces cut-off in those risk classes.

DISCUSSION

The COVID-19 pandemic stopped or slowed many CRC
screening programs. This interruption will have a great impact
on the number of CRCs diagnosed and on the prognosis of newly
diagnosed cases, which will, presumably, be diagnosed at an
advanced stage (12–14). Resuming these programs is becoming a
priority, but unfortunately, the new rules for preventing COVID-
19 transmission have reduced the availability of colonoscopies
in most health system (1, 2, 15). This situation has complicated
the chronic problem, present before the pandemic, of insufficient
colonoscopy availability in many public health systems. Indeed,
waiting lists for endoscopies (for patients with symptoms) and
CRC screening have been the norm (16–18). Here, we evaluated
two scenarios and options for coping with this problem in
CRC screening programs that use FIT to select patients for
diagnostic colonoscopies.

We proposed a simple and flexible methodology that can be
extended to other sub-populations and even to other screening
programs for decision-making, which becomes important in this
or other situations.

Previous studies have evaluated the impact of raising the
FIT cut-off point to match the demand to the availability of
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FIGURE 4 | In Scenario 1, the time delay, due to unavailable colonoscopies, for a diagnosis among patients with colorectal lesions in each risk class; patients were

re-invited, based on the random call criterion. Total demand for colonoscopies = 6,606/100,000 individuals per year; estimates reflect (top left) 90% availability (n =

5,945); (top right) 80% availability (n = 5,285); (bottom left) 70% availability (n = 4,624); and (bottom right) 60% availability (n = 3,964); Y-axis values reflect the

estimated number of patients with lesions that would be diagnosed with a delay of at least 1 year, 2 years up to 5 years; X-axis values reflect the minimum delay (years).

colonoscopies in CRC screening programs (4, 19). However, this
option is not always followed in countries that use FIT as the
screening test, because it implies that lesions with insufficient
bleeding might not test positive, and thus, would be missed.
To address that concern, in the present study, we evaluated
two alternative scenarios for reducing the number of patients
screened, and we provided a comparison of the proportions,
types, and numbers of CRC and adenoma lesions that would be
missed in each scenario.

Maintaining the cut-off point when the system cannot provide
a sufficient number of colonoscopies leads to delays in diagnoses
that could increase exponentially over the years. Thus, a large
number of patients with neoplastic lesions would not be treated,
until after a significant delay or when they become symptomatic.
Delays can lead to lesion progression to cancer or advanced

stages, and even death, which goes against the objective of
screening (20). However, we found that the poor results of
scenario 1, where the cut-off value was not modified, could
be reduced by introducing additional factors into the selection
process, such as the sex of the target population. We chose
sex prioritization, because the proportion of serious and more
advanced lesions was higher among men than among women.
Age is another significant risk factor, and both these factors
could be introduced to optimize the results of the screening
program without modifying the cut-off point. Thus, in Scenario
1, fewer target patients were missed with prioritization than
with the random criterion. In both cases, the magnitude and
impact of the method on the numbers of undiagnosed lesions
that accumulated over the years depended on how much the
availability of colonoscopies was reduced, compared to the ideal
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FIGURE 5 | In Scenario 1, the time delay, due to unavailable colonoscopies, for a diagnosis among patients with colorectal lesions in each risk class; patients were

re-invited, based on the prioritized call by sex (men) criterion. Total demand for colonoscopies = 6,606/100,000 individuals per year; estimates reflect (top left) 90%
availability (n = 5,945); (top right) 80% availability (n = 5,285); (bottom left) 70% availability (n = 4,624); and (bottom right) 60% availability (n = 3,964); Y-axis values

reflect the estimated number of patients with lesions that would be diagnosed with a delay of at least 1 year, 2 years up to 5 years; X-axis values reflect the minimum

delay (years).

number; nevertheless, the random criterion always had a greater
impact than the prioritization criterion.

In contrast, raising the FIT cut-off point would not cause an
accumulation of delayed colonoscopies. However, a number of
lesions would not be diagnosed until the next round(s) or when
the lesion becomes symptomatic. The advantage of this approach
is that the program will cover the target population every 1–2
years, and no factors need to be introduced “a priori” to optimize
the results. In contrast, maintaining the FIT cut-off point would
significantly delay the screening of the whole target population.
In comparing these strategies, our results showed that increasing
the FIT cut-off point should be preferred, because the number
of lesions missed was systematically lower than those missed by
maintaining the FIT cut-off and delaying the screening.

Our study had some limitations. First, we focused on the
60–70-year-old population, because it was the population
screened in our current regional program. This population
probably had a higher number of lesions than individuals
aged 50–60 years, who are typically included in most
CRC screening programs. Nevertheless, we believe that the
methodology and the main conclusions were valid; only
the number of lesions missed or delayed might change in
different populations.

Additionally, we assumed that the proportion of people that
accepted the invitation to undergo a colonoscopy, and the
proportion of lesions found in colonoscopies would remain
stable over time. Clearly, this assumption might not be upheld,
but with progressive implementation of the screening program,
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the level of participation and the outcomes should stabilize
over time.

Increasing the cut-off of FIT will increase the number
of interval cancers and the progression of some adenomas
to cancer after negative FITs, especially if the increased
cut-off level is maintained over time, which implies that
our study may underestimate the effects of raising the cut-
off. However, it is also true that the risk of detecting
a colon cancer increases with the FIT value, and the
effect may be higher for low-risk lesions (18). Also, CRC
screening programs triggers the demand for surveillance
colonoscopy, which will affect the colonoscopy capacity in
the subsequent years. This effect has not been taken into
consideration in our analysis since it is difficult to make
realistic estimation.

In conclusion, we provided an evidence-based methodology
that might facilitate decision-making in CRC screening
programs, when the demand exceeds the availability
of colonoscopies, under any potential circumstances,
such as the current situation with the COVID-19
pandemic. Our results showed that, assuming a mismatch
between the annual availability of colonoscopies and
the actual demand in the target population, it is better
to increase the cut-off point than to maintain the cut-
off point and call people at random to undergo the
colonoscopy. In addition, our findings argued for the
inclusion of risk factors, like sex and probably age, in
the selection process, to minimize the number of missed
high-risk lesions.
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Caṕıtulo 8

Discusión y Conclusiones

La investigación sobre la estimación y aplicación de modelos de clasificación binaria

ha sido un área de interés en los últimos años, con aplicaciones en diversos campos. En

concreto, en el ámbito de la biomedicina y la salud, estos modelos son fundamentales

para determinar el estado de los pacientes, lo que puede ser crucial para prevenir

problemas de salud o establecer estrategias de seguimiento. El objetivo principal

es desarrollar modelos con una mayor capacidad predictiva, que se ajusten mejor

a los datos y proporcionen predicciones más precisas. No obstante, para que estos

modelos sean útiles en la práctica cĺınica, también es importante considerar su utilidad

cĺınica. En este sentido, la elección y aplicación de un punto de corte óptimo, basado

en un objetivo a optimizar, es crucial para convertir la predicción del modelo en

decisiones prácticas y útiles. Esto permite clasificar a un paciente como positivo para

la enfermedad o condición, facilitando la toma de decisiones cĺınicas. La investigación

presentada en esta memoria ha abordado la estimación de modelos para problemas

de clasificación enfocados en el ámbito de la salud y la medicina. Se han propuesto

nuevos enfoques y abordado problemas de clasificación en entornos cĺınicos reales. La

evaluación de la capacidad de los modelos fue clave para seleccionar el más adecuado,

considerando asimismo la utilidad cĺınica.

La curva ROC es una herramienta fundamental en la estimación de modelos de

clasificación binaria, ampliamente utilizada en el diagnóstico de enfermedades. A partir

de esta curva, se derivan medidas resumen que evalúan el rendimiento del modelo, como

el AUC y el ı́ndice de Youden. En el caṕıtulo 1 de esta tesis, se ha introducido la teoŕıa

derivada de la curva ROC, sus propiedades y estimaciones. En el caṕıtulo 2, se han

presentado las definiciones y estimaciones de las métricas derivadas (AUC e ı́ndice de

Youden). Aunque ambas métricas han sido ampliamente utilizadas en estudios cĺınicos,

difieren en su enfoque. Mientras que el AUC evalúa la capacidad discriminatoria general

del modelo considerando todos los puntos de corte posibles, el ı́ndice de Youden se

enfoca en un punto de corte espećıfico cuya optimización maximiza tanto la sensibilidad
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como la especificidad del modelo. Por tanto, si el objetivo final es la aplicación del

modelo para la ayuda a la toma de decisiones basada en sus predicciones, el ı́ndice de

Youden proporciona adicionalmente un umbral de decisión espećıfico que permite una

clasificación precisa de los pacientes. Esto es crucial en algunas aplicaciones prácticas

como el diagnóstico de enfermedades.

En el caṕıtulo 3 se han introducido otros métodos para determinar el punto de

corte óptimo, además del ı́ndice de Youden. No obstante, cuando no hay un consenso

claro sobre la importancia relativa de la sensibilidad y la especificidad, el ı́ndice de

Youden es un criterio adecuado para seleccionar el punto de corte óptimo, ya que

equilibra ambas métricas y sirve también como medida resumen adecuada para evaluar

la capacidad predictiva del modelo. En el caṕıtulo 4 se han presentado algoritmos

y modelos aparecidos en la literatura para abordar problemas de clasificación. En

particular, en la sección 4.1, se describen enfoques desarrollados en la literatura que se

basan en la maximización del AUC. Estos enfoques han sido el punto de partida para

el desarrollo de otros algoritmos que utilizan otros criterios de optimalidad derivados

de la curva ROC (sección 4.2).

Los trabajos principales que forman parte del compendio de esta tesis [4, 8, 7],

presentados en los caṕıtulos 5 y 6, tienen como objetivo la estimación de nuevos

enfoques para la combinación lineal de biomarcadores continuos en problemas de

clasificación binaria bajo optimización del ı́ndice de Youden. La motivación que

impulsó estas investigaciones fue desarrollar y comparar modelos con mayor capacidad

predictiva bajo la maximización del ı́ndice de Youden, una métrica que ha recibido

menor atención en la literatura pero que es óptima para seleccionar el punto de corte

y resumir el rendimiento del modelo en ausencia de consenso.

En este contexto de modelos lineales, autores como Su y Liu [108] propusieron la

estimación paramétrica de un modelo lineal que maximiza el AUC bajo la asunción

de normalidad. Sin embargo, esta suposición de normalidad es una hipótesis exigente

que a menudo no es fácil de cumplir en la realidad cĺınica, donde los biomarcadores

suelen tener distribuciones asimétricas. Un ejemplo ilustrativo es el cáncer de próstata,

en el cual el PSA se presenta como un marcador crucial en su detección y seguimiento,

mostrando una evidente asimetŕıa [19].

Pepe et al. [83, 82] abordaron esta limitación de suposición de normalidad

proponiendo un enfoque no paramétrico. Estos autores desarrollan un modelo lineal que

disminuye el número de parámetros a estimar gracias a la propiedad de invarianza de

la curva ROC. Además, aprovechando esta propiedad, proponen un método heuŕıstico

de búsqueda discreta de los parámetros óptimos en 201 valores equidistantes entre -1 y

1. Esto hace que la estimación sea computacionalmente abordable únicamente con un
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número reducido de marcadores. Sin embargo, cuando el número de biomarcadores es

mayor, la complejidad computacional se eleva al ser de tipo exponencial. Para abordar

esta limitación, los autores sugieren aplicar métodos de paso a paso, donde se busca

la combinación parcial óptima de variables, introduciendo una nueva variable en cada

paso. Esto simplifica el problema a la estimación de un solo coeficiente en cada paso.

Otros autores, como Liu et al. [56], abordaron las limitaciones anteriores mediante

el desarrollo de otro enfoque no paramétrico (enfoque min-max) que transforma

el problema original considerando únicamente los valores mı́nimo y máximo de los

biomarcadores originales, calculados para cada paciente. La idea de utilizar el máximo

y el mı́nimo como nuevos biomarcadores puede tener su fundamento, puesto que,

por definición, estos biomarcadores alcanzan la máxima sensibilidad y especificidad,

respectivamente. Esto los convierte en opciones plausibles en situaciones donde se

prioriza la sensibilidad (o especificidad). Sin embargo, en la práctica, es poco común

maximizar una de estas métricas sin tener en cuenta la otra; suele ser más común

optimizar métricas balanceadas como el AUC o el ı́ndice de Youden. Estos resultados

impulsaron a los autores al desarrollo de su propuesta, que busca un compromiso

entre el biomarcador máximo y mı́nimo. Concretamente, se centra en la estimación

de la combinación lineal de estos biomarcadores que maximiza el AUC. Por tanto,

es un enfoque eficiente computacionalmente, con una carga computacional similar

independientemente del número de biomarcadores originales. Sin embargo, a pesar de

las expectativas de los autores basadas en los resultados previos, estudios adicionales

han demostrado que en algunos escenarios, el enfoque min–max tiende a alcanzar menor

optimalidad en comparación con otros métodos que utilizan información de todos los

biomarcadores, como los enfoques paso a paso [29, 48, 47].

Algoritmos propuestos

Nuestros trabajos (caṕıtulos 5 y 6) parten de estos estudios previos de la literatura,

con el propósito de aprovechar sus ventajas y abordar sus limitaciones. En concreto, en

esta tesis, se presentan dos nuevos enfoques no paramétricos para la combinación lineal

de biomarcadores continuos bajo optimización del ı́ndice de Youden: un enfoque paso

a paso [4] y los enfoques denominados Min-Max-Median, Min-Max-IQR [8, 7]. Para

determinar la idoneidad de nuestros enfoques propuestos, fueron comparados con otros

métodos del estado del arte mediante un proceso de validación, que permitió evitar

el sobreajuste y garantizar la generalización adecuada del modelo. Nuestros estudios

evaluaron una amplia gama de enfoques, incluyendo técnicas estándar para problemas

de clasificación como la regresión loǵıstica, enfoques como el min-max adaptado para la

maximización del ı́ndice de Youden, enfoques paso a paso, estimaciones paramétricas
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y no paramétricas del ı́ndice de Youden (formuladas en la sección 2.2), y modelos

de Machine Learning (ML) como el XGBoost [21]. Además, se consideraron un

amplio rango de escenarios simulados y reales, lo que permitió extraer conclusiones

y pautas para seleccionar el algoritmo óptimo según el contexto. Nuestros estudios

aportan nuevos resultados a la literatura y confirman algunas conclusiones de estudios

previos que optimizaban métricas derivadas de la curva ROC. Es importante destacar

que varios de estos estudios previos no utilizaron un proceso de validación, lo que

podŕıa haber influido en sus resultados debido a un posible sobreajuste y falta

de generalización. Por ende, nuestro estudio, además de generar nuevos resultados,

ha contribuido a reafirmar algunas conclusiones extráıdas por otros autores, que

optimizaban métricas derivadas de la curva ROC, y cuyos resultados deb́ıan ser

interpretados con cautela y validados.

Nuestro enfoque paso a paso, presentado en el caṕıtulo 5, sigue las sugerencias de

Pepe et al. [83, 82]. El enfoque consiste en seleccionar la mejor combinación lineal de

dos variables en cada paso, incluyendo una nueva variable en cada iteración. Otros

autores, como Yin y Tian [124], también propusieron enfoques paso a paso bajo la

maximización del ı́ndice de Youden. Sin embargo, a diferencia de nuestro enfoque,

establecen un orden de entrada de las variables en cada paso y no consideran los

empates. Es decir, no contemplan todas las combinaciones lineales óptimas que, en

ocasiones, pueden alcanzar el mismo máximo ı́ndice de Youden. Esto hace que nuestro

enfoque sea más robusto debido a que, a pesar de ser optimizaciones parciales, permite

una mayor flexibilidad en la búsqueda de la mejor combinación lineal, aumentando la

probabilidad de encontrar una combinación lineal más óptima.

Los resultados de nuestro estudio indican que nuestro enfoque paso a paso supera

a otros en escenarios simulados con distribuciones marginales no normales y en el

conjunto de datos de próstata, donde los biomarcadores, como el PSA, presentan

asimetŕıa. Esto sugiere que en escenarios no normales y con variables asimétricas,

nuestro enfoque paso a paso es una opción adecuada. Estos resultados son consistentes

con los reportados por otros autores, como Yin y Tian [124], quienes también sugirieron

utilizar su algoritmo de paso a paso en escenarios no normales, frente a otros enfoques

como el enfoque min-max o los enfoques paramétricos y no paramétricos del ı́ndice de

Youden. Además, nuestro estudio demostró que, en general, nuestro algoritmo paso a

paso superaba al enfoque de Yin y Tian, lo que refuerza nuestras conclusiones. Bajo

maximización del AUC, Esteban et al. [29] encontraron que el algoritmo paso a paso

superaba a la regresión loǵıstica en escenarios simulados con variables asimétricas.

Para los conjuntos de datos reales, el enfoque no paramétrico de tipo Kernel y

nuestro algoritmo paso a paso mostraron rendimientos comparables. Sin embargo, el

192
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enfoque no paramétrico de tipo Kernel tiene la desventaja de estar restringido a la

función kernel elegida y, especialmente, al ancho de banda escogido. En escenarios

con distribuciones normales, tanto la regresión loǵıstica como el enfoque paramétrico

bajo normalidad multivariante, mostraron un rendimiento comparable y adecuado,

en términos generales. Sin embargo, en escenarios con distribuciones no normales o

variables asimétricas, el rendimiento del enfoque paramétrico se deterioró, como era de

esperar. Bajo la suposición de normalidad multivariante, Su y Liu [108] ofrecen una

solución óptima con AUC máximo. Para el ı́ndice de Youden, el enfoque paramétrico

(2.30)-(2.33) se consideraŕıa el equivalente. En este sentido, nuestros resultados

concuerdan con los de Ma et al. [63], quienes se centraron en la maximización del

pAUC y demostraron que el enfoque de Su y Liu y la regresión loǵıstica funcionaban de

manera similar en escenarios normales, especialmente cuando las matrices de varianza

y covarianza eran iguales, y que la regresión loǵıstica teńıa un mejor rendimiento en

escenarios con datos sesgados.

En nuestro estudio, el método min-max [56] demostró ser más efectivo en escenarios

donde los biomarcadores teńıan la misma capacidad predictiva, superando al resto de

algoritmos cuando las matrices de covarianza variaban entre la población enferma y

sana. Ma et al. [63] llegaron a conclusiones similares en su estudio bajo maximización

del pAUC. Sin embargo, a pesar de su mejor rendimiento en estos escenarios,

nuestro estudio también demostró que, en general, el enfoque min-max muestra el

peor rendimiento en el resto escenarios y en los datos reales. Esto sugiere que el

método min-max, al considerar solo los biomarcadores mı́nimo y máximo, podŕıa no

proporcionar suficiente información para discriminar adecuadamente, a pesar de su

ventaja computacional.

Además de los resultados sobre el rendimiento de los métodos, la exploración de

escenarios con biomarcadores altamente correlacionados también permitió corroborar

los resultados del estudio de Pinsky y Zhu [85]. Los autores señalaron un incremento en

el rendimiento al considerar biomarcadores altamente correlacionados negativamente.

Nuestros resultados en estos escenarios respaldan esta observación, donde, en general,

los algoritmos demostraron un rendimiento elevado.

En resumen, en nuestro estudio [4] presentamos un algoritmo paso a paso robusto

que ha sido ampliamente comparado con otros enfoques de la literatura, demostrando

ser particularmente efectivo en escenarios no normales y con variables asimétricas,

comunes en la práctica real donde la normalidad no siempre se cumple. Además, hemos

confirmado y validado afirmaciones de otros estudios. Sin embargo, a pesar de las

fortalezas del estudio que validan la robustez del enfoque propuesto, este tiene algunas

limitaciones.
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La principal limitación es el tiempo computacional que exige el algoritmo paso

a paso propuesto puesto que, aunque es computacionalmente abordable, requiere

un tiempo significativamente mayor que el resto de enfoques comparados. Esto es

debido al tratamiento de empates, que puede ser más común en tamaños de muestra

pequeños, y también puede aumentar a medida que el número de biomarcadores crece.

En futuras investigaciones, se buscará optimizar el algoritmo para reducir su carga

computacional. Esto se logrará implementando estrategias para tratar los empates

de manera más eficiente, lo que permitirá equilibrar mejor el rendimiento con la

complejidad computacional. El método min-max no tiene esta restricción, puesto que

es eficiente independientemente del número de biomarcadores. Sin embargo, como se

ha demostrado, en algunos escenarios tiene peor capacidad de discriminación que el

resto de métodos que consideran toda la información de los biomarcadores.

Los resultados anteriores impulsaron el desarrollo del segundo algoritmo propuesto

[8]: enfoque Min-Max-Median (MMM) o enfoque Min-Max-IQR (MMIQR), presentado

en el caṕıtulo 6 de esta tesis. Nuestros algoritmos extienden el enfoque min-max de

Liu et al. [56], incorporando una nueva estad́ıstica de resumen (mediana o rango

intercuart́ılico). El objetivo fue considerar, además de los estad́ısticos extremos (mı́nimo

y máximo), un tercer parámetro que informa sobre el rendimiento del conjunto de

biomarcadores. La motivación detrás de esta extensión fue mejorar la capacidad

predictiva del modelo, manteniendo al mismo tiempo las ventajas en eficiencia

computacional del enfoque min-max. Aunque el algoritmo propuesto es más complejo,

sigue siendo computacionalmente asequible, puesto que implica la combinación lineal

de solo tres variables, independientemente del número de biomarcadores originales.

Si bien la estimación de la combinación lineal de los tres estad́ısticos (mı́nimo,

máximo y mediana/rango intercuart́ılico) puede realizarse mediante cualquier método

de combinación lineal, en nuestros estudios [8, 7] optamos por implementar nuestro

algoritmo paso a paso propuesto, debido a los resultados obtenidos.

En la práctica cĺınica, la construcción de estos enfoques tiene una interpretación

cĺınica. Esto se debe a que existe una variedad de problemas en salud en los que

la combinación del mı́nimo y el máximo de los biomarcadores proporciona la mejor

clasificación. Por ejemplo, en el cáncer de próstata, un PSA alto y un volumen de

próstata bajo pueden indicar un peor diagnóstico y se sabe que la densidad del PSA,

esto es, el cociente entre el PSA y el volumen de la próstata, muestra una mejor

capacidad predictiva que el PSA por śı solo. Asimismo, existen otros biomarcadores

como el PCA3, SelectMdx, Proclarix y 4Kscore, que también pueden ser útiles para

predecir el cáncer de próstata [80]. Los enfoques derivados del min-max dan la

oportunidad de elegir, entre ellos, el que toma el valor más alto y más bajo para
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cada paciente, pudiendo contribuir a mejorar la capacidad de discriminación. Además,

la mediana o el rango intercuart́ılico proporcionan información sobre la distribución de

los datos, información que puede ser útil, especialmente cuando las variables no están

correlacionadas.

Nuestros enfoques MMM y MMIQR fueron comparados con el enfoque min-max y

otros métodos de ML ampliamente utilizados para clasificación binaria en investigación

cĺınica, como son la regresión loǵıstica y el algoritmo XGBoost. El objetivo fue

validar más allá de técnicas tradicionales e investigar si nuestros enfoques podŕıan

ser superiores en ciertos escenarios, incluso a algoritmos que han demostrado tener

resultados prometedores en el estado del arte en los últimos años.

Los estudios de comparación mostraron que los enfoques de ML eran superiores

a nuestros enfoques en los escenarios simulados de biomarcadores con diferentes

capacidades predictivas, aśı como en escenarios con diferentes distribuciones

marginales. En este último caso, el algoritmo XGBoost mostró el mejor rendimiento.

En cuanto a los conjuntos de datos reales, XGBoost superó al resto de algoritmos

en la predicción del riesgo de mortalidad materna, mientras que la regresión loǵıstica

logró el mejor rendimiento en la predicción de la distrofia de Duchenne, un problema

más sencillo. En este último caso, nuestros enfoques propuestos siguieron de cerca a

la regresión loǵıstica. Los resultados podŕıan sugerir que el algoritmo XGBoost tiende

a funcionar mejor en escenarios donde los datos muestran patrones más complejos, lo

cual es coherente con su capacidad conocida para capturar relaciones no lineales.

Sin embargo, nuestros enfoques superaron a los de ML en escenarios con

biomarcadores con misma capacidad predictiva y diferentes correlaciones entre grupos.

Además, nuestros algoritmos funcionaron mejor que el enfoque min-max cuando los

biomarcadores eran independientes y en escenarios reales. Estos resultados pueden

ser interpretados como se discute a continuación. La variabilidad en las capacidades

predictivas de los biomarcadores puede sugerir que uno de ellos sea más efectivo

para diferenciar entre los grupos de pacientes. En estos casos, podŕıa ser importante

considerar este biomarcador en la combinación. Sin embargo, en nuestro enfoque,

los biomarcadores mı́nimo, máximo o mediano/IQR pueden corresponder a diferentes

biomarcadores para cada paciente. Esto puede ser una limitación en este caso, debido

a que, por ejemplo, el valor máximo podŕıa corresponder a un biomarcador que no es

el óptimo, cuyo valor podŕıa aportar más información que el máximo. Sin embargo,

cuando los biomarcadores tienen la misma capacidad predictiva, esta elección podŕıa

tener sentido, puesto que lo que posiblemente importe es el valor máximo alcanzado,

y no el biomarcador en śı. En el ámbito médico, puede ser común encontrar diferentes

correlaciones entre biomarcadores para el grupo de enfermos y sanos, ya que la
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bioloǵıa subyacente puede ser diferente entre los grupos. Además, si los biomarcadores

están altamente correlacionados, sus valores tienden a cambiar juntos, y considerar el

máximo y mı́nimo podŕıa ser suficiente. En cambio, en escenarios con biomarcadores no

correlacionados, la información de los valores mı́nimo y máximo podŕıa ser insuficiente,

y agregar información sobre la mediana, por ejemplo, puede mejorar el rendimiento del

modelo, puesto que proporciona una visión más completa de la distribución de los

datos.

En resumen, presentamos nuevos enfoques no paramétricos (MMM, MMIQR)

que fueron comparados con otros métodos del estado del arte que capturan la

heterogeneidad de los biomarcadores desde una perspectiva diferente [8, 7]. Nuestro

enfoque reduce la dimensionalidad del problema, considerando solo tres estad́ısticos de

resumen, demostrando un buen rendimiento en ciertos escenarios de biomarcadores

con misma capacidad predictiva. Si bien existen varias técnicas que reducen la

dimensionalidad del problema, nuestro enfoque lo hace desde una perspectiva diferente,

permitiendo que los tres biomarcadores considerados (mı́nimo, máximo y mediana o

rango intercuart́ılico) puedan corresponder a diferentes biomarcadores originales para

cada paciente.

A pesar de las fortalezas de nuestros estudios [8, 7], estos también presentan algunas

limitaciones. En primer lugar, todas las conclusiones derivadas están limitadas a los

escenarios y algoritmos explorados. En este sentido, aunque los algoritmos XGBoost y

la regresión loǵıstica han sido ampliamente utilizados en los últimos años, demostrando

ser eficientes en numerosos estudios, seŕıa valioso contemplar como trabajo futuro una

comparación con otros algoritmos de ML, especialmente en escenarios donde nuestros

enfoques son óptimos. Por otro lado, aunque siguieron de cerca a la regresión loǵıstica,

nuestros enfoques MMM/IQR no fueron los mejores en ninguno de los conjuntos de

datos reales examinados. Como ĺınea de investigación futura, proponemos evaluar el

rendimiento de nuestro enfoque en datos reales que cumplan con las condiciones de los

escenarios de simulación óptimos. Además de los escenarios que combinan múltiples

biomarcadores con la misma capacidad predictiva, nuestro enfoque también podŕıa

aplicarse en escenarios donde se registran mediciones repetidas de un solo biomarcador,

convirtiendo la información temporal en tres medidas resumen.

El trabajo de investigación realizado en los estudios previamente discutidos dió

lugar a la creación de la libreŕıa SLModels [6] en R (Anexo A), que incorpora

los algoritmos propuestos (paso a paso, MMM, MMIQR), aśı como el enfoque

min-max, bajo maximización del ı́ndice de Youden. De esta forma, se pone a libre

disposición de la comunidad cient́ıfica los algoritmos desarrollados. Dado un conjunto

de datos, la función SLModels devuelve la combinación lineal óptima (coeficientes para
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cada variable) que maximiza el ı́ndice de Youden, según el algoritmo seleccionado.

Adicionalmente, la función devuelve el ı́ndice de Youden alcanzado y el punto

de corte óptimo asociado. Esto permite dicotomizar la información en dos grupos

(sanos-enfermos), lo que facilita su utilidad cĺınica.

Asimismo, es interesante mencionar que nuestros enfoques han sido utilizados

en estudios posteriores recientemente publicados. En concreto, Neumann et al. [75]

presentaron en 2023 un estudio sobre la combinación de biomarcadores del habla para

analizar la patoloǵıa de la Esclerosis Lateral Amiotrófica (ELA). En él, utilizaron

nuestro enfoque paso a paso [4] a través de nuestra libreŕıa SLModels [6] para calcular

los pesos de las variables. Por otro lado, Condurache et al. [23] publicaron un estudio

en el que implementaron un método similar al nuestro, dos años más tarde (2023). En

concreto, utilizaron nuestro enfoque Min-Max-Median [8] como base, aunque aplicaron

una regresión loǵıstica en lugar de nuestro algoritmo paso a paso. Siguiendo un

procedimiento similar al nuestro, evaluaron su rendimiento y lo compararon con la

regresión loǵıstica en varios escenarios simulados. En concreto, los datos simulados

fueron generados utilizando el mismo método que empleamos en nuestro estudio, tal y

como mencionan los autores. Por tanto, nuestros enfoques propuestos (algoritmo paso

a paso y enfoque MMM) han servido de base para el desarrollo de nuevos estudios. Esto

indica un interés en nuestras propuestas, especialmente considerando el corto lapso de

tiempo desde nuestra publicación hasta su publicación posterior.

Aplicaciones en medicina

Continuando la ĺınea de investigación desarrollada en esta tesis, en el caṕıtulo

7 se presentan el resto de trabajos que forman parte del compendio, centrados en

la estimación y aplicación de modelos en problemas de clasificación en entornos

cĺınicos reales. Estas investigaciones resultan en herramientas esenciales para enfrentar

problemas cĺınicos tales como el diagnóstico de enfermedades, predicciones de eventos

e identificación de factores de riesgo. Los trabajos exploran diversas áreas y escenarios,

incluyendo la pandemia del COVID-19, la obstetricia y el desarrollo de cáncer

colorrectal. Los resultados obtenidos en estos trabajos facilitan la práctica cĺınica y

contribuyen de manera positiva a la mejora del sistema de salud, proporcionando

información relevante para la toma de decisiones médicas, la gestión de recursos

y/o la planificación de poĺıticas sanitarias. En este sentido, la elección del modelo

adecuado es fundamental y depende del contexto y los datos espećıficos en análisis. Las

investigaciones realizadas han sido llevadas a cabo en colaboración con personal experto

del Instituto de Investigación Sanitaria de Aragón, Hospital General de Villalba,

Hospital Universitario Miguel Servet, Hospital Cĺınico Universitario Lozano Blesa,
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Instituto Tecnológico de Aragón y Universidad de Zaragoza.

El trabajo abordado en esta tesis [5], presentado en la sección 7.1, se enmarca

dentro del contexto de la pandemia del COVID-19. El objetivo principal fue desarrollar

un modelo predictivo capaz de evaluar la gravedad en pacientes hospitalizados con

COVID-19 (evaluando el ingreso en UCI o la mortalidad). El propósito era dotar a

los profesionales de la salud de una herramienta que facilitase la toma de decisiones

rápidas, particularmente útil durante una crisis sanitaria global como esta pandemia.

Para lograrlo, se exploraron técnicas de ML, evaluando la discriminación, generalización

y calibración de los modelos. El algoritmo XGBoost destacó como el mejor modelo

obtenido. Dada la importancia del contexto sanitario, se llevó a cabo un proceso para

garantizar que la herramienta final fuera práctica y beneficiosa para los profesionales

en la toma de decisiones, abordando aśı las limitaciones encontradas en trabajos

relacionados, como la utilidad cĺınica, entre otros aspectos. En este sentido, el

análisis del punto de corte óptimo adquiere una relevancia significativa al traducir

la información y las consecuencias de la dicotomización. En el estudio, se presentó

un análisis de la utilidad cĺınica del modelo mediante la evaluación de los puntos de

corte según diferentes métricas. Esto permite al cĺınico seleccionar el óptimo según las

necesidades del sistema y objetivos cĺınicos, que pueden variar con el tiempo.

Estos objetivos cĺınicos dependen del escenario sanitario. Por ejemplo, en escenarios

de screening, se puede priorizar no perder ningún caso, mientras que en situaciones que

implican intervenciones invasivas, reducir los falsos positivos puede ser más beneficioso.

Además del escenario, el momento sanitario es crucial para la toma de decisiones. En

el contexto de la pandemia del COVID-19, se vivió una situación compleja que obligó

a ralentizar y paralizar muchos procedimientos, con consecuencias en la escasez de

recursos. En estas situaciones cŕıticas, la elección del punto de corte debe considerar

no solo las implicaciones cĺınicas, sino también los recursos disponibles. En el art́ıculo

[3] de este compendio (sección 7.4), presentamos una metodoloǵıa desarrollada con el

fin de optimizar la estrategia de detección del cáncer colorrectal en el programa de

cribado de Aragón. Esta iniciativa surgió como respuesta a los cambios en el ámbito

de la salud generados por la pandemia, los cuales conllevan una mayor demanda y

una menor oferta de colonoscopias. En este estudio, se evaluaron varios escenarios

para determinar el punto de corte óptimo basado en la prueba de hemoglobina fecal,

centrándose en minimizar las lesiones no diagnosticadas (falsos negativos) de acuerdo

con la disponibilidad estimada de colonoscopias. Este análisis resulta crucial para

la mejora del sistema de salud en Aragón en lo que respecta al cribado de cáncer

colorrectal. Una vez realizado nuestro estudio, el siguiente paso debe ser la realización

de validaciones externas de manera que se pueda verificar si es posible considerar este
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punto de corte de manera universal.

En el ámbito de la obstetricia, es habitual emplear puntos de corte basados en tablas

de percentiles de crecimiento fetal para categorizar a los fetos según su peso estimado,

lo que facilita la identificación de aquellos que están por debajo o por encima de un

determinado percentil para su edad gestacional. Estos fetos pueden estar vinculados

a un mayor riesgo de resultados perinatales adversos, por lo que la determinación

de estos puntos de corte es fundamental. Los estándares de crecimiento dependen

de las caracteŕısticas de la población aśı como de la estructura del modelo. En este

sentido, utilizar estándares diseñados para embarazos únicos en embarazos gemelares

resulta inadecuado. Por consiguiente, se requiere desarrollar modelos adaptados a las

caracteŕısticas de la población espećıfica sobre la que se aplicarán, especialmente en el

caso de embarazos gemelares, que son menos frecuentes.

En el trabajo [97] (sección 7.2), desarrollamos estándares de crecimiento fetal

para gestaciones gemelares por corionicidad placentaria en una población española. El

estudio analizó datos de mediciones repetidas del peso estimado gestacional para cada

feto y madre, lo que implicaba una violación de la suposición de independencia entre

las observaciones. Para abordar esta estructura de datos, se optó por utilizar modelos

lineales mixtos, por ser una técnica adecuada en este contexto de análisis. Los modelos

mixtos ofrecen una predicción más ajustada al considerar efectos aleatorios, al tiempo

que proporcionan una estimación más precisa de la varianza, lo cual es fundamental

para la estimación de los percentiles de peso. Se compararon los modelos desarrollados

con estándares europeos y estadounidenses, mostrando un buen ajuste a la población

analizada. Además, se evaluó la capacidad predictiva de los modelos para detectar casos

de peso fetal bajo, utilizando métricas derivadas de la curva ROC (sensibilidad y valor

predictivo positivo).

Este estudio de investigación condujo al desarrollo de la libreŕıa PTwins [2] en R

(Anexo B), la cual implementa el modelo creado, proporcionando el percentil del peso

fetal, dado su peso estimado y edad gestacional y corionicidad. Por tanto, la estimación

de los puntos de corte (percentiles) a través de modelos lineales apropiados permitió

la creación de estándares de crecimiento fetal para embarazos gemelares, resultando en

una herramienta cĺınica válida y útil para profesionales expertos.

La práctica extendida del desarrollo de enfoques lineales también se aplica al

tratamiento de factores genéticos mediante la construcción de puntuaciones de riesgo

genético (GRS). Estas puntuajes combinan estos factores de forma lineal, ofreciendo aśı

una capacidad predictiva mejorada. El análisis del valor predictivo de estos factores a

través del GRS ha sido un área de gran interés y avance en la investigación médica en los

últimos años. Esto se debe a que enfermedades como el cáncer colorrectal se reconocen
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ampliamente como resultado de complejas interacciones entre factores ambientales y

genéticos, además de los avances y reducción del costo de las pruebas genéticas. En

este contexto se centra el trabajo presentado en esta tesis [34] (sección 7.3). En esta

investigación, evaluamos la capacidad predictiva del GRS en el desarrollo de adenomas

colorrectales, utilizando modelos de regresión loǵıstica tanto para su estimación como

para analizar su asociación. Los resultados demostraron que el GRS es un factor de

riesgo significativo para el desarrollo de adenomas colorrectales. Estos hallazgos pueden

tener importantes implicaciones para la práctica cĺınica, dado que sugieren que los GRS

podŕıan utilizarse para categorizar el riesgo de cáncer colorrectal o en programas de

detección, proporcionando herramientas de diagnóstico más precisas. Por lo tanto, el

uso de enfoques lineales sigue siendo común en problemas cĺınicos como este, debido a

su facilidad de interpretación y su efectividad en la práctica cĺınica. Espećıficamente, el

GRS ofrece un valor fácilmente interpretable por los cĺınicos, puesto que comúnmente

se representa como la suma de alelos de riesgo y puede ser estratificado en categoŕıas

de riesgo genético.

Conclusiones

En resumen, los estudios presentados en esta memoria siguen la ĺınea de

investigación de la tesis centrada en la estimación de modelos para problemas de

clasificación en el campo de la salud. Espećıficamente, el trabajo principal de la tesis

ha dado lugar a la introducción en la literatura de nuevos enfoques no paramétricos

para la combinación de biomarcadores continuos mediante la optimización del ı́ndice de

Youden. Estos enfoques abordan limitaciones previamente observadas en la literatura.

La elección de esta métrica de optimización se basa en su idoneidad y neutralidad

cuando no hay consenso sobre la priorización de una clase sobre otra, convirtiéndola

en una métrica cĺınicamente útil que no solo sirve como indicador del rendimiento del

modelo, sino también como criterio para la selección del punto de corte óptimo. El

análisis realizado implicó una comparación exhaustiva de métodos y escenarios, lo que

permitió demostrar que nuestros enfoques propuestos pueden ser opciones adecuadas en

determinadas situaciones, superiores en capacidad de discriminación a otros métodos.

Esta comparación ha sido extensamente validada y, hasta donde sabemos, no hay

estudios que hayan comparado un conjunto tan amplio de escenarios y métodos con

diversas caracteŕısticas en su construcción.

Además de los enfoques propuestos, el trabajo de la tesis también abarca la

estimación y aplicación de modelos en diversas áreas de la salud, abordando problemas

cĺınicos reales como la predicción de la gravedad del COVID-19, la optimización de

estrategias de cribado del cáncer colorrectal, el desarrollo de estándares de crecimiento
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fetal para embarazos gemelares y la evaluación de la asociación entre el riesgo genético

y el desarrollo de adenomas colorrectales. Estos trabajos han generado herramientas

y metodoloǵıas con impacto directo en la práctica cĺınica y la calidad de la atención

sanitaria, validadas en colaboración con instituciones y hospitales.

Aunque el foco principal de la investigación de esta tesis fue construir modelos

con una mayor capacidad predictiva para ofrecer predicciones más precisas, otro

aspecto destacado fue la utilidad cĺınica. En este sentido, la aplicación de enfoques

interpretables, desarrollo de herramientas y el análisis del punto de corte óptimo

también han sido aspectos importantes en los trabajos cient́ıficos que conforman este

compendio, abordándose de diversas maneras según los diferentes objetivos. Además,

el trabajo realizado se ha traducido no solo en herramientas cĺınicas, sino también

en libreŕıas de R que incluyen los enfoques propuestos y los modelos desarrollados,

facilitando su aplicación. Estas libreŕıas se han puesto a libre disposición de la

comunidad cient́ıfica y los profesionales interesados en repositorios de acceso público

(CRAN).

En conclusión, los trabajos presentados en este compendio representan una

contribución significativa al campo de la bioestad́ıstica, proporcionando herramientas

y conocimientos que podŕıan resultar en mejoras tangibles en la atención médica y la

salud pública, dentro del ámbito de la salud. Asimismo, se espera seguir investigando

en esta dirección, abordando las limitaciones identificadas y mejorando y ampliando

los algoritmos propuestos para abarcar más escenarios y posibilidades.
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Maintainer Rocio Aznar-Gimeno <raznar@itainnova.es>

Description Stepwise models for the optimal linear combination of continuous variables in bi-
nary classification problems under Youden Index optimisation. Information on the models imple-
mented can be found at Aznar-Gimeno et al. (2021) <doi:10.3390/math9192497>.

License GPL-3

Encoding UTF-8

NeedsCompilation no

Author Rocio Aznar-Gimeno [aut, cre] (<https://orcid.org/0000-0003-1415-146X>),
Luis Mariano Esteban [aut] (<https://orcid.org/0000-0002-3007-302X>),
Gerardo Sanz [aut] (<https://orcid.org/0000-0002-6474-2252>),
Rafael del Hoyo-Alonso [aut] (<https://orcid.org/0000-0003-2755-5500>)

Repository CRAN

Date/Publication 2022-02-03 14:30:10 UTC

R topics documented:

SLModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Index 4

SLModels Stepwise Linear Models for Binary Classification Problems under
Youden Index Optimisation
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2 SLModels

Description

Stepwise models for the optimal linear combination of continuous variables in binary classification
problems under Youden Index optimisation. Information on the models implemented can be found
at Aznar-Gimeno et al. (2021) <doi:10.3390/math9192497>.

Usage

SLModels(data, algorithm="stepwise", scaling=FALSE)

Arguments

data Data frame containing the input variables and the binary output variable. The
last column must be reserved for the output variable.

algorithm string; Stepwise linear model to be applied. The options are: "stepwise", "min-
max", "minmaxmedian", "minmaxiqr"; default value: "stepwise".

scaling boolean; if TRUE, the Min-Max Scaling is applied; if FALSE, no normalisation
is applied to the input variables; default value: FALSE.

Details

The "stepwise" algorithm refers to our proposed stepwise algorithm on the original variables which
is the adaptation for the maximisation of the Youden index of the one proposed by Esteban et al.
(2011) <doi:10.1080/02664761003692373>. The general idea of this approach, as suggested by
Pepe and Thompson (2000) <doi:10.1093/biostatistics/1.2.123>, is to follow a step by step algo-
rithm that includes a new variable in each step, selecting the best combination (or combinations) of
two variables, in terms of maximising the Youden index.

The "minmax" algorithm refers to the distribution-free min–max approach proposed by Liu et
al. (2011) <doi:10.1002/sim.4238>. The idea is to reduce the order of the linear combination
beforehand by considering only two markers (maximum and minimum values of all the vari-
ables/biomarkers). This algorithm was adapted in order to maximise the Youden index.

The "minmaxmedian" algorithm refers to our proposed algorithm that considers the linear combi-
nation of the following three variables: the minimum, maximum and median values of the original
variables.

The "minmaxiqr" algorithm refers to our proposed algorithm that considers the linear combination
of the following three variables: the minimum, maximum and interquartile range (IQR) values of
the original variables.

More information on the implemented algorithms can be found in Aznar-Gimeno et al. (2021)
<doi:10.3390/math9192497>.

Value

Optimal linear combination that maximises the Youden index. Specifically, the function returns the
coefficients for each variable, optimal cut-off point and Youden Index achieved.

Note

The "stepwise" algorithm becomes a computationally intensive problem when the number of vari-
ables exceeds 4.



SLModels 3

Author(s)

Rocío Aznar-Gimeno, Luis Mariano Esteban, Gerardo Sanz, Rafael del Hoyo-Alonso

References

Aznar-Gimeno, R., Esteban, L. M., Sanz, G., del-Hoyo-Alonso, R., & Savirón-Cornudella, R.
(2021). Incorporating a New Summary Statistic into the Min–Max Approach: A Min–Max–Median,
Min–Max–IQR Combination of Biomarkers for Maximising the Youden Index. Mathematics,
9(19), 2497, doi:10.3390/math9192497.

Esteban, L. M., Sanz, G., & Borque, A. (2011). A step-by-step algorithm for combining diagnostic
tests. Journal of Applied Statistics, 38(5), 899-911, doi:10.1080/02664761003692373.

Pepe, M. S., & Thompson, M. L. (2000). Combining diagnostic test results to increase accuracy.
Biostatistics, 1(2), 123-140, doi:10.1093/biostatistics/1.2.123.

Liu, C., Liu, A., & Halabi, S. (2011). A min–max combination of biomarkers to improve diagnostic
accuracy. Statistics in medicine, 30(16), 2005-2014, doi:10.1002/sim.4238.

Examples

#Create dataframe
x1<-rnorm(100,sd =1)
x2<-rnorm(100,sd =2)
x3<-rnorm(100,sd =3)
x4<-rnorm(100,sd =4)
z <- rep(c(1,0), c(50,50))
DT<-data.frame(cbind(x1,x2,x3,x4))
data<-cbind(DT,z)

#Example 1#
SLModels(data) #default values: algorithm="stepwise", scaling=FALSE
#Example 2#
SLModels(data, algorithm="minmax") #scaling=FALSE, default value
#Example 3#
SLModels(data, algorithm="minmax", scaling=TRUE)
#Example 4#
SLModels(data, algorithm="minmaxmedian", scaling=TRUE)
#Example 5#
SLModels(data, algorithm="minmaxiqr", scaling=TRUE)
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Version 0.1.1
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Maintainer Luis Mariano Esteban <lmeste@unizar.es>

Description Package to Percentile estimation of fetal weight for twins by chorionicity (dichorionic-
diamniotic or monochorionic-diamniotic).

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2019-11-19 13:00:02 UTC

R topics documented:
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Index 4

PTwins Percentile Estimation of Fetal Weight for Twins by Chorionicity

Description

The PTwins function estimates the fetus weight percentile using a multilevel linear model developed
from a Spanish twin cohort.
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2 PTwins

Usage

PTwins(weight,week,day=3,dichorionic=TRUE)

Arguments

weight The fetus weight estimated by ultrasound at a gestational age (weeks) using
Hadlock formula:
log10(FW)=1.3596-0.00386(AC)x(FL)+0.0064(HC)+0.0006(BPD)x(AC)+ 0.0424(AC)+0.174(FL)
FW: fetal weight, AC: abdominal circumference, FL: femur lenght,
HC: head circumference, BPD: biparital diameter

week The gestational age in weeks for which the Fetus weight where estimated

day The exact day in the gestational week at which the fetus weight were estimated.
For the percentile calculation, if we choose for example: week=23, day=2, this
is equivalent to 163 days of GA

dichorionic This parameter indicates if the fetus is dichorionic-diamniotic (dichorionic=TRUE)
or monochorionic-monoamniotic (dichorionic=FALSE)

Details

The inputs weight, week, day or dichorionic can be a number or a vector to include several cases

Value

The returned fit object of PTwins contains the following components.

Percentile Percentile of the fetus weight

weight fetus weight

GA Gestational age in exact weeks

Author(s)

Rocio Aznar, Luis Mariano Esteban, Gerardo Sanz, Ricardo Saviron

Examples

#Percentile estimation of a dichorionic-diamniotic fetus of 2300 grams
#of weight estimated at the 22nd week (+2 days) of gestational age.

PTwins(weight=2300,week=22,day=2,dichorionic=TRUE)

#Percentile estimation of a monochorionic-diamniotic fetus of 2300 grams
#of weight estimated at the 22nd week (+2 days) of gestational age.

PTwins(weight=2300,week=22,day=2,dichorionic=FALSE)

#Percentile estimation of a dataframe that includes 10 cases

WEIGHT<-round(rnorm(10,2100,125),digits=0)



PTwins 3

WEEK<-sample(seq(18,36),10)
DAY<-sample(seq(0,7),10,replace=TRUE)
dichorionic<-sample(c("TRUE","FALSE"),10,replace=TRUE)
DT<-data.frame(WEIGHT,WEEK,DAY,dichorionic)

PTwins(weight=DT$WEIGHT,week=DT$WEEK,day=DT$DAY,dichorionic=DT$dichorionic)
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