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1. Introduction and statements of results

The study of set-theoretical solutions of the Yang-Baxter equation (YBE) provides a
common framework for a multidisciplinary approach from different areas including knot 
theory, braid theory, or operator theory among others.

A (finite) set-theoretical solution of the YBE is a pair (X, r), where X is a (finite) set 
and r : X ×X → X ×X is a bijective map satisfying the equality r12r23r12 = r23r12r23, 
where r12 = r× idX and r23 = idX × r. If r(x, y) = (y, x) for every x, y ∈ X, then (X, r)
is said to be trivial.

The main problem in this context is to find and classify all set-theoretical solutions 
with prescribed properties. The algebraic structure of skew left braces plays a funda-
mental role.

A skew left brace B is a set endowed with two group structures, (B, +) and (B, ·), 
satisfying the following sort of distributivity property

a · (b + c) = a · b− a + a · c ∀ a, b, c ∈ B (1)

If (B, +) is abelian, then B is just a Rump’s left brace (see [20] and [25]). Both operations 
in a skew left brace B can be related by the so-called star product: a ∗ b = −a + a · b − b, 
for all a, b ∈ B. Indeed, if both group operations coincide, equivalently a ∗ b = 0, for all 
a, b ∈ B, then B is said to be a trivial left brace. If X and Y are subsets of B, then X ∗Y
is the subgroup of (B, +) generated by the elements of the form x ∗ y, for all x ∈ X and 
y ∈ Y .

Non-degenerate set-theoretic solutions of the YBE (solutions, for short), i.e. solutions 
for which both components of r are bijective, lead naturally to a skew left brace structure 
over the group

G(X, r) = 〈x ∈ X |xy = uv, if r(x, y) = (u, v)〉.

G(X, r) is said to be the structure skew left brace of (X, r). Furthermore, we can define 
a solution (B, rB) associated to every skew left brace B (see [20]).

It is abundantly clear that a deep understanding of skew left brace structure proper-
ties happens to be essential to comprehend and describe solutions of the Yang-Baxter 
equation.

One of the most challenging problems in the study of any algebraic structure is the 
classification of its simple objects. A non-zero skew left brace is said to be simple if 
it does not have a non-trivial quotient. Simple skew left braces have been intensively 
studied with several results available, although we are still a long way off to complete 
their classification (see [1,2,13]). A natural dual problem is to ask about skew left braces 
without any proper sub skew braces. Our first main result gives the answer for finite 
braces and turns out to be crucial for the study of brace theoretical properties.
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Theorem A. Let B be a finite skew left brace without proper sub skew braces. Then, B is 
trivial and isomorphic to a group of prime order.

As the algebraic study of skew left braces involves the interaction of two group struc-
tures, notions as nilpotency and solubility instinctively emerge and determine interesting 
properties of solutions. In particular, nilpotency of skew left braces is introduced to deal 
with multipermutational solutions, or solutions that can be retracted into the trivial solu-
tion over a singleton after finitely many identification steps (see [15,18,22], for example). 
Another interesting property of solutions of the YBE closely related to multipermutabil-
ity is decomposability, i.e. solutions that can be decomposed in a disjoint union of two 
proper solutions (see [16]). The importance of such properties relies on the search of 
classes of solutions which can be obtained from solutions of smaller cardinality. This 
opens the door to bring in simplicity of solutions (see [14,26]): a solution (X, r) is said to 
be simple if it does not admit any non-trivial epimorphism of solutions (X, r) → (Y, s). 
It follows that simple solutions are indecomposable (whenever |X| �= 2), and for finite 
involutive solutions (r2 = id), every finite indecomposable involutive solution can be ob-
tained as a dynamical extension of a finite simple solution (see [10] and [26]). Therefore, 
classifying simple solutions appears to be essential to the major problem of classifying 
all solutions.

It is well-known that finite minimal simple groups, or non-abelian groups whose all 
proper subgroups are soluble, played a key role in the classification of all finite simple 
groups, which in turn are essential to build finite groups using the extension theory. 
Soluble groups, which are in the antipodes of the simple groups since they possess a rich 
normal structure, have a lot to say in this context.

The introduction of a good definition of solubility of skew left braces should provide a 
good framework for studying minimal simplicity of solutions and should give some hints 
to classify simple skew left braces. As in the group theory case, it is absolutely necessary 
that soluble skew left braces have a rich ideal structure. It is also necessary that soluble 
skew left braces are to skew left braces what soluble groups are to groups.

Soluble left braces were defined previously in [2]: a left brace B is defined to be soluble 
if the series {Bi}i∈N trivialises at some n ∈ N. Here, B1 := B and Bn+1 := Bn ∗ Bn

for every n ≥ 1. Later on, in [23,24] this definition was extended for general skew left 
braces. According to this generalisation, every trivial skew left brace B would be soluble, 
as B ∗B = 0; or equivalently, every group regarded as a trivial brace would be soluble.

A possible solution to overcome such pathology could be obtained by means of abelian 
subideal series: we say that a skew left brace B is weakly soluble if the series {Bn}n∈N
reaches 0 at some n0 ∈ N, and Bn/Bn+1 is trivial with an abelian group structure for 
every n ∈ N. Unfortunately, this notion does not seem good to get our purposes: there 
are weakly soluble skew left braces with exactly three ideals and the unique minimal 
ideal is not an elementary abelian brace (see Section 6).

Our definition of solubility in Section 4 is inspired on concepts as central nilpotency 
and commutator ideal which have been recently introduced following ideas of universal 
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algebra (see [7,22] and [8], respectively). It aims to provide a representative class of skew 
left braces with a rich ideal structure.

Our first goal here is to describe the ideal structure of soluble skew left braces. When 
studying the ideal structure of a skew left brace, chief series introduced in [5] turn out 
to play a key role. We prove:

Theorem B. Let B be a soluble skew left brace with a chief series. Then, each chief factor 
of B is abelian and it is either a Frattini chief factor or a complemented chief factor. 
Moreover, if B is finite, then

1. every chief factor is isomorphic to an elementary abelian p-group for some prime p;
2. each maximal sub skew brace of B has prime power index as a subgroup of B.

This theorem confirms that the rich ideal structure of soluble skew left braces allows 
to obtain brace-theoretical versions of some important classical results of soluble groups. 
Theorem B does not hold for weakly soluble skew left braces (see Section 6).

Our next goal is to introduce soluble solutions as an antithesis of simple solutions. 
Recall that a homomorphism f : (X, r) → (Y, s) between solutions is a map f : X → Y

satisfying s(f × f) = (f × f)r. Assume that f : (X, r) → (Y, r) is a homomorphism of 
solutions with (Y, s) a trivial solution. Then, f induces an equivalence relation on X: 
x Kerf y if, and only if, f(x) = f(y), for every x, y ∈ X. If X1 = [x]Ker f ∈ X/ Ker f is 
the equivalence class of some x ∈ X, then it follows X1 ×X1 is r-invariant.

Definition 1. Let (X, r) be a solution. Assume that there exists a sequence of subsets 
Xt ⊆ . . . ⊆ X1 ⊆ X0 = X with Xt = {xt} such that, for every 1 ≤ i ≤ t, there exist a 
solution (Yi, si) and an epimorphism of solutions fi : (X, r) → (Yi, si) satisfying

• Xi ∈ X/ Ker fi, 1 ≤ i ≤ t;
• fi(Xi−1, r|Xi−1×Xi−1) is a trivial subsolution of (Yi, si), 1 ≤ i ≤ t.

Then, (X, r) is said to be soluble at xt.

We show that solubility of skew left braces characterises soluble solutions.

Theorem C. Let B be a skew left brace. Then, B is soluble if, and only if, its associated 
solution (B, rB) is soluble at 0.

Theorem D. Let (X, r) be a solution such that G(X, r) is a soluble skew left brace. Assume 
that G(X, r) has an abelian descending series

G(X, r) = I0 ⊇ I1 ⊇ . . . ⊇ In = 0

such that X ∩ In−1 is not empty. Then (X, r) is soluble at x, for every x ∈ X ∩ In−1.
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Paying heed to the important role of central nilpotency in multipermutation solutions 
(see [22]), a natural question is to consider whether multipermutability of solutions is a 
stronger property than solubility of solutions. In a forthcoming paper, we will present 
results confirming that central nilpotency is to brace solubility what group nilpotency 
is to group solubility. In this context, the following consequences of Theorems C and D
are illustrative results which foresee such relation.

Corollary 2. Let B be a brace such that (B, rB) is of finite multipermuational level. Then, 
(B, rB) is a soluble solution at 0.

Corollary 3. Let (X, r) be a multipermutation solution. If Soc(G(X, r)) ∩ X is not an 
empty set, then (X, r) is a soluble solution at x, for every x ∈ Soc(G(X, r)) ∩X.

The following example shows that condition Soc(G(X, r)) ∩X �= ∅ in Corollary 3 is 
essential, as some multipermutation solutions can be simple.

Example 4. Consider the set X = {1, 2, 3}. We define a Lyubashenko solution, given 
by r(x, y) = (σ(y), τ(x)), where σ = (1, 2, 3), τ = (1, 3, 2) ∈ Σ3. Thus, λx = σ and 
ρx = τ , for every x ∈ X. Then, (X, r) has multipermutational level 1, as Ret(X, r) has 
cardinality 1.

On the other hand, assume that f : (X, r) → (Y, s) is an epimorphism with Y =
{y1, y2} and s(yi, yj) = (λ′

yi
(yj), ρ′yj

(yi)), for every 1 ≤ i, j ≤ 2. Without loss of general-
ity, suppose that f(1) = f(2) = y1 and f(3) = y2. Then,

y1 = f(2) = f(λ1(1)) = λ′
y1

(y1)
y1 = f(1) = f(λ1(3)) = λ′

y1
(y2)

Therefore, λ′
y1

is not bijective and so, (Y, s) is not a non-degenerate solution.
Hence, for every epimorphism f : (X, r) → (Y, s), either f is an isomorphism or |Y | =

1; that is, (X, r) is a simple solution.

In Section 6, we present a worked example suggesting that weak solubility is not 
the best candidate either to play the role of antithesis to simplicity or to have a good 
relationship to central nilpotency. It also emphasises the importance of having soluble 
braces as a class of skew left braces with a rich ideal structure.

Furthermore, it is shown in [22, Corollary 4.5] that if B is a centrally nilpotent brace, 
then every maximal subbrace is an ideal. This is a brace analog of the group theory 
known result asserting that in nilpotent groups every maximal subgroup is normal. Note 
that the converse is also true for finite groups, that is, a finite group is nilpotent if, and 
only if, every maximal subgroup is normal.

Our example shows that an analog of this result in the context of skew left braces 
does not hold: there exist skew left braces B which are not centrally nilpotent but every 
maximal subbrace of B is an ideal.
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2. Preliminaries

In this section, we fix notation and introduce basic results that are needed in the 
paper.

From now on, the word brace will mean skew left brace.
It is well known that the identity elements of the additive group (B, +) and multi-

plicative group (B, ·) of a brace B coincide, and it is denoted by 0. The product of two 
elements of a brace will be denoted by juxtaposition.

Given two subsets X, Y ⊆ B, we denote by [X, Y ]+ and [X, Y ]· the commutator of X
and Y in (B, +) and (B, ·), respectively.

A subbrace S of B is a subgroup of the additive group which is also a subgroup of the 
multiplicative group. A homomorphism between two braces A and B is a map f : A → B

satisfying that f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ A. The kernel 
of f is defined as the set Ker(f) = {a ∈ A | f(a) = 0}. If f is bijective, f is called 
an isomorphism. We shall say that braces are isomorphic, if there is an isomorphism 
between them.

Recall that the multiplicative group (B, ·) acts on the additive group (B, +) via au-
tomorphisms: for every a ∈ B, the map λa : B → B, given by λa(b) = −a + ab, is an 
automorphism of (B, +) and the map λ : (B, ·) → Aut(B, +) which sends a �→ λa is 
a group homomorphism (see [20, Proposition 1.9]). This group action relates the two 
operations on a brace. For every a, b ∈ B, it holds

ab = a + λa(b) and a + b = aλa−1(b). (2)

Note that Kerλ = {a ∈ B : ab = a + b, ∀ b ∈ B} is a subbrace of B by (2).
Moreover, it also provides a characterisation of braces by means of regular subgroups 

of the holomorph of a group. Given a group G, the holomorph of G is the semidirect 
product Hol(G) = [G] Aut(G) with the operation given by (g, ϕ)(h, ψ) = (gϕ(h), ϕψ), 
for every g, h ∈ G, ϕ, ψ ∈ Aut(G). A regular subgroup of the holomorph H ≤ Hol(G)
is a subgroup such that for every g ∈ G, there exists a unique φg ∈ Aut(G) such that 
(g, φg) ∈ H. If g ∈ G, the map gx = αg(x) = gxg−1 is an automorphism of G called the 
inner automorphism associated with g. The set Int(G) of all inner automorphisms of G
is a normal subgroup of Aut(G). In particular, [G] Int(G) ≤ Hol(G).

Proposition 5 ([20, Theorem 4.2]). If (B, +, ·) is a brace, then HB = {(b, λb) : b ∈ B} is 
a regular subgroup of Hol(B, +) isomorphic to (B, ·).

Conversely, suppose that for a group (B, +), we have a regular subgroup H ≤
Hol(B, +). Then we can define on B a binary operation bc := b +φb(c), being (b, φb) ∈ H, 
such that (B, +, ·) becomes a brace and (B, ·) is isomorphic to H.

A brace B is said to be almost trivial if ab = b + a for every a, b ∈ B.

Proposition 6. Let (B, +, ·) be a brace. Then
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1. B is trivial if, and only if, Kerλ = (B, ·) for every b ∈ B or, equivalently, HB =
{(b, 1) : b ∈ B} ≤ Hol(B, +).

2. B is almost trivial if, and only if, HB = {(b, α−b) : b ∈ B}. In this case, Int(B, +)
is a homomorphic image of HB.

Proof. Only the second statement is in doubt. Note that, for all a, b ∈ B, ab = a +
λa(b) = b + a if, and only if, λa(b) = −a + b + a or, equivalently, λa = α−a, for every 
a ∈ B. Moreover, the projection (b, α−b) �→ α−b over the second component provides a 
homomorphism between HB and Int(B, +), as

(b, α−b)(a, α−a) = (b− b + a + b, α−bα−a) = (a + b, α−(a+b)). �
We see in the following how braces can be defined from bijective 1-cocycles associated 

with actions of groups. Let (C, ·) and (B, +) be groups such that C acts on B by means 
of a group homomorphism λ : C → Aut(B, +), c �→ λc. A bijective map δ : C → A

is said to be a bijective 1-cocycle associated with λ, if δ(cd) = δ(c) + λc(δ(d)), for 
every c, d ∈ C. In the previous situation, (B, +) admits a brace structure by means of 
ab := δ(δ−1(a)δ−1(b)), for every a, b ∈ B (see [20, Proposition 1.11]), for example).

Following [3], bijective 1-cocycles can be constructed by means of trifactorised groups. 
Assume that a group (C, ·) acts on a group (B, +) by means of a group homomorphism 
λ : C → Aut(B, +). Take G = [B]C the semidirect product associated with λ. If D is 
a subgroup of G such that G = BC = BD = DC and B ∩D = D ∩ C = 1, then G is 
said to be a trifactorised group and there exists a bijective 1-cocycle δ : C → B, given 
by D = {(δ(c), c) : c ∈ C}.

A non-empty subset I of a brace B is a left ideal, if (I, +) is a subgroup of (B, +)
and B ∗ I ⊆ I, or equivalently λb(I) ⊆ I, for every b ∈ B. A left ideal I is an ideal if 
(I, +) is a normal subgroup of (B, +) and (I, ·) is a normal subgroup of (B, ·). By [15, 
Lemma 1.9], a left ideal I is an ideal of B if, and only if, (I, +) is a normal subgroup of 
(B, +) and I ∗B ⊆ I.

Ideals of skew left braces can be considered as true analogues of normal subgroups in 
groups and ideals in rings (see [20, Lemma 2.3], for example). In particular, kernels of 
homomorphisms of braces are ideals.

Proposition 7. Let B be a brace and let S and I be, respectively, a subbrace and an ideal 
of B. Then SI = S + I is a subbrace of B.

Proof. Let x ∈ S and y ∈ I. Then, by (2), xy = x +λx(y) ∈ S+I and x +y = xλ−1
x (y) ∈

SI. Thus IS = SI = S + I = I + S is a subbrace of B. �
Definition 8. Let B be a brace and S be a subbrace of B. We say that S is complemented
in B if there exists a subbrace T such that B = ST = S + T and S ∩ T = 0.
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The following are particular examples of, respectively, of a left ideal and an ideal of a 
brace such that play a central role in the study of braces:

Fix(B) = {a ∈ B |λb(a) = a, for every b ∈ B}
Soc(B) = Kerλ ∩ Z(B,+) = {a ∈ B | ab = a + b = b + a, for every b ∈ B}.

Every detailed study of an algebraic structure depends heavily on describing the 
behaviour of respectively minimal and maximal substructures, if such exist, and their 
quotient structure if apply.

1. Let I be an ideal of a brace B. I is called a minimal ideal of B if I �= 0 and 0 and 
I are just the ideals of B contained in I. On the other hand, I is called a maximal 
ideal of B if I is the only proper ideal of B containing I.

2. Let S be a subbrace of a brace B. S is called a maximal subbrace of B if S is the 
only proper subbrace of B containing S.

3. Braces without proper subbraces

In this section every group is finite.
We work toward a proof of Theorem A. The proof of this result depends heavily on 

an exhaustive study of automorphisms of simple and characteristically simple groups.
Recall that a characteristically simple group G = Sn is isomorphic to a direct product 

of isomorphic copies of a simple group S. The next result describes the automorphism 
group of such groups.

Theorem 9. Let G be a characteristically simple group with G = Sn, S a simple group.

1. ([28]) If S = Cp is a cyclic group of prime order p, then Aut(S) ∼= GL(n, p). 
Moreover, the set of upper triangular matrices with 1s on the diagonal is a Sylow 
p-subgroup of GL(n, p).

2. ([6, Proposition 1.1.20]) If S is not abelian, Aut(G) ∼= Aut(S) �Σn, where Σn is the 
symmetric group of degree n.

Remark 10. If S is not abelian and G = Sn, then Z(G) = 1 and Int(G) ∼= G. Moreover, 
Out(G) = Aut(G)/ Int(G) ∼= Out(S) � Σn.

In [4, Theorem A] we find a lower bound for the order of the outer automorphism 
group of a non-abelian simple group.

Theorem 11. Let S be a non-abelian simple group. Denote by l(S) the smallest index of 
a core-free subgroup of S. Then, | Out(S)| ≤ 3 log(l(S)).

Corollary 12. For every simple group S, | Out(S)| < |S|.
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The following result about fixed-point-free automorphisms turns out to be useful here.

Theorem 13 ([19, Theorem 1.48]). A group having an automorphism leaving only the 
identity element fixed is necessarily soluble.

Bearing in mind Proposition 6, the following lemma turns out to be crucial in the 
proof of Theorem A.

Lemma 14. Let G be a non-abelian simple group and consider the semidirect product 
X = [G] Int(G). Then, Ḡ = G × 1 and C = {(a, αa−1) : a ∈ G} are exactly the regular 
subgroups of X isomorphic with G.

Proof. For every a, b, g ∈ G, it holds

(a, αb)(g, 1)(αb−1(a−1), αb−1) = (a bg, αb)(αb−1(a−1), αb−1) = (abg, 1)

Then, abg = g for every g ∈ G if, and only if, a = b−1, as Z(G) = 1. Therefore, 
CX(Ḡ) = C = {(a, αa−1) : a ∈ G}, which is a normal subgroup of X.

Then X = ḠC as a direct product of Ḡ and C and both subgroups are isomorphic to 
G. In fact, the map τ : G → C given by τ(g) = (g−1, αg) is an isomorphism between G
and C.

Assume, arguing by contradiction, that there exists H ≤ X isomorphic to G such that 
H �= Ḡ, C. Note that every element h ∈ H can be uniquely written as (g, 1)(c, αc−1) for 
some g, c ∈ G. Since H is a simple group, H ∩ Ḡ = H ∩C = 1, and then, the projections 
πG : H → G and πC : H → C, given by πG((g, 1)(c, αc−1)) = g and πC((g, 1)(c, αc−1)) =
(c, αc−1), respectively, are isomorphisms. Thus, we can write

H = {(g, 1)πCπ
−1
G (g) : g ∈ G} (3)

and, therefore, H induces the automorphism ϕ = τ−1 ◦ πC ◦ π−1
G ∈ Aut(G). Then, (3)

can be written as

H = {(g, 1)τϕ(g) : g ∈ G} = {(g, 1)(ϕ(g−1), αϕ(g)) : g ∈ G}

= {(gϕ(g−1), αϕ(g)) : g ∈ G}

Since H is a regular subgroup with the same order as G, gϕ(g−1) ↔ αϕ(g) provides a 
one-to-one correspondence between the first and the second component of the elements of 
H. Therefore, the automorphism ϕ has not non-trivial fixed points, as ϕ(g) = g implies 
that gϕ(g−1) = 1 = 1ϕ(1) and so g = 1. This contradicts Theorem 13. �

In [9] it is proved that every brace with multiplicative group a simple group must be 
trivial or almost trivial by means of Hopf-Galois extensions. For the sake of completeness, 
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we give here an alternative proof for the case in which additive and multiplicative groups 
are isomorphic simple groups.

Lemma 15. Let B be a brace such that (B, +) and (B, ·) are isomorphic simple groups. 
The following hold:

1. if (B, +) is abelian, then B is a trivial brace.
2. if (B, +) is not abelian, then B is either a trivial brace or an almost trivial brace.

Proof. By Proposition 5, H = {(b, λb) : b ∈ B} ∼= (B, ·) is a regular subgroup of 
Hol(B, +).

If (B, +) is abelian, then (B, +) cyclic of prime order and, therefore, Kerλ �= 0 as 
Kerλ = 0 would imply (B, +) ∼= (B, ·) ∼= Aut(B, +). Thus, Kerλ = B and so B is trivial.

Assume that B is not abelian and B is not a trivial brace. Then λ(B) is a simple 
subgroup of Aut(B, +). Since λ(B) ∩ Int(B, +) � λ(B), it follows that either λ(B) ∩
Int(B, +) = 0 or λ(B) ≤ Int(B, +). In the first case, Out(B, +) has a subgroup of order 
|B|, which is not possible by Corollary 12. Then λ(B) = Int(B, +) ∼= (B, +) and H is 
a regular subgroup of the semidirect product [(B, +)] Int(B, +). By Lemma 14, either 
H = {(b, 1) : b ∈ B} or H = {(b, α−b) : b ∈ B}. Since B is not trivial, the latter holds. 
Thus B is almost trivial by Proposition 6. �

We prove now Theorem A.

Proof of Theorem A. If B is a trivial brace, it follows that the additive group (B, +) has 
not proper subgroups and, therefore, B is isomorphic to a cyclic group of prime order.

Assume that B is not a trivial brace. We split the proof in several steps towards a 
contradiction.

Step 1. (B, +) is a characteristically simple group.
Assume that (K, +) is a proper characteristic subgroup of (B, +). Then, for every 

b ∈ B, λb(K) ⊆ K. It is well known that in this case K is a proper subbrace of B, which 
is a contradiction.

Therefore (B, +) is a characteristically simple group and then we can assume that 
(B, +) = Sn is a finite direct product of n copies of a simple group S, for some n ≥ 1.

Step 2. (B, ·) is isomorphic to a subgroup H of Aut(B, +). As a consequence, S is not 
abelian.

Recall that Kerλ is a subbrace of B and so Kerλ = 0. Therefore, (B, ·) is isomorphic 
to a subgroup of Aut(B, +).

Suppose that S is a cyclic group of prime order p. Then (B, +) = Cn
p is an elementary 

abelian p-group. If n = 1, then | Aut(B, +)| < p = |(B, ·)|, which is not possible. Thus 
n > 1. By Theorem 9, we can assume Aut(B, +) = GL(n, p). Let T be the set of 
upper triangular matrices with 1s on the diagonal. Then T is a Sylow p-subgroup of 
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GL(n, p). Since λ(B) is a p-subgroup, it follows that λ(B) ≤ AT A−1 for some element 
A ∈ GL(n, p). Then L = {(k, 0, . . . , 0) : k ∈ Cp} is a subgroup of (B, +) that is invariant 
by the action of T , as T(L) = L for every T ∈ T . Consequently A(L) is a λ-invariant 
subgroup of (B, +) and so L is a proper subbrace of B, contrary to assumption.

Hence S is a non-abelian simple group and, in this case, Aut(B, +) ∼= Aut(S) �Σn and 
Int(B, +) ∼= (B, +), by Theorem 9.

Write H = λ(B) ≤ Aut(B, +).

Step 3. Either H ∩ Int(B, +) = 0 or H = Int(B, +).
Note that fαxf

−1 = αf(x) for every αx ∈ Int(B, +) and f ∈ Aut(B, +). Let αx ∈
Int(B, +) ∩H and λb ∈ H, for some x, b ∈ B. Since H∩Int(B, +) is a normal subgroup of 
H, it follows λbαxλ

−1
b = αλb(x) ∈ H∩Int(B, +). Thus H∩Int(B, +) is isomorphic to a λ-

invariant subgroup of (B, +), which is a subbrace of B. Therefore either H∩Int(B, +) = 0
or H = Int(B, +).

Step 4. H ∩ Int(B, +) �= 0.
Assume that H ∩ Int(B, +) = 0. Then, H is isomorphic to a subgroup of Out(B, +). 

By Remark 10, we have that Out(B, +) ∼= Out(S) � Σn. Then |H| = |B| = |S|n divides 
| Out(S)|nn!.

Observe that |S| does not divide | Out(S)|, as | Out(S)| < |S| by Corollary 12. Then 
we can find a prime p such that pα | |S| but pα � | Out(S)|, for some α ≥ 1. Suppose that 
pβ is the highest power of p dividing | Out(S)|, for some 0 ≤ β < α. Then pn(α−β) | n! and 
this is a contradiction because pn does not divide n!. Hence (B, ·) ∼= H = Int(B, +) ∼= Sn.

Step 5. n = 1.
Since H ∼= Sn, we have that there exists N �H, with N ∼= S. As in Step 3, it follows 

that there exists a λ-invariant subgroup of (B, +) isomorphic to S. Therefore Sn = S.
Thus, (B, ·) ∼= (B, +) ∼= S and by Lemma 15, B must be almost trivial. In this case, 

since B has not proper subbraces, it follows that (B, +) has not proper subgroups. Hence 
(B, +) is a cyclic group and then B is trivial, which provides the final contradiction. �
4. Soluble skew left braces

In this section, we study the ideal and subbrace structure of braces and introduce 
a definition of solubility that turns out to be the natural framework to undertake such 
study. To this end it is convenient to have a useful definition of a commutator of ideals 
that enables us to get a tighter grip on the nature of solubility by constructing canonical 
abelian series for such braces. In this context, the definition of commutator introduced 
by Bourn, Facchini and Pompili in [8] turns out to be the correct one.

Definition 16. Let I, J be ideals of a brace B. The commutator [I, J ]B is defined to be 
as the smallest ideal of B containing [I, J ]+, [I, J ]·, and the set

{ij − (i + j) : i ∈ I, j ∈ J}.
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It follows that [I, J ]B = [J, I]B .

In [7], a brace-theoretical analogue of the centre of a group is studied. It was first 
defined in [11] in the context of ideal extensions of braces. The centre of a brace (also 
known as annihilator of a brace) is the set

ζ(B) = Soc(B) ∩ Fix(B) = {a ∈ B | a + b = b + a = ab = ba, ∀ b ∈ B},

which turns out to be an ideal of B.
The relationship between commutators and centres is enshrined in:

Proposition 17. Let I, J be ideals of a brace B with J ⊆ I. Then, I/J ⊆ ζ(B/J) if, and 
only if, [I, B]B ⊆ J .

Proof. For every x ∈ I and b ∈ B, note that

x + b + J = b + x + J = xb + J = bx + J = (xb)J = (bx)J

if, and only if, [x, b]+, [x, b]·, xb − (x + b) ∈ J . Hence the result follows. �
The commutator concept enables us to construct a canonical abelian series for braces. 

If I is an ideal of a brace B, we define the commutator or derived ideal of I with respect 
to B as ∂B(I) = [I, I]B . If B = I, then we say that ∂B(B) = ∂(B) is the commutator
or derived ideal of B. A brace B is said to be abelian if ∂(B) = 0, that is, B is a trivial 
brace with an abelian group structure or, equivalently, ζ(B) = B.

By repeatedly forming derived ideals, we obtain a descending sequence of ideals

∂0(I) = I ⊇ ∂1(I) = ∂B(I) ⊇ . . . ⊇ ∂n(I) ⊇ . . .

with ∂n(I) = ∂B(∂n−1(I)) for every n ∈ N. We call this series the derived series of I
with respect to B. Note that it is an abelian series, as each factor ∂n−1(B)/∂n(B) is an 
abelian brace for every n ∈ N by Proposition 17. In particular, the first factor B/∂(B)
is the greatest abelian quotient in B.

Definition 18. We say that an ideal I of B is soluble with respect to B, if there exists a 
non negative integer n such that ∂n(I) = 0. In the case I = B, we simply say that B is 
a soluble brace.

Remark 19. Let B be a soluble brace. The shortest length of an abelian series at B is 
called the derived length of B. By convention, B has derived length 0 if, and only if, 
B = 0. It is clear then that abelian braces are soluble braces of derived length 1. It 
also follows that soluble braces are closed for subbraces, quotients, direct products and 
extensions of ideals: if I an ideal of a brace B such that B/I is soluble and I is soluble 
with respect to B, then B is also soluble.
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Proposition 20. Let B be a brace admitting an abelian series, that is, a series of ideals 
of B,

B = I0 ⊇ I1 ⊇ . . . ⊇ In = 0,

such that Ii−1/Ii is abelian for every 1 ≤ i ≤ n. Then ∂i(B) ⊆ Ii for every 0 ≤ i ≤ n. 
In particular, ∂n(B) = 0 so B is soluble. Therefore the derived length of B is the length 
of the derived series of B.

Proof. For i = 0, ∂0(B) = B = I0. Now, assume that ∂i(B) ⊆ Ii for some 0 ≤ i < n. 
Then, ∂i+1(B) ⊆ ∂B(Ii) ⊆ Ii+1 as Ii/Ii+1 is abelian. Hence, the length of every abelian 
series of B is less than or equal to the length of the derived series of B. �

It follows at once from this that no abelian series of ideals can be shorter than the 
derived series of a soluble brace. As a consequence, simple soluble braces and minimal 
quotients of soluble braces are characterised.

Corollary 21. Let B be a simple soluble brace. Then, B is an abelian brace isomorphic 
to a cyclic group of prime order.

Corollary 22. Let I be a maximal ideal of a soluble brace B. Then, B/I is an abelian 
brace isomorphic to a cyclic group of prime order.

Our focus now is the impact of these notions on the ideal and subbrace structure of 
a brace. In particular, we work towards a proof of Theorem B.

Our next result is an application of Theorem A.

Theorem 23. Let B be a finite brace and S be a maximal subbrace of B. Then, either 
ζ(B) ⊆ S or S is an ideal of B such that B/S is an abelian brace isomorphic to a cyclic 
group of prime order.

Proof. Assume that ζ(S) is not contained in S. By Proposition 7, Sζ(B) = S + ζ(B) is 
a subbrace of B, and so B = Sζ(B) by maximality of S. We will show that S is an ideal 
of B. Let x ∈ S and b = s + z = sz ∈ B, for some z ∈ ζ(B) and s ∈ S. Then

λb(x) = λsz(x) = λs(λz(x)) = λs(x) ∈ S;

x ∗ b = x ∗ (s + z) = −x + x(s + z) − (s + z) = −x + xs− x + xz − z − s

= −x + xs− x + x + z − z − s = x ∗ s ∈ S.

Furthermore, since B = S + ζ(B), it follows that (S, +) is a normal subgroup of (B, +). 
Consequently S is an ideal of B.

Therefore, B/S is a brace without subbraces and, by Theorem A, B/S is a trivial 
brace isomorphic to a cyclic group of prime order. Hence B/S is abelian. �
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Definition 24. The Frattini subbrace Φ(B) of a brace B is the intersection of all maximal 
subbraces of B, if such exist, and B otherwise.

Let S be a subset of a brace B. The subbrace (resp. ideal) generated by S is the 
smallest subbrace (resp. ideal) of B containing S. We say that an element a ∈ B is non-
subbrace (resp. non-ideal) generating if the subbrace (resp. ideal) generated by S ∪ {a}
coincides with the subbrace (resp. ideal) generated by S for every S ⊆ B. It is easily 
observed that Φ(B) coincides with the set of non-subbrace generating elements of B.

Remark 25. Non-ideal generating elements were introduced in [21] within the context of 
brace-theoretical analogues of normal closures and weights in group theory. Then, the 
radical of a brace B was defined as the intersection of all maximal ideals, if such exists, 
or B otherwise. It turns out that the radical of a brace coincides with the set of non-ideal 
generating elements.

Corollary 26. Let B be a finite brace and S be a maximal subbrace of B. Then, either 
ζ(B) ⊆ S or ∂(B) ⊆ S. In particular, ζ(B) ∩ ∂(B) is contained in Φ(B).

However, in general the Frattini subbrace of a brace is not an ideal, not even a left 
ideal.

Theorem 27. There exists a brace B such that Φ(B) is not a left ideal.

Proof. Let

(K,+) = 〈a, b | 5a = 4b = 0, b + a− b = 3a〉,
(C, ·) = 〈c, d | c5 = d4 = 1, dcd−1 = c3〉

be two Frobenius groups of order 20. Observe that C acts on K via

c(a) = a, d(a) = 3a,

c(b) = 2a + b, d(b) = b.

Consider G = [K]C the semidirect product of K by C with respect to this action. 
Let D = 〈ac, bd〉, then G = KD = DC, D ∩ C = D ∩K = {1} and so we can define a 
structure of a brace B associated with this triply factorised group. The corresponding 
bijective 1-cocycle δ : C −→ K is described in Table 1.

We prove by induction that δ(cidj) = 3jia + jb. First of all, we prove by induction 
that j(2a +b) = (3j−1)a +jb: the result is true for j = 0, and if j(2a +b) = (3j−1)a +jb, 
then (j+1)(2a +b) = (2a +b) +(3j−1)a +jb = 2a +3(3j−1)a +(j+1)b = (3j−1)a +jb. 
The result is true for i = 0, as δ(d) = b and d(b) = b. Suppose that δ(cidj) = 3jia + jb. 
Consequently, δ(ci+1dj) = δ(c) + c(δ(cidj)) = a + c(3jia + jb) = a + 3jia + c(jb) =
a + 3jia + j(2a + b) = a + 3jia + (3j − 1)a + jb = 3j(i + 1)a + jb.
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Table 1
Bijective 1-cocycle associated with the brace of order 20.

c δ(c) c δ(c) c δ(c) c δ(c) c δ(c)
1 0 c a c2 2a c3 3c c4 4c
d b cd 3a + b c2d a + b c3d 4a + b c4d 2a + b
d2 2b cd2 4a + 2b c2d2 3a + 2b c3d2 2a + 2b c4d2 a + 2b
d3 3b cd3 2a + 3b c2d3 4a + 3b c3d3 a + 3b c4d3 3a + 3b

Since the subgroup of index 2 of K is characteristic in K, we have that this subgroup 
corresponds to a maximal subbrace of B. This is the unique maximal subbrace of B of 
order divisible by 5.

Suppose now that a subbrace of B has order not divisible by 5. We have that 〈b〉 ≤ K, 
that induces 〈d〉 ≤ C, leads to a subbrace of B that corresponds to both a maximal sub-
group of K and a maximal subgroup of C. Consequently, 〈b〉 ≤ K induces a maximal 
subbrace of B. Now suppose that cid belongs to the multiplicative group E of a sub-
brace of B. Then δ(cid) = 3ia + b belongs to the additive group L of that subbrace. 
Consequently, cidcid = cic3id2 = c4id2 belongs to E and is its unique element of order 2. 
Furthermore δ(c4id2) = 9 · 4ia + 2b = ia + 2b ∈ L is its unique element of order 2, but 
it must coincide with (3ia + b) + (3ia + b) = 3ia + 9ia + 2b = 12ia + 2b = 2ia + 2b. It 
follows that ia = 0, that is, 5 | i. Consequently, no element of order 4 apart from d and 
d3 can belong to the multiplicative group of the subbrace. Now suppose that we have 
a subbrace of order 2. The element of order 2 of the multiplicative subgroup E must 
be of the form cid2, and so δ(cid2) = 9ia + 2b = 4ia + 2b is the element of order 2 of 
its additive subgroup L. But then the corresponding subbrace is not maximal, as E is 
contained in 〈c, d2〉 and L is contained in 〈a, 2b〉.

It follows that the unique maximal subbraces of B are the ones corresponding to the 
additive subgroups 〈a, 2b〉 and 〈b〉. Thus, Φ(B) corresponds to the subgroup 〈2b〉 ≤ K, 
associated with 〈d2〉 ≤ C. But 〈2b〉 is not invariant under the action of C, because 
c(2b) = 2a + b + 2a + b = 8a + 2b = 3a + 2b /∈ 〈2b〉. Therefore, Φ(B) is not a left ideal 
of B.

This brace corresponds to SmallSkewbrace(20, 21) of the YangBaxter library [27] of
GAP [17]. �

In [5] it is shown that chief factors of braces turn out to play a key role in the ideal 
structure of braces. Let I and J be ideals of a brace B such that J ⊆ I. I/J is said to 
be a chief factor of B if I/J is a minimal ideal of B/J . A series of ideals

0 = I0 ⊆ I1 ⊆ . . . ⊆ In = B

is said to be a chief series if Ij/Ij−1 is a chief factor of B, for every 1 ≤ j ≤ n. A chief 
factor I/J is a Frattini chief factor of B if I/J ⊆ Φ(B/J) and a complemented chief 
factor of B if it is complemented in B/J .



16 A. Ballester-Bolinches et al. / Advances in Mathematics 455 (2024) 109880
Observed that if I is a minimal ideal of a soluble brace B, then and so ∂B(I) is an 
ideal of B properly contained in I. Therefore ∂B(I) = 0 and I is abelian. Consequently 
every chief factor of a soluble brace B is abelian.

Lemma 28. Let S and I be a subbrace and an ideal of a brace B respectively. Assume 
that I is an abelian brace and B = SI = S + I. Then

1. The subbrace I ∩ S is an ideal of B.
2. S is a maximal subbrace if, and only if, I/I ∩ S is a chief factor of B.

Proof. Let b ∈ B and x ∈ I ∩ S. Since B = SI, we can write b = sy for certain s ∈ S

and y ∈ I. Then

λb(x) = λsy(x) = λs(λy(x)) = λs(x) ∈ S ∩ I

Analogously, B = S+ I and if we write b = s′ + y′, for certain s′ ∈ S and y′ ∈ I, it holds

x ∗ b = x ∗ (s′ + y′) = −x + x(s′ + y′) − y′ − s′ =

= −x + xs′ − x + xy′ − y′ − s′ = (I is trivial)

= −x + xs′ − x + x + y′ − y′ − s′ = x ∗ s′ ∈ I ∩ S

Since I is abelian and B = S + I, it follows that I ∩ S is a normal subgroup of (B, +). 
Therefore I ∩ S is an ideal of B, as required.

Assume that S is a maximal subbrace of B, and let L be an ideal of B such that 
I ∩ S � L ⊆ I. By Proposition 7, SL is a subbrace and B = SL, as L is not contained 
in S. Therefore I = SL ∩ I = (S ∩ I)L = L. Hence I/S ∩ I is a chief factor of B.

Conversely, assume that I/I ∩ S is a chief factor and let T be a subbrace of G such 
that S � T ⊆ B. Then S � T = T ∩ SI = S(T ∩ I). Arguing as above, it follows that 
I ∩T is an ideal of B, and S∩ I � T ∩ I ⊆ I. Therefore T ∩ I = I and then T = SI = B. 
Hence S is a maximal subbrace of B. �
Corollary 29. Let B be a soluble brace and I be a minimal ideal of B. Suppose that there 
exists a subbrace S such that B = IS = I + S and ζ(B) is not contained in S. Then S
is an ideal and B is isomorphic to the direct product I × S.

Proof. We have that I is abelian. Then, by Lemma 28, I ∩ S is an ideal of B and, thus, 
I ∩ S = 0. Lemma 28 also yields S is a maximal subbrace of B. By Theorem 23, S is an 
ideal of B as ζ(B) � S. Hence B is isomorphic to the direct product I × S. �
Lemma 30. Let I/J be an abelian chief factor of a brace B. Then I/J is either a Frattini 
chief factor or a complemented chief factor of B. If B is finite, then every complement 
of I/J is a maximal subbrace of B/J .
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Proof. Without loss of generality we can assume that J = 0 and I is a minimal ideal 
of B. Suppose that I is not a Frattini chief factor of B. Then, there exists a maximal 
subbrace S such that I is not contained in S. Thus, B = IS = I + S. By Lemma 28, 
I ∩ S is an ideal of B and I/I ∩ S is a chief factor of B. Therefore I ∩ S = 0 so I is 
complemented in B by the maximal subbrace S.

Assume that B is finite and T is another complement of I. Then T is a proper subbrace 
of B. Let S′ be a maximal subbrace of B with T ⊆ S′. Note that I is not contained in 
S′, as otherwise T would not be a complement of I. Arguing as above, it follows that S′

also complements I. Hence S′ = T . �
Proof of Theorem B. Let I/J be a chief factor of B. Since B is soluble, we have that 
I/J is abelian. By Lemma 30, I/J is either a Frattini chief factor or a complemented 
chief factor of B.

Suppose that B is finite. Without loss of generality we can assume that J = 0 and then 
I is a minimal ideal of B. Note that I is an abelian trivial brace, i.e. (I, +) = (I, ·) is an 
abelian group. Let H be a characteristic subgroup of I. Then, (H, +) = (H, ·) is a normal 
subgroup of both (B, +) and (B, ·), because both (I, +) and (I, ·) are normal subgroups 
of (B, +) and (B, ·), respectively. Since I is an ideal, it holds that λb|I ∈ Aut(I, +)
and, therefore, λb(H) ⊆ H for every b ∈ B. Consequently, H is an ideal of B. By the 
minimality of I, either H = 0 or H = I. Therefore I is a characteristically simple group. 
Since I is abelian, it follows that I is an elementary abelian p-group for some prime p.

Let S be a maximal subbrace of B and let

I0 = 0 ⊆ I1 ⊆ . . . ⊆ In = B

be a chief series of B, with Ii/Ii−1 an abelian brace for every 1 ≤ i ≤ n. Then, there 
exists 1 ≤ i0 ≤ n such that SIi0 = S + Ii0 = B and SIi0−1 = S + Ii0−1 = S. Thus, 
S/Ii0−1 is a maximal subbrace of B/Ii0−1 and Ii0/Ii0−1 is a trivial brace such that 
(S/Ii0−1)(Ii0/Ii0−1) = B/Ii0−1. According to Lemma 28, it follows that Ii0/(S ∩ Ii0) is 
a chief factor, which is an elementary abelian p-group by the previous statement. Thus 
Ii0−1 = S ∩ Ii0 . Hence |B : S| = |Ii0/Ii0 ∩ S| is a power of p, as claimed. �
5. Soluble solutions of the YBE

This section is devoted to prove Theorems C and D which characterise solubility of 
solutions by means of solubility of braces. Applications to multipermutation solutions 
are also provided.

The following well-known result describes the relation between solutions of the YBE 
and braces.

Theorem 31 ([20, Theorems 3.1 and 3.9]). Let B be a brace. Then

rB : B ×B → B ×B, r(a, b) = (λa(b), λa(b)−1ab), ∀ a, b ∈ B,
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provides a solution on B. On the other hand, given (X, r) a solution, there exists a brace 
structure on G(X, r) = 〈x ∈ X | xy = uv, if r(x, y) = (u, v)〉 such that its associated 
solution rG satisfies rG(ι × ι) = (ι × ι)r, where ι : X → G(X, r) is the canonical map.

Remark 32. According to Theorem 31, it follows that (X, r) is a trivial solution if, and 
only if, the structure brace G(X, r) is abelian isomorphic to ZX . In particular, B is an 
abelian brace if, and only if, its associated solution (B, rB) is trivial.

Recall that a homomorphism f : (X, r) → (Y, s) between solutions is a map f : X → Y

satisfying s(f × f) = (f × f)r. Following [14], every homomorphism between solutions 
f : (X, r) → (Y, s) extends to a brace homomorphism between structure braces associated 
f̄ : G(X, r) → G(Y, s).

Definition 33. Let (X, r) be a solution. Suppose that Y ⊆ X satisfies that r(Y × Y ) =
Y ×Y . We denote r|Y the restriction of r to Y ×Y and we say that (Y, rY ) is a subsolution
of (X, rX).

Proof of Theorem C. Let B be a soluble brace and let

B = I0 ⊇ I1 ⊇ . . . ⊇ In = 0

be an abelian ideal series of B. For every 1 ≤ k ≤ n, we take the canonical epimor-
phism ρk : B → B/Ik. It turns out that the ρk are epimorphisms between the associated 
solutions (B, rB) and (B/Ik, rB/Ik). Moreover, Ik = Ker ρk ∈ B/ Ker ρk and

ρk(Ik−1, rB|Ik−1) = (Ik−1/Ik, rB/Ik |Ik−1/Ik)

is a trivial subsolution, as Ik−1/Ik is abelian. Therefore, (B, rB) is soluble at 0.
Now, assume that the associated solution (B, rB) of a brace B is soluble at 0. Then, 

there exist a sequence of subsets

Xt = {0} ⊆ Xt−1 ⊆ X1 ⊆ X0 = B,

solutions (Yk, sk), and epimorphisms fk : (B, rB) → (Yk, sk), such that Xk ∈ B/ Ker fk
and fk(Xk−1, rB |Xk−1) is a trivial subsolution of (Yk, sk), for every 1 ≤ k ≤ t.

Fix 1 ≤ k ≤ t and assume that Xk−1 is an ideal. There exists a brace epimor-
phism f̄k : G(B, rB) → G(Yk, sk) which extends fk, and by the universal property 
described in [15], there exists an epimorphism g : G(B, rB) → B such that g(b) = b

for every b ∈ B. Thus, B ∼= G(B, rB)/ Ker g. Since f̄k is an epimorphism, f̄k(Ker g)
is an ideal of G(Yk, sk), and we can consider the induced epimorphism of braces 
ϕk : B → G(Yk, sk)/f̄k(Ker g) such that

ϕk(b) := f̄k(b + Ker g) = f̄k(b) + f̄k(Ker g) = fk(b) + f̄k(Ker g) for every b ∈ B.
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Observe that Ker g ∩ B = 0, and therefore, {fk(0)} = f̄k(Ker g) ∩ Yk. Since 0 ∈ Xk

and Xk ∈ B/ Ker fk, it follows that Xk = Kerϕk is an ideal of B. Moreover, 
fk(Xk−1, rB|Xk−1) is a trivial subsolution of (Yk, sk), which implies that Xk−1/Xk is 
isomorphic to an abelian subbrace of G(Yk, sk)/f̄k(Ker g).

Hence, we have that

0 = Xt ⊆ Xt−1 ⊆ . . . ⊆ X1 ⊆ X0 = B

is an ideal series such that, for every 1 ≤ k ≤ t, Xk−1/Xk is an abelian brace; that is, B
is a soluble brace. �
Proof of Theorem D. Let (X, r) be a solution and assume that G := G(X, r) is a soluble 
brace with an abelian ideal series

G = I0 ⊇ I1 ⊇ . . . ⊇ In = 0

such that In−1 ∩X �= ∅. Then, for every 1 ≤ k ≤ n − 1, we take Xk := Ik ∩X �= ∅ and 
Xn := {x0} for some x0 ∈ Xn−1. Thus, we obtain a chain of subsets

Xn = {x0} ⊆ Xn−1 ⊆ . . . ⊆ X1 ⊆ X0 = X

Fix 1 ≤ k ≤ n −1. Recall that the inclusion map ι : X ↪→ G satisfies rG(ι ×ι) = (ι ×ι)r, 
where rG is the associated solution with G. Then, the map fk : X → G/Ik, given by 
fk(x) = ι(x)Ik provides an epimorphism between (X, r) and (G/Ik, rG/Ik). Observe 
that Xk ∈ Ker fk and f(Xk−1, r|Xk−1) = (Ik−1/Ik, rG/Ik |Ik−1/Ik) is a trivial solution, as 
Ik−1/Ik is an abelian brace.

Hence, we conclude that (X, r) is soluble at x, for every x ∈ In−1 ∩X. �

Theorems C and D can be applied to the case of multipermutation solutions.
Let (X, r) be a solution, given by r(x, y) = (λx(y), ρy(x)), for all x, y ∈ X. The 

so-called retraction relation ∼ on X is defined as x ∼ y if λx = λy and ρx = ρy.
If [x] denotes the ∼-class of x ∈ X, then a natural induced solution Ret(X, r) =

(X/ ∼, ̄r) called the retraction of (X, r) arises, where r̄ is defined by

r̄([x], [y]) = ([σx(y)], [τy(x)]), for all [x], [y] ∈ X/ ∼.

We can iterate this process and define inductively

Ret1(X, r) = Ret(X, r),

Retn+1(X, r) = Ret(Retn(X, r)), for all n ≥ 1.

A solution (X, r) is said to be a multipermutation solution of level m, if m is the 
smallest natural such that Retm(X, r) has cardinality 1.
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Let B be a brace. We define inductively the so-called socle series as Soc1(B) = Soc(B)
and for every n ≥ 1, Socn+1(B) is the ideal of B such that Socn+1(B)/ Socn(B) =
Soc (B/ Socn(B)). Then, following [15], we say that B has finite multipermutational level
m, if m is the smallest natural such that the socle series sequence reaches B.

The following results characterise multipermutation solutions by means of the multi-
permutational property of braces.

Theorem 34 ([5, Proposition 5.3]). Let B be a brace. The solution associated (B, rB) is 
a multipermutation solution of level m if, and only if, B has finite multipermutational 
level m.

Theorem 35 ([12, Theorem 4.13]). Let (X, r) be a solution. Then, (X, r) is a multiper-
mutation solution if, and only if, G(X, r) is a multipermutational solution.

We present proofs of Corollaries 2 and 3.

Proof of Corollary 2. Since (B, rB) is of finite multipermutational level, Theorem 34
yields that the socle series reaches B at some m ≥ 1:

0 ⊆ Soc(B) ⊆ . . . ⊆ Socm(B) = B

Note that the socle series is an abelian series, as Sock(B)/ Sock−1(B)
= Soc(B/ Sock−1(B)) and the socle of every brace is abelian. Therefore, B is a sol-
uble brace. Hence, Theorem C yields (B, rB) is a soluble solution at 0. �
Proof of Corollary 3. Write G := G(X, r) the structure brace of (X, r). By Theorem 35, 
the associated solution (G, rG) is a multipermutation solution, and by Theorem 34, the 
socle series of G reaches G at some m ≥ 1:

0 ⊆ Soc(G) ⊆ . . . ⊂ Socm(G) = G

Therefore, G is a soluble brace with an abelian series such that Soc(G) ∩ X is not an 
empty set. Theorem D yields the final result. �
6. A worked example

The aim of this section is to give an example of a brace of abelian type of order 32 that 
satisfies earlier definitions for solubility, but is not soluble according to our definition.

Let B be a brace. Denote B1 := B and Bi+1 := Bi ∗ Bi for every i ≥ 1. Bearing in 
mind the classical definition of group solubility, the following definition turns out to be 
natural.

Definition 36. A brace B is said to be weakly soluble if the series {Bn}n∈N trivialises at 
some n0 ∈ N and Bn/Bn+1 is abelian for every n ∈ N.
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Then, the following question naturally arises:

Question 37. Are solubility and weak solubility of braces equivalent definitions? If not, 
can these definitions be equivalent in braces of X-type for some specific class of groups X? 
Natural candidates are braces of soluble type, or more specific, braces of abelian type.

We answer negatively the question by constructing an example of a brace of abelian 
type which is weakly soluble but not soluble. This example is especially interesting 
because, such brace has exactly three ideals and just one maximal subbrace, and so it is 
very close to be simple.

Example 38. Let B = 〈a〉 × 〈b〉 × 〈c〉 × 〈d〉 ∼= C4 × C2 × C2 × C2, whose operation is 
written additively. The group B has automorphisms e, f , h given by

e : a �−→ a + c + d f : a �−→ a + b + c h : a �−→ a

b �−→ 2a + c b �−→ 2a + b b �−→ b

c �−→ b c �−→ c c �−→ c

d �−→ 2a + c + d d �−→ c + d d �−→ 2a + d.

Note that h2 = 1, f2 = e4, e8 = 1, hfh−1 = f , heh−1 = e5, and fef−1 = e−1. It 
follows that the group C = 〈e, f, h〉 has order 32 and that every element of C can be 
written in the form erfsht with 0 ≤ r ≤ 1, 0 ≤ s ≤ 1, 0 ≤ t ≤ 7. We can construct 
the semidirect product G = [B]C with respect to this action, whose elements will be 
written in multiplicative notation like in [3]. We will also call e, f , h, a, b, c, d the images 
of the corresponding elements of C and B by the embeddings of C and B in G. From 
now on, elements in B are written with additive notation whenever are considered in the 
additive group of B and with multiplicative notation whenever are considered in G. This 
difference does not suppose a notation clash.

Let D = 〈a3be, af, ch〉 ≤ G. We observe that the image of D under the natural 
projection from G to C coincides with C. Therefore, |D| ≥ |C|. Furthermore,

(a3be)2 = a3bea3be = a3ba3cda2ce2 = bde2,

(a3be)4 = bde2bde−2e4 = bda2bbce4 = a2bce4,

(a3be)8 = a2bce4a2bce−4 = 1,

(a3be)5 = a3bea2bce4 = a3ba2a2cbe5 = a3ce5,

(a3be)7 = bde2a3ce5 = bdaba2ce7 = a3cde7,

(af)2 = afaf = aabcf2 = a2bce4 = (a3be)4,

(ch)2 = chch = 1,

(af)(a3be)(af)−1 = a(a3ba3bce7)a−1 = a(ace7)a−1 = a2ca3e7 = (a3be)7,
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Table 2
Bijective 1-cocycle associated to the brace (B, +, ·).
x δ(x) x δ(x) x δ(x) x δ(x)
1 0 h c f a fh a + c
e 3a + b eh 3a ef b + c + d efh c + d
e2 b + d e2h 2a + b + c + d e2f 3a + d e2fh a + c + d
e3 3a + b + d e3h a + d e3f b e3fh 2a
e4 2a + b + c e4h 2a + b e4f a + b + c e4fh a + b
e5 3a + c e5h 3a + b + c e5f 2a + d e5fh 2a + b + d
e6 2a + c + d e6h d e6h 3a + b + c + d e6fh a + b + d
e7 3a + c + d e7h a + b + c + d e7f 2a + c e7fh b + d

(ch)(a3be)(ch)−1 = c(a3be5)c−1 = a3bce5c = a3bcece−1e5

= a3bcbe5 = a3ce5 = (a3be)5,

(ch)(af)(ch) = c(af)c−1 = cacf = af.

We conclude that D satisfies the same relations as C and so D is isomorphic to a quotient 
of C. Consequently, D is a group of order 32 isomorphic to C.

Our next step is to prove that the intersection of D and C (regarded as a subgroup of 
G) is trivial. In order to do so, it will be enough to note that the intersection contains no 
elements of order 2. It is clear that e4 is the only element of order 2 in 〈e〉. Suppose now 
that we have an element of order 2 in C of the form erh. Since erherh = e6rh2 = e6r = 1, 
we conclude that 4 | r. This gives the elements h, e4h. Suppose now that we have an 
element of the form erf of order 2. Then erferf = ere−rf2 = e4 �= 1. Suppose now 
that erfh is an element of C of order 2. Then erfhefh = erfe5rfh2 = ere−5rf2 =
e−4re4 = e4(1−r) = 1, which implies that 8 | 4 − 4r, that is, 2 | 1 − r. This gives 
the elements efh, e3fh, e5fh, e7fh of order 2. We must prove that the corresponding 
elements in D under the natural isomorphism between C and D are different. It is clear 
that (a3be)4 = a2bce4 �= e4 and ch �= h. Moreover,

(a3be)4(ch) = a2bce4ch = a2bcce4h = a2be4h �= e4h,

(a3be)(af)(ch) = a3becafh = a3bbacdefh = cdefh �= efh,

(a3be)3(af)(ch) = (a3be)2cdhfe = bde2cdefh = bda2cbcde3fh

= a2e3fh �= e3fh,

(a3be)5(af)(ch) = (a3be)2a2e3fh = bde2a2e3fh = a2bdhfe5 �= hfe5,

(a3be)7(af)(ch) = bde2a2bde5hf = bda2a2bcde7fh = bce7fh �= e7fh.

We conclude that D ∩ C = {1}. As mentioned before, if we write D = {δ(c)c | c ∈ C}, 
then this leads to a bijective 1-cocycle δ : C −→ B with allows us to construct a brace 
structure on B.

For the sake of completeness, we include in Table 2 all values of the bijective 1-cocycle 
associated to this brace of abelian type.
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We also observe that these computations can be done directly with a computer algebra 
system like GAP [17]. In the YangBaxter library of Vendramin and Konovalov [27], this 
brace is listed as SmallBrace(32, 24003).

Our next step is to determine the ideal structure of the brace. We start by classifying 
left ideals, which can be seen here as λ-invariant subgroups of B which are invariant 
under the conjugation by C in G.

Let us begin with all subgroups of order 2. We consider an element of B of the form 
ra + sb + tc + ud with 0 ≤ r ≤ 3, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, 0 ≤ u ≤ 1 fixed under the action 
of C. Then, under the action of e,

e(ra + sb + tc + ud) = r(a + c + d) + s(2a + c) + tb + u(2a + c + d)

= (r + 2s + 2u)a + tb + (s + u)c + (r + u)d

= ra + sb + tc + ud.

It follows that 4 | 2s + 2u, 2 | t − s, 2 | s + u − t, 2 | r, consequently 2 | t, 2 | s, 2 | r, and 
2 | u. Therefore, ra + sb + tc + ud ∈ 〈2a〉. Since f(2a) = h(2a) = 2a, we obtain that the 
unique C-invariant subgroup of B of order 2 is 〈2a〉.

Now suppose that B has a subgroup L of order 4 that is invariant under the con-
jugation by C in G. We observe that the number of elements of L of order 2 must be 
odd and so, by the action of C, there should be at least an element of order 2 in L
that is fixed under the action of C. This element must be 〈2a〉. Now we can consider 
the action of C on B/〈2a〉. The same argument as before shows that there is at least an 
element of order 2 of B/〈2a〉 fixed under the action of C. Furthermore, the action of C
on B/〈2a〉 = 〈ā, ̄b, ̄c, d̄〉 can be described as follows:

e(ā) = ā + c̄ + d̄, f(ā) = ā + b̄ + c̄, h(ā) = ā

e(b̄) = c̄, f(b̄) = b̄, h(b̄) = b̄

e(c̄) = b̄, f(c̄) = c̄, h(c̄) = c̄

e(d̄) = c̄ + d̄, f(d̄) = c̄ + d̄, h(d̄) = d̄.

Now take an element of order 2, rā + sb̄ + tc̄ + ud̄ of B/〈2a〉, fixed under the action of 
C, with r, s, t, u ∈ {0, 1}. Then

e(rā + sb̄ + tc̄ + ud̄) = r(ā + c̄ + d̄) + sc̄ + tb̄ + u(c̄ + d̄)

= rā + tb̄ + (r + s + u)c̄ + (r + u)d̄

= rā + tb̄ + (r + s + u)c̄ + (r + u)d̄,

and so 2 | s − t, 2 | r + s + u − t, 2 | r, which implies that 2 | r, 2 | u and 2 | s − t. Hence 
this element belongs to 〈b̄ + c̄〉. Clearly, this element is fixed under the action of G and 
so the unique C-invariant subgroup of B of order 4 is 〈2a, b + c〉.
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Let us compute now the C-invariant subgroups of order 8 of B. Let M be one of 
these subgroups. A similar argument as before shows that M should contain 〈2a〉 and 
that M/〈2a〉 contains the unique subgroup C-invariant subgroup of order 2 of B/〈2a〉. 
Consequently, 〈2a, b + c〉 ≤ M . Hence C acts on M/〈2a, b + c〉 = 〈ã, ̃b, d̃〉 by means of

e(ã) = ã + b̃ + d̃, f(ã) = ã, h(ã) = ã,

e(b̃) = b̃, f(b̃) = b̃, h(b̃) = b̃,

e(d̃) = b̃ + d̃, f(d̃) = b̃ + d̃, h(d̃) = d̃.

Now let us consider an h-invariant element of B of the form rã + sb̃ + ud̃, with r, s, 
u ∈ {0, 1}. We have that

e(rã + sb̃ + ud̃) = r(ã + b̃ + d̃) + sb̃ + u(b̃ + d̃)

= rã + (r + s + u)b̃ + (r + u)d̃ = rã + sb̃ + ud̃.

We conclude that 2 | r + u and 2 | r, consequently this element belongs to 〈b̃〉. As this 
element is clearly C-invariant, we obtain that the only C-invariant subgroup of B is 
〈2a, b, c〉.

Now we compute the C-invariant subgroups of order 16 of B. An argument similar to 
the one used for the C-invariant subgroups of order 16 shows that they should contain 
〈2a, b, c〉. The action of C on B/〈2a, b, c〉 = 〈â, d̂〉 is given by

e(â) = â + d̂, f(â) = h(â) = â,

e(d̂) = d̂, f(d̂) = h(d̂) = d̂.

Let râ + ud̂ be a C-invariant element of order 2 of B/〈2a, b, c〉, with r, u ∈ {0, 1}. Then

e(râ + ud̂) = râ + (r + u)d̂ = râ + ud̂,

which implies that 2 | r and so this element belongs to 〈d̂〉. Therefore, the unique C-
invariant subgroup of C of order 16 is 〈2a, b, c, d〉.

Left ideals of B. We conclude that the left ideals of this brace, regarded in the additive 
group, are L0 := {0}, L1 := 〈2a〉, L2 := 〈2a, b + c〉, L3 := 〈2a, b, c〉, L4 := 〈2a, b, c, d〉, 
L5 := B.

Our next step is to compute which of these left ideals correspond are in fact ideals. 
We observe that

(a3be)3(af)(ch) = (bde2)(a3be)(ac)(fh) = bde2a3babcdefh = bde2cdefh

= bda2cbcde3fh = a2e3fh,
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that is, δ(e3fh) = 2a. If e3fh belongs to a normal subgroup N of C, then so does 
fe3fhf−1 = e5fh and, consequently, e2 ∈ N . Consequently, 〈2a〉 cannot correspond to 
an ideal of the brace. Moreover,

(a3be)2 = a3bea3be = a3ba3cda2ce2 = bde2,

which implies that δ(e2) = b +d and so if 2a belongs to an ideal, so does b +d. The smallest 
left ideal of B containing 2a and b + d must be 〈2a, b, c, d〉. As δ(e3fh) = 2a, δ(h) = c, 
δ(e2) = b + d, and δ(e4) = 2a + b + c, we have that E = 〈e3fh, h, e2, e4〉 = 〈e2, ef, h〉
has a normal subgroup 〈e2〉 of order 4 whose quotient is isomorphic to an elementary 
abelian group of order 4, that is, |E| = 16. As |C| = 32, E is a normal subgroup of C.

Ideals of B. We conclude that the unique non-trivial ideal of B is I1 := 〈2a, b, c, d〉 =
L4, regarded as a generating subgroup of the additive group.

B is weakly soluble. We compute the series of iterated star products: B1 = B, Bn+1 :=
Bn ∗Bn, for every n ≥ 1.

We first compute B∗B. We note that this is an ideal of B containing 〈c +d, 2a +b +c, b +
c, 2a +c, b +c, 2a, c, 2a〉 = 〈2a, b, c, d〉, and so it is easy to see that B∗B = 〈2a, b, c, d〉 = I1.

Now let us compute I1 ∗ I1. First of all, we remember that the multiplicative group 
of B ∗B = I1 corresponds to E = 〈e2, ef, h〉. Since

e2(2a) = e(2a) = 2a ef(2a) = e(2a) = 2a,

e2(b) = e(2a + c) = 2a + b, ef(b) = e(2a + b) = c,

e2(c) = e(b) = 2a + c, ef(c) = e(c) = b,

e2(d) = e(2a + c + d) = b + c + d, ef(d) = e(c + d) = 2a + b + c + d,

and

h(2a) = 2a, h(b) = b,

h(c) = c, h(d) = 2a + d,

we see that I1 ∗ I1 = 〈2a, b + c〉 = L2. The smallest ideal of B containing I1 ∗ I1 is again 
I1.

Finally, let us compute L2∗L2. Since δ(e3fh) = 2a, δ(e4) = 2a +b +c, and δ(e7fh) = bc, 
we see that

e3fh(2a) = 2a, e4(2a) = 2a,

e3fh(b + c) = e3f(b + c) = e3(2a + b + c) = b + c, e4(b + c) = b + c,

we obtain that 〈e7fh, e4〉 acts trivially on 〈2a, b + c〉 and so L2 ∗ L2 = {0}.
Derived ideal and subideal series. We have obtained that B has an ideal derived series

B ⊇ B ∗B = I1 = 〈2a, b, c, d〉
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terminating at I1, of order 16, and a subideal derived series

B ⊇ B ∗B = 〈2a, b, c, d〉 ⊇ (B ∗B) ∗ (B ∗B) = 〈2a, b + c〉
⊇ ((B ∗B) ∗ (B ∗B)) ∗ ((B ∗B) ∗ (B ∗B)) = {0}

terminating at {0}. Hence, B is a weakly soluble brace which is not soluble. Moreover, 
I1 = B ∗B is a chief factor which is not isomorphic to a elementary abelian p-group for 
any prime p. Therefore, Theorem B does not hold for B.

Maximal subbraces of B. Our next goal is to check that this left brace possesses a 
unique maximal left subbrace, namely I1. It is enough to show that if a subbrace of 
B contains an element of additive order 4, then this subbrace coincides with B. Let R
be the multiplicative group of the subbrace generated by k and let S be the additive 
group of the subbrace generated by k. An element of additive order 4 corresponds to 
an element of the multiplicative group that does not belong to 〈e2, ef, h〉. Observe that 
2k = 2a = δ(e3fh).

Suppose that f ∈ R, then δ(f) = a ∈ S, and so 2a ∈ S and 3a ∈ S. In particular, 
f ∈ R, eh ∈ R, and e3fh ∈ R. It follows that e3h ∈ R, and so a + d ∈ S, e2 ∈ R, and so 
b + c ∈ S, and e5fh ∈ R, which implies that 2a + b + d ∈ S. It follows that a, b, c, d ∈ S

and so B = S.
Suppose that e2m+1 ∈ R for a given integer m. Then e ∈ R and e3 ∈ R. It follows that 

δ(e) = 3a + b ∈ S and δ(e3) = 3a + b + d ∈ S, which implies that their difference d ∈ S. 
As δ(e6h) = d, we have that e6h ∈ R and so h ∈ R. Since 2(3a + b) = 2a = δ(e3fh) ∈ S, 
we have that e3fh ∈ R and we conclude that f ∈ R. In particular, S = K and R = C.

If e2mfh ∈ R for a given integer m, we obtain that e2m+1fh(e3fh)−1 = e2m−3 ∈ R

and so e ∈ R, so we are in the previous case.
Suppose now that e2mf ∈ R for an integer m. Then e2mf(e3fh)−1 = e2mfh−1f−1e−3

= e2mhe−3 = e2m−15h = e2m+1h ∈ R. Since (e2m+1h)2 = e6(2m+1)h2 = e12m+6 =
e4n+6 ∈ R and (e2mf)2 = e4 ∈ R, we conclude that e6 ∈ R and so e2 ∈ R. Since 
e2mf ∈ R, we obtain that f ∈ R and the situation is reduced to a previous case.

Finally, suppose that e2m+1h ∈ R for an integer m. Then e3fh ∈ R and 
e3fh(e2m+1h)−1 = e3fe−(2m+1) = e3+2m+1f = e2m+4f ∈ R and the situation is re-
duced to the previous case.

We conclude that the unique maximal subbrace of B is 〈2a, b, c, d〉.
Minimal example. We have checked with GAP [17] and its YangBaxter library [27] that 

all weakly soluble skew braces of order up to 31 are soluble.
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