000136441 001__ 136441
000136441 005__ 20240826132401.0
000136441 0247_ $$2doi$$a10.1016/j.pecs.2024.101176
000136441 0248_ $$2sideral$$a139372
000136441 037__ $$aART-2024-139372
000136441 041__ $$aeng
000136441 100__ $$aZapater, D.
000136441 245__ $$aMultifunctional fluidized bed reactors for process intensification
000136441 260__ $$c2024
000136441 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136441 5203_ $$aFluidized bed reactors (FBRs) are crucial in the chemical industry, serving essential roles in gasoline production, manufacturing materials, and waste treatment. However, traditional up-flow FBRs have limitations in applications where rapid kinetics, catalyst deactivation, sluggish mass/heat transfer processes, particle erosion or agglomeration (clustering) occur. This review investigates multifunctional FBRs that can function in multiple ways and intensify processes. These reactors can reduce reaction steps and costs, enhance heat and mass transfer, make processes more compact, couple different phenomena, improve energy efficiency, operate in extreme fluidized regimes, have augmented throughput, or solve problems inherited by traditional reactor configurations. They address constraints associated with conventional counterparts and contribute to favorable energy, fuels, and environmental footprints. These reactors can be classified as two-zone, vortex, and internal circulating FBRs, with each concept summarized, including their advantages, disadvantages, process applicability, intensification, visualization, and simulation work. This discussion also includes shared considerations for these reactor types, along with perspectives on future advancements and opportunities for enhancing their performance.
000136441 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000136441 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136441 700__ $$aKulkarni, S.R.
000136441 700__ $$aWery, F.
000136441 700__ $$aCui, M.
000136441 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000136441 700__ $$0(orcid)0000-0002-2494-102X$$aMenendez, M.$$uUniversidad de Zaragoza
000136441 700__ $$aHeynderickx, G.J.
000136441 700__ $$aVan Geem, K.M.
000136441 700__ $$aGascon, J.
000136441 700__ $$aCastaño, P.
000136441 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000136441 773__ $$g105 (2024), 101176 [37 pp.]$$pPror. energy combust. sci.$$tProgress in Energy and Combustion Science$$x0360-1285
000136441 8564_ $$s18813056$$uhttps://zaguan.unizar.es/record/136441/files/texto_completo.pdf$$yVersión publicada
000136441 8564_ $$s2043182$$uhttps://zaguan.unizar.es/record/136441/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136441 909CO $$ooai:zaguan.unizar.es:136441$$particulos$$pdriver
000136441 951__ $$a2024-08-22-13:18:07
000136441 980__ $$aARTICLE