000136451 001__ 136451
000136451 005__ 20240826132401.0
000136451 0247_ $$2doi$$a10.1016/j.foodres.2024.114842
000136451 0248_ $$2sideral$$a139366
000136451 037__ $$aART-2024-139366
000136451 041__ $$aeng
000136451 100__ $$0(orcid)0000-0003-4460-3543$$aMerino, Natalia$$uUniversidad de Zaragoza
000136451 245__ $$aDynamics of microbiome and resistome in a poultry burger processing line
000136451 260__ $$c2024
000136451 5060_ $$aAccess copy available to the general public$$fUnrestricted
000136451 5203_ $$aTraditionally, surveillance programs for food products and food processing environments have focused on targeted pathogens and resistance genes. Recent advances in high throughput sequencing allow for more comprehensive and untargeted monitoring. This study assessed the microbiome and resistome in a poultry burger processing line using culturing techniques and whole metagenomic sequencing (WMS). Samples included meat, burgers, and expired burgers, and different work surfaces.
Microbiome analysis revealed spoilage microorganisms as the main microbiota, with substantial shifts observed during the shelf-life period. Core microbiota of meat and burgers included Pseudomonas spp., Psychrobacter spp., Shewanella spp. and Brochothrix spp., while expired burgers were dominated by Latilactobacillus spp. and Leuconostoc spp. Cleaning and disinfection (C&D) procedures altered the microbial composition of work surfaces, which still harbored Hafnia spp. and Acinetobacter spp. after C&D. Resistome analysis showed a low overall abundance of resistance genes, suggesting that effective interventions during processing may mitigate their transmission. However, biocide resistance genes were frequently found, indicating potential biofilm formation or inefficient C&D protocols.
This study demonstrates the utility of combining culturing techniques and WMS for comprehensive of the microbiome and resistome characterization in food processing lines.
000136451 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A06-23R$$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-02441$$9info:eu-repo/grantAgreement/ES/MCIU/PID2021-123404NB-I00
000136451 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000136451 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000136451 700__ $$0(orcid)0000-0003-3752-4660$$aPagán, Elisa
000136451 700__ $$0(orcid)0000-0001-5053-8309$$aBerdejo, Daniel$$uUniversidad de Zaragoza
000136451 700__ $$aWorby, Colin J.
000136451 700__ $$aYoung, Mark
000136451 700__ $$aManson, Abigail L.
000136451 700__ $$0(orcid)0000-0002-0238-6328$$aPagán, Rafael$$uUniversidad de Zaragoza
000136451 700__ $$aEarl, Ashlee M.
000136451 700__ $$0(orcid)0000-0002-7629-8101$$aGarcía-Gonzalo, Diego$$uUniversidad de Zaragoza
000136451 7102_ $$12008$$2640$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Nutrición Bromatología
000136451 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000136451 773__ $$g193 (2024), 114842 [11 pp.]$$pFood res. int.$$tFood Research International$$x0963-9969
000136451 8564_ $$s1528707$$uhttps://zaguan.unizar.es/record/136451/files/texto_completo.pdf$$yVersión publicada
000136451 8564_ $$s2640280$$uhttps://zaguan.unizar.es/record/136451/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000136451 909CO $$ooai:zaguan.unizar.es:136451$$particulos$$pdriver
000136451 951__ $$a2024-08-22-13:18:18
000136451 980__ $$aARTICLE