

Curso Académico: 2022/23

29239 - Bioquímica estructural

Información del Plan Docente

Año académico: 2022/23

Asignatura: 29239 - Bioquímica estructural

Centro académico: 229 - Facultad de Ciencias de la Salud y del Deporte

Titulación: 441 - Graduado en Nutrición Humana y Dietética

Créditos: 7.0 Curso: 1

Periodo de impartición: Primer semestre Clase de asignatura: Formación básica

Materia:

1. Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

La asignatura "Bioquímica estructural? tiene como objetivos exponer a los alumnos a los conceptos fisicoquímicos básicos sobre los que descansa la diversidad estructural y funcional de las biomoléculas. Nuestra intención es que los estudiantes adquieran una adecuada comprensión de la diversidad estructural y funcional de las biomoléculas sobre la que se desarrollan todos los procesos fisiológicos, incluido el de la nutrición. Consecuentemente, se fomenta que el alumno adquiera la capacidad de identificar y exponer los principios físicoquímicos que sustentan la relación estructura-función de las biomoléculas y la organización celular, para que los relacione con los procesos biológicos y bioquímicos sobre los que se asientan, a su vez, los procesos fisiológicos y nutricionales.

Estos planteamientos y objetivos están alineados con los siguientes Objetivos de Desarrollo Sostenible (ODS) de la Agenda 2030 de Naciones Unidas (https://www.un.org/sustainabledevelopment/es/), de tal manera que la adquisición de los resultados de aprendizaje de la asignatura proporciona capacitación y competencia para contribuir en cierta medida a su logro:

Objetivo 3: Salud y bienestar Objetivo 4: Educación de calidad

Objetivo 12: Producción y consumo responsables

1.2. Contexto y sentido de la asignatura en la titulación

Esta asignatura forma parte del Módulo ?Formación Básica? dedicado a que el estudiante conozca y aplique los conceptos y principios científicos sobre los que se establecen los estudios y conocimientos sobre el funcionamiento del organismo humano, sin excluir otros aspectos de naturaleza sociológica, psicológica o cultural que pueden afectar al comportamiento de grupos y/o individuos, por lo que engloba las diferentes disciplinas científicas necesarias para una comprensión global del proceso nutricional. Además de la "Bioquímica estructural?, este módulo incluye las asignaturas de Anatomía humana, Fisiología humana, Bioquímica: metabolismo y expresión genica, Bioestadística, Antropología y sociología de la alimentación, Psicología y comunicación en ciencias de la salud y Nutrición humana que, a excepción de las dos últimas, se imparten durante el primer curso y representan los fundamentos sobre los que puede desarrollarse una comprensión integrada del proceso nutricional.

1.3. Recomendaciones para cursar la asignatura

Son recomendables, aunque no imprescindibles, conocimientos previos de química y biología. Para aprobar la asignatura son imprescindibles: la superación de las prácticas y aprobar los exámenes teóricos. Dada la gran cantidad de conceptos no intuitivos que contiene esta materia se recomienda al alumno un trabajo continuo, llevar la asignatura "a la semana" ?cuando no se pueda al día- y resolver diligentemente las dudas durante los horarios de tutorías.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Al superar la asignatura, el estudiante será más competente para...

Conocer los fundamentos fisicoquímicos, bioquímicos y biológicos de utilidad y aplicación en la comprensión de la nutrición humana y la dietética.

Conocer la estructura y función del cuerpo humano a nivel molecular.

Comprender y utilizar la terminología empleada en ciencias de la salud.

Ser capaz de fundamentar sobre principios científicos la intervención del dietista nutricionista, supeditando su actuación profesional a la evidencia científica.

Reconocer la necesidad de mantener y actualizar la competencia profesional, prestando especial importancia al aprendizaje, de manera autónoma y continuada, de nuevos conocimientos, productos y técnicas en nutrición y alimentación, así como adquirir una motivación por la calidad.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Demostrar que se conocen los fundamentos químicos, bioquímicos y biológicos de aplicación en nutrición humana y dietética.

Demostrar un conocimiento básico de la estructura y función del cuerpo humano a nivel molecular (es decir de las biomoléculas).

Demostrar que se comprende y se utiliza, de forma adecuada y precisa, la terminología bioquímica relevante en ciencias de la salud

Demostrar capacidad de fundamentar los principios científicos que sustentan la intervención del dietista nutricionista, supeditando su actuación profesional a la evidencia científica.

Demostrar capacidad de mantener y actualizar la competencia profesional, prestando especial importancia al aprendizaje, de manera autónoma y continuada, de nuevos conocimientos, productos y técnicas en nutrición y alimentación, así como a la motivación por la calidad.

2.3. Importancia de los resultados de aprendizaje

La Nutrición, más allá de sus determinantes mejor conocidos (como los aspectos carenciales y/o los requerimientos energéticos), está despertando un creciente interés al reconocerse como un factor con gran incidencia sobre el estado de salud de individuos y poblaciones. Al mismo tiempo, nuestra comprensión molecular de los procesos nutricionales se ve continuamente incrementada como resultado de la aportación continua de nuevas investigaciones biológicas y biomédicas cuya aplicación puede derivar en la aparición de nuevas tendencias dietéticas o de nuevos productos alimentarios. La emergencia y utilización de estas aplicaciones en sociedades altamente reguladas, como la nuestra, no siempre puede asegurar su carácter beneficioso sobre la salud de los individuos, o su inocuidad, pues los marcos de regulación o legislación preexistentes pueden ser desbordados por la propia naturaleza de las innovaciones propuestas. Se espera que los conocimientos proporcionados por esta asignatura suministren unas bases mínimas para que los estudiantes puedan establecer criterios sobre la racionalidad potencial de propuestas novedosas en el área de la nutrición, a la luz de la evidencia científica.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion:

Pruebas de evaluación periódica. En dos ocasiones durante el curso se requerirá a los alumnos presentes en las sesiones teóricas que respondan por escrito a 5 preguntas breves sobre contenidos ya impartidos. Estas pruebas se realizarán sin previo aviso y no tienen carácter obligatorio.

Exámenes escritos:

Los exámenes escritos se realizarán de forma presencial. Las pruebas constarán de dos secciones: I) un examen tipo test (con un valor del 30%) y II) una sección de desarrollo (con un valor del 70%) constituida por preguntas y/o problemas. La primera sección permitirá evaluar con amplitud los conocimientos del estudiante, y la segunda permitirá valorar la profundidad de dichos conocimientos y la capacidad del estudiante para exponerlos y aplicarlos.

Durante el curso se realizarán 2 exámenes escritos: I) un examen parcial liberatorio sobre los contenidos de los temas 1-10 y II) un 2º examen parcial (temas 11-19) al que sólo tendrán acceso los alumnos que hayan superado el primer parcial.

Los alumnos que no hayan superado los contenidos teóricos de la asignatura mediante los exámenes anteriores optarán al examen final oficial de la asignatura en el que se evaluarán los contenidos de todo el temario (Temas 1-19).

Prácticas de laboratorio. Se realizarán 7 sesiones prácticas que ilustran conceptos presentados en las sesiones teóricas y favorecen su comprensión. Al final de cada práctica el alumno proporcionará por escrito, identificado con nombre y apellidos, la resolución de las preguntas y ejercicios que se hayan formulado durante la sesión.

La superación de las actividades prácticas, por asistencia o de otro modo es obligatoria para superar la asignatura. Se considerarán superadas las prácticas cuando el alumno asista a todas las sesiones o, caso de no poder hacerlo, cuando realice los ejercicios o trabajos compensatorios que el profesor le indicará previa solicitud del alumno.

Criterios de Evaluación y calificación

La valoración o calificación de las diferentes actividades de evaluación se realizará siguiendo los siguientes criterios y niveles de evaluación

La calificación final otorgada al alumno se obtendrá mediante la evaluación de las actividades propuestas de acuerdo a los siguientes criterios y baremos:

a) Alumnos presenciales:

- 1) Pruebas de evaluación periódicas: no es obligatoria su realización para superar la asignatura. Se evaluarán según la adecuación de las respuestas a las preguntas formuladas. Colectivamente estas pruebas contribuyen un 5% a la calificación final. Individualmente, cada una de las pruebas realizadas durante el curso contribuirá la parte proporcional correspondiente a dicho 5%.
- 2) Exámenes escritos: es imprescindible aprobar cada examen para superar la asignatura. Se evaluarán según la adecuación de las respuestas a las preguntas formuladas y según la claridad de los conceptos aportados por el alumno. Los exámenes escritos contribuyen el 70% a la calificación final.
- 3) Prácticas de laboratorio*: Imprescindible su ejecución para aprobar la asignatura. Los alumnos deberán presentar al final de cada práctica por escrito la resolución de las preguntas y ejercicios que se hayan formulado durante la sesión. La nota de las prácticas representa un 15% de la calificación final una vez que se hayan superado los contenidos teóricos de la asignatura (Exámenes escritos).
- 4) Seminarios de problemas en grupos reducidos: Los alumnos podrán superar este apartado mediante asistencia a los seminarios en los que se desarrollará la utilización de conceptos teóricos ya explicados durante las clases magistrales en la resolución de problemas prácticos. Este apartado contribuye un 10% a la calificación final*.

b) Alumnos no presenciales:

- 1) Exámenes escritos: es imprescindible aprobarlos para superar la asignatura. Se evaluarán según la adecuación de las respuestas a las preguntas formuladas y según la claridad de los conceptos aportados por el alumno. Los exámenes escritos contribuyen el 75% a la calificación final.
- 2) Prácticas de laboratorio y seminarios de problemas*: Imprescindible superar este apartado para aprobar la asignatura. Los alumnos deberán demostrar conocimiento de los procedimientos, operaciones y aplicaciones de las técnicas que comprenden el temario de las prácticas y resolución de problemas de la asignatura. Para ello realizarán una prueba escrita de preguntas cortas y problemas, que contribuye el 25% de la calificación final.
- (*): Las calificaciones de los apartados de prácticas de laboratorio y/o seminarios se guardarán para posteriores convocatorias una vez hayan sido superados.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Esta asignatura es de carácter básico y tiene como meta que el estudiante asimile y utilice apropiadamente los conceptos bioquímicos y moleculares sobre los que, en último término, se asienta la comprensión de los procesos fisiológicos (incluyendo el nutricional). Para ello la asignatura contempla una serie de actividades que incluyen: i) sesiones teóricas, ii) sesiones prácticas y iii) sesiones de resolución de problemas.

Las sesiones teóricas suministran los conceptos esenciales, el léxico científico y una comprensión molecular de los procesos biológicos que el alumno debe asimilar y aprender a utilizar con propiedad.

Las sesiones prácticas y de resolución de problemas tienen por objeto que el estudiante sepa utilizar los conceptos teóricos para resolver situaciones nuevas y para tratar de alcanzar una comprensión más profunda sobre dichos conceptos.

4.2. Actividades de aprendizaje

- 1. PROGRAMA TEÓRICO (50 hr presenciales)
- 2. SESIONES PRÁCTICAS (17,5 hr presenciales)
- 3. RESOLUCIÓN PROBLEMAS / SEMINARIOS (4hr presenciales).

4.3. Programa

TEORÍA

- I. FUNDAMENTOS FISICOQUÍMICOS: 1.- Una función química: La vida. 2.- Enlace químico y estructura molecular. 3.- El agua: estructura y propiedades fisicoquímicas. 4.- Interacciones débiles en medio acuoso. 5.- Compuestos orgánicos. 6.- Reacciones químicas en los seres vivos. 7.-Bioenergética.
- II. COMPOSICIÓN, ESTRUCTURA Y FUNCIONES DE LOS MACRONUTRIENTES: 8.- Aminoácidos, péptidos y proteínas. 9.- Estructura proteica. 10.- Función proteica e importancia nutricional de las proteínas. 11.- Carbohidratos: estructura, función e importancia nutricional. 12.- Fibra. 13.- Lípidos: estructura, función e importancia nutricional. 14.- Nucleótidos y ácidos nucleicos: estructura y función.
- III. NUTRIENTES REGULADORES: 15.- Funciones y mecanismos de acción de las vitaminas hidrosolubles. 16.- Funciones

y mecanismos de acción de las vitaminas liposolubles. 17.- Funciones y mecanismos de acción de los macrominerales. 18.- Funciones y mecanismos de acción de los microminerales. 19.- Elementos traza.

PRÁCTICAS

- P1. Introducción al trabajo de laboratorio. Preparación de disoluciones.
- P2. Valoración de disoluciones.
- P3. Manejo y utilización del pH-metro. Curva de titulación de un aminoácido.
- P4. Electroforesis de proteínas.
- P5. Extracción y separación de pigmentos vegetales.
- P6. Determinación de azucares reductores.
- P7. Determinación cuantitativa de colesterol.

RESOLUCIÓN PROBLEMAS / SEMINARIOS (4hr presenciales).

S1 (2hr)

S2 (2hr)

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

La asignatura consta de 19 temas teóricos, 7 sesiones prácticas y 2 sesiones (en grupos pequeños) para la resolución de problemas. Se realizarán 4 sesiones teóricas semanales de 1 hr de duración y 4 sesiones por semana para la realización de prácticas y/o seminarios de problemas. Los alumnos deberán asistir en promedio a 1 de estas sesiones prácticas cada semana y media (consultar horarios oficiales).

Primer examen parcial: Hacia mediados de noviembre (fecha por acordar) sobre contenidos de los temas 1-10.

Segundo examen parcial: Sólo para alumnos que hayan superado el primer examen parcial. Hacia mediados de enero (fecha por acordar) sobre contenidos temas 11-19.

Examen final: Convocatoria exámenes globales http://www.fccsyd.es/fccsyd/Nutricion_Humana_Ppal.html

4.5. Bibliografía y recursos recomendados

http://psfunizar10.unizar.es/br13/egAsignaturas.php?codigo=29239