l.lllll.
i0f Zaragoza

1 2

' Universidad

23

w
»

Proyecto Fin de Carrera

AraSuite: Integracion de las
aplicaciones de TICO y AraWord.

Autor

Adrian Gémez Llorente

Director

Joaquin Ezpeleta Mateo
Escuela de Ingenieria y Arquitectura (EINA)

2014

Repositorio de 1la Universidad de Zaragoza - Zaguan
http://zaguan.unizar.es

A mi tutor, Joaquin Ezpeleta, por darme la oportunidad de

participar en un gran proyecto y ser pactente ante una dedicacion
que en algunos momentos fue dificil.

A mis padres, por su dedicacion completa, su apoyo incondicional y
por empugjarme para llegar hasta aqui.

A mi familia, por rodearme con su apoyo y escuchar una y otra vez
los entresijos de este proyecto.

A mis amigos y companeros, porque en esta vida hace falta tener

humor para coger fuerzas. En especial a Jorge Pinto, por imprimir
su creatividad en el logotipo de AraSuite.

AraSuite: Integracion de las aplicaciones de TICO y AraWord

RESUMEN

Este proyecto fin de carrera (PFC) se ha realizado con la colaboracién de pro-
fesionales del Colegio Publico de Educacién Especial Alborada (C.P.E.E Albo-
rada) y el Centro Aragonés de Tecnologias para la Educacién (CATEDU).

En este PFC se ha realizado el desarrollo de la aplicacién llamada AraSuite.
Esta aplicacién es un conjunto de herramientas que trabajan de forma conjunta
para hacer més facil el trabajo diario con personas que tienen graves trastornos
en la expresién oral, de forma que su dia a dia se vea mejorado.

El presente proyecto surge como solucién al problema existente en las apli-
caciones TICO y AraWord en las que la informacion es gestionada de manera
independiente por cada una de ellas, generando datos duplicados y un entorno
de trabajo que no es efectivo, haciendo que ambas aplicaciones sean dificiles de
mantener.

AraSuite parte de la situacion actual y crea un entorno que centraliza toda
la gestion de la informacién, ofrece métodos de acceso a los datos y evoluciona
la situacion actual hacia una suite de aplicaciones que se comportan como una
tnica herramienta facilitando el trabajo diario de profesores y tutores.

Con la creacién de AraSuite se agrupa el desarrollo de las aplicaciones exis-
tentes TICO y AraWord bajo un mismo cédigo. Ademas, se define una ar-
quitectura y unos flujos de desarrollo que facilitan la participacién de otros
desarrolladores para anadir nuevas funcionalidades, de esta manera, se preten-
de convertir a AraSuite en un referente entre las aplicaciones opensource que
facilitan la interaccion con personas con dificultades para la expresion oral.

El resultado final obtenido es una aplicacién de cédigo libre que actualmente,
con casi 2500 descargas mensuales, es usada en el mundo entero por miles de
personas. Los usuarios, valoran muy positivamente el uso de la herramienta
destacando su facilidad de uso y el gran aporte que hace en el trabajo diario.
Ademds, gracias a la forma de trabajo definida y a la arquitectura aplicada,
se ha agilizado la entrega de nuevas versiones de AraSuite que hacen que esta
aplicacion esté en continua evolucién.

Indice

Pagina

1. Introduccién 1
1.1. Idea general 1
1.1.1. Las herramientas TICO y AraWord 1

1.2. Objetivos 2
1.3. Estructura del documento L. 2

2. Analisis 4
2.1. Terminologia 4
2.2, Requisitos 4
2.3. Casos de USO 5
2.4. Interfaz de acceso alosdatos 5
2.5. Especificacién del plan de pruebas 6

3. Diseno 8
3.1. Especificacién de casosde uso 8
3.2. Diseno de interfaces 0oL 9
3.3. Diseno delabasededatos 11
3.4. Disefio de la API de acceso adatos 12
3.5. Arquitectura de directorios, 13

4. Desarrollo 15
4.1. Tecnologias empleadas 15
4.2. Herramientas utilizadas 16
4.3. Metodologia de desarrollo 16
4.3.1. Metodologia Scrum L. 17

4.3.2. Metodologia Extreme Programming 17

4.3.3. Eleccién de la metodologia 17

4.4. Interfaces del GalleryManager 18
4.5. Puntos destacados de la implementaciéon 18
4.5.1. Rediseno de la interfaz de resultados de una busqueda . . 19

4.5.2. Localizacién de los archivos del GalleryManager 20

4.5.3. Generacién y distribucion de versiones intermedias 20

4.5.4. Internacionalizacién de la aplicacién 21

4.5.5. Actualizacién automatica de pictogramas 22

4.5.6. Creacién y distribucion de versiones finales con instalador 23

4.5.7. Mejora de la velocidad de importacién 23

4.6. Ejecucion del plan de pruebas 25

4.6.1. Ejecucién de las pruebas unitarias
4.6.2. Ejecucién de las pruebas de sistema
4.6.3. Ejecucién de las pruebas de aceptacion
4.7. Definicién del flujo de desarrollo
4.7.1. Estructura del repositorio
4.7.2. Flujos de trabajo L.
4.8. Generador de versiones oo

. Gestién del proyecto
5.1. Sprints de desarrollo Lo L

. Conclusiones y trabajo futuro
6.1. Trabajo futuroo

. Requisitos
A.1. Requisitos de TICO,
A.2. Requisitos de AraWord L.

. Casos de uso

B.1. Casos deusode Usuario
B.2. Casos de uso de Aplicaciéon
B.3. Casos de uso de AraWord

C. Interfaces del GalleryManager

D. Especificacion casos de uso

D.1. Casosdeusode Usuario
D.2. Casos de uso de Aplicaciéon
D.3. Casos de uso de AraWord

. Métodos de acceso a BD

. Detalles del plan de pruebas

F.1. Planificacion y ejecuciéon de las pruebas
F.1.1. Planificacién de las pruebas unitarias.
F.1.2. Planificacién de las pruebas de sistema
F.1.3. Planificacién de las pruebas de aceptacién del usuario

F.2. Identificacién de los puntos criticos de la aplicacién

. Ejecucién de las pruebas de sistema

G.1. Punto critico 1: La importacién de una base de datos

G.2. Punto critico 2: La exportacién de una busqueda

G.3. Punto critico 3: La actualizacién automéatica de los pictogramas .

G.4. Punto critico 4: Buisquedas en la BD con simbolos extranos y
expresiones regulares

G.5. Punto critico 5: La ejecucién en los distintos sistemas operativos

. Prototipos de interfaces

. Diagrama de la base de datos
I.1. Tablasdelabasededatos

11

30
30

31
31

34
34
35

36
37
38
39

41

48
48
o1
o1

61

65
65
65
65
65
66

68
68
69
69

70
71

72

78

1.2. Relaciones de la basededatos

J. Manual del desarrollador
J.1. Estructura del repositorio,
J.2. Flujos de trabajo L.
J.3. Generacion de la aplicacién L0

K. Generador de versiones
K.1. Analisis del generador de versiones
K.1.1. Requisitos del generador de versiones
K.1.2. Arquitectura del generador de versiones
K.2. Diseno del generador de versiones
K.2.1. Estructura del generador de versiones
K.2.2. Ejecucién del generador de versiones
K.2.3. Interfaz del generador de versiones
K.3. Desarrollo del generador de versiones
K.3.1. Interfaces finales del generador de versiones
K.3.2. Despliegue del generador de versiones
K.4. Conclusiones y trabajo futuro

L. Licencia GNU-GPL v2.0

111

Indice de diagramas

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.

B.1.
B.2.
B.3.
B.4.

C.1.
C.2.
C.3.
Cd4.
C.5.
C.6.
C.7.

D.1.
D.2.
D.3.
D.4.
D.5.
D.6.
D.7.
D.8.
D.9.

Casos de uso general

Diagrama de actividad Copiar pictograma portapapeles
Diagrama de actividad Importar pictogramas
Prototipo de la interfaz principal
DisenodelaBD
APl deaccesoadatos
Arquitectura de directorios L.

Interfaz de exportacién de bisqueda
Interfaz de Actualizar automaticamente pictogramas . .
Grafica comparativa de la velocidad de importacién . .
Gréfica de descargas de AraSuite en Sourceforge
Estructura del repositorio

Anélisis de desviacién de los sprints

Casos de uso general
Casos de uso de Usuario
Casos de uso de Aplicacién
Casos de uso de AraWord

Interfaz principal 0oL
Interfaz de busqueda de imagenes para editar
Interfaz para editar los términos de una imagen
Interfaz para anadir una imagen
Interfaz de exportacién de bisqueda
Interfaz de importacion de BD
Interfaz de Actualizar automaticamente pictogramas . .

Diagrama de actividad Anadir pictograma
Diagrama de actividad Buscar pictogramas
Diagrama de actividad Eliminar pictograma
Diagrama de actividad Importar pictogramas
Diagrama de actividad Modificar pictograma

Diagrama de actividad Copiar pictograma
Diagrama de actividad Importar pictogramas
Diagrama de actividad Exportar pictogramas
Diagrama de actividad Lanzar aplicacién GalleryManager

v

10
11
12
13
14

19
19
24
26
29

30

36
37
39
40

41
42
44
45
46
46
47

52
53
o4
%)
56
57
58
99
60

D.10.Diagrama de actividad Buscar pictogramas automaticamente . . 60

H.1. Prototipo de la interfaz principal 73
H.2. Prototipo de la interfaz Anadir pictograma 74
H.3. Prototipo de la interfaz Editar pictograma 75
H.4. Prototipo de la interfaz Exportar bisqueda 76
H.5. Prototipo de la interfaz Importar base de datos 77
H.6. Prototipo de la interfaz Actualizar pictogramas 7
I.1. DisenodelaBD 78
K.1. Arquitectura del generador de versiones 83
K.2. Estructura del generador de versiones 84
K.3. Secuencia de generaciéon de versiones 85
K.4. Interfaz del generador de versiones 86
K.5. Interfaz del generador de versiones en ejecucién 87
K.6. Interfaz del generador de versiones 88
K.7. Interfaz del generador de versiones en ejecucién 89

1. Introduccion

1.1. Idea general

AraSuite es un conjunto de herramientas desarrolladas con la colaboracién
de profesionales del Colegio Ptblico de Educacién Especial Alborada (C.P.E.E
Alborada) y el Centro Aragonés de Tecnologias para la Educacién (CATEDU)
y tiene como objetivo ofrecer una tnica suite de aplicaciones que trabajen de
forma conjunta para facilitar el trabajo diario con personas con graves trastornos
en la expresion oral, de forma que su autonomia y su relacién con el entorno se
vean mejoradas.

El principal problema de las aplicaciones existentes TICO y AraWord es que
la informacion de pictogramas es gestionada de manera independiente por cada
una de ellas, generando duplicidades que no son efectivas y dificultan la man-
tenibilidad de cada una de las aplicaciones. AraSuite, evoluciona la situacién
actual y crea un entorno que integra toda la gestion de pictogramas, centraliza
los métodos de acceso a la informacién, y elimina las duplicidades existentes.
Ademds, este entorno, es facilmente extensible y sirve como base para la inclu-
sién de futuras aplicaciones dentro en la suite.

Ademas también se pretende organizar el proyecto definiendo flujos de desa-
rrollo que faciliten la participacién de otros desarrolladores a la hora de incorpo-
rar nuevas funcionalidades, llevando asi a AraSuite a ser un referente entre las
aplicaciones opensource que facilitan la interaccién con personas con dificultades
para la expresién oral.

1.1.1. Las herramientas TICO y AraWord

TICO es una aplicacion que comenzoé su desarrollo en el ano 2005 y a través
de distintos proyectos fin de carrera, se ha hecho una herramienta que permite a
los profesores trasladar el concepto de tablero de comunicacién en modo impreso
al formato informatico para aprovechar las posibilidades que este nuevo entorno
ofrece. Para ello, TICO dispone de dos componentes diferenciados que trabajan
conjuntamente para obtener el resultado esperado.

Por un lado est4 el editor que ofrece las herramientas necesarias para disenar
el tablero, permitiendo la insercién de pictogramas y formas, asociacion de ac-

ciones, definicién de flujos de movimiento y seleccion, etc. Y por otro lado esté el
interprete, que ofrece un entorno donde ejecutar y visualizar los tableros de co-
municacién desarrollados previamente en el editor y cuya principal caracteristica
es la herramienta de barrido que permite que el cursor vaya desplazandose de
forma automatica por todos los elementos con accién asignada para facilitar la
interaccion con el tablero a las personas con limitaciones motrices.

AraWord nacié como un proyecto desarrollado por Joaquin Pérez Marco, su
principal objetivo es ofrecer una herramienta que permita la generacién de do-
cumentos de pictogramas a través de la insercién de texto y posterior conversion
automatica del texto introducido en pictogramas.

1.2. Objetivos

El objetivo principal de AraSuite es la adaptacién de las aplicaciones de
TICO y AraWord a un nuevo entorno en el que ambas compartan toda la
informacién relativa a los pictogramas y sus términos asociados, de manera que
las operaciones de insercion, modificacién o borrado de pictogramas o términos,
sean generales para todas las ellas.

Ademas, la solucién desarrollada debe ofrecer una capa de acceso a los datos
que garantice una unica puerta de entrada y una versatilidad suficiente para
que otras aplicaciones puedan ser integradas dentro de la misma suite.

Estas modificaciones deben tener como requisito mantener las exigencias
en nivel de velocidad de acceso a los datos de las aplicaciones y satisfacer las
necesidades que se hayan detectado en cada uno de los casos.

La solucién final debe tener una organizacién y unos flujos de desarrollo
definidos que permitan el trabajo en una comunidad opensource, inicialmente
bajo Sourceforge, pero facilmente adaptable.

Por otro lado también serd necesario arreglar diferentes problemas que se
pudieran detectar en el transcurso del desarrollo del proyecto en cualquiera de
las dos aplicaciones, tanto TICO como AraWord con intencién de hacerlas més
estables u ofrecer nuevas funcionalidades que se consideren necesarias.

1.3. Estructura del documento
La memoria del PFC se divide en los siguientes capitulos:

I Introduccién: Explicacién breve de la idea general y los objetivos de Ara-
Suite.

II Analisis: Estado del arte a la hora de comenzar el PFC y requisitos y
objetivos del desarrollo de AraSuite.

111

v

VI

VII

VIII

Diseno: Descripcién técnica de la aplicacién realizada para cumplir los
objetivos, requisitos y necesidades identificados durante el andlisis.

Desarrollo: Explicacion detallada de todo el proceso de desarrollo de la
aplicacién AraSuite, metodologia aplicada, pruebas de calidad realizadas y
ejemplos de algunos resultados obtenidos.

Gestién del proyecto: Resumen de la metodologia aplicada y desviacio-
nes detectadas.

Conclusiones y trabajo futuro: Comentario de los resultados obtenidos,
opinién personal y posibles maneras de continuar el desarrollo futuro.

Bibliografia: Referencias de documentacién online, articulos y libros uti-
lizados.

Anexos: Informacion adicional detallada que, por brevedad, no han podido
formar parte de la memoria principal.

2. Analisis

En esta fase se recoge el estado del arte de las aplicaciones y asienta las bases
sobre las que se continuara el desarrollo de AraSuite.

2.1. Terminologia

A lo largo del proyecto se usara una serie de términos técnicos que se explican
a continuacion:

Pictograma: Es un dibujo de facil entendimiento que se usa para describir
un objeto, accién u otra cosa.

Término: Es una palabra que se asocia a un pictograma y que facilita su
bisqueda o su uso en las distintas aplicaciones.

GalleryManager: Es una aplicacion que permite realizar distintas ope-
raciones tipo CRUD (En inglés: Crear, Leer, Actualizar y Eliminar) con los
pictogramas y sus términos asociados y sirve como nexo de unién de toda la
informacién para las distintas aplicaciones que lo usan, ademés también incluye
una serie de interfaces que permiten al usuario trabajar con los pictogramas.

2.2. Requisitos

Durante el anélisis se han recogido muchos requisitos, como puede verse en el
anexo A, tanto de las aplicaciones existentes, TICO y AraWord, como requisitos
que se tendran que cumplir a la finalizacién de la nueva aplicacién AraSuite.

Los requisitos de este proyecto podrian englobarse en tres grupos. El primer
grupo estaria formado por requisitos extraidos del uso de la aplicacién por parte
de padres, profesores o tutores, englobados como usuarios, tales como gestionar
los términos, buscar con filtros, importar, exportar y otros. Los usuarios, espe-
cialmente en la aplicacién de TICO, trabajan directamente administrando los
pictogramas y términos asociados, anadiendo nuevas imédgenes, modificando las
existentes, etc.

El segundo grupo de requisitos estaria formado por aquellos que obligan a

este proyecto a ofrecer una interfaz de métodos que permita a las aplicaciones
gestionar los pictogramas y términos de una manera interna. Esto serd espe-
cialmente util para AraWord, ya que es una aplicacién que necesita realizar
busquedas en los pictogramas para convertir un término, o varios, en un picto-
grama mientras que el usuario escribe.

El tercer grupo de requisitos lo formarian aquellos que anaden nuevas fun-
cionalidades o son mas técnicos, como la actualizacién automatica o mantener
la velocidad de acceso a la informacién.

2.3. Casos de uso

Tras un andlisis de los requisitos del proyecto, de recoger impresiones del
director del proyecto, y analizar las necesidades que tenian los usuarios que
habfan estado usando TICO y AraWord, se han identificado varios casos de uso
derivados de las operaciones con los pictogramas que AraSuite debe ofrecer al
usuario y a otras aplicaciones. En el anexo B se puede ver un detalle de todos
ellos.

En la figura 2.1 se puede ver el diagrama de casos de uso general. En él
se han identificado cuatro actores, Usuario, que representa a las personas que
van a usar la aplicacién, por ejemplo un profesor, el usuario Aplicacién, que
representa a las aplicaciones que necesitan acceder a la gestion de pictogramas,
y TICO y AraWord que representan a las aplicaciones ya existentes y que hacen
uso de los pictogramas.

Usuario puede realizar todas las operaciones relacionadas con la gestion de
pictogramas, pero para realizar cualquiera de ellas, es obligatorio que la aplica-
cién lance la Interfaz de administracién del GalleryManager”.

Por otro lado, podemos ver que los actores TICO y AraWord tienen como
casos de uso, ”"Lanzar la interfaz de administraciéon del GalleryManager”, y
ademds, tiene un caso de uso que podriamos definir como una operacién interna
que permite realizar buisquedas sobre la base de datos.

2.4. Interfaz de acceso a los datos

Para analizar cudl es la mejor opcidn a la hora de disenar el interfaz de acceso
a datos del GalleryManager que posteriormente utilizarian TICO, AraWord
u otras futuras herramientas, se realiz6 un estudio de los distintos métodos
que se ejecutaban sobre la base de datos de pictogramas por parte de ambas
aplicaciones para identificar aquellas necesidades que pudieran tener.

Como podemos ver en el anexo E, TICO y AraWord tienen variados métodos
de acceso a la base de datos (BD). Es por esta razén por la que se ha decidido
que el GalleryManager se comporte, grosso modo, como un DAO (Data Access
Object).

Sistema
Anadir
pictograma
=g,
~SHligpy,
= -
Eliminar ﬂextie;ue;‘z‘n Lanzar intarfaz
pictograma = = = — = administracion |
Gallery
—
¢E‘f~,‘_"iﬂ?’ -7 \ Manager
Actualizar s Aplicacion
. e{\. -
pictogramas /&8 .- VET
/ ‘.ﬁ’/ ars S0 %
—] -7 (330/ oty
R U I
- B &
~ Modificar e -1_‘,"' 1y
pictograma y 3.53 P
Usuario \ oS 0
: O
Copiar ; Iy
pictograma foal
S 1?'," / " Araword
A&
a/
vy
Buscar i I
plctograma ¥ I .
manuamenta ; Buscar pictograma
;! automaticamente
- af'
g.r
Importar Tl
pictogramas I
v TICO
-
-
-
Exportar
pictogramas

Figura 2.1: Casos de uso general

De esta manera, el GalleryManager publicard métodos generales de acceso
a la BD, abstrayendo a las aplicaciones que usen la libreria de otras cosas como
la conexion con la BD, drivers de acceso, etc.

2.5. Especificacién del plan de pruebas

La especificacion de un plan de pruebas permite garantizar al desarrollador
un cierto nivel de calidad de la aplicacion y asegura que en el futuro el desarrollo
contendra menos errores debido a las baterias de test.

Por las caracteristicas de este proyecto se ha decidido que el plan de pruebas
a realizar serd el siguiente:

= Pruebas unitarias: Son las pruebas formales que garantizan que un
método, dados unos parametros de entrada, tiene el comportamiento es-
perado.

= Pruebas de sistema: Son aquellas pruebas que garantizan el correcto
funcionamiento de los puntos criticos identificados en el anexo F.2.

= Pruebas de aceptacion del usuario: Son las pruebas que se realizan en
un entorno de funcionamiento controlado que garantizan que el software
desarrollado es funcional en condiciones normales.

En el anexo F se puede ver una explicacion ampliada de las pruebas a realizar
y el momento de hacerlas.

3. Diseno

En esta seccién de la memoria se va a exponer la propuesta planteada para
resolver todas las necesidades y requisitos que se identificaron en el apartado
anterior.

3.1. Especificacion de casos de uso

Antes de realizar el disenio de las interfaces se han tomado los casos de uso
identificados en el anexo B, a partir de los cuales se ha realizado un estudio de
las acciones que tiene que desempenar cada usuario para hacer cada una de las
operaciones.

Para ello, se ha realizado una especificacion de los casos de uso mediante
diagramas de actividad que servirdn para el posterior diseno de las interfaces
finales que se realiza en la seccion 3.2.

A modo de ejemplos, a continuacién se detallan dos casos de uso. Constltese
el Anexo D para un desarrollo completo.

Caso de uso: Copiar pictograma a portapapeles

= Definicién: El usuario realizard una busqueda para encontrar el picto-
grama que desea copiar al portapapeles, posteriormente tendra que pulsar
el botén de copiar y la imagen se enviara al portapapeles desde donde
podra ser usada por otra aplicacion. Véase la figura 3.1.

= Precondicién: La versién de Java instalada en el sistema operativo debe
soportar el copiado al portapapeles.

» Postcondicién: La imagen estara disponible en el portapapeles.
= Interfaz que lo implementa: Interfaz de edicién de un pictograma ya
existente.

Caso de uso: Actualizar pictogramas

s Definicién: El usuario pulsara el botén de comprobar actualizaciones. En
caso de no haber en el servidor de pictogramas ninguna version posterior a

Usuario GallaryManager

?

Accederala
seccion editar

DICioaramas

Recuperar
Du:aﬁiéa = plctogramas
4 encontrados

Selecclonar
pictograma

Fulzar an Coplar
coplar — plctograma
plctograma pofiapapelas

®

Figura 3.1: Diagrama de actividad Copiar pictograma portapapeles

la instalada en el ordenador del usuario, se mostrard un didlogo informando
de que se tiene la ultima versién. En caso de que haya un nuevo paquete
de pictogramas se mostrard informaciéon del mismo. Si el usuario decide
actualizar se descargard el paquete, se descomprimird y se importaran
los pictogramas mostrando la interfaz de la figura C.6. Los detalles se
muestran en el diagrama de la figura 3.2.

s Precondicién: El ordenador debe tener acceso a Internet.

= Postcondicidén: Si hay una nueva versién de pictogramas se descargaran,
importaran y sustituirdn a los que tengan el mismo nombre. En caso con-
trario no se produciran cambios.

» Interfaz que lo implementa: Interfaz Actualizar pictogramas.

3.2. Diseno de interfaces

Una de las funcionalidades que tiene que ofrecer AraSuite es una serie de in-
terfaces de gestién que posteriormente se integraran en las distintas aplicaciones,
como TICO y AraWord, y permitirdn al usuario acceder a las funcionalidades
de los pictogramas.

TICO y AraWord son proyectos que ya contienen, por duplicado, distintas

©

Usuario GalleryManager

Accederala ‘Comprobar
secclion actualizar actualizacion
ictogramas dispomible

s [N

kiostrar datos Informar no
— actualizacion actualizacion
disponibla

o Descargar
paguete

Contirmar
actualizacion

[51]

[Ma]

Descomprimir
paquate

Importar .
plctogramas

Figura 3.2: Diagrama de actividad Importar pictogramas

interfaces que permiten realizar operaciones de gestién sobre los pictogramas.
Ademsds estas herramientas ya estdn en produccién y son muchos los usuarios
que las utilizan, por lo tanto, se ha decidido que las nuevas interfaces del Ga-
lleryManager serdn similares a las ya existentes en TICO y AraWord, de esta
manera se mantendra la usabilidad actual.

TICO, AraWord y otras posibles aplicaciones futuras tendrédn que lanzar
las interfaces de gestién que ofrece el GalleryManager. Tras evaluar como serfa
la mejor forma de integrar estas interfaces en el resto de aplicaciones, se ha
decidido que la mejor solucién es que el GalleryManager tenga una interfaz
principal como la que se puede ver en la imagen de la figura 3.3. Esta interfaz
serd el punto de acceso a partir de la cual el usuario podra navegar por el resto
de interfaces de gestion de pictogramas.

De esta manera se ha conseguido que en caso de anadir una nueva funciona-
lidad de gestién de pictogramas al GalleryManager, el cambio serd transparente
para el resto de aplicaciones ya que tinicamente habra que anadir la nueva op-
cién a la interfaz principal. Y ademas, aislamos el GalleryManager del resto de
aplicaciones y podemos reaprovechar esta organizacion para dotar al GalleryMa-
nager de un sistema de interfaces que le permitan trabajar como una aplicacion
independiente.

10

Afadir imagen | | X

Anadir imagen

Editar imagen

Exportar DB

Importar DB

Comprobar actualizaciones

Figura 3.3: Prototipo de la interfaz principal

Se han realizado prototipos de todas las interfaces de la aplicacién para
cumplir las funcionalidades detectadas en el diagrama de casos de uso de la
figura 2.1. Estos prototipos y una explicacién detallada de cada uno de ellos
puede encontrarse en el anexo H.

3.3. Diseno de la base de datos

Uno de los requisitos es que las velocidades de importacion y acceso a datos
fueran mejores que las existentes. Por lo tanto es necesaria una remodelacion de
la base de datos ya que hay operaciones de tipo join! que lastran las consultas
a la base de datos.

Por esta razén, se ha decidido plantear un diseno de la base de datos que
evitara operaciones de “join” de tablas, para reducir de esta manera el coste de
operacion en la base de datos y agilizar asi las busquedas.

Antes de pasar a explicar el disenio de la base de datos que se ha desarrollado
conviene explicar algunas consideraciones previas que se han tomado:

= Uso del inglés para la nomenclatura de las tablas y los atributos:
Asi se evitan posibles problemas de codificacién de caracteres.

» Uso de enteros auto-incrementados como primary keys: En aque-
llos casos en los que sea necesario establecer relaciones entre tablas, se
usaran enteros auto-incrementados como foreign keys aunque el contenido
de las propias tablas pueda contener una primary key. A pesar de que
esto introduce una clave que pudiera resultar innecesaria por existir una
primary key natural, se ha decidido que los beneficios prevalecen frente a
las contraindicaciones. Las razones que han ayudado a tomar esta deci-
sién son: que se permite que las primary key naturales cambien de valor,

1Operacién que devuelve como resultado el producto cartesiano de dos o mds tablas. Estas
operaciones tienen un alto coste operacional.

11

el rendimiento es mayor dados los indices méas pequenos y las relaciones
se entienden mejor.

En el diagrama de la figura 3.4 se ve el diseno de la base de datos propuesto.
Para mas informacién sobre la BD se puede ver el anexo 1.

language type
-id: INTEGER - id: INTEGER
- name: VARCHAR - name: VARCHAR
1 1
main

- word: VARCHAR
- name: VARCHAR
- nameNMN: VARCHAR

Figura 3.4: Diseno de la BD

3.4. Diseno de la API de acceso a datos

Durante el andlisis, en el apartado 2.4 y en el anexo E se han mostrarlo
cuales son las necesidades de acceso a datos de TICO y AraWord.

En funcién de las necesidades tan diferentes de ambas aplicaciones me he
decantado por ofrecer una solucién que fuera lo més generalista posible. Esta
solucién se ha basado en ofrecer los siguientes métodos:

query(): Ejecuta una consulta en la BD y devuelve el resultado en un cursor
que se podra recorrer para hacer uso de los datos obtenidos.

update(): Ejecuta una operacién para modificar un valor existente en la
BD.

prepareStatement(): Cachea una consulta en la BD para agilizar su pos-
terior ejecucion.

De esta manera el GalleryManager se comporta como un Data Access Object
(DAO, Objeto de Acceso a Datos) suministrando una interfaz comin de acceso a
la BD a cualquier aplicacién. En el diagrama de la figura 3.5 se muestra solucion
expuesta.

Con esta soluciéon podemos garantizar que se mantiene el control sobre todas
las operaciones realizadas sobre la base de datos. Ademads, se controla el nimero
de conexiones abiertas contra la base de datos ya que el GalleryManager gestiona
la creacién y ciclo de vida de las conexiones con la DB. De esta manera evitamos

12

TICO AraWord ofros. ..

1
o
=
=
(=]

Figura 3.5: API de acceso a datos

que se abran multiples conexiones y optimizamos los recursos, ya que abrir una
conexién con la DB es una de las operaciones que mayor coste operacional tiene.

Ademds, como podemos ver en el diagrama de la figura 3.5, el API del Ga-
lleryManager también interacttia con un fichero de configuracion. Este fichero
contendrd todos pardmetros de configuracién de la BD, como el directorio donde
se encuentra, la localizacion de los pictogramas, la ultima fecha de actualizacion
de pictogramas y la URL de actualizacién automatica. El fichero de configura-
cién tendrd una estructura que contendrd en cada linea un par clave valor con
la informacion necesaria.

3.5. Arquitectura de directorios

Otro de los requisitos del proyecto es que las aplicaciones de TICO y Ara-
Word se comporten como una tnica suite compartiendo imagenes y base de
datos.

Finalmente las aplicaciones se han organizado como se muestra en la imagen
de la figura 3.6. De esta manera las aplicaciones estan juntas bajo un mismo
directorio y el usuario intuye la aplicaciéon como si fuera una tnica suite y no
varias aplicaciones sueltas.

13

1

Arasuite

- —1

TICO

GalleryManager

AraWord

Archivos de
TICO

Archivos del

GalleryManager

Archivos de
AraWord

1

Carpeta del
usuario en el
sisterna

Archivo de

configuracion

de AraSuite

Figura 3.6: Arquitectura de directorios

14

4. Desarrollo

En esta seccién se detallan algunas de las decisiones principales que se han
tomado a lo largo del proceso de desarrollo. En este proyecto ya se partia de
varios desarrollos anteriores y el objetivo era la adaptacién de varias aplicaciones
que ya estaban desarrolladas, por lo que algunas partes del proceso estan muy
condicionadas por este entorno.

4.1. Tecnologias empleadas

Java es un lenguaje de programacion compilado a “Bytecode”, que se ejecuta
sobre una méquina virtual llamada JVM. En este caso, la decisién de usar Java
formaba parte de los requisitos del proyecto, pero atin con todo, la decisiéon
estaba totalmente justificada ya que Java es multiplataforma.

SQLite es un sistema de gestién de bases de datos SQL. En este caso, el uso
de SQLite también viene impuesto por los requisitos del proyecto, pero ain con
todo también se adapta a las necesidades del nuevo desarrollo. Entre las virtudes
de SQLite se encuentran su tamano reducido, con unos 2,5MB, la integracion
con Java y su alto rendimiento’.

ANT es una libreria Java que facilita la compilaciéon de proyectos basados
en Java. En este proyecto se ha usado la version ANT 1.7.0. El uso de ANT
también ha sido heredado de los proyectos anteriores, pero también se adaptaba
perfectamente a los objetivos del nuevo desarrollo.

Subversion y Sourceforge son un sistema de control de versiones para
proyectos de desarrollo y una plataforma que permite la distribuciéon de pro-
yectos de software libre y te da la opcién de crear un repositorio SVN para
ellos.

En el caso de este proyecto, el uso de la dupla Subversion y Sourceforge
formaba parte de los requisitos del proyecto. Atun con todo se valor6 la idea
de usar otro sistema de control de versiones como GIT junto con la plataforma
GitHub, ya que GIT tiene algunas virtudes como que es mas eficiente a la hora de
crear ramas, no introduce ficheros adicionales junto con los fuentes del proyecto
y hay un mayor control de cambios gracias a las pull request que permiten a los

1Datos obtenidos de: http://www.sqlite.org/speed.html

15

http://www.sqlite.org/speed.html

desarrolladores evaluar los cambios antes de introducirlos en el cédigo final.

A pesar de las virtudes de GIT y Github, finalmente nos decantamos por
el uso de SVN y Sourceforge porque AraWord y TICO ya estaban desplegados
usando este sistema y tenfan sus paginas creadas en Sourceforge, de manera que
al usuario le podia resultar confuso que AraSuite se distribuyera otra plataforma
como Github con GIT.

4.2. Herramientas utilizadas

Como hemos dicho, algunas de las herramientas utilizadas a lo largo del
desarrollo venian impuestas por el entorno actual donde se iba a realizar el
proyecto.

= Eclipse IDE: IDE de desarrollo de Java. Este entorno venia definido
como requisito del entorno. Ademds se ha usado junto con un “plugin”

llamado WindowBuilder que permite desarrollar interfaces mediante un
editor WYSIWYG.

= Omnigraffle: Aplicacion que permite desarrollar cualquier tipo de dia-
grama o boceto de interfaz. Se ha utilizado para disenas los diagramas de
la aplicacién y los bocetos de las interfaces.

= DokuWiki: Con esta herramienta se generé una Wiki en la que se fueron
plasmando la documentacién que se fue generando a lo largo del proyecto.
Se decidié usar este método porque permitia un facil acceso al tutor para
la revision de los documentos y ademas le permitia anadir comentarios o
modificaciones, generando asi un entorno de documentacién “distribuido”.
La URL de la Wiki es: http://gidhe.es/agomez.

= Dropbox: Aplicacién que permite almacenar archivos en internet con un
sistema muy bésico de control de versiones. Esta aplicacion se ha usado
una vez que se comenzoé la documentacion en TEX.

= BTEX: Es una herramienta para componer documentos. Se ha usado para
generar la version final de la documentacion.

= Sublime Text 3: Es un editor de textos para Mac OS X. Se ha usado
junto con un paquete LatexTools que facilita el desarrollo de textos en

INTEX.

4.3. Metodologia de desarrollo

Para seleccionar la metodologia de desarrollo que se iba a usar en el proyecto
se analizaron las dos metodologias 4giles mas extendidas.

16

4.3.1. Metodologia Scrum

La metodologia Scrum presenta los roles de ScrumMaster, que dirige y orga-
niza las tareas a realizar en cada periodo, el ProductOwner, que define los hitos
a alcanzar y el Team que representa al equipo de desarrollo.

El Scrum define periodos de trabajo de entre 1 y 4 semanas llamados Sprints.
Al principio de cada Sprint se realiza un Sprint planning en el que se eligen
qué tareas, de las que ha definido el ProductOwner en el backlog (lista de tareas
pendientes), se van a realizar.

Al finalizar el sprint, se realiza una retrospective, en la que se analizan los
posibles problemas que hayan surgido durante ese periodo y se finaliza con una
pequena demo de las tareas realizadas.

4.3.2. Metodologia Extreme Programming

La metodologia Extreme Programming, comtinmente llamada metodologia
XP, define periodos de trabajo de entre 1 y 2 semanas. Al principio de este
periodo se debe realizar una reunién llamada Planning game en la que se con-
cretan las tareas a realizar, esta reunion se divide en Release Planning donde
se seleccionan los requisitos del cliente que se van a comprometer en el periodo
y se plasman en User Stories y la Iteration Planning donde los desarrolladores
dividen los requisitos identificados con anterioridad en pequenas tareas.

Una de las principales caracteristicas de esta metodologia es la programa-
cién en parejas, llamada Pair Programming. XP define que las tareas pueden
realizarse entre dos desarrolladores delante de un mismo ordenador, uno de los
desarrolladores se encargard del cddigo concreto que se esta desarrollando mien-
tras que el otro pensara en las influencias a gran escala que puedan suponer los
cambios.

4.3.3. Eleccion de la metodologia

Tras haber analizado dos de las metodologias agiles disponibles, se deter-
mind que la que mejor se adaptaba a la situacién actual era una modificacion
de la Metodologia Scrum ya que, aunque ambas se ajustaban globalmente a
los requisitos especificados, XP estd mas indicada para desarrollos en equipos
grandes en los que se pueda hacer pair programming.

Ademsds, se definieron que los roles de los miembros del proyecto serfan:
= Project Owner: Este rol estaria representado por el tutor del proyecto
ya que conoce el backlog de tareas y los objetivos finales.

= Scrum Master: Este rol lo representaria el proyectante, ya que conoce
mejor las exigencias de su calendario personal.

17

= Development Team: Este rol lo representaria el proyectante tinicamen-
te.

A la hora de elegir la herramienta que serviria como soporte de la metodo-
logia, se decidié usar la Wiki en vez de otras herramientas, como por ejemplo
Jira, ya que resultaba facil de instalar y mantener y el equipo ya habia teni-
do experiencias anteriores satisfactorias. En ella se llevé un registro tanto de
la documentaciéon de la aplicacién como del proceso de desarrollo. Para tener
un seguimiento del proceso de desarrollo, en la Wiki se anotaban, el backlog,
los sprints de desarrollo, el estado de las tareas, las fechas de entrega y las
desviaciones.

4.4. Interfaces del GalleryManager

Durante la etapa de andlisis se identificaron los casos de uso que se pueden
ver en el anexo B. Posteriormente, en la etapa de disefio se detallaron los casos
de uso mediante diagramas de actividad, anexo D. Ademads, se realizaron los
prototipos de las interfaces del GalleryManager que podemos encontrar en el
anexo H.

A continuacién se muestran las interfaces que fueron creadas para ofrecer las
nuevas funcionalidades o redisenadas para mejorar su funcionalidad respecto de
las ya existentes. El resto de interfaces se pueden ver en el anexo C.

Exportar bisqueda

A la hora de realizar una exportacién, el usuario previamente tiene que
realizar una busqueda. La interfaz existente no permitia al usuario ver de for-
ma rapida todos los resultados encontrados porque se mostraban en grupos de
cuatro elementos con botones para avanzar o retroceder. Por esta razoén, se de-
cidi6 redisenar la interfaz de exportacién de una busqueda para anadir un scroll
vertical que facilitara al usuario recorrer todos los resultados encontrados de
una forma més cémoda y rapida. El resultado del redisefio de la interfaz es el
que se puede ver en la imagen de la figura 4.1.

Actualizar automaticamente pictogramas

La actualizacién automética de pictogramas es una de las nuevas funciona-
lidades que incluye AraSuite, por esta razén fue necesario crear la interfaz que
se muestra en la figura 4.2. En esta interfaz se muestra al usuario la informa-
cién que se ha obtenido del servidor sobre el nuevo paquete de pictogramas que
esta disponible para actualizar.

4.5. Puntos destacados de la implementacion

En esta seccién se muestran los puntos destacados surgidos durante el desa-
rrollo de la aplicacion.

18

YeXe) Exportar biisqueda

Por términos clave

[pe= | [anD 3] | | [AN 3] | | [Buscar \‘

Nombre | [Buscar

Fm nombre de Imagen ‘

Idioma de la bisqueda: | Castellana il

¥ & &

10194.png 10209.png 10308.png 10360.png 10361.png 10362.png

L ER

10363.png 11125.png 11126.png 11251.png 11331.png 11332.png

=Y a & A

| Exportar bisqueda | | Cancelar |
[—— 200]

Total imdgenes encontradas: 285

.
<
3

b,

E
&m@"

Figura 4.1: Interfaz de exportacién de bisqueda

800

Hay una nueva version de los pictogramas.

The set of pictograms come from "http:/ /www.arasaac.org/". They
can be used under Creative Commons BY-NC-5A license

| Cancelar | | Actualizar |

[0%]

Figura 4.2: Interfaz de Actualizar automaticamente pictogramas

4.5.1. Rediseno de la interfaz de resultados de una
busqueda

Como ya he comentado en la seccién 4.4, se realizé un redisefio en la forma
en la que se mostraban los resultados de una busqueda bien para los flujos de
edicién de un pictograma como para la exportacién de una busqueda. El diseno,
como se puede ver en la interfaz de la figura 4.1 sufrié un cambio para anadir
un scroll vertical que mostrara los resultados de la busqueda. Este scroll vertical
permite al usuario desplazarse por los pictogramas encontrados de una forma
més rapida y fluida.

Durante el desarrollo de esta interfaz nos encontramos el problema de que
si se realizaba una consulta que devolviera muchos resultados, la navegacion
por las imagenes devueltas era muy lenta o se colgaba por alcanzar el limite de

19

memoria RAM.

Esto era porque todas las imagenes, aunque no se mostraran al usuario
estaban pintadas y ocupaban memoria RAM. Por lo tanto decidi sobrescribir
el método de “renderizacién” de imégenes de la tabla por defecto, para pintar
las imdgenes en funcién de cuando se iban necesitando. De esta manera solo
estarian ocupando memoria aquellas imagenes que se estuvieran mostrando al
usuario.

El resultado fue, que el usuario podia desplazarse fluidamente por los resul-
tados encontrados aunque estos fueran un gran nimero.

4.5.2. Localizacién de los archivos del GalleryManager

Uno de los problemas iniciales que nos encontramos fue que como el Gallery-
Manager se ejecuta como un JAR desde cualquier aplicacion, la base de datos,
los pictogramas y los ficheros de configuracién no podian ser relativos al JAR
porque entonces el “path” era relativo a la aplicacién que hacia uso del Gallery-
Manager. De esta manera, si TICO ejecutaba el GalleryManager, se creaban
unos ficheros de configuraciéon, una BD y una carpeta de pictogramas, mientras
que si lo hacfa AraWord, se duplicaban estos archivos en su directorio.

Tras analizar las distintas posibilidades se decidié que la mejor opcién era
situar esa carpeta en el sistema de directorios del usuario, de esta manera con-
seguiamos que los archivos siempre estuvieran en el mismo sitio, se evitaban
problemas de escritura por ser un directorio del usuario y se restringia de al-
guna manera el acceso directo a la BD y las imagenes evitando que el usuario
podria corromper el sistema.

De esta manera los directorios se organizaron tal y como se ve en el apartado
3.5.

4.5.3. Generaciéon y distribucion de versiones intermedias

TICO y AraWord disponian de archivos build.xml que se ejecutaban con
ANT y que permitian compilar y generar una version en ambos casos.

AraSuite es un proyecto que combina estas dos aplicaciones y hace que las
dos integren el GalleryManager para acceder a los pictogramas y los términos
asociados. Por esta razén, los archivos build.xml que tenian las dos aplicaciones
ya no servian porque no usaban la nueva dependencia del GalleryManager.

Por lo tanto, cada vez que se queria generar una versiéon sobre la que hacer
“testing” se iniciaba un proceso muy tedioso que quedaba restringido unica-
mente a los desarrolladores e impedia que cualquier persona que no estuviera
familiarizada con el entorno fuera capaz de generar una versiéon. Por lo tan-
to se decidié desarrollar un archivo build.xml para cada uno de los proyectos
que al ejecutarlo con ANT, compilaria las distintas aplicaciones resolviendo las
dependencias que tenfan cada una de ellas con el GalleryManager.

20

Posteriormente, se evolucioné este sistema como se puede ver en el apartado
4.8 y se cred una aplicacion web llamada AraSuite Generator que ejecutaba
estos build.xml para automatizar todo este proceso.

El resultado de esta solucién era una web que permitia al proyectante o
al tutor generar una versién con un unico click, algo que fue vital de cara a
probar nuevas funcionalidades, identificar errores y realizar un seguimiento del
proyecto por parte del tutor, que se hacia a menudo por la metodologia de
desarrollo utilizada.

4.5.4. Internacionalizacién de la aplicacién

Tanto TICO como AraWord son aplicaciones que estan internacionalizadas.
Sin embargo, al ser aplicaciones que se desarrollaron independientemente, cada
una de ellas tiene sus idiomas y su sistema de internacionalizacion.

El problema es que ambas aplicaciones hacen uso del GalleryManager y, por
lo tanto, el GalleryManager debe estar preparado para adaptarse a la forma de
internacionalizar de TICO o AraWord, ya que las interfaces que muestra tienen
que estar en el idioma de la aplicacién padre. Dada esta situacién teniamos
varias dificultades que habia que resolver.

Coémo hacer llegar al GalleryManager el idioma de la aplicacién que
lo ejecuta

El GalleryManager tiene una tnica manera de invocar sus interfaces que
es a través de la invocacién del “frame” principal. A la hora de invocar este
“frame” se pasa como parametro el idioma de la interfaz de la aplicacién padre
y el GalleryManager guarda el idioma en un fichero de configuracién para que
se use durante toda la ejecucion.

A continuacién se muestra un extracto del cédigo fuente para ver cémo el
GalleryManager recibe el idioma como pardametro y lo guarda en el archivo de
configuracién.

public mainFrame(String language) {

// Save languge into configuration file.
TConfiguration.setLanguage (language) ;

// Load language for interface from configuration file
TLanguage. initLanguage (TConfiguration.getLanguage());

/L]

Y, a continuacién, se muestra cémo se invoca el GalleryManager desde una
aplicacién como TICO o AraWord.

public void actionPerformed (java.awt.event.ActionEvent evt) {
mainFrame f = new mainFrame(G. applicationLanguage);
f.setVisible (true);

21

f.pack();

Coémo relacionar el idioma de la aplicacién padre y los idiomas del
GalleryManager

TICO y AraWord tenfan formas de identificar los idiomas que no eran
estandares, por ejemplo el Castellano se identificaba con la clave “Castellano”,
el Inglés con la clave “Ingles”, etc. Por esta razén, y con intenciéon de estan-
darizarlo, se decidié que el GalleryManager identificaria los idiomas usando el
estandar ISO 639-1 2.

Para relacionar las claves de TICO con el GalleryManager se hizo un fichero
lang.properties como el que se muestra a continuacion:
CASTELLANO=es
INGLES=en
FRANCES=fr
PORTUGUES=pt
PORTUGUES_BRASIL=br
CATALAN=ca
ITALIANO=it

Asi, el GalleryManager al recibir “Castellano” buscaria la clave en el fichero
language.properties, que en este caso seria “es” y cargaria el fichero de idiomas
es.properties.

Este sistema permite afadir un idioma al GalleryManager de una forma
sencilla ya que solo habria que introducir la nueva clave en el fichero langua-
ge.properties, por ejemplo, “Euskera=eu” y anadir el fichero eu.properties al
directorio de idiomas del GalleryManager.

4.5.5. Actualizacion automatica de pictogramas

Uno de los requisitos de AraSuite, era que tuviera implementada la actuali-
zacién automatica de pictogramas. Esta actualizacion ha sido uno de los puntos
importantes que se han afrontado durante el desarrollo del proyecto.

Finalmente se ha optado por la solucién que se muestra en el diagrama de
actividad de la figura 3.2. En resumen, esta solucién ha consistido en estable-
cer en el archivo de configuracién de AraSuite el servidor donde encontrard la
informacién sobre las nuevas actualizaciones.

Cuando el usuario quiera realizar una actualizacién, AraSuite consultard un
archivo remoto de informaciéon con una estructura como la que se muestra a
continuacion:

DOWNLOADURL=https: //s3.amazonaws.com/pictos.zip

MD5= 01be832107feefebbabbf76275e8185a
RELEASE DATE=04—-07—-2013

2Ms4s informacién en: http://es.wikipedia.org/wiki/IS0_639-1

22

http://es.wikipedia.org/wiki/ISO_639-1

CHANGELOG=Use under Creative Commons BY-NG-SA license

De este fichero obtendra principalmente, la fecha del paquete, y la URL de
descarga. En caso de que se haya publicado un nuevo paquete y que el usuario
quiera actualizar, lo descargard y comenzar con el proceso de importacion.

De esta manera el sistema queda méas configurable y nos permite mover los
paquetes de pictogramas a otros servidores en caso de que se espere un gran
numero de actualizaciones, y tan solo habria que cambiar la URL de descarga
en el fichero remoto de informacion.

4.5.6. Creacion y distribucion de versiones finales con
instalador

Uno de los requisitos de AraSuite era generar instaladores de la aplicacién
para los tres sistemas operativos predominantes, Windows, MacOS y Linux.

Se buscaba un generador de instaladores que a partir del paquete creado por
el generador de versiones, que se puede ver en el anexo K, creara 3 ejecutables
para cada uno de los SO que hemos comentado anteriormente.

En este momento se realizé un anélisis de varias aplicaciones que permitian
generar los instaladores, tales como: 1ZPack, PackJacket o Install4J.

Finalmente nos decantamos por usar Install4dJ ya que ademéas de generar el
instalador, permite crear lanzadores de aplicaciones, incluir o excluir archivos
para cada SO, genera desinstalador y permite poner splash screens e iconos
configurables.

Install4] ademds también permite ser integrado con ANT de manera que en
un futuro se podria automatizar toda la generacion de instaladores e integrarlo
con un sistema de integracién continua que nos generaria los instaladores a partir
del cédigo fuente, ante eventos como la creaciéon de un “TAG” en el repositorio,
o en cada “commmit” en “trunk”.

4.5.7. Mejora de la velocidad de importacion

Una de las necesidades de este proyecto es que la velocidad de acceso a los
pictogramas fuera la misma o mejor que la existente hasta el momento, por esta
razén, en este apartado se va a realizar un estudio de una de las partes de la
aplicacién que mayor coste operacional tiene, la importacién de pictogramas a
la base de datos. Esta importacién consiste recorrer e importar los datos de
pictogramas que aparecen en un XML y copiar los pictogramas al directorio
interno del GalleryManager.

La operacién de trasladar las imagenes al directorio del GalleryManager es
una operacion de copia de ficheros. Por lo tanto las posibles reducciones que
se puedan llevar a cabo en este apartado son bastante escasas. Es por eso por

23

lo que vamos a centrar nuestros esfuerzos en reducir el proceso de “parsing” e
importacién de los datos de los pictogramas desde el XML a la base de datos.

Muestra usada para la importacion

En el estudio de la velocidad de importacién se han analizado los tiempos de
ejecucion para el antiguo entorno usado en TICO y AraWord y para el nuevo
entorno de AraSuite. Para ello se han realizado 10 ejecuciones usado una muestra
de pictogramas de las siguientes caracteristicas:

= Numero de pictogramas a importar: 1400
= Kspacio en disco de los pictogramas: 67MB

= Términos a insertar en la BD: 22.217

Resultados del analisis

80

Tiempo de ejecucion en segundos
N
8

20

Entorno existente Entorno nuevo (AraSuite)
Figura 4.3: Gréfica comparativa de la velocidad de importacion

Los resultados obtenidos son un tiempo medio de ejecucién de 71 segundos
para el caso del entorno ya existente y de 9,6 segundos para el caso del nuevo
entorno de AraSuite. En la gréfica de la figura 4.3 se pueden ver los tiempos
minimo, maximo y medio para cada uno de los entornos. Analizando los resulta-
dos obtenidos el tiempo medio de importacién de la nueva versién de AraSuite
(9,6 segundos) presenta una mejora del 86 % frente a la versién de TICO (71
segundos).

24

4.6. Ejecucion del plan de pruebas

En la seccion 2.5 se ha definido el plan de pruebas que se iba a ejecutar de
cara a garantizar la calidad del software desarrollado.

En esta seccion se explica cuando se han realizado las ejecuciones del plan
de pruebas, los resultados obtenidos e informacién adicional sobre cada uno de
ellos.

4.6.1. Ejecucién de las pruebas unitarias

Durante el desarrollo de este proyecto se cred un entorno de pruebas unita-
rias que permitieron probar funciones complejas para garantizar que cualquier
desarrollo posterior no modificara el resultado esperado.

Esto, ademés de garantizar el desarrollo realizado, también debia servir para
establecer una base que permitiera tener pruebas unitarias en futuros desarro-
llos. A continuacién se explica cémo se estructuraron y se ejecutaron las pruebas
unitarias.

Descripcién de las pruebas unitarias

Se han especificado ciertos patrones para ayudarnos a identificar en qué con-
siste cada una de las pruebas unitarias que se desarrollan.

Para hacerlo lo mas mantenible posible, se ha evitado anadir JavaDoc expli-
cativo a cada uno de los tests ya que si el test cambia también hay que cambiar
el JavaDoc y podemos llegar a situaciones incongruentes.

Asi que para saber qué realiza cada prueba unitaria se usara el titulo de la
misma de la siguiente manera: Nombre del método probado, precondicién de la
prueba y resultado esperado, usando un formato camelcase.

Un ejemplo de titulo de una prueba unitaria seria: “escapeQueryWithSeve-
ralRegexShouldReturnEscaped” esto identificaria una prueba unitaria que haria
lo siguiente:

= Nombre del método probado: escapeQuery.
= Precondicién: Se van a usar varias expresiones regulares
» Resultado esperado: Las queries correctamente escapadas. (Opcional)

Entorno de ejecucion de pruebas

Las pruebas unitarias se han desarrollado usando JUnit 4.0 ya que esta com-
pletamente integrado tanto con el IDE (Eclipse) como con ANT y resulta muy

25

céomodo para realizar test unitarios sobre cédigo Java. La ejecucién se ha au-
tomatizado mediante un “target” de ANT para poder ejecutarlo durante la
compilacién de la aplicacién y que un fallo en las pruebas unitarias haga que no
se compile una versién. De esta manera garantizamos que todas las versiones
distribuidas habran pasado satisfactoriamente las pruebas unitarias.

Cada una de las ejecuciones de las pruebas unitarias dan como resultado un
informe HTML que contiene informacién sobre los tests que se han pasado, el
tiempo de ejecucién, y el resultado de cada uno de ellos.

4.6.2. Ejecuciéon de las pruebas de sistema

En el anexo F se identificaron los puntos criticos de la aplicacion. Al finalizar
el desarrollo se realizaron pruebas para confirmar que la aplicacién era estable
en cualquiera de esos puntos criticos.

El proceso y los resultados de las pruebas de sistema realizadas se encuentra
en el anexo G. La ejecucién de las pruebas del sistema fue satisfactoria para
todos los puntos criticos, sin embargo, la ejecucion de alguna de ellas sirvié para
detectar puntos de mejora en el rendimiento de la aplicacién.

Por ejemplo, las pruebas de exportacion de una bisqueda detectaron que esta
operacion se prolongaba durante mucho tiempo. Por esta razén se decidié mo-
dificar el algoritmo de exportaciéon para minimizar el tiempo de ejecucion.

4.6.3. Ejecuciéon de las pruebas de aceptacién

Las pruebas de aceptacién tienen que garantizar que la aplicacién se com-
porta de manera estable en situaciones normales de ejecucion.

Una vez que se tuvo una versién que se consideraba estable de la aplicacién
se libero la version AraSuite 1.0.0 para los 3 sistemas operativos y se puso al
alcance de todos los usuarios en el portal de Sourceforge.

2013-05 2013-06 2013-07 2013-08 2013-08 201310 2013-

Figura 4.4: Gréfica de descargas de AraSuite en Sourceforge

Tal y como se puede ver en la gréfica extraida de Sourceforge de la figura
4.4, AraSuite comenzé teniendo 1120 descargas en el primer mes, creciendo

26

exponencialmente hasta las casi 4000 descargas actuales. Gracias a la activa
participacion de los usuarios, se han ido recogiendo errores y sugerencias de
mejora, que han sido incluidos por el equipo de desarrollo en nuevas versiones
de AraSuite.

Cabe destacar que ninguno de los errores encontrados desde la versién 1.0.0
se ha considerado un error critico o bloqueante. En la mayoria de los casos han
sido errores menores que no influifan de forma negativa en la estabilidad de la
aplicacion.

Por lo tanto, se considera que estas pruebas de aceptaciéon basadas en el
feedback recibido por parte de los usuarios son suficientes para garantizar que
la aplicacién es estable.

4.7. Definicion del flujo de desarrollo

En esta seccién se definen todos los detalles relacionados con el desarrollo
de nuevas funcionalidades o correccién de errores en AraSuite, veasé el anexo J
para informacién mas detallada.

4.7.1. Estructura del repositorio

AraWord y TICO son aplicaciones en continuo desarrollo donde varias per-
sonas estan trabajando en nuevas funcionalidades o correcciones de errores. Uno
de los problemas detectados en los repositorios de TICO y AraWord es que no
hay un flujo de trabajo definido por lo que a lo largo del tiempo se ha llegado
a una situacién de falta de organizaciéon en ambos repositorios que ni si quiera
sigue las convenciones de uso de SVN.

Con la creacién de AraSuite se ha creado un repositorio nuevo que sigue las
normas de SVN y ademads define flujos de trabajo claros que facilitan el desarrollo
conjunto. A continuacién se muestra como queda organizado el repositorio de
AraSuite:

= Trunk: Contiene la ultima versién estable de la aplicacion con las nuevas
funcionalidades y correcciones realizadas.
e AraWord: Contiene los ficheros de AraWord.
e GalleryManager: Contiene los ficheros del GalleryManager.
e TICO: Contiene los ficheros de TICO.
e Utils: Contiene aplicaciones externas relacionadas con AraSuite.

o Arasaac2xml: Aplicaciéon que genera un XML con la informa-
cién de Arasaac.

o ArasuiteVersioner: Aplicacion web que genera versiones de
AraSuite.

27

» Branches: Contiene los desarrollos de nuevas funcionalidades. Deben te-
ner un nombre descriptivo de la funcionalidad realizada.

s Tags: Contiene cada una de las versiones liberadas de AraSuite.

4.7.2. Flujos de trabajo

A la hora de trabajar en AraSuite deben seguirse los flujos de trabajo defi-
nidos a continuacién.

= Creacién de nuevas funcionalidades: Deben realizarse siempre ba-
jo un branch con un nombre descriptivo (add-sound-to-cells, create-new-
awesome-functionality, etc.) Una vez terminadas y sincronizadas con trunk
deben ser sometidas a varias pruebas de ejecucién que garanticen que la
nueva funcionalidad no ha introducido errores en el cédigo existente. Una
vez terminado este proceso pueden ser mergeadas con trunk.

= Correccidon de bugs: Se llevard un seguimiento de los bugs mediante
los tickets de Sourceforge, anadiendo una descripciéon detallada del pro-
blema, la criticidad del bug y la persona que lo corregird. Los bugs se
corregiran directamente en trunk puesto que debe tratarse de pequenas
modificaciones que tnicamente resuelven el problema detectado.

= Release de versiones de AraSuite: Cuando se considere que hay sufi-
cientes cambios se realizard un pequeno periodo de pruebas sobre trunk,
una vez finalizado y comprobado que todo funciona corréctamente se ge-
nerara un nuevo tag. El tag se nombrard numéricamente y de forma ascen-
dente en tres niveles x.x.x, por ejemplo: 1.1.0, 2.2.0, etc. El primer valor
indicard “major releases” de la aplicacion que incluirdn grandes cambios
y funcionalidades. El segundo valor agrupard a pequenas funcionalidades
o correcciones de bugs, mientras que el tercer valor servird para identificar
pequenas releases liberadas con 1 o 2 bugs resueltos. Estos tags nunca
seran modificados.

En la imagen de la figura 4.5 puede verse de forma mas descriptiva la orga-
nizacién del repositorio.

4.8. Generador de versiones

Como se ha visto en el apartado 4.5.3 para probar una versién de AraSuite
hacia falta hacer un checkout de los tres repositorios TICO, AraWord y Ga-
lleryManager. Esto dificultaba mucho que cualquier persona que no estuviera
directamente relacionada con el desarrollo pudiera realizar pruebas de nuevas
funcionalidades o encontrar bugs en la versién de AraSuite.

Entonces se decidié que facilitar la generacion de versiones de AraSuite podia
ser critico de cara a ir descubriendo nuevas funcionalidades que pudieran ser

28

Tags/name_vx.X.X

Trunk -

Branches/xxx

Figura 4.5: Estructura del repositorio

utiles, e identificar bugs de forma temprana gracias a distribuir versiones en-
tre usuarios que testearian la aplicacién. Por esta razén se decidié crear un
generador de versiones con una usabilidad muy sencilla.

Este generador de versiones esta liberado en la url http://arasuitegenerator.
adgomez. com. Para ver informacién detallada sobre el generador de versiones se
puede ver el anexo K.

29

http://arasuitegenerator.adgomez.com
http://arasuitegenerator.adgomez.com

5. Gestion del proyecto

La gestion del proyecto se vio muy influenciada por la situacion actual del
proyectante, ya que en el momento de empezar el proyecto ya habia comenzado
a trabajar en una empresa y por lo tanto el tiempo dedicado al proyecto estaba
fuertemente influenciado por los problemas de agenda y las variaciones en las
cargas de trabajo de la misma.

5.1. Sprints de desarrollo

La organizacién del proyecto se ha visto influenciada principalmente por la
disponibilidad del proyectante. Los periodos de trabajo, o sprints, se definieron
en ciclos de 3 semanas, en la imagen de la figura 5.1 podemos ver el tiempo
invertido en cada periodo y su desviacién.

40

Dias

®Dias ™ Error absoluto

Figura 5.1: Andlisis de desviacién de los sprints

30

6. Conclusiones y trabajo futuro

Al comienzo de este proyecto existia TICO y AraWord, ambas aplicaciones
eran funcionales pero seguian caminos de desarrollo que no convergian. Esto
suponia un problema de cara al futuro de las aplicaciones y la evolucién de
las mismas, ya que, aunque ambas explotan los pictogramas y sus términos
asociados, lo hacen de distinta manera, introduciendo errores por duplicado y
abriendo la posibilidad de que diverjan tanto en su uso que el usuario se sienta
confuso.

Por eso, en este proyecto fin de carrera se ha completado el desarrollo de
la primera versiéon de AraSuite y se ha establecido el camino sobre el que con-
tinuara su evolucién. Esta aplicacién ha conseguido reunir las dos aplicaciones
existentes de TICO y AraWord, introduciendo nuevas funcionalidades y mejoras
al ecosistema ya existente, haciéndolas mas robustas y estables.

Ademas, como resultado final del proyecto se ha conseguido que los usuarios
de TICO y AraWord migren a la nueva aplicacién de AraSuite sin que esto
suponga un problema. Es maés, a dia de hoy, AraSuite tiene mas de 2500 des-
cargas al mes y se postula como una aplicacion referente en su sector, siendo la
satisfaccién de los usuarios una de sus mejores puntos.

Como valoracion personal tengo que anadir que participar en el desarrollo
de AraSuite y poder ofrecer a los usuarios una aplicacién tan aceptada, ha sido
una satisfaccién personal y un orgullo, el colofén de la aplicacién seria que la
comunidad de desarrolladores aproveche su licencia GNU/GPL para poderla
evolucionar y adaptar a las nuevas necesidades que surjan.

6.1. Trabajo futuro

AraSuite es una aplicaciéon que requerird de nuevas funcionalidades segin
vayan identificindose las necesidades que vayan demandando sus usuarios, pero
a priori, y centrandonos en el desarrollo, seria necesario establecer un sistema
de integracion continua como Jenkins que automatice atin mas la generacién de
versiones.

Ademais, ya que AraSuite estd enfocado al uso de pictogramas veo como
punto importante evolucionar la actualizacién automatica para que sea una ac-

31

tualizacién progresiva que permita a los usuarios descargar de forma automatica
tunicamente aquellos pictogramas que desee o quizas pictogramas separados por
paquetes, por ejemplo, pictogramas de animales, de objetos concretos, lugares,
etc.

Por otro lado, y como un desarrollo paralelo a AraSuite, seria una gran
opcién convertir la aplicacién de escritorio existente en una aplicacién online
que ofrezca al usuario las mismas funcionalidades pero con las capacidades de
las aplicaciones en la nube. De esta manera, podriamos mantener la gestién de
pictogramas de lado del servidor y el usuario siempre usaria la tltima version
de la aplicacion y de los pictogramas.

32

Bibliografia

[1] Web de Java http://www.java.com/

[2] Web del Proyecto TICO http://www.proyectotico.com
[3] Web de ARASAAC http://www.arasaac.org

[4] Web de SQLite https://sqlite.org

[5] Web de Jenkins http://jenkins-ci.org

33

http://www.java.com/
http://www.proyectotico.com
http://www.arasaac.org
https://sqlite.org
http://jenkins-ci.org

