
Repositorio de la Universidad de Zaragoza – Zaguan
http://zaguan.unizar.es

!

Proyecto Fin de Carrera

AraSuite: Integración de las
aplicaciones de TICO y AraWord.

Autor

Adrián Gómez Llorente

Director

Joaquín Ezpeleta Mateo

Escuela de Ingeniería y Arquitectura (EINA)
2014

A mi tutor, Joaqúın Ezpeleta, por darme la oportunidad de
participar en un gran proyecto y ser paciente ante una dedicación

que en algunos momentos fue dificil.
A mis padres, por su dedicación completa, su apoyo incondicional y

por empujarme para llegar hasta aqúı.
A mi familia, por rodearme con su apoyo y escuchar una y otra vez

los entresijos de este proyecto.
A mis amigos y compañeros, porque en esta vida hace falta tener

humor para coger fuerzas. En especial a Jorge Pinto, por imprimir
su creatividad en el logotipo de AraSuite.

AraSuite: Integración de las aplicaciones de TICO y AraWord

RESUMEN

Este proyecto fin de carrera (PFC) se ha realizado con la colaboración de pro-
fesionales del Colegio Público de Educación Especial Alborada (C.P.E.E Albo-
rada) y el Centro Aragonés de Tecnoloǵıas para la Educación (CATEDU).

En este PFC se ha realizado el desarrollo de la aplicación llamada AraSuite.
Esta aplicación es un conjunto de herramientas que trabajan de forma conjunta
para hacer más fácil el trabajo diario con personas que tienen graves trastornos
en la expresión oral, de forma que su d́ıa a d́ıa se vea mejorado.

El presente proyecto surge como solución al problema existente en las apli-
caciones TICO y AraWord en las que la información es gestionada de manera
independiente por cada una de ellas, generando datos duplicados y un entorno
de trabajo que no es efectivo, haciendo que ambas aplicaciones sean dif́ıciles de
mantener.

AraSuite parte de la situación actual y crea un entorno que centraliza toda
la gestión de la información, ofrece métodos de acceso a los datos y evoluciona
la situación actual hacia una suite de aplicaciones que se comportan como una
única herramienta facilitando el trabajo diario de profesores y tutores.

Con la creación de AraSuite se agrupa el desarrollo de las aplicaciones exis-
tentes TICO y AraWord bajo un mismo código. Además, se define una ar-
quitectura y unos flujos de desarrollo que facilitan la participación de otros
desarrolladores para añadir nuevas funcionalidades, de esta manera, se preten-
de convertir a AraSuite en un referente entre las aplicaciones opensource que
facilitan la interacción con personas con dificultades para la expresión oral.

El resultado final obtenido es una aplicación de código libre que actualmente,
con casi 2500 descargas mensuales, es usada en el mundo entero por miles de
personas. Los usuarios, valoran muy positivamente el uso de la herramienta
destacando su facilidad de uso y el gran aporte que hace en el trabajo diario.
Además, gracias a la forma de trabajo definida y a la arquitectura aplicada,
se ha agilizado la entrega de nuevas versiones de AraSuite que hacen que esta
aplicación esté en continua evolución.

Índice

Página

1. Introducción 1
1.1. Idea general . 1

1.1.1. Las herramientas TICO y AraWord 1
1.2. Objetivos . 2
1.3. Estructura del documento . 2

2. Análisis 4
2.1. Terminoloǵıa . 4
2.2. Requisitos . 4
2.3. Casos de uso . 5
2.4. Interfaz de acceso a los datos . 5
2.5. Especificación del plan de pruebas 6

3. Diseño 8
3.1. Especificación de casos de uso . 8
3.2. Diseño de interfaces . 9
3.3. Diseño de la base de datos . 11
3.4. Diseño de la API de acceso a datos 12
3.5. Arquitectura de directorios . 13

4. Desarrollo 15
4.1. Tecnoloǵıas empleadas . 15
4.2. Herramientas utilizadas . 16
4.3. Metodoloǵıa de desarrollo . 16

4.3.1. Metodoloǵıa Scrum . 17
4.3.2. Metodoloǵıa Extreme Programming 17
4.3.3. Elección de la metodoloǵıa 17

4.4. Interfaces del GalleryManager . 18
4.5. Puntos destacados de la implementación 18

4.5.1. Rediseño de la interfaz de resultados de una búsqueda . . 19
4.5.2. Localización de los archivos del GalleryManager 20
4.5.3. Generación y distribución de versiones intermedias 20
4.5.4. Internacionalización de la aplicación 21
4.5.5. Actualización automática de pictogramas 22
4.5.6. Creación y distribución de versiones finales con instalador 23
4.5.7. Mejora de la velocidad de importación 23

4.6. Ejecución del plan de pruebas . 25

i

4.6.1. Ejecución de las pruebas unitarias 25
4.6.2. Ejecución de las pruebas de sistema 26
4.6.3. Ejecución de las pruebas de aceptación 26

4.7. Definición del flujo de desarrollo 27
4.7.1. Estructura del repositorio 27
4.7.2. Flujos de trabajo . 28

4.8. Generador de versiones . 28

5. Gestión del proyecto 30
5.1. Sprints de desarrollo . 30

6. Conclusiones y trabajo futuro 31
6.1. Trabajo futuro . 31

A. Requisitos 34
A.1. Requisitos de TICO . 34
A.2. Requisitos de AraWord . 35

B. Casos de uso 36
B.1. Casos de uso de Usuario . 37
B.2. Casos de uso de Aplicación . 38
B.3. Casos de uso de AraWord . 39

C. Interfaces del GalleryManager 41

D. Especificacion casos de uso 48
D.1. Casos de uso de Usuario . 48
D.2. Casos de uso de Aplicación . 51
D.3. Casos de uso de AraWord . 51

E. Métodos de acceso a BD 61

F. Detalles del plan de pruebas 65
F.1. Planificación y ejecución de las pruebas 65

F.1.1. Planificación de las pruebas unitarias 65
F.1.2. Planificación de las pruebas de sistema 65
F.1.3. Planificación de las pruebas de aceptación del usuario . . 65

F.2. Identificación de los puntos cŕıticos de la aplicación 66

G. Ejecución de las pruebas de sistema 68
G.1. Punto cŕıtico 1: La importación de una base de datos 68
G.2. Punto cŕıtico 2: La exportación de una búsqueda 69
G.3. Punto cŕıtico 3: La actualización automática de los pictogramas . 69
G.4. Punto cŕıtico 4: Búsquedas en la BD con śımbolos extraños y

expresiones regulares . 70
G.5. Punto cŕıtico 5: La ejecución en los distintos sistemas operativos 71

H. Prototipos de interfaces 72

I. Diagrama de la base de datos 78
I.1. Tablas de la base de datos . 78

ii

I.2. Relaciones de la base de datos . 79

J. Manual del desarrollador 80
J.1. Estructura del repositorio . 80
J.2. Flujos de trabajo . 80
J.3. Generación de la aplicación . 81

K. Generador de versiones 82
K.1. Análisis del generador de versiones 82

K.1.1. Requisitos del generador de versiones 82
K.1.2. Arquitectura del generador de versiones 82

K.2. Diseño del generador de versiones 83
K.2.1. Estructura del generador de versiones 83
K.2.2. Ejecución del generador de versiones 84
K.2.3. Interfaz del generador de versiones 85

K.3. Desarrollo del generador de versiones 87
K.3.1. Interfaces finales del generador de versiones 87
K.3.2. Despliegue del generador de versiones 88

K.4. Conclusiones y trabajo futuro . 89

L. Licencia GNU-GPL v2.0 91

iii

Índice de diagramas

2.1. Casos de uso general . 6

3.1. Diagrama de actividad Copiar pictograma portapapeles 9
3.2. Diagrama de actividad Importar pictogramas 10
3.3. Prototipo de la interfaz principal 11
3.4. Diseño de la BD . 12
3.5. API de acceso a datos . 13
3.6. Arquitectura de directorios . 14

4.1. Interfaz de exportación de búsqueda 19
4.2. Interfaz de Actualizar automáticamente pictogramas 19
4.3. Gráfica comparativa de la velocidad de importación 24
4.4. Gráfica de descargas de AraSuite en Sourceforge 26
4.5. Estructura del repositorio . 29

5.1. Análisis de desviación de los sprints 30

B.1. Casos de uso general . 36
B.2. Casos de uso de Usuario . 37
B.3. Casos de uso de Aplicación . 39
B.4. Casos de uso de AraWord . 40

C.1. Interfaz principal . 41
C.2. Interfaz de búsqueda de imágenes para editar 42
C.3. Interfaz para editar los términos de una imagen 44
C.4. Interfaz para añadir una imagen 45
C.5. Interfaz de exportación de búsqueda 46
C.6. Interfaz de importación de BD 46
C.7. Interfaz de Actualizar automáticamente pictogramas 47

D.1. Diagrama de actividad Añadir pictograma 52
D.2. Diagrama de actividad Buscar pictogramas 53
D.3. Diagrama de actividad Eliminar pictograma 54
D.4. Diagrama de actividad Importar pictogramas 55
D.5. Diagrama de actividad Modificar pictograma 56
D.6. Diagrama de actividad Copiar pictograma 57
D.7. Diagrama de actividad Importar pictogramas 58
D.8. Diagrama de actividad Exportar pictogramas 59
D.9. Diagrama de actividad Lanzar aplicación GalleryManager 60

iv

D.10.Diagrama de actividad Buscar pictogramas automáticamente . . 60

H.1. Prototipo de la interfaz principal 73
H.2. Prototipo de la interfaz Añadir pictograma 74
H.3. Prototipo de la interfaz Editar pictograma 75
H.4. Prototipo de la interfaz Exportar búsqueda 76
H.5. Prototipo de la interfaz Importar base de datos 77
H.6. Prototipo de la interfaz Actualizar pictogramas 77

I.1. Diseño de la BD . 78

K.1. Arquitectura del generador de versiones 83
K.2. Estructura del generador de versiones 84
K.3. Secuencia de generación de versiones 85
K.4. Interfaz del generador de versiones 86
K.5. Interfaz del generador de versiones en ejecución 87
K.6. Interfaz del generador de versiones 88
K.7. Interfaz del generador de versiones en ejecución 89

v

1. Introducción

1.1. Idea general

AraSuite es un conjunto de herramientas desarrolladas con la colaboración
de profesionales del Colegio Público de Educación Especial Alborada (C.P.E.E
Alborada) y el Centro Aragonés de Tecnoloǵıas para la Educación (CATEDU)
y tiene como objetivo ofrecer una única suite de aplicaciones que trabajen de
forma conjunta para facilitar el trabajo diario con personas con graves trastornos
en la expresión oral, de forma que su autonomı́a y su relación con el entorno se
vean mejoradas.

El principal problema de las aplicaciones existentes TICO y AraWord es que
la información de pictogramas es gestionada de manera independiente por cada
una de ellas, generando duplicidades que no son efectivas y dificultan la man-
tenibilidad de cada una de las aplicaciones. AraSuite, evoluciona la situación
actual y crea un entorno que integra toda la gestión de pictogramas, centraliza
los métodos de acceso a la información, y elimina las duplicidades existentes.
Además, este entorno, es fácilmente extensible y sirve como base para la inclu-
sión de futuras aplicaciones dentro en la suite.

Además también se pretende organizar el proyecto definiendo flujos de desa-
rrollo que faciliten la participación de otros desarrolladores a la hora de incorpo-
rar nuevas funcionalidades, llevando aśı a AraSuite a ser un referente entre las
aplicaciones opensource que facilitan la interacción con personas con dificultades
para la expresión oral.

1.1.1. Las herramientas TICO y AraWord

TICO es una aplicación que comenzó su desarrollo en el año 2005 y a través
de distintos proyectos fin de carrera, se ha hecho una herramienta que permite a
los profesores trasladar el concepto de tablero de comunicación en modo impreso
al formato informático para aprovechar las posibilidades que este nuevo entorno
ofrece. Para ello, TICO dispone de dos componentes diferenciados que trabajan
conjuntamente para obtener el resultado esperado.

Por un lado está el editor que ofrece las herramientas necesarias para diseñar
el tablero, permitiendo la inserción de pictogramas y formas, asociación de ac-

1

ciones, definición de flujos de movimiento y selección, etc. Y por otro lado está el
interprete, que ofrece un entorno donde ejecutar y visualizar los tableros de co-
municación desarrollados previamente en el editor y cuya principal caracteŕıstica
es la herramienta de barrido que permite que el cursor vaya desplazándose de
forma automática por todos los elementos con acción asignada para facilitar la
interacción con el tablero a las personas con limitaciones motrices.

AraWord nació como un proyecto desarrollado por Joaqúın Pérez Marco, su
principal objetivo es ofrecer una herramienta que permita la generación de do-
cumentos de pictogramas a través de la inserción de texto y posterior conversión
automática del texto introducido en pictogramas.

1.2. Objetivos

El objetivo principal de AraSuite es la adaptación de las aplicaciones de
TICO y AraWord a un nuevo entorno en el que ambas compartan toda la
información relativa a los pictogramas y sus términos asociados, de manera que
las operaciones de inserción, modificación o borrado de pictogramas o términos,
sean generales para todas las ellas.

Además, la solución desarrollada debe ofrecer una capa de acceso a los datos
que garantice una única puerta de entrada y una versatilidad suficiente para
que otras aplicaciones puedan ser integradas dentro de la misma suite.

Estas modificaciones deben tener como requisito mantener las exigencias
en nivel de velocidad de acceso a los datos de las aplicaciones y satisfacer las
necesidades que se hayan detectado en cada uno de los casos.

La solución final debe tener una organización y unos flujos de desarrollo
definidos que permitan el trabajo en una comunidad opensource, inicialmente
bajo Sourceforge, pero fácilmente adaptable.

Por otro lado también será necesario arreglar diferentes problemas que se
pudieran detectar en el transcurso del desarrollo del proyecto en cualquiera de
las dos aplicaciones, tanto TICO como AraWord con intención de hacerlas más
estables u ofrecer nuevas funcionalidades que se consideren necesarias.

1.3. Estructura del documento

La memoria del PFC se divide en los siguientes caṕıtulos:

I Introducción: Explicación breve de la idea general y los objetivos de Ara-
Suite.

II Análisis: Estado del arte a la hora de comenzar el PFC y requisitos y
objetivos del desarrollo de AraSuite.

2

III Diseño: Descripción técnica de la aplicación realizada para cumplir los
objetivos, requisitos y necesidades identificados durante el análisis.

IV Desarrollo: Explicación detallada de todo el proceso de desarrollo de la
aplicación AraSuite, metodoloǵıa aplicada, pruebas de calidad realizadas y
ejemplos de algunos resultados obtenidos.

V Gestión del proyecto: Resumen de la metodoloǵıa aplicada y desviacio-
nes detectadas.

VI Conclusiones y trabajo futuro: Comentario de los resultados obtenidos,
opinión personal y posibles maneras de continuar el desarrollo futuro.

VII Bibliograf́ıa: Referencias de documentación online, art́ıculos y libros uti-
lizados.

VIII Anexos: Información adicional detallada que, por brevedad, no han podido
formar parte de la memoria principal.

3

2. Análisis

En esta fase se recoge el estado del arte de las aplicaciones y asienta las bases
sobre las que se continuará el desarrollo de AraSuite.

2.1. Terminoloǵıa

A lo largo del proyecto se usará una serie de términos técnicos que se explican
a continuación:

Pictograma: Es un dibujo de fácil entendimiento que se usa para describir
un objeto, acción u otra cosa.

Término: Es una palabra que se asocia a un pictograma y que facilita su
búsqueda o su uso en las distintas aplicaciones.

GalleryManager: Es una aplicación que permite realizar distintas ope-
raciones tipo CRUD (En inglés: Crear, Leer, Actualizar y Eliminar) con los
pictogramas y sus términos asociados y sirve como nexo de unión de toda la
información para las distintas aplicaciones que lo usan, además también incluye
una serie de interfaces que permiten al usuario trabajar con los pictogramas.

2.2. Requisitos

Durante el análisis se han recogido muchos requisitos, como puede verse en el
anexo A, tanto de las aplicaciones existentes, TICO y AraWord, como requisitos
que se tendrán que cumplir a la finalización de la nueva aplicación AraSuite.

Los requisitos de este proyecto podŕıan englobarse en tres grupos. El primer
grupo estaŕıa formado por requisitos extráıdos del uso de la aplicación por parte
de padres, profesores o tutores, englobados como usuarios, tales como gestionar
los términos, buscar con filtros, importar, exportar y otros. Los usuarios, espe-
cialmente en la aplicación de TICO, trabajan directamente administrando los
pictogramas y términos asociados, añadiendo nuevas imágenes, modificando las
existentes, etc.

El segundo grupo de requisitos estaŕıa formado por aquellos que obligan a

4

este proyecto a ofrecer una interfaz de métodos que permita a las aplicaciones
gestionar los pictogramas y términos de una manera interna. Esto será espe-
cialmente útil para AraWord, ya que es una aplicación que necesita realizar
búsquedas en los pictogramas para convertir un término, o varios, en un picto-
grama mientras que el usuario escribe.

El tercer grupo de requisitos lo formaŕıan aquellos que añaden nuevas fun-
cionalidades o son más técnicos, como la actualización automática o mantener
la velocidad de acceso a la información.

2.3. Casos de uso

Tras un análisis de los requisitos del proyecto, de recoger impresiones del
director del proyecto, y analizar las necesidades que teńıan los usuarios que
hab́ıan estado usando TICO y AraWord, se han identificado varios casos de uso
derivados de las operaciones con los pictogramas que AraSuite debe ofrecer al
usuario y a otras aplicaciones. En el anexo B se puede ver un detalle de todos
ellos.

En la figura 2.1 se puede ver el diagrama de casos de uso general. En él
se han identificado cuatro actores, Usuario, que representa a las personas que
van a usar la aplicación, por ejemplo un profesor, el usuario Aplicación, que
representa a las aplicaciones que necesitan acceder a la gestión de pictogramas,
y TICO y AraWord que representan a las aplicaciones ya existentes y que hacen
uso de los pictogramas.

Usuario puede realizar todas las operaciones relacionadas con la gestión de
pictogramas, pero para realizar cualquiera de ellas, es obligatorio que la aplica-
ción lance la Ïnterfaz de administración del GalleryManager”.

Por otro lado, podemos ver que los actores TICO y AraWord tienen como
casos de uso, ”Lanzar la interfaz de administración del GalleryManager”, y
además, tiene un caso de uso que podŕıamos definir como una operación interna
que permite realizar búsquedas sobre la base de datos.

2.4. Interfaz de acceso a los datos

Para analizar cuál es la mejor opción a la hora de diseñar el interfaz de acceso
a datos del GalleryManager que posteriormente utilizaŕıan TICO, AraWord
u otras futuras herramientas, se realizó un estudio de los distintos métodos
que se ejecutaban sobre la base de datos de pictogramas por parte de ambas
aplicaciones para identificar aquellas necesidades que pudieran tener.

Como podemos ver en el anexo E, TICO y AraWord tienen variados métodos
de acceso a la base de datos (BD). Es por esta razón por la que se ha decidido
que el GalleryManager se comporte, grosso modo, como un DAO (Data Access
Object).

5

Figura 2.1: Casos de uso general

De esta manera, el GalleryManager publicará métodos generales de acceso
a la BD, abstrayendo a las aplicaciones que usen la libreŕıa de otras cosas como
la conexión con la BD, drivers de acceso, etc.

2.5. Especificación del plan de pruebas

La especificación de un plan de pruebas permite garantizar al desarrollador
un cierto nivel de calidad de la aplicación y asegura que en el futuro el desarrollo
contendrá menos errores debido a las bateŕıas de test.

Por las caracteŕısticas de este proyecto se ha decidido que el plan de pruebas
a realizar será el siguiente:

6

Pruebas unitarias: Son las pruebas formales que garantizan que un
método, dados unos parámetros de entrada, tiene el comportamiento es-
perado.

Pruebas de sistema: Son aquellas pruebas que garantizan el correcto
funcionamiento de los puntos cŕıticos identificados en el anexo F.2.

Pruebas de aceptación del usuario: Son las pruebas que se realizan en
un entorno de funcionamiento controlado que garantizan que el software
desarrollado es funcional en condiciones normales.

En el anexo F se puede ver una explicación ampliada de las pruebas a realizar
y el momento de hacerlas.

7

3. Diseño

En esta sección de la memoria se va a exponer la propuesta planteada para
resolver todas las necesidades y requisitos que se identificaron en el apartado
anterior.

3.1. Especificación de casos de uso

Antes de realizar el diseño de las interfaces se han tomado los casos de uso
identificados en el anexo B, a partir de los cuales se ha realizado un estudio de
las acciones que tiene que desempeñar cada usuario para hacer cada una de las
operaciones.

Para ello, se ha realizado una especificación de los casos de uso mediante
diagramas de actividad que servirán para el posterior diseño de las interfaces
finales que se realiza en la sección 3.2.

A modo de ejemplos, a continuación se detallan dos casos de uso. Consúltese
el Anexo D para un desarrollo completo.

Caso de uso: Copiar pictograma a portapapeles

Definición: El usuario realizará una búsqueda para encontrar el picto-
grama que desea copiar al portapapeles, posteriormente tendrá que pulsar
el botón de copiar y la imagen se enviará al portapapeles desde donde
podrá ser usada por otra aplicación. Véase la figura 3.1.

Precondición: La versión de Java instalada en el sistema operativo debe
soportar el copiado al portapapeles.

Postcondición: La imagen estará disponible en el portapapeles.

Interfaz que lo implementa: Interfaz de edición de un pictograma ya
existente.

Caso de uso: Actualizar pictogramas

Definición: El usuario pulsará el botón de comprobar actualizaciones. En
caso de no haber en el servidor de pictogramas ninguna versión posterior a

8

Figura 3.1: Diagrama de actividad Copiar pictograma portapapeles

la instalada en el ordenador del usuario, se mostrará un diálogo informando
de que se tiene la última versión. En caso de que haya un nuevo paquete
de pictogramas se mostrará información del mismo. Si el usuario decide
actualizar se descargará el paquete, se descomprimirá y se importarán
los pictogramas mostrando la interfaz de la figura C.6. Los detalles se
muestran en el diagrama de la figura 3.2.

Precondición: El ordenador debe tener acceso a Internet.

Postcondición: Si hay una nueva versión de pictogramas se descargarán,
importarán y sustituirán a los que tengan el mismo nombre. En caso con-
trario no se producirán cambios.

Interfaz que lo implementa: Interfaz Actualizar pictogramas.

3.2. Diseño de interfaces

Una de las funcionalidades que tiene que ofrecer AraSuite es una serie de in-
terfaces de gestión que posteriormente se integrarán en las distintas aplicaciones,
como TICO y AraWord, y permitirán al usuario acceder a las funcionalidades
de los pictogramas.

TICO y AraWord son proyectos que ya contienen, por duplicado, distintas

9

Figura 3.2: Diagrama de actividad Importar pictogramas

interfaces que permiten realizar operaciones de gestión sobre los pictogramas.
Además estas herramientas ya están en producción y son muchos los usuarios
que las utilizan, por lo tanto, se ha decidido que las nuevas interfaces del Ga-
lleryManager serán similares a las ya existentes en TICO y AraWord, de esta
manera se mantendrá la usabilidad actual.

TICO, AraWord y otras posibles aplicaciones futuras tendrán que lanzar
las interfaces de gestión que ofrece el GalleryManager. Tras evaluar como seŕıa
la mejor forma de integrar estas interfaces en el resto de aplicaciones, se ha
decidido que la mejor solución es que el GalleryManager tenga una interfaz
principal como la que se puede ver en la imagen de la figura 3.3. Esta interfaz
será el punto de acceso a partir de la cual el usuario podrá navegar por el resto
de interfaces de gestión de pictogramas.

De esta manera se ha conseguido que en caso de añadir una nueva funciona-
lidad de gestión de pictogramas al GalleryManager, el cambio será transparente
para el resto de aplicaciones ya que únicamente habrá que añadir la nueva op-
ción a la interfaz principal. Y además, aislamos el GalleryManager del resto de
aplicaciones y podemos reaprovechar esta organización para dotar al GalleryMa-
nager de un sistema de interfaces que le permitan trabajar como una aplicación
independiente.

10

Figura 3.3: Prototipo de la interfaz principal

Se han realizado prototipos de todas las interfaces de la aplicación para
cumplir las funcionalidades detectadas en el diagrama de casos de uso de la
figura 2.1. Estos prototipos y una explicación detallada de cada uno de ellos
puede encontrarse en el anexo H.

3.3. Diseño de la base de datos

Uno de los requisitos es que las velocidades de importación y acceso a datos
fueran mejores que las existentes. Por lo tanto es necesaria una remodelación de
la base de datos ya que hay operaciones de tipo join1 que lastran las consultas
a la base de datos.

Por esta razón, se ha decidido plantear un diseño de la base de datos que
evitara operaciones de “join” de tablas, para reducir de esta manera el coste de
operación en la base de datos y agilizar aśı las búsquedas.

Antes de pasar a explicar el diseño de la base de datos que se ha desarrollado
conviene explicar algunas consideraciones previas que se han tomado:

Uso del inglés para la nomenclatura de las tablas y los atributos:
Aśı se evitan posibles problemas de codificación de caracteres.

Uso de enteros auto-incrementados como primary keys: En aque-
llos casos en los que sea necesario establecer relaciones entre tablas, se
usarán enteros auto-incrementados como foreign keys aunque el contenido
de las propias tablas pueda contener una primary key. A pesar de que
esto introduce una clave que pudiera resultar innecesaria por existir una
primary key natural, se ha decidido que los beneficios prevalecen frente a
las contraindicaciones. Las razones que han ayudado a tomar esta deci-
sión son: que se permite que las primary key naturales cambien de valor,

1Operación que devuelve como resultado el producto cartesiano de dos o más tablas. Estas
operaciones tienen un alto coste operacional.

11

el rendimiento es mayor dados los ı́ndices más pequeños y las relaciones
se entienden mejor.

En el diagrama de la figura 3.4 se ve el diseño de la base de datos propuesto.
Para más información sobre la BD se puede ver el anexo I.

Figura 3.4: Diseño de la BD

3.4. Diseño de la API de acceso a datos

Durante el análisis, en el apartado 2.4 y en el anexo E se han mostrarlo
cuales son las necesidades de acceso a datos de TICO y AraWord.

En función de las necesidades tan diferentes de ambas aplicaciones me he
decantado por ofrecer una solución que fuera lo más generalista posible. Esta
solución se ha basado en ofrecer los siguientes métodos:

query(): Ejecuta una consulta en la BD y devuelve el resultado en un cursor
que se podrá recorrer para hacer uso de los datos obtenidos.

update(): Ejecuta una operación para modificar un valor existente en la
BD.

prepareStatement(): Cachea una consulta en la BD para agilizar su pos-
terior ejecución.

De esta manera el GalleryManager se comporta como un Data Access Object
(DAO, Objeto de Acceso a Datos) suministrando una interfaz común de acceso a
la BD a cualquier aplicación. En el diagrama de la figura 3.5 se muestra solución
expuesta.

Con esta solución podemos garantizar que se mantiene el control sobre todas
las operaciones realizadas sobre la base de datos. Además, se controla el número
de conexiones abiertas contra la base de datos ya que el GalleryManager gestiona
la creación y ciclo de vida de las conexiones con la DB. De esta manera evitamos

12

Figura 3.5: API de acceso a datos

que se abran múltiples conexiones y optimizamos los recursos, ya que abrir una
conexión con la DB es una de las operaciones que mayor coste operacional tiene.

Además, como podemos ver en el diagrama de la figura 3.5, el API del Ga-
lleryManager también interactúa con un fichero de configuración. Este fichero
contendrá todos parámetros de configuración de la BD, como el directorio donde
se encuentra, la localización de los pictogramas, la última fecha de actualización
de pictogramas y la URL de actualización automática. El fichero de configura-
ción tendrá una estructura que contendrá en cada ĺınea un par clave valor con
la información necesaria.

3.5. Arquitectura de directorios

Otro de los requisitos del proyecto es que las aplicaciones de TICO y Ara-
Word se comporten como una única suite compartiendo imágenes y base de
datos.

Finalmente las aplicaciones se han organizado como se muestra en la imagen
de la figura 3.6. De esta manera las aplicaciones están juntas bajo un mismo
directorio y el usuario intuye la aplicación como si fuera una única suite y no
varias aplicaciones sueltas.

13

Figura 3.6: Arquitectura de directorios

14

4. Desarrollo

En esta sección se detallan algunas de las decisiones principales que se han
tomado a lo largo del proceso de desarrollo. En este proyecto ya se part́ıa de
varios desarrollos anteriores y el objetivo era la adaptación de varias aplicaciones
que ya estaban desarrolladas, por lo que algunas partes del proceso están muy
condicionadas por este entorno.

4.1. Tecnoloǵıas empleadas

Java es un lenguaje de programación compilado a “Bytecode”, que se ejecuta
sobre una máquina virtual llamada JVM. En este caso, la decisión de usar Java
formaba parte de los requisitos del proyecto, pero aún con todo, la decisión
estaba totalmente justificada ya que Java es multiplataforma.

SQLite es un sistema de gestión de bases de datos SQL. En este caso, el uso
de SQLite también viene impuesto por los requisitos del proyecto, pero aún con
todo también se adapta a las necesidades del nuevo desarrollo. Entre las virtudes
de SQLite se encuentran su tamaño reducido, con unos 2,5MB, la integración
con Java y su alto rendimiento1.

ANT es una libreŕıa Java que facilita la compilación de proyectos basados
en Java. En este proyecto se ha usado la versión ANT 1.7.0. El uso de ANT
también ha sido heredado de los proyectos anteriores, pero también se adaptaba
perfectamente a los objetivos del nuevo desarrollo.

Subversion y Sourceforge son un sistema de control de versiones para
proyectos de desarrollo y una plataforma que permite la distribución de pro-
yectos de software libre y te da la opción de crear un repositorio SVN para
ellos.

En el caso de este proyecto, el uso de la dupla Subversion y Sourceforge
formaba parte de los requisitos del proyecto. Aún con todo se valoró la idea
de usar otro sistema de control de versiones como GIT junto con la plataforma
GitHub, ya que GIT tiene algunas virtudes como que es más eficiente a la hora de
crear ramas, no introduce ficheros adicionales junto con los fuentes del proyecto
y hay un mayor control de cambios gracias a las pull request que permiten a los

1Datos obtenidos de: http://www.sqlite.org/speed.html

15

http://www.sqlite.org/speed.html

desarrolladores evaluar los cambios antes de introducirlos en el código final.

A pesar de las virtudes de GIT y Github, finalmente nos decantamos por
el uso de SVN y Sourceforge porque AraWord y TICO ya estaban desplegados
usando este sistema y teńıan sus páginas creadas en Sourceforge, de manera que
al usuario le pod́ıa resultar confuso que AraSuite se distribuyera otra plataforma
como Github con GIT.

4.2. Herramientas utilizadas

Como hemos dicho, algunas de las herramientas utilizadas a lo largo del
desarrollo veńıan impuestas por el entorno actual donde se iba a realizar el
proyecto.

Eclipse IDE: IDE de desarrollo de Java. Este entorno veńıa definido
como requisito del entorno. Además se ha usado junto con un “plugin”
llamado WindowBuilder que permite desarrollar interfaces mediante un
editor WYSIWYG.

Omnigra✏e: Aplicación que permite desarrollar cualquier tipo de dia-
grama o boceto de interfaz. Se ha utilizado para diseñas los diagramas de
la aplicación y los bocetos de las interfaces.

DokuWiki: Con esta herramienta se generó una Wiki en la que se fueron
plasmando la documentación que se fue generando a lo largo del proyecto.
Se decidió usar este método porque permit́ıa un fácil acceso al tutor para
la revisión de los documentos y además le permit́ıa añadir comentarios o
modificaciones, generando aśı un entorno de documentación “distribúıdo”.
La URL de la Wiki es: http://gidhe.es/agomez.

Dropbox: Aplicación que permite almacenar archivos en internet con un
sistema muy básico de control de versiones. Esta aplicación se ha usado
una vez que se comenzó la documentación en LATEX.

LATEX: Es una herramienta para componer documentos. Se ha usado para
generar la versión final de la documentación.

Sublime Text 3: Es un editor de textos para Mac OS X. Se ha usado
junto con un paquete LatexTools que facilita el desarrollo de textos en
LATEX.

4.3. Metodoloǵıa de desarrollo

Para seleccionar la metodoloǵıa de desarrollo que se iba a usar en el proyecto
se analizaron las dos metodoloǵıas ágiles más extendidas.

16

4.3.1. Metodoloǵıa Scrum

La metodoloǵıa Scrum presenta los roles de ScrumMaster, que dirige y orga-
niza las tareas a realizar en cada periodo, el ProductOwner, que define los hitos
a alcanzar y el Team que representa al equipo de desarrollo.

El Scrum define periodos de trabajo de entre 1 y 4 semanas llamados Sprints.
Al principio de cada Sprint se realiza un Sprint planning en el que se eligen
qué tareas, de las que ha definido el ProductOwner en el backlog (lista de tareas
pendientes), se van a realizar.

Al finalizar el sprint, se realiza una retrospective, en la que se analizan los
posibles problemas que hayan surgido durante ese periodo y se finaliza con una
pequeña demo de las tareas realizadas.

4.3.2. Metodoloǵıa Extreme Programming

La metodoloǵıa Extreme Programming, comúnmente llamada metodoloǵıa
XP, define periodos de trabajo de entre 1 y 2 semanas. Al principio de este
periodo se debe realizar una reunión llamada Planning game en la que se con-
cretan las tareas a realizar, esta reunión se divide en Release Planning donde
se seleccionan los requisitos del cliente que se van a comprometer en el periodo
y se plasman en User Stories y la Iteration Planning donde los desarrolladores
dividen los requisitos identificados con anterioridad en pequeñas tareas.

Una de las principales caracteŕısticas de esta metodoloǵıa es la programa-
ción en parejas, llamada Pair Programming. XP define que las tareas pueden
realizarse entre dos desarrolladores delante de un mismo ordenador, uno de los
desarrolladores se encargará del código concreto que se está desarrollando mien-
tras que el otro pensará en las influencias a gran escala que puedan suponer los
cambios.

4.3.3. Elección de la metodoloǵıa

Tras haber analizado dos de las metodoloǵıas ágiles disponibles, se deter-
minó que la que mejor se adaptaba a la situación actual era una modificación
de la Metodoloǵıa Scrum ya que, aunque ambas se ajustaban globalmente a
los requisitos especificados, XP está más indicada para desarrollos en equipos
grandes en los que se pueda hacer pair programming.

Además, se definieron que los roles de los miembros del proyecto seŕıan:

Project Owner: Este rol estaŕıa representado por el tutor del proyecto
ya que conoce el backlog de tareas y los objetivos finales.

Scrum Master: Este rol lo representaŕıa el proyectante, ya que conoce
mejor las exigencias de su calendario personal.

17

Development Team: Este rol lo representaŕıa el proyectante únicamen-
te.

A la hora de elegir la herramienta que serviŕıa como soporte de la metodo-
loǵıa, se decidió usar la Wiki en vez de otras herramientas, como por ejemplo
Jira, ya que resultaba fácil de instalar y mantener y el equipo ya hab́ıa teni-
do experiencias anteriores satisfactorias. En ella se llevó un registro tanto de
la documentación de la aplicación como del proceso de desarrollo. Para tener
un seguimiento del proceso de desarrollo, en la Wiki se anotaban, el backlog,
los sprints de desarrollo, el estado de las tareas, las fechas de entrega y las
desviaciones.

4.4. Interfaces del GalleryManager

Durante la etapa de análisis se identificaron los casos de uso que se pueden
ver en el anexo B. Posteriormente, en la etapa de diseño se detallaron los casos
de uso mediante diagramas de actividad, anexo D. Además, se realizaron los
prototipos de las interfaces del GalleryManager que podemos encontrar en el
anexo H.

A continuación se muestran las interfaces que fueron creadas para ofrecer las
nuevas funcionalidades o rediseñadas para mejorar su funcionalidad respecto de
las ya existentes. El resto de interfaces se pueden ver en el anexo C.

Exportar búsqueda

A la hora de realizar una exportación, el usuario previamente tiene que
realizar una búsqueda. La interfaz existente no permit́ıa al usuario ver de for-
ma rápida todos los resultados encontrados porque se mostraban en grupos de
cuatro elementos con botones para avanzar o retroceder. Por esta razón, se de-
cidió rediseñar la interfaz de exportación de una búsqueda para añadir un scroll
vertical que facilitara al usuario recorrer todos los resultados encontrados de
una forma más cómoda y rápida. El resultado del rediseño de la interfaz es el
que se puede ver en la imagen de la figura 4.1.

Actualizar automáticamente pictogramas

La actualización automática de pictogramas es una de las nuevas funciona-
lidades que incluye AraSuite, por esta razón fue necesario crear la interfaz que
se muestra en la figura 4.2. En esta interfaz se muestra al usuario la informa-
ción que se ha obtenido del servidor sobre el nuevo paquete de pictogramas que
está disponible para actualizar.

4.5. Puntos destacados de la implementación

En esta sección se muestran los puntos destacados surgidos durante el desa-
rrollo de la aplicación.

18

Figura 4.1: Interfaz de exportación de búsqueda

Figura 4.2: Interfaz de Actualizar automáticamente pictogramas

4.5.1. Rediseño de la interfaz de resultados de una
búsqueda

Como ya he comentado en la sección 4.4, se realizó un rediseño en la forma
en la que se mostraban los resultados de una búsqueda bien para los flujos de
edición de un pictograma como para la exportación de una búsqueda. El diseño,
como se puede ver en la interfaz de la figura 4.1 sufrió un cambio para añadir
un scroll vertical que mostrara los resultados de la búsqueda. Este scroll vertical
permite al usuario desplazarse por los pictogramas encontrados de una forma
más rápida y fluida.

Durante el desarrollo de esta interfaz nos encontramos el problema de que
si se realizaba una consulta que devolviera muchos resultados, la navegación
por las imágenes devueltas era muy lenta o se colgaba por alcanzar el ĺımite de

19

memoria RAM.

Esto era porque todas las imágenes, aunque no se mostraran al usuario
estaban pintadas y ocupaban memoria RAM. Por lo tanto decid́ı sobrescribir
el método de “renderización” de imágenes de la tabla por defecto, para pintar
las imágenes en función de cuando se iban necesitando. De esta manera solo
estaŕıan ocupando memoria aquellas imágenes que se estuvieran mostrando al
usuario.

El resultado fue, que el usuario pod́ıa desplazarse fluidamente por los resul-
tados encontrados aunque estos fueran un gran número.

4.5.2. Localización de los archivos del GalleryManager

Uno de los problemas iniciales que nos encontramos fue que como el Gallery-
Manager se ejecuta como un JAR desde cualquier aplicación, la base de datos,
los pictogramas y los ficheros de configuración no pod́ıan ser relativos al JAR
porque entonces el “path” era relativo a la aplicación que haćıa uso del Gallery-
Manager. De esta manera, si TICO ejecutaba el GalleryManager, se creaban
unos ficheros de configuración, una BD y una carpeta de pictogramas, mientras
que si lo haćıa AraWord, se duplicaban estos archivos en su directorio.

Tras analizar las distintas posibilidades se decidió que la mejor opción era
situar esa carpeta en el sistema de directorios del usuario, de esta manera con-
segúıamos que los archivos siempre estuvieran en el mismo sitio, se evitaban
problemas de escritura por ser un directorio del usuario y se restrinǵıa de al-
guna manera el acceso directo a la BD y las imágenes evitando que el usuario
podŕıa corromper el sistema.

De esta manera los directorios se organizaron tal y como se ve en el apartado
3.5.

4.5.3. Generación y distribución de versiones intermedias

TICO y AraWord dispońıan de archivos build.xml que se ejecutaban con
ANT y que permit́ıan compilar y generar una versión en ambos casos.

AraSuite es un proyecto que combina estas dos aplicaciones y hace que las
dos integren el GalleryManager para acceder a los pictogramas y los términos
asociados. Por esta razón, los archivos build.xml que teńıan las dos aplicaciones
ya no serv́ıan porque no usaban la nueva dependencia del GalleryManager.

Por lo tanto, cada vez que se queŕıa generar una versión sobre la que hacer
“testing” se iniciaba un proceso muy tedioso que quedaba restringido única-
mente a los desarrolladores e imped́ıa que cualquier persona que no estuviera
familiarizada con el entorno fuera capaz de generar una versión. Por lo tan-
to se decidió desarrollar un archivo build.xml para cada uno de los proyectos
que al ejecutarlo con ANT, compilaŕıa las distintas aplicaciones resolviendo las
dependencias que teńıan cada una de ellas con el GalleryManager.

20

Posteriormente, se evolucionó este sistema como se puede ver en el apartado
4.8 y se creó una aplicación web llamada AraSuite Generator que ejecutaba
estos build.xml para automatizar todo este proceso.

El resultado de esta solución era una web que permit́ıa al proyectante o
al tutor generar una versión con un único click, algo que fue vital de cara a
probar nuevas funcionalidades, identificar errores y realizar un seguimiento del
proyecto por parte del tutor, que se haćıa a menudo por la metodoloǵıa de
desarrollo utilizada.

4.5.4. Internacionalización de la aplicación

Tanto TICO como AraWord son aplicaciones que están internacionalizadas.
Sin embargo, al ser aplicaciones que se desarrollaron independientemente, cada
una de ellas tiene sus idiomas y su sistema de internacionalización.

El problema es que ambas aplicaciones hacen uso del GalleryManager y, por
lo tanto, el GalleryManager debe estar preparado para adaptarse a la forma de
internacionalizar de TICO o AraWord, ya que las interfaces que muestra tienen
que estar en el idioma de la aplicación padre. Dada esta situación teńıamos
varias dificultades que hab́ıa que resolver.

Cómo hacer llegar al GalleryManager el idioma de la aplicación que
lo ejecuta

El GalleryManager tiene una única manera de invocar sus interfaces que
es a través de la invocación del “frame” principal. A la hora de invocar este
“frame” se pasa como parámetro el idioma de la interfaz de la aplicación padre
y el GalleryManager guarda el idioma en un fichero de configuración para que
se use durante toda la ejecución.

A continuación se muestra un extracto del código fuente para ver cómo el
GalleryManager recibe el idioma como parámetro y lo guarda en el archivo de
configuración.

public mainFrame (St r ing language) {

// Save languge in to c on f i g u r a t i on f i l e .
TConf igurat ion . setLanguage (language) ;

// Load language f o r i n t e r f a c e from con f i gu r a t i on f i l e
TLanguage . in i tLanguage (TConf igurat ion . getLanguage ()) ;

// [. . .]
}

Y, a continuación, se muestra cómo se invoca el GalleryManager desde una
aplicación como TICO o AraWord.

public void act ionPerformed (java . awt . event . ActionEvent evt) {
mainFrame f = new mainFrame (G. appl i cat ionLanguage) ;
f . s e tV i s i b l e (true) ;

21

f . pack () ;
}

Cómo relacionar el idioma de la aplicación padre y los idiomas del
GalleryManager

TICO y AraWord teńıan formas de identificar los idiomas que no eran
estándares, por ejemplo el Castellano se identificaba con la clave “Castellano”,
el Inglés con la clave “Ingles”, etc. Por esta razón, y con intención de estan-
darizarlo, se decidió que el GalleryManager identificaŕıa los idiomas usando el
estándar ISO 639-1 2.

Para relacionar las claves de TICO con el GalleryManager se hizo un fichero
lang.properties como el que se muestra a continuación:

CASTELLANO=es
INGLES=en
FRANCES=f r
PORTUGUES=pt
PORTUGUES BRASIL=br
CATALAN=ca
ITALIANO=i t

Aśı, el GalleryManager al recibir “Castellano” buscaŕıa la clave en el fichero
language.properties, que en este caso seŕıa “es” y cargaŕıa el fichero de idiomas
es.properties.

Este sistema permite añadir un idioma al GalleryManager de una forma
sencilla ya que solo habŕıa que introducir la nueva clave en el fichero langua-
ge.properties, por ejemplo, “Euskera=eu” y añadir el fichero eu.properties al
directorio de idiomas del GalleryManager.

4.5.5. Actualización automática de pictogramas

Uno de los requisitos de AraSuite, era que tuviera implementada la actuali-
zación automática de pictogramas. Esta actualización ha sido uno de los puntos
importantes que se han afrontado durante el desarrollo del proyecto.

Finalmente se ha optado por la solución que se muestra en el diagrama de
actividad de la figura 3.2. En resumen, esta solución ha consistido en estable-
cer en el archivo de configuración de AraSuite el servidor donde encontrará la
información sobre las nuevas actualizaciones.

Cuando el usuario quiera realizar una actualización, AraSuite consultará un
archivo remoto de información con una estructura como la que se muestra a
continuación:

DOWNLOADURL=https : // s3 . amazonaws . com/ p i c t o s . z ip
MD5= 01 be832107fee febba5bf76275e8185a
RELEASE DATE=04�07�2013

2Más información en: http://es.wikipedia.org/wiki/ISO_639-1

22

http://es.wikipedia.org/wiki/ISO_639-1

CHANGELOG=Use under Creat ive Commons BY�NC�SA l i c e n s e

De este fichero obtendrá principalmente, la fecha del paquete, y la URL de
descarga. En caso de que se haya publicado un nuevo paquete y que el usuario
quiera actualizar, lo descargará y comenzar con el proceso de importación.

De esta manera el sistema queda más configurable y nos permite mover los
paquetes de pictogramas a otros servidores en caso de que se espere un gran
número de actualizaciones, y tan solo habŕıa que cambiar la URL de descarga
en el fichero remoto de información.

4.5.6. Creación y distribución de versiones finales con
instalador

Uno de los requisitos de AraSuite era generar instaladores de la aplicación
para los tres sistemas operativos predominantes, Windows, MacOS y Linux.

Se buscaba un generador de instaladores que a partir del paquete creado por
el generador de versiones, que se puede ver en el anexo K, creara 3 ejecutables
para cada uno de los SO que hemos comentado anteriormente.

En este momento se realizó un análisis de varias aplicaciones que permit́ıan
generar los instaladores, tales como: IZPack, PackJacket o Install4J.

Finalmente nos decantamos por usar Install4J ya que además de generar el
instalador, permite crear lanzadores de aplicaciones, incluir o excluir archivos
para cada SO, genera desinstalador y permite poner splash screens e iconos
configurables.

Install4J además también permite ser integrado con ANT de manera que en
un futuro se podŕıa automatizar toda la generación de instaladores e integrarlo
con un sistema de integración continua que nos generaŕıa los instaladores a partir
del código fuente, ante eventos como la creación de un “TAG” en el repositorio,
o en cada “commmit” en “trunk”.

4.5.7. Mejora de la velocidad de importación

Una de las necesidades de este proyecto es que la velocidad de acceso a los
pictogramas fuera la misma o mejor que la existente hasta el momento, por esta
razón, en este apartado se va a realizar un estudio de una de las partes de la
aplicación que mayor coste operacional tiene, la importación de pictogramas a
la base de datos. Esta importación consiste recorrer e importar los datos de
pictogramas que aparecen en un XML y copiar los pictogramas al directorio
interno del GalleryManager.

La operación de trasladar las imágenes al directorio del GalleryManager es
una operación de copia de ficheros. Por lo tanto las posibles reducciones que
se puedan llevar a cabo en este apartado son bastante escasas. Es por eso por

23

lo que vamos a centrar nuestros esfuerzos en reducir el proceso de “parsing” e
importación de los datos de los pictogramas desde el XML a la base de datos.

Muestra usada para la importación

En el estudio de la velocidad de importación se han analizado los tiempos de
ejecución para el antiguo entorno usado en TICO y AraWord y para el nuevo
entorno de AraSuite. Para ello se han realizado 10 ejecuciones usado una muestra
de pictogramas de las siguientes caracteŕısticas:

Número de pictogramas a importar: 1400

Espacio en disco de los pictogramas: 67MB

Términos a insertar en la BD: 22.217

Resultados del análisis

Figura 4.3: Gráfica comparativa de la velocidad de importación

Los resultados obtenidos son un tiempo medio de ejecución de 71 segundos
para el caso del entorno ya existente y de 9,6 segundos para el caso del nuevo
entorno de AraSuite. En la gráfica de la figura 4.3 se pueden ver los tiempos
mı́nimo, máximo y medio para cada uno de los entornos. Analizando los resulta-
dos obtenidos el tiempo medio de importación de la nueva versión de AraSuite
(9,6 segundos) presenta una mejora del 86% frente a la versión de TICO (71
segundos).

24

4.6. Ejecución del plan de pruebas

En la sección 2.5 se ha definido el plan de pruebas que se iba a ejecutar de
cara a garantizar la calidad del software desarrollado.

En esta sección se explica cuando se han realizado las ejecuciones del plan
de pruebas, los resultados obtenidos e información adicional sobre cada uno de
ellos.

4.6.1. Ejecución de las pruebas unitarias

Durante el desarrollo de este proyecto se creó un entorno de pruebas unita-
rias que permitieron probar funciones complejas para garantizar que cualquier
desarrollo posterior no modificara el resultado esperado.

Esto, además de garantizar el desarrollo realizado, también deb́ıa servir para
establecer una base que permitiera tener pruebas unitarias en futuros desarro-
llos. A continuación se explica cómo se estructuraron y se ejecutaron las pruebas
unitarias.

Descripción de las pruebas unitarias

Se han especificado ciertos patrones para ayudarnos a identificar en qué con-
siste cada una de las pruebas unitarias que se desarrollan.

Para hacerlo lo más mantenible posible, se ha evitado añadir JavaDoc expli-
cativo a cada uno de los tests ya que si el test cambia también hay que cambiar
el JavaDoc y podemos llegar a situaciones incongruentes.

Aśı que para saber qué realiza cada prueba unitaria se usará el t́ıtulo de la
misma de la siguiente manera: Nombre del método probado, precondición de la
prueba y resultado esperado, usando un formato camelcase.

Un ejemplo de t́ıtulo de una prueba unitaria seŕıa: “escapeQueryWithSeve-
ralRegexShouldReturnEscaped” esto identificaŕıa una prueba unitaria que haŕıa
lo siguiente:

Nombre del método probado: escapeQuery.

Precondición: Se van a usar varias expresiones regulares

Resultado esperado: Las queries correctamente escapadas. (Opcional)

Entorno de ejecución de pruebas

Las pruebas unitarias se han desarrollado usando JUnit 4.0 ya que está com-
pletamente integrado tanto con el IDE (Eclipse) como con ANT y resulta muy

25

cómodo para realizar test unitarios sobre código Java. La ejecución se ha au-
tomatizado mediante un “target” de ANT para poder ejecutarlo durante la
compilación de la aplicación y que un fallo en las pruebas unitarias haga que no
se compile una versión. De esta manera garantizamos que todas las versiones
distribuidas habrán pasado satisfactoriamente las pruebas unitarias.

Cada una de las ejecuciones de las pruebas unitarias dan como resultado un
informe HTML que contiene información sobre los tests que se han pasado, el
tiempo de ejecución, y el resultado de cada uno de ellos.

4.6.2. Ejecución de las pruebas de sistema

En el anexo F se identificaron los puntos cŕıticos de la aplicación. Al finalizar
el desarrollo se realizaron pruebas para confirmar que la aplicación era estable
en cualquiera de esos puntos cŕıticos.

El proceso y los resultados de las pruebas de sistema realizadas se encuentra
en el anexo G. La ejecución de las pruebas del sistema fue satisfactoria para
todos los puntos cŕıticos, sin embargo, la ejecución de alguna de ellas sirvió para
detectar puntos de mejora en el rendimiento de la aplicación.

Por ejemplo, las pruebas de exportación de una búsqueda detectaron que esta
operación se prolongaba durante mucho tiempo. Por esta razón se decidió mo-
dificar el algoritmo de exportación para minimizar el tiempo de ejecución.

4.6.3. Ejecución de las pruebas de aceptación

Las pruebas de aceptación tienen que garantizar que la aplicación se com-
porta de manera estable en situaciones normales de ejecución.

Una vez que se tuvo una versión que se consideraba estable de la aplicación
se liberó la versión AraSuite 1.0.0 para los 3 sistemas operativos y se puso al
alcance de todos los usuarios en el portal de Sourceforge.

Figura 4.4: Gráfica de descargas de AraSuite en Sourceforge

Tal y como se puede ver en la gráfica extráıda de Sourceforge de la figura
4.4, AraSuite comenzó teniendo 1120 descargas en el primer mes, creciendo

26

exponencialmente hasta las casi 4000 descargas actuales. Gracias a la activa
participación de los usuarios, se han ido recogiendo errores y sugerencias de
mejora, que han sido incluidos por el equipo de desarrollo en nuevas versiones
de AraSuite.

Cabe destacar que ninguno de los errores encontrados desde la versión 1.0.0
se ha considerado un error cŕıtico o bloqueante. En la mayoŕıa de los casos han
sido errores menores que no inflúıan de forma negativa en la estabilidad de la
aplicación.

Por lo tanto, se considera que estas pruebas de aceptación basadas en el
feedback recibido por parte de los usuarios son suficientes para garantizar que
la aplicación es estable.

4.7. Definición del flujo de desarrollo

En esta sección se definen todos los detalles relacionados con el desarrollo
de nuevas funcionalidades o corrección de errores en AraSuite, veasé el anexo J
para información más detallada.

4.7.1. Estructura del repositorio

AraWord y TICO son aplicaciones en continuo desarrollo donde varias per-
sonas están trabajando en nuevas funcionalidades o correcciones de errores. Uno
de los problemas detectados en los repositorios de TICO y AraWord es que no
hay un flujo de trabajo definido por lo que a lo largo del tiempo se ha llegado
a una situación de falta de organización en ambos repositorios que ni si quiera
sigue las convenciones de uso de SVN.

Con la creación de AraSuite se ha creado un repositorio nuevo que sigue las
normas de SVN y además define flujos de trabajo claros que facilitan el desarrollo
conjunto. A continuación se muestra como queda organizado el repositorio de
AraSuite:

Trunk: Contiene la última versión estable de la aplicación con las nuevas
funcionalidades y correcciones realizadas.

• AraWord: Contiene los ficheros de AraWord.

• GalleryManager: Contiene los ficheros del GalleryManager.

• TICO: Contiene los ficheros de TICO.

• Utils: Contiene aplicaciones externas relacionadas con AraSuite.

� Arasaac2xml: Aplicación que genera un XML con la informa-
ción de Arasaac.

� ArasuiteVersioner: Aplicación web que genera versiones de
AraSuite.

27

Branches: Contiene los desarrollos de nuevas funcionalidades. Deben te-
ner un nombre descriptivo de la funcionalidad realizada.

Tags: Contiene cada una de las versiones liberadas de AraSuite.

4.7.2. Flujos de trabajo

A la hora de trabajar en AraSuite deben seguirse los flujos de trabajo defi-
nidos a continuación.

Creación de nuevas funcionalidades: Deben realizarse siempre ba-
jo un branch con un nombre descriptivo (add-sound-to-cells, create-new-
awesome-functionality, etc.) Una vez terminadas y sincronizadas con trunk
deben ser sometidas a varias pruebas de ejecución que garanticen que la
nueva funcionalidad no ha introducido errores en el código existente. Una
vez terminado este proceso pueden ser mergeadas con trunk.

Corrección de bugs: Se llevará un seguimiento de los bugs mediante
los tickets de Sourceforge, añadiendo una descripción detallada del pro-
blema, la criticidad del bug y la persona que lo corregirá. Los bugs se
corregirán directamente en trunk puesto que debe tratarse de pequeñas
modificaciones que únicamente resuelven el problema detectado.

Release de versiones de AraSuite: Cuando se considere que hay sufi-
cientes cambios se realizará un pequeño periodo de pruebas sobre trunk,
una vez finalizado y comprobado que todo funciona corréctamente se ge-
nerará un nuevo tag. El tag se nombrará numéricamente y de forma ascen-
dente en tres niveles x.x.x, por ejemplo: 1.1.0, 2.2.0, etc. El primer valor
indicará “major releases” de la aplicación que incluirán grandes cambios
y funcionalidades. El segundo valor agrupará a pequeñas funcionalidades
o correcciones de bugs, mientras que el tercer valor servirá para identificar
pequeñas releases liberadas con 1 o 2 bugs resueltos. Estos tags nunca
serán modificados.

En la imagen de la figura 4.5 puede verse de forma más descriptiva la orga-
nización del repositorio.

4.8. Generador de versiones

Como se ha visto en el apartado 4.5.3 para probar una versión de AraSuite
haćıa falta hacer un checkout de los tres repositorios TICO, AraWord y Ga-
lleryManager. Esto dificultaba mucho que cualquier persona que no estuviera
directamente relacionada con el desarrollo pudiera realizar pruebas de nuevas
funcionalidades o encontrar bugs en la versión de AraSuite.

Entonces se decidió que facilitar la generación de versiones de AraSuite pod́ıa
ser cŕıtico de cara a ir descubriendo nuevas funcionalidades que pudieran ser

28

Figura 4.5: Estructura del repositorio

útiles, e identificar bugs de forma temprana gracias a distribuir versiones en-
tre usuarios que testeaŕıan la aplicación. Por esta razón se decidió crear un
generador de versiones con una usabilidad muy sencilla.

Este generador de versiones está liberado en la url http://arasuitegenerator.
adgomez.com. Para ver información detallada sobre el generador de versiones se
puede ver el anexo K.

29

http://arasuitegenerator.adgomez.com
http://arasuitegenerator.adgomez.com

5. Gestión del proyecto

La gestión del proyecto se vio muy influenciada por la situación actual del
proyectante, ya que en el momento de empezar el proyecto ya hab́ıa comenzado
a trabajar en una empresa y por lo tanto el tiempo dedicado al proyecto estaba
fuertemente influenciado por los problemas de agenda y las variaciones en las
cargas de trabajo de la misma.

5.1. Sprints de desarrollo

La organización del proyecto se ha visto influenciada principalmente por la
disponibilidad del proyectante. Los periodos de trabajo, o sprints, se definieron
en ciclos de 3 semanas, en la imagen de la figura 5.1 podemos ver el tiempo
invertido en cada periodo y su desviación.

Figura 5.1: Análisis de desviación de los sprints

30

6. Conclusiones y trabajo futuro

Al comienzo de este proyecto exist́ıa TICO y AraWord, ambas aplicaciones
eran funcionales pero segúıan caminos de desarrollo que no converǵıan. Esto
supońıa un problema de cara al futuro de las aplicaciones y la evolución de
las mismas, ya que, aunque ambas explotan los pictogramas y sus términos
asociados, lo hacen de distinta manera, introduciendo errores por duplicado y
abriendo la posibilidad de que diverjan tanto en su uso que el usuario se sienta
confuso.

Por eso, en este proyecto fin de carrera se ha completado el desarrollo de
la primera versión de AraSuite y se ha establecido el camino sobre el que con-
tinuará su evolución. Esta aplicación ha conseguido reunir las dos aplicaciones
existentes de TICO y AraWord, introduciendo nuevas funcionalidades y mejoras
al ecosistema ya existente, haciéndolas más robustas y estables.

Además, como resultado final del proyecto se ha conseguido que los usuarios
de TICO y AraWord migren a la nueva aplicación de AraSuite sin que esto
suponga un problema. Es más, a d́ıa de hoy, AraSuite tiene más de 2500 des-
cargas al mes y se postula como una aplicación referente en su sector, siendo la
satisfacción de los usuarios una de sus mejores puntos.

Como valoración personal tengo que añadir que participar en el desarrollo
de AraSuite y poder ofrecer a los usuarios una aplicación tan aceptada, ha sido
una satisfacción personal y un orgullo, el colofón de la aplicación seŕıa que la
comunidad de desarrolladores aproveche su licencia GNU/GPL para poderla
evolucionar y adaptar a las nuevas necesidades que surjan.

6.1. Trabajo futuro

AraSuite es una aplicación que requerirá de nuevas funcionalidades según
vayan identificándose las necesidades que vayan demandando sus usuarios, pero
a priori, y centrándonos en el desarrollo, seŕıa necesario establecer un sistema
de integración continua como Jenkins que automatice aún más la generación de
versiones.

Además, ya que AraSuite está enfocado al uso de pictogramas veo como
punto importante evolucionar la actualización automática para que sea una ac-

31

tualización progresiva que permita a los usuarios descargar de forma automática
únicamente aquellos pictogramas que desee o quizás pictogramas separados por
paquetes, por ejemplo, pictogramas de animales, de objetos concretos, lugares,
etc.

Por otro lado, y como un desarrollo paralelo a AraSuite, seŕıa una gran
opción convertir la aplicación de escritorio existente en una aplicación online
que ofrezca al usuario las mismas funcionalidades pero con las capacidades de
las aplicaciones en la nube. De esta manera, podŕıamos mantener la gestión de
pictogramas de lado del servidor y el usuario siempre usaŕıa la última versión
de la aplicación y de los pictogramas.

32

Bibliograf́ıa

[1] Web de Java http://www.java.com/

[2] Web del Proyecto TICO http://www.proyectotico.com

[3] Web de ARASAAC http://www.arasaac.org

[4] Web de SQLite https://sqlite.org

[5] Web de Jenkins http://jenkins-ci.org

33

http://www.java.com/
http://www.proyectotico.com
http://www.arasaac.org
https://sqlite.org
http://jenkins-ci.org

