000144589 001__ 144589
000144589 005__ 20241129133041.0
000144589 0247_ $$2doi$$a10.1109/ACCESS.2021.3069444
000144589 0248_ $$2sideral$$a139326
000144589 037__ $$aART-2021-139326
000144589 041__ $$aeng
000144589 100__ $$0(orcid)0000-0003-0473-9104$$aHaro-Larrode, Marta$$uUniversidad de Zaragoza
000144589 245__ $$aOn the Tuning of Fractional Order Resonant Controllers for a Voltage Source Converter in a Weak AC Grid Context
000144589 260__ $$c2021
000144589 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144589 5203_ $$aThis paper proposes a method for tuning the fractional exponent of different types of fractional order resonant controllers for a voltage source converter in a weak AC grid context. The main objective is to ensure the stability of the controlled system in a weak AC grid environment and to achieve an adequate dynamic response under disturbances. Therefore, six commonly used integer order proportional resonant (PR) control structures are selected from the literature and compared with each other according to their frequency behaviour. Afterwards, a rational approximation for the fractional order term is selected based on continuous fraction expansion technique. The inclusion of a fractional exponent in each integer order PR structure generates the fractional order proportional resonant (FPR) control transfer functions. Once the FPR controllers have been obtained, their closed-loop responses are tested via eigenvalue trajectory analysis. For each FPR control structure, a range of the fractional exponent that ensures stability is obtained. The conclusions of eigenvalue trajectory analysis are tested by implementing the FPR control structures in an specific application consisting in a modular multi-level converter (MMC) connected to a weak AC grid with adjustable short-circuit ratio. By means of time-domain simulations, not only the previous eigenvalue analyses are validated, but also new tuning criteria are given for the fractional exponent in combination with other control parameters, such as the damping frequency and the inductance of the complementary feedback branch. Moreover, a sensitivity analysis of the tuning criteria is carried out for other sizes of the AC filter inductance.
000144589 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000144589 590__ $$a3.476$$b2021
000144589 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b79 / 163 = 0.485$$c2021$$dQ2$$eT2
000144589 591__ $$aTELECOMMUNICATIONS$$b43 / 92 = 0.467$$c2021$$dQ2$$eT2
000144589 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b105 / 274 = 0.383$$c2021$$dQ2$$eT2
000144589 592__ $$a0.927$$b2021
000144589 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000144589 593__ $$aComputer Science (miscellaneous)$$c2021$$dQ1
000144589 594__ $$a6.7$$b2021
000144589 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144589 700__ $$aBergna-Diaz, Gilbert
000144589 700__ $$aEguia, Pablo
000144589 700__ $$aSantos-Mugica, Maider
000144589 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000144589 773__ $$g9 (2021), 52741-52758$$pIEEE Access$$tIEEE Access$$x2169-3536
000144589 8564_ $$s4680541$$uhttps://zaguan.unizar.es/record/144589/files/texto_completo.pdf$$yVersión publicada
000144589 8564_ $$s2678280$$uhttps://zaguan.unizar.es/record/144589/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144589 909CO $$ooai:zaguan.unizar.es:144589$$particulos$$pdriver
000144589 951__ $$a2024-11-29-13:28:57
000144589 980__ $$aARTICLE