A statistical-physics approach for codon usage optimisation
Resumen: The concept of “codon optimisation” involves adjusting the coding sequence of a target protein to account for the inherent codon preferences of a host species and maximise protein expression in that species. However, there is still a lack of consensus on the most effective approach to achieve optimal results. Existing methods typically depend on heuristic combinations of different variables, leaving the user with the final choice of the sequence hit. In this study, we propose a new statistical-physics model for codon optimisation. This model, called the Nearest-Neighbour interaction (NN) model, links the probability of any given codon sequence to the “interactions” between neighbouring codons. We used the model to design codon sequences for different proteins of interest, and we compared our sequences with the predictions of some commercial tools. In order to assess the importance of the pair interactions, we additionally compared the NN model with a simpler method (Ind) that disregards interactions. It was observed that the NN method yielded similar Codon Adaptation Index (CAI) values to those obtained by other commercial algorithms, despite the fact that CAI was not explicitly considered in the algorithm. By utilising both the NN and Ind methods to optimise the reporter protein luciferase, and then analysing the translation performance in human cell lines and in a mouse model, we found that the NN approach yielded the highest protein expression in vivo. Consequently, we propose that the NN model may prove advantageous in biotechnological applications, such as heterologous protein expression or mRNA-based therapies.
Idioma: Inglés
DOI: 10.1016/j.csbj.2024.07.020
Año: 2024
Publicado en: Computational and Structural Biotechnology Journal 23 (2024), 3050-3064
ISSN: 2001-0370

Financiación: info:eu-repo/grantAgreement/ES/DGA/E30-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/IDMF 2021-0009
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-08-29-10:45:55)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física Teórica



 Registro creado el 2024-08-29, última modificación el 2024-08-29


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)