000144687 001__ 144687
000144687 005__ 20250923084428.0
000144687 0247_ $$2doi$$a10.3389/fbioe.2024.1406870
000144687 0248_ $$2sideral$$a139492
000144687 037__ $$aART-2024-139492
000144687 041__ $$aeng
000144687 100__ $$aRedaelli, Elena$$uUniversidad de Zaragoza
000144687 245__ $$aNon-contact tonometry: predicting intraocular pressure using a material—corneal thickness—independent methodology
000144687 260__ $$c2024
000144687 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144687 5203_ $$aIntroduction: Glaucoma, a leading cause of blindness worldwide, is primarily caused by elevated intraocular pressure (IOP). Accurate and reliable IOP measurements are the key to diagnose the pathology in time and to provide for effective treatment strategies. The currently available methods for measuring IOP include contact and non contact tonometers (NCT), which estimate IOP based on the corneal deformation caused by an external load, that in the case of NCT is an air pulse. The deformation of the cornea during the tonometry is the result of the coupling between the IOP, the mechanical properties of the corneal tissue, the corneal thickness, and the external force applied. Therefore, there is the need to decouple the four contributions to estimate the IOP more reliably.Methods: This paper aims to propose a new methodology to estimate the IOP based on the analysis of the mechanical work performed by the air jet and by the IOP during the NCT test. A numerical eye model is presented, initially deformed by the action of a falling mass to study the energy balance. Subsequently, Fluid-Structure Interaction (FSI) simulations are conducted to simulate the action of Corvis ST.Results and discussion: The new IOP estimation procedure is proposed based on the results of the simulations. The methodology is centred on the analysis of the time of maximum apex velocity rather than the point of first applanation leading to a new IOP estimation not influenced by the geometrical and mechanical corneal factors.
000144687 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON$$9info:eu-repo/grantAgreement/ES/UZ/ICTS NANBIOSIS-U27 Unit-CIBER-BBN
000144687 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144687 590__ $$a4.8$$b2024
000144687 592__ $$a0.974$$b2024
000144687 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b31 / 177 = 0.175$$c2024$$dQ1$$eT1
000144687 593__ $$aBiomedical Engineering$$c2024$$dQ1
000144687 591__ $$aENGINEERING, BIOMEDICAL$$b35 / 124 = 0.282$$c2024$$dQ2$$eT1
000144687 593__ $$aHistology$$c2024$$dQ1
000144687 593__ $$aBiotechnology$$c2024$$dQ1
000144687 593__ $$aBioengineering$$c2024$$dQ2
000144687 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144687 700__ $$0(orcid)0000-0001-9713-1813$$aCalvo, Begoña$$uUniversidad de Zaragoza
000144687 700__ $$aRodriguez Matas, Jose Felix
000144687 700__ $$aLuraghi, Giulia
000144687 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000144687 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000144687 773__ $$g12 (2024), 1406870 [14 pp.]$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000144687 8564_ $$s3933797$$uhttps://zaguan.unizar.es/record/144687/files/texto_completo.pdf$$yVersión publicada
000144687 8564_ $$s2084293$$uhttps://zaguan.unizar.es/record/144687/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144687 909CO $$ooai:zaguan.unizar.es:144687$$particulos$$pdriver
000144687 951__ $$a2025-09-22-14:41:15
000144687 980__ $$aARTICLE