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This letter explores the Volume Penalization-Immersed Boundary Method (VP-IBM)

for turbulent flows from a more physically perspective. The VP approach consists

of introducing a penalty source into the governing equations, resulting in a flow

akin to a porous medium with low permeability. Although penalizing the turbulent

equations conventionally involves adding a similar penalty source as in the original

equations, this work reveals an alternative formulation that includes an additional

term with physical meaning. The novelty of this letter is to consider the penalised

flow with an additional property, the fluid resistance, establishing a cross-correlation

with fluctuating velocity for further modelling.
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Turbulent VP-IBM

The Immersed Boundary Method (IBM)1 is a numerical technique for embedding bodies

with complex geometries within Cartesian-like meshes for fluid flow simulations. At present,

IBM remains a current issue in the Computational Fluid Dynamics (CFD) community2. Vol-

ume Penalization (VP)3 belongs to the IBM family, where the governing equation embodies

a penalty force that is equivalent to a boundary condition applied in certain computational

nodes of the mesh. For example, consider the incompressible Navier-Stokes (iNS) equations,

∂ui

∂xi

= 0 , (1a)

∂ui

∂t
+

∂

∂xj

(
uiuj − ν

∂ui

∂xj

+
1

ρ
pδij

)
= 0 , (1b)

where ui is the velocity field, p is the pressure, ρ is the density, and ν is the kinematic

viscosity. Assume a rigid body is moving in the domain Ω with a velocity ub,i. The problem

imposes the condition ui(·, t) = ub,i(t) on the wall. Then the (standard) penalized iNS

equations can be written as follows:

∂uη,i

∂xi

= 0 , (2a)

∂uη,i

∂t
+

∂

∂xj

(
uη,iuη,j − ν

∂uη,i

∂xj

+
1

ρ
pηδij

)
+ sη,i = 0 , (2b)

where the penalty source sη,i = χ/η [uη,i − ub,i] drives uη,i to ub,i within the body region,

Ωbody, for small values of the penalized parameter η, i.e. 0 < η ≪ 1. Note that the appli-

cation of sη,i modifies the set of solutions, and therefore, (uη,i, pη) is not the same as (ui, p).

Angot, Bruneau, and Fabrie 4 (later by Carbou and Fabrie 5) provided the convergence of

the velocity of the penalized equation (2) when η → 0 to the solution of the velocity of the

iNS equation (1) with no-slip boundary condition, i.e. the modelling error depends on the

penalization parameter6 as ||ui−uη,i|| ∝ ηα where ||·|| is the Lp-norm and α ∈ R (α = 1/2 for

Dirichlet boundary conditions). With regard to pressure, Angot, Bruneau, and Fabrie 4 only

noted that there is a Darcy flow within the body at the order η. However, Basarić et al. 7

provided the convergence of the solution (ρη, uη,i, Tη), and hence also of pη = pη(ρη, Tη), for

the Navier-Stokes-Fourier equations (compressible viscous and heat-conducting flow).

The limit of the VP-IBM application will be given by the numerical aspect. Typical

permeability values are η ∈ {10−7, 10−10} (see e.g. Ménez et al. 8). This limitation is due to

stability issues since small η results in very stiff source terms, which restrict the time step9.

On the other hand, the mask function χ characterises the geometry of the body. Typically,
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χ is selected as a step-like function (sharp mask):

χ(xi, t) :=

1, If xi ∈ Ωbody(t)

0, Otherwise
.

Nonetheless, this definition is not the sole option and continuous functions10–13 (smooth

mask) can be used, for example. In some cases of moving bodies, the mask function might

be described by a transport equation14,15.

On the other hand, IBMs remain challenging for turbulent flows because of non-

conforming meshes. In such high Reynolds numbers, the importance of friction is inevitable

near the wall. Recent contributions in ghost cell16–18, direct forcing19–22 and VP23,24 enhance

IMBs for turbulent flows; see Iaccarino and Verzicco25 for an exhaustive review of turbu-

lence in IBM. Nevertheless, when penalization is applied to turbulent flows, it is approached

more from a numerical perspective than from a physical one. From a physical point of

view, penalization involves modelling the body as a porous medium with permeability η

approaching zero. Hence, for practical purposes, it is essential to know the contributions of

turbulence within the specified region where the body is assumed to be located.

This letter aims to show a discrepancy when the volume penalization-immersed boundary

method (VP-IBM) is applied for turbulence modelling. Articles dealing with VP-IBM for

turbulent flow (e.g. Yu and Yu 26) just simply take the turbulent equations and penalized

the turbulent velocity field. This calls into a research question: Is this the only way to

obtain a penalized version of the turbulent equations? To illustrate the aim of this letter,

the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations are applied. It will

show that two different formulations of the penalty source are achieved for the momentum

equations.

When dealing with turbulent flows, handling the URANS equations in a penalty version

becomes necessary in some form for VP-IBM. At first glance, one can proceed as follows:

split each instantaneous quantity in the iNS equations (1) into its averaged and fluctuating

components (Reynolds decomposition) and ensemble-averaging these equations,

∂ui

∂xi

= 0

∂ui

∂t
+

∂

∂xj

(
uiuj − ν

∂ui

∂xj

−Rij +
1

ρ
pδij

)
= 0 ,
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where Rij := −u′
iu

′
j = νt∂ui/∂xj is defined as the Reynolds stress tensor with eddy vis-

cosity νt. These equations are the traditional URANS. Then one penalized the momentum

equation, that is,

∂ui

∂xi

= 0, (3)

∂ui

∂t
+

∂

∂xj

Πij + s†η,i = 0 , (4)

being s†η,i = χ/η [ui − ub,i]. The subscript η is omitted from ui and p for convenience.

Πij := uiuj − (ν + νt) ∂ui/∂xj + (p/ρ)δij is the average total tensor. What is happening

inside the solid region now needs to be investigated.

The idea behind VP-IBM is to quickly damp the solution in Ωbody. The characteristic

length and time scales of the domain are L and T , respectively, and the characteristic

velocity and pressure scales are U and P , respectively. In convection-dominant problems

(e.g. turbulent flows) P ∼ ρU2. Introducing those scales in the momentum equation (2)

and multiplying by η/U , the resulting is

η

T
∂u∗

η,i

∂t∗
+

η

Tc

∂

∂x∗
j

(
u∗
η,iu

∗
η,j + p∗ηδij

)
− η

Td

∂2u∗
η,i

∂x∗
j∂x

∗
j

+ χ
[
u∗
η,i − u∗

b,i

]
= 0 , (5)

where Tc := L/U is a characteristic convection time, Td := L2/ν is a characteristic diffusion

time, and ϕ∗ is a dimensionless generic variable. The relation between convection and

diffusion times is given by the Reynolds number: Td/Tc = Re := UL/ν.

Let’s take a value of η small enough so that η ≪ Tc and η ≪ Td. When the Reynolds

number is large, Td ≫ Tc and the penalty condition yields

η ≪ Tc ≪ Td . (6)

This condition is equivalent to the intermediate damping regime described by Hester, Vasil,

and Burns 12 . Hester, Vasil, and Burns 12 defined several volume-penalty regimes depending

on the damping time scale εt (η/Tc in Eqn. (5)), the damping length scale εl (η/Td in

Eqn. (5)), and the Reynolds number. They show that to approximate the body, both εt and

εl must be small; and for a high Reynolds number, the damping time scale dominates the

damping length scale, whose interpretation is identical to the condition (6). Therefore, the
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penalty source must dominate the spatial term of Eqn. (5). This penalty condition seems

to hold even if the location of χ is not known beforehand, as in deformable bodies27.

As a result, the governing equation within the body region is the following:

∂ui

∂t
+

1

η
ui =

1

η
ub,i , ∀xi ∈ Ωbody(t) , (7a)

with initial condition ui(xi, 0) = u0
b,i. The analytical solution is

ui = e−t/η

[
u0
b,i +

1

η

∫ t

0

ub,ie
τ/η dτ

]
, (7b)

within Ωbody. Upon employing the Integration-by-Parts (IbP) formula to evaluate the inte-

gral of equation (7b), the outcome is:∫ t

0

ub,ie
τ/η dτ =ηub,ie

t/η − η

∫ t

0

∂ub,i

∂t
eτ/η dτ − ηu0

b,i .

Repetition of IbP to the new integral over and over again results in∫ t

0

ub,ie
τ/η dτ =η

[
ub,ie

t/η − u0
b,i

]
+

∞∑
k=1

(−1)kηk+1

[
∂kub,i

∂tk
et/η − ∂kub,i

∂tk

∣∣∣∣0
]
.

Substituting the latter into the solution (7b), the velocity field within Ωbody can be written

as follows,

ui = ub,i +
∞∑
k=1

(−1)kηk

[
∂kub,i

∂tk
− ∂kub,i

∂tk

∣∣∣∣0 e−t/η

]
. (7c)

The limit case shows that limη→0 ui = ub,i ∀xi ∈ Ωbody(t). This complements what Angot,

Bruneau, and Fabrie 4 prove with greater rigour. The infinite sum can be understood as an

artificial velocity arising from errors due to the modellization of the volume penalization.

On the other hand, ui ̸= ub,i ∀xi ∈ Ωbody(t) in a general case. Only if the body does not

move (ub,i = 0) or the body moves uniformly (ub,i ̸= ub,i(t)) then ui = ub,i ∀xi ∈ Ωbody(t).

Even in the steady state, the result is limt→+∞ ui = ub,i + ui where ui is the remainder term

of Eqn. (7c).

Let’s rethink the penalization problem from a different perspective. First, the penalty

source in penalized system (2) is rearranging as follows:

sη,i = Rη [ui − ub,i] , (8a)
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where

Rη(xi, t) :=
χ

η
=


1

η
, If xi ∈ Ωbody(t)

0, Otherwise

. (8b)

The inverse of permeability is called resistance. Therefore, Rη represents a piecewise-

constant function of fluid resistance throughout the domain Ω. Now, Reynolds decom-

position and ensemble-averaging the penalized system (2) yields,

∂ui

∂xi

= 0, (9a)

∂ui

∂t
+

∂

∂xj

Πij + sη,i = 0 . (9b)

In Equation (9b) we get the ensemble-averaged penalty source:

sη,i =
[
Rη + R ′

η

]
[wi + w′

i] = Rηwi + R ′
ηw

′
i , (9c)

where wi = ui − ub,i is the relative velocity field. An extra term (R ′
ηw

′
i) arises because the

body is moving. Why does Rη split? Moving the body means in the VP-IBM problem that

the fluid resistance changes. Rη must be understood as a property of the fluid, such as

density or viscosity, that changes. This allows it to fluctuate in the same nature as the flow;

see Fig. 1.

The resistance fluctuation (R ′
η) will occur mainly near the body interface. However, the

assurance that R ′
ηw

′
i = 0 when R ′

η = 0 away from the interface cannot be guaranteed due to

correlation. In the case of a semi-infinite body, for example, once the resistance fluctuation

is equal to zero, R ′
ηw

′
i will decay to zero. However, within a finite body, a point enclosed

by the body will be influenced by the entire interface, leading to the assumption that R ′
ηw

′
i

remains a non-zero value within Ωbody.

At this point, the interpretation of the second term from Eqn. (9c) is probably of great

interest because its physical interpretation is not straightforward. This fluctuating term

should be related to an interaction between the fluid and the body. Cross-correlations

involving this term (R ′
η) cannot therefore be closed, like for the Reynolds stress tensor, for

example (or the fluid-body interaction will have to be considered, and it is no longer a simple

matter of solving the URANS equations). How could the term R ′
ηw

′
i be applied in practice?

A possible way could be the following.

6



Turbulent VP-IBM

FIG. 1. A sketch of a body moving in a fluid flow. (a) classical problem: domain Ω(t) = Ωfluid(t)

and boundary Γ(t) = Γfluid ∪ Γsolid. (b) VP-IBM problem: domain Ω = Ωfluid(t) ∪ Ωsolid(t) and

boundary Γ = Γfluid, body interface in red dashed line.

Return to the same analysis as performed for Equations (7). The governing equations in

the solid region for system (9) read as follows:

∂ui

∂t
+ Rηui = Rηub,i − R ′

ηw
′
i , ∀xi ∈ Ωbody(t) , (10a)

and its analytical solution,

ui =exp

(
−
∫ t

0

Rη dτ

)
×

[
u0
b,i +

∫ t

0

[
Rηub,i − R ′

ηw
′
i

]
exp

(∫ τ

0

Rη dξ

)
dτ

]
. (10b)

Now the question is: What would be the value of R ′
ηw

′
i such that ui = ub,i ∀t > 0? A

straightforward calculation yields

R ′
ηw

′
i = Rηub,i − exp

(
−
∫ t

0

Rη dτ

)
× ∂

∂t

(
ub,i exp

(∫ t

0

Rη dτ

))
.

If the second term is expanded, then

R ′
ηw

′
i = −∂ub,i

∂t
. (11)

The result is the acceleration of the body. The minus sign indicates that the acceleration

of the fluid in the region of the body opposes the acceleration of the body. R ′
ηw

′
i vanishs

from Eqn. (9c) if and only if the body does not move or move uniformly. Therefore, the

fluctuation term is an unsteady correction: a local force per mass acting on the fluid where

the solid is supposed to be.
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It is important to note that if the body does not move (i.e. ub,i = 0 and Rη = Rη),

then sη,i = s†η,i = Rηui. This means that “penalized the traditional URANS equations” and

“averaging the penalized iNS equations” are indistinguishable procedures.

The system (9) with the new term (11) ends up as

∂ui

∂xi

= 0, (12a)

∂ui

∂t
+

∂

∂xj

Πij + Rηwi − χ
∂ub,i

∂t
= 0 . (12b)

Body acceleration is multiplied by the mask function to apply the force per mass within

Ωbody. Together system (12a)-(12b) we impose, for convenience, the following set of bound-

ary condition (BC) and initial value (IV), respectively,

ui = 0, xi ∈ Γ, t > 0 (12c)

u0
i = χu0

b,i xi ∈ Ω, t = 0 (12d)

Now, the question arises of whether the new term (11) respects energy conservation, a

fundamental principle of physical relevance. An energy stability analysis yields the following

result:

Theorem 1. Let ui be a solution to the system (12a)-(12b) with BC (12c) and IV (12d),

then the energy norm of the solution is bounded by the body motion (boundary condition in

the classical problem, Fig.1(a)) provided that the total (molecular and eddy) viscosity of the

system does not become negative.

Proof. Multiply Eqn.(12b) by ui and integrate over Ω× [0,T],

∫ T

0

∫
Ω

ui
∂ui

∂t
d3x dt

(I)

+

∫ T

0

∫
Ω

ui
∂Πij

∂xj

d3x dt

(II)

+

∫ T

0

∫
Ω

ui

[
Rηwi − χ

∂ub,i

∂t

]
d3x dt

(III)

= 0 . (13)

The term (I ): using the chain rule, applying Leibniz’s rule and integrating in time gives∫ T

0

∫
Ω

ui
∂ui

∂t
d3x dt =

||u(·,T)||22 − ||u0
b(·)||22

2
, (14a)

being the L2-norm ||ϕ||22 :=
∫
Ω
ϕ2 d3x and u2 = uiui.

The term (II ): integrating by parts,∫
Ω

ui
∂Πij

∂xj

d3x =

∮
Γ

uiΠijnj d
2x−

∫
Ω

∂ui

∂xj

Πij d
3x , (14b)
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the first integral of the right-hand side (RHS) becomes zero by BC (12c), nj is the normal

vector of Γ. Using mass conservation to the second integral of the RHS,∫
Ω

∂ui

∂xj

Πij d
3x =

1

2

∫
Ω

∂(u2uj)

∂xj

d3x

−
∫
Ω

(ν + νt)
∂ui

∂xj

∂ui

∂xj

d3x . (14c)

The first integral of the RHS became zero after applying the divergence theorem and BC

(12c).

The term (III ): This integral only exits within Ωbody. In this region, we deduce that

ui = ub,i (wi = 0). Using the chain rule, applying Leibniz’s rule and integrating in time

gives ∫ T

0

∫
Ω

ui

[
Rηwi − χ

∂ub,i

∂t

]
d3x dt =

||u0
b(·)||22 − ||ub(·,T)||22

2
. (14d)

Inserting (14) into (13) and reassigning gives

||u(·,T)||22 = ||ub(·,T)||22 − 2

∫
Ω

(ν + νt)
∂ui

∂xj

∂ui

∂xj

d3x .

Assuming ν+νt ≥ 0, the above integral is negative semi-definite, and therefore ||u(·,T)||2 ≤

||ub(·,T)||2.

The reach and applicability of the ideas proposed in this letter to other problems are

investigated briefly. For example, let’s assume the body not only moves but also has a

fixed temperature gradient at the wall, ∂T/∂n = q where ∂T/∂n = nk∂T/∂xk with nk the

surface normal and q a heat flux. The inhomogeneous Neumann condition is enforced by

applying an external force on the derivatives of T where the normal surface extends linearly

within the body region28. This leads to the penalized heat equation ∂T/∂t + ∂(ujT +

κ∂T/∂xj)/∂xj + RηTh = 0 where κ is the thermal diffusivity (constant), RηT := χ/ηT is

the thermal resistance, and h := ∂T/∂n − q. In a similar analysis as above, the averaged

governing equation within the body region is ∂T/∂t+RηT ∂T/∂n = RηT q−R ′
ηT
h′. After some

mathematical manipulations, the following advection equation yields ∂h/∂t+∂(RηT h)/∂n =

−∂(R ′
ηT
h′)/∂n − ∂q/∂t. With an appropriate zero value of h as both IV and BC, the

gradient of R ′
ηT
h′ in the direction of surface normal must balance the temporal variation of

q to achieve a null solution within the body region. Using the method of characteristics,

R ′
ηT
h′ = −

∫
∂q/∂t dξ with dxk/dξ = nk.
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Another application of these concepts concerns compressible flows. Now, the penalty

source (8) is written sη,i = Rηρwi. To obtain again an averaged form of the momentum

equation, the penalized instantaneous momentum equation (2b) is assemble-averaged. Now,

introducing the Favre decomposition (a = ã + a′′ where ã = ρa/ρ is the density-weighted

average) of wi and the Reynolds decomposition (a = a+ a′) of Rη and ρ gives the following

ensemble-averaged penalty source: sη,i = ρR̃ηw̃i + ρR ′
ηw

′′
i , where Rη has been expressed in

terms of a density-weighted average for convenience. The same analysis as in (10) results

in ρR ′
ηw

′′
i = −∂(ρũb,i)/∂t. For the conservation equation in compressible flows, a Neumann

condition is added29,30. Similarly to the previous thermal problem, the modelling of the new

cross-correlation term can be achieved.

An important observation is that VP is highly dependent on the porous medium modelling

approach. The penalization discussed in Eqn. (2) is referenced to as the “standard” VP,

to distinguish it from the Characteristics-Based VP (CBVP)28,30. In CBVP, spatial terms

undergo penalization but also the introduction of a penalty non-physical diffusion. Although

the ideas in this letter can be applied to CBVP, the calculations might be less cumbersome if

the penalization equation is expressed in a conservative form. In that case, the new diffusion

coefficient would allow for fluctuation.

To conclude, this letter shows a discrepancy in the process of obtaining the penalized

turbulence equations. The URANS equations were used for this purpose. This discrepancy

arises from the way the turbulent solution is penalized: a new penalty source that penlized

the mean flow or averaged the original penalty source. From a conceptual point of view,

the traditional URANS equations were derived from the Navier-Stokes equations (1). If the

URANS equations for a penalized flow are desired, the starting point should be the system

(2) by applying Reynolds’ decomposition and ensemble averaging.

The main idea of the letter is to treat the coefficient χ/η as a new property (namely,

fluid resistance) of the VP-IBM flow problem. The average of the penalty source adds

an additional term from the cross-correlation between the fluid resistance and the relative

velocity field. To provide a physically interpretable explanation for the presence of this

additional term, a study of the velocity field within the body region was proposed. By

removing the modelling errors in this region, the body acceleration emerges as this additional

term. If the body does not move or move uniformly, then both ways of proceeding with the

penalty source lead to the same results, and the processes can be said to be indistinguishable.
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If not, the body acceleration term remains as an unsteady corrector. Lastly, these ideas could

be extrapolated to problems with other types of conditions or compressible flow.

The results of the present aim to demonstrate that deriving a penalized form of the

turbulent equations without due care may lead to overlooking terms crucial for accurately

modelling turbulence in such penalized flows.
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