000144732 001__ 144732
000144732 005__ 20250923084425.0
000144732 0247_ $$2doi$$a10.3390/biomimetics9070446
000144732 0248_ $$2sideral$$a139494
000144732 037__ $$aART-2024-139494
000144732 041__ $$aeng
000144732 100__ $$0(orcid)0000-0003-4970-2460$$aLacueva-Aparicio, Alodia
000144732 245__ $$aAdvanced kidney models in vitro using the established cell line Renal Proximal Tubular Epithelial/Telomerase Reverse Transcriptase1 for nephrotoxicity assays
000144732 260__ $$c2024
000144732 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144732 5203_ $$aNephrotoxicity stands as one of the most limiting effects in the development and validation of new drugs. The kidney, among the organs evaluated in toxicity assessments, has a higher susceptibility, with nephrotoxic potential frequently evading detection until late in clinical trials. Traditional cell culture, which has been widely used for decades, does not recapitulate the structure and complexity of the native tissue, which can affect cell function, and the response to cytotoxins does not resemble what occurs in the kidney. In the current study, we aimed to address these challenges by creating in vitro kidney models that faithfully biomimic the dynamics of the renal proximal tubule, using the well-established RPTEC/TERT1 cell line. For doing so, two models were developed, one recreating tubule-like structures (2.5D model) and the other using microfluidic technology (kidney-on-a-chip). The 2.5D model allowed tubular structures to be generated in the absence of hydrogels, and the kidney-on-a-chip model allowed shear stress to be applied to the cell culture, which is a physiological stimulus in the renal tissue. After characterization of both models, different nephrotoxic compounds such as cisplatin, tacrolimus, and daunorubicin were used to study cell responses after treatment. The developed models in our study could be a valuable tool for pre-clinical nephrotoxic testing of drugs and new compounds.
000144732 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-0099946- B-100$$9info:eu-repo/grantAgreement/ES/MINECO/BES2016-078380$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/DPI2015-65401-C3-1-R
000144732 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144732 590__ $$a3.9$$b2024
000144732 592__ $$a0.647$$b2024
000144732 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b31 / 175 = 0.177$$c2024$$dQ1$$eT1
000144732 593__ $$aBiotechnology$$c2024$$dQ2
000144732 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b30 / 55 = 0.545$$c2024$$dQ3$$eT2
000144732 593__ $$aBiomedical Engineering$$c2024$$dQ2
000144732 593__ $$aMolecular Medicine$$c2024$$dQ3
000144732 593__ $$aBioengineering$$c2024$$dQ3
000144732 593__ $$aBiochemistry$$c2024$$dQ3
000144732 593__ $$aBiomaterials$$c2024$$dQ3
000144732 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144732 700__ $$aMartínez-Gimeno, Laura
000144732 700__ $$aTorcal, Pilar
000144732 700__ $$0(orcid)0000-0003-2410-5678$$aOchoa, Ignacio$$uUniversidad de Zaragoza
000144732 700__ $$0(orcid)0000-0002-6043-4869$$aGiménez, Ignacio$$uUniversidad de Zaragoza
000144732 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología
000144732 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000144732 773__ $$g9, 7 (2024), 446 [14 p.]$$tBiomimetics$$x2313-7673
000144732 8564_ $$s7255522$$uhttps://zaguan.unizar.es/record/144732/files/texto_completo.pdf$$yVersión publicada
000144732 8564_ $$s2569995$$uhttps://zaguan.unizar.es/record/144732/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144732 909CO $$ooai:zaguan.unizar.es:144732$$particulos$$pdriver
000144732 951__ $$a2025-09-22-14:39:02
000144732 980__ $$aARTICLE